Efficient Transmission in Multiantenna Two-Way AF Relaying Networks

DOI:
10.1109/TVT.2018.2791472

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
IEEE Transactions on Vehicular Technology

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date:19. Jan. 2020
Efficient Transmission in Multi-Antenna Two-Way AF Relaying Networks

Jing Yang, Member, IEEE, Lei Chen, Student Member, IEEE, Xianfu Lei, Senior Member, IEEE, Zhiguo Ding, Senior Member, IEEE, Pingzhi Fan, Fellow, IEEE, and Xiqi Gao, Fellow, IEEE

Abstract—In this paper, an efficient transmission scheme, termed the joint antenna selection and data exchange (AS-DE) scheme, is proposed for a two-way amplify-and-forward relaying network, where two single-antenna source terminals exchange information via a multi-antenna relay station. For the proposed scheme, the best antenna at the relay for each source terminal is first selected separately, following the max-max scheme. Then, from the set of the previously selected antennas, either one antenna is selected, in a similar fashion as well-known max-min and max-sum schemes, or two antennas exchange their respective received signals, which are then coded, amplified and broadcasted to the source and destination terminals. Tight lower and upper bounds on the outage probability (OP) for the proposed scheme have been derived assuming independent and identically distributed Rayleigh fading channels. Furthermore, our analysis reveals that the proposed joint AS-DE scheme can achieve full diversity. Finally, it is shown that under the same resource constraints, i.e., in terms of the number of the utilized time slots and transmit power, the proposed joint AS-DE scheme outperforms the max-min, the max-sum and the max-max schemes. Extensive numerical results accompanied with computer simulations, are further provided to validate the developed analytical results.

Index Terms—Two-way relaying networks, outage probabilities, antenna selection, max-min, max-sum, max-max.

I. INTRODUCTION

Recently, two-way relaying networks (TWRNs) have been envisioned as a promising transmission technology to significantly improve the reliability and transmission rate of wireless systems [1], [2]. The performance of TWRNs can be further improved by integrating multiple-input multiple-output (MIMO) transmission technology [3]–[5]. Antenna selection (AS), i.e., optimally choosing a subset of the available antennas, is an attractive low-cost and low-complexity technique, but still retains many of the advantages of conventional MIMO systems [6]. In the open technical literature, three antenna selection schemes for MIMO amplify-and-forward (AF) and decode-and-forward (DF) TWRNs have been proposed, namely the max-min [7], [8], the max-sum [9] and the max-max schemes [10], [11].

The performance achieved by such schemes has been assessed in several past research works. For example, the outage probability (OP) performance of the max-min and the max-sum schemes has been evaluated in [7]–[9]. These works have shown that both schemes can achieve full diversity. In [10], antenna selection in a DF relaying network based on the max-max scheme was investigated, assuming that decoding at the relay is error-free. In [11], the so-called double-max scheme was proposed. In that work, relay selection based on the max-max scheme was addressed, assuming the use of an error-free decoding relay.

Motivation: For the purpose of illustration, consider two single-antenna sources T_1 and T_2 exchanging information via a relay station R which is equipped with $N = 3$ antennas, denoted by antenna R_1, antenna R_2 and antenna R_3, respectively. For example, let the channel gains from T_1 and T_2 to R at a given time instant be $h = \{h_1, h_2, h_3\} = \{0.35, 0.46, 0.59\}$ and $g = \{g_1, g_2, g_3\} = \{0.72, 0.54, 0.32\}$, respectively. According to the max-min scheme, the best antenna at the relay is selected to maximize the end-to-end signal-to-noise ratio of the worse source [7], [8]. In this example, the antenna antenna R_2 will be chosen with $h_2 = 0.46$ and $g_2 = 0.54$. However, it can be observed that the links having the largest channel gains, i.e., $h_3 = 0.59$ and $g_1 = 0.72$, have not been utilized.

When the max-sum scheme is utilized, the best antenna at the relay is selected to maximize the sum-rate [9]. In the considered test case, the antenna R_1 will be chosen with $h_1 = 0.35$ and $g_1 = 0.72$. However, as it can be observed this method does not exploit the channel coefficient $h_3 = 0.59$, i.e., the maximum channel gain in all $h_i s$, $i \in \{1, 2, 3\}$.
The max-max scheme selects at a given time instance either one or two antennas at the relay, corresponding to the maximum channel coefficients [10], [11]. If the antenna indices are the same, one antenna is selected, otherwise two antennas are selected. In the previously described example, two antennas are selected, namely the antenna R_1 and antenna R_3 corresponding to the links with $h_3 = 0.59$ and $g_1 = 0.72$. Consider, however, the following data transmission scenario from T_1 to T_2. Specifically, assume that information flows from the links $T_1 \rightarrow R_1$, $R_1 \rightarrow T_2$ and $T_1 \rightarrow R_3$, $R_3 \rightarrow T_2$, characterized by channel gains $h_1 = 0.35$, $g_1 = 0.72$ and $h_3 = 0.59$, $g_3 = 0.32$, respectively. As can be observed, during the transmission through the antenna R_1, link $T_1 \rightarrow R_1$ experiences the worse channel conditions since h_1 is the minimum channel coefficient in h_is. On the other hand, link $R_1 \rightarrow T_2$ experiences the best channel conditions because g_1 is the maximum channel coefficient in g_is. Similar findings can be found when transmission through the links $T_1 \rightarrow R_3$, $R_3 \rightarrow T_2$ is considered. In such scenarios, the combinations of “small-maximum” and “maximum-small” channel coefficients result in a small received end-to-end (e2e) SNR at T_2. Note that when one antenna is selected, i.e., when the selected antennas’ indices are identical, data transmission will exploit the best links in an optimal way. In such a case, the max-max scheme exhibits the best performance. However, this is a small probability event.

Motivated by this key observation, in this paper, an efficient transmission scheme which can exploit the unutilized links characterized by the best channel coefficients, termed the joint antenna selection and data exchange (AS-DE) scheme, is proposed for multi-antenna AF TWRNs. The key idea in the joint AS-DE scheme is to combine max-max antenna selection scheme along with data exchange to transmit data through the links characterized by “maximum-maximum” and “small-small” channel coefficients. Consequently, the joint AS-DE scheme outperforms the max-min, the max-sum and the max-max schemes because its e2e SNR is significantly larger than that achieved by the aforementioned AS schemes. It should be emphasized that the previously reported works on the max-max scheme, such as those presented in [10], [11], ignore the possible transmission error due to the aforementioned “small-maximum” and “maximum-small” combinations of channel coefficients, since they consider DF relaying networks and assume decoding at the relay is error-free.

The performance of the joint AS-DE scheme is assessed by deriving the tight upper and lower bounds on the e2e OP, assuming Rayleigh fading conditions. The tightness of the newly derived bounds is verified by means of computer simulation. Extensive numerical results are further presented revealing that the joint AS-DE scheme can achieve full diversity. In addition, it is shown that under the same resource consumption constraints, such as in terms of the utilized time slots and transmit power, the joint AS-DE scheme also outperforms the existing max-min, max-sum and max-max schemes.

The remainder of this paper is organized as follows: Section II presents the system model and the joint AS-DE scheme. Section III investigates the OP and diversity gain performance for the joint AS-DE scheme. Numerical and simulation results are presented in Section IV. Finally, Section V concludes the paper.

Notation: $E\{\cdot\}$ and I_M denote the expectation operation and an $M \times M$ identity matrix, respectively. $K_v(\cdot)$ and $Ei(\cdot)$ denote the v order modified Bessel function of the second kind [12, Eq. (8.407)] and the Exponential integral function [12, Eq. (8.211)], respectively. The notations $CN(0,\sigma^2)$, $f_X(\cdot)$ and $F_X(\cdot)$ represent a circularly symmetric complex Gaussian random variable (RV) with zero mean and variance σ^2, the probability density function (PDF) and cumulative distribution function (CDF) of RV X, respectively. $\Pr(\cdot)$ returns the probability.

II. SYSTEM MODEL AND THE PROPOSED JOINT AS-DE SCHEME

In this section, the system model and the joint AS-DE scheme are introduced.

A. System Model

Consider a TWRN, where two single-antenna source terminals T_1 and T_2 exchange information by using an AF relay station R equipped with $N \geq 2$ antennas. Assume that all the links experience independent and identically distributed (i.i.d.) Rayleigh fading, following $CN(0,\sigma)$, and channels are reciprocal. Assume that the i-th antenna R_i is selected to help the communication between T_1 and T_2. The whole communication takes place in two times slots. In the first time slot, T_1 and T_2 transmit their signals to R. The received signal at the antenna R_i after M successive symbol durations can be written as

$$y_i = \sqrt{P}h_is_1 + \sqrt{P}g_is_2 + n_i,$$

where $s_j = [s_{j1}, \ldots, s_{jM}]^T$, $j = 1, 2$, denotes the transmitted symbol of T_j with $E[s_j s_j^H] = I_M$, P is the transmit power of T_j, h_i and g_i denote the channel coefficients between T_1 and antenna R_i, and between T_2 and the antenna R_i, respectively, $n_i \sim CN(0,N_0I_M)$ represents additive gaussian white noise (AWGN) at the antenna R_i.

In the second time slot, the selected antenna R_i amplifies its received signal with gain α and then broadcasts it to T_j. The received signals at T_1 and T_2 are given by

$$y_{T_1} = \sqrt{P_r}h_i\alpha y_i + n_{T_1},$$

and

$$y_{T_2} = \sqrt{P_r}g_i\alpha y_i + n_{T_2},$$

respectively, where P_r denotes the transmit power of the i-th antenna at R and $n_{T_j} \sim CN(0,N_0I_M)$ is AWGN at terminal T_j. Assuming that fixed gain relaying is used, the amplification factor is expressed as $[1]$, $[13]$,

$$\alpha = \sqrt{\frac{1}{2P\Omega + N_0}}.$$

After the self-interference cancellation is performed, assuming $P_r = 2P$, the received SNR at T_1 and T_2 via the help of the antenna R_i is given as $[13]$,

$$\gamma_{T_1} = \frac{2\gamma_{T_1}^r + 1}{2\gamma_{T_1}^r + c},$$

and

$$\gamma_{T_2} = \frac{2\gamma_{T_2}^r + 1}{2\gamma_{T_2}^r + c},$$

(3)
where $\gamma_i^l = P|h_i|^2/N_0$, $\gamma_i^r = P|g_i|^2/N_0$, $\gamma = PQ/N_0$, and $c = 2\gamma + 1$.

In the following, the three conventional AS schemes, i.e., the max-min, the max-sum and the max-max schemes, are introduced.

- In the max-min scheme, the $i^*-\text{th}$ antenna is selected according to [7], [8],
 \[i^* = \arg \max_{1 \leq i \leq N} \min(\gamma_i^T, \gamma_i^G). \]

- In the max-sum scheme, the selected antenna i^* follows [9]
 \[i^* = \arg \max_{1 \leq i \leq N} (1 + \gamma_i^T)(1 + \gamma_i^G). \]

From (4) and (5), it can be observed that only one antenna can be selected for relaying between T_1 and T_2 in both the max-min and max-sum schemes.

- In the max-max scheme, the l^*-th and r^*-th antennas are selected according to [10], [11],
 \[l^* = \arg \max_{1 \leq i \leq N} h_i, \quad \text{and} \quad r^* = \arg \max_{1 \leq j \leq N} g_j. \]

From (6), it can be observed that if the antenna indices $l^* = r^*$, only one antenna can be used for relaying between T_1 and T_2 in the max-max scheme. Otherwise, two antennas can be used. Besides, it can be seen that the selected l^*-th and r^*-th antennas have the largest channel gain to T_1 and T_2, respectively.

B. The Joint AS-DE Scheme

The proposed joint AS-DE scheme includes two procedures, i.e., antenna selection and data exchange. Antenna selection is performed based on the max-max scheme in a similar fashion as in (6). During the data exchange phase, the l^*-th antenna at R transmits its signal y_{l^*} to the r^*-th antenna at R, and the r^*-th antenna at R transmits its signal y_{r^*} to the l^*-th antenna at R. We note that data exchange is started only when two antennas are selected, i.e., the antenna indices $l^* \neq r^*$. The whole communication takes place in two time slots.

Let us now rearrange h_i and g_i, $i = 1, \ldots, N$, in an ascending order. We define the channel coefficients $h_{(i)}$ and $g_{(i)}$, respectively, such that $h_{(1)} \leq h_{(2)} \leq \cdots \leq h_{(N)} = h$, and $g_{(1)} \leq g_{(2)} \leq \cdots \leq g_{(N)} = g$. Note that h and g are the N-th largest channel gain in h_i and g_i, respectively. In the following, data transmission in the joint AS-DE scheme is presented when either one or two antennas are selected.

1) **If One Antenna is Selected:** In this case, the antenna indices are the same, i.e., $l^* = r^*$. In the first time slot, T_1 and T_2 broadcast their information to R. In the second time slot, the selected antenna amplifies its received signal in the first time slot by a gain α, and broadcasts to T_1 and T_2 with full power $P_r = 2P_r$.

Similar to (3), the received SNR at T_2 can be obtained as
\[\gamma_{1,2} = \frac{2\gamma_1^l\gamma_1^r}{2\gamma_1^r + c}. \]

2) **If Two Antennas are Selected:** In this case, the antenna indices are different, i.e., $l^* \neq r^*$. In the first time slot, the received signals at R via the antennas l^* and r^*, which have been selected based on (6), are given by
\[y_{l^*} = \sqrt{P}h_{l^*}s_1 + \sqrt{P}g_{l^*}s_2 + n_{l^*}, \]
and
\[y_{r^*} = \sqrt{P}h_{r^*}s_1 + \sqrt{P}g_{r^*}s_2 + n_{r^*}, \]
respectively. The n_{l^*}, $n_{r^*} \sim CN(0, N_0I_M)$ represent the AWGN at the l^*-th and r^*-th antennas, respectively.

Following [13], the durations of both time slots are considered to be the same. Data exchange between the l^*-th and r^*-th antennas occurs in the second time slot. Then, the selected l^*-th antenna transmits its signal y_{l^*} to the r^*-th antenna, and the r^*-th antenna transmits its signal y_{r^*} to the l^*-th antenna. In the same time slot, the l^*-th and r^*-th antennas process y_{l^*} and y_{r^*} to generate the space time coded symbol x_{l^*} and x_{r^*}, respectively. The transmitted signals x_{l^*} and x_{r^*} are designed to be linear functions of y_{r^*} and y_{l^*} and their conjugates, namely [13]-[16],
\[x_{l^*} = A_{l^*}y_{r^*} + B_{l^*}y_{r^*}^*, \quad \text{and} \quad x_{r^*} = A_{r^*}y_{l^*} + B_{r^*}y_{l^*}^*, \]
where A_p and B_p, $p \in \{l^*, r^*\}$, are $M \times M$ precoding matrices, designed using guidelines for the construction of distributed space-time coding schemes, and y_p^* denotes the conjugate of y_p. For simplicity, in this paper, we consider $M = 2$, and the orthogonal matrices are used at the two selected antennas as in [16], namely
\[A_{l^*} = I_2, B_{l^*} = 0_2, A_{r^*} = 0_2, B_{r^*} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \]

Therefore, (8) becomes
\[x_{l^*} = A_{l^*} \left(\sqrt{P}h_{r^*}s_1 + \sqrt{P}g_{r^*}s_2 + n_{r^*} \right), \]
and
\[x_{r^*} = B_{r^*} \left(\sqrt{P}h_{l^*}s_1 + \sqrt{P}g_{l^*}s_2 + n_{l^*} \right)^*. \]

Then, the l^*-th and r^*-th antennas broadcast x_{l^*} and x_{r^*} after amplification, respectively, each with half power $P_r/2 = P_r$. Let \hat{y}_{T_2} denote the received signals after self-interference cancellation at T_2, given by
\[\hat{y}_{T_2} = \sqrt{\frac{P_r}{2}} g_{l^*}\alpha' B_{r^*} \left(\sqrt{P}h_{l^*}s_1 + n_{l^*} \right)^* \]
\[+ \sqrt{\frac{P_r}{2}} g_{r^*}\alpha' A_{l^*} \left(\sqrt{P}h_{r^*}s_1 + n_{r^*} \right) + n_{T_2}. \]

The average transmit power at each antenna is constrained to
\[\mathbb{E} \left\{ ||\alpha' x_p||_F^2 \right\} = 1. \]
When orthogonal matrices in (9) are employed, $\alpha' = \alpha \sqrt{2}$, and the received SNR at T_2 can be obtained, based on (10), as follows

$$\gamma_{ASDE}^{T_2} = \frac{\alpha'^2 \mathbb{P}|h_{1r}|^2|g_{1r}|^2||B_{rT}||^2 + \alpha'^2 \mathbb{P}|h_{2r}|^2|g_{2r}|^2||A_{rT}||^2}{\alpha'^2 \mathbb{P}|g_{1r}|^2||B_{rT}||^2N_0 + \alpha'^2 \mathbb{P}|g_{2r}|^2||A_{rT}||^2N_0 + 2N_0}.$$ \hspace{1cm} (12)

Furthermore, (12) can be re-expressed as

$$\gamma_{ASDE}^{T_2} = \frac{\gamma_{(N)}\gamma_{(I)} + \gamma_{(q)}\gamma_{(w)}}{\gamma_{(q)} + \gamma_{(N)} + c}.$$ \hspace{1cm} (13)

Eq. (13) can be upper- and lower-bounded as

$$\gamma_{ASDE}^{T_2,ub} \geq \gamma_{ASDE}^{T_2} \geq \gamma_{ASDE}^{T_2,lb},$$ \hspace{1cm} (14)

where

$$\gamma_{ASDE}^{T_2,lb} = \frac{\gamma_{(N)}\gamma_{(I)} + \gamma_{(q)}\gamma_{(w)}}{\gamma_{(q)} + \gamma_{(N)} + c},$$ \hspace{1cm} (15)

$$\gamma_{ASDE}^{T_2,ub} = \frac{\gamma_{(N)}\gamma_{(I)} + \gamma_{(q)}\gamma_{(w)}}{\gamma_{(q)} + \gamma_{(N)} + c}.$$ \hspace{1cm} (16)

To compare the joint AS-DE scheme with the max-max scheme, here, we present the received SNR at T_2 in the max-max scheme. In the max-max scheme, since it does not utilize the “data exchange”, in the second time slot, the transmitted signal x_r' at the r-th antenna and the transmitted signal x_r^* at the r^*-th antenna are given as

$$x_r' = A_r \left(\sqrt{P} h_{rT} s_3 + \sqrt{P} g_{rT} s_2 + n_r \right),$$

and

$$x_r^* = B_r \left(\sqrt{P} h_{rT} s_3 + \sqrt{P} g_{rT} s_2 + n_r \right)^*,$$

respectively.

Following similar arguments as to (13), the received SNR at T_2 in the max-max scheme can be obtained as

$$\gamma_{MaxMax}^{T_2} = \frac{\gamma_{(q)}\gamma_{(I)} + \gamma_{(N)}\gamma_{(w)}}{\gamma_{(q)} + \gamma_{(N)} + c}.$$ \hspace{1cm} (17)

Remark 1: Comparing (13) with (17), it can be seen that the difference between the two SNR results is in their numerators. In the numerator of (13), there exists the “maximum-maximum”, i.e., $\gamma_{(N)}\gamma_{(I)}$, and “small-small”, i.e., $\gamma_{(q)}\gamma_{(w)}$, channel coefficient combinations for the joint AS-DE scheme, but “small-maximum” and “maximum-small”, i.e., $\gamma_{(q)}\gamma_{(N)}$ and $\gamma_{(N)}\gamma_{(w)}$, link combinations in (17) for the max-max scheme. This is because both $\gamma_{(N)}$ and $\gamma_{(I)}$ are the maximal effective channel gain, due to the fact that g_r and h_r are the N-th maximum among gs and hs; and, $\gamma_{(q)}$ and $\gamma_{(w)}$ are small, due to the fact that g_r and h_r are the q-th maximum and w-th maximum in gs and hs, respectively. The “maximum-maximum” and “small-small” link combinations in the joint AS-DE scheme, result in a larger received SNR than in the case of the max-max scheme, where the “small-maximum” and “maximum-small” link combinations are used. Although the max-max scheme exploits the best links with the largest channel gains, it does not utilize them in the best manner. Recalling the example described in the introduction section, one can find that the max-min and the max-sum schemes may not exploit the best links. However, in the joint AS-DE scheme data transmission from T_1 to T_2 uses the links $T_1 \to R_3$, $R_1 \to T_2$ and $T_1 \to R_1$, $R_3 \to T_2$, having gains $h_3 = 0.59$, $g_1 = 0.72$ and $h_1 = 0.35$, $g_3 = 0.32$, respectively. From this and (13), we conclude that the joint AS-DE scheme exploits the strong channel links in the best manner, by utilizing “maximum-maximum” and “small-small” channel coefficients combinations. Because of this, it outperforms the max-max, the max-min and the max-sum schemes.

Remark 2: Despite the fact that the joint AS-DE scheme outperforms the conventional AS schemes, it requires a second RF chain for its practical implementation. Moreover, its baseband implementation is more complicated than the one of conventional schemes, as it requires data exchange between the selected antennas. Recently, novel MIMO transmission schemes have been reported, such as spatial modulation and MIMO electronically steerable passive array radiator (ESPAR) [17]–[19]. Such schemes can minimize complexity and the costs while attaining the advantages of the MIMO system.

Remark 3: Hereafter some issues regarding the implementation of the data exchange phase of the joint AS-DE scheme are discussed. Such a scheme can be implemented in an efficient manner in baseband, by employing digital hardware, instead of exchanging analog signals between antennas. Specialized devices, such as digital signal processors (DSP) or field programmable gate arrays (FPGA) can be used to this purpose. Such devices are equipped with specialized direct memory access (DMA) controllers, thus rendering them capable of transferring large amounts of data, stored in buffers. Sophisticated techniques, such as multiple buffering, can be also employed to increase the efficiency of data transmission. Data exchange between two antennas can be implemented without significant computational complexity by exchanging the contents of their corresponding buffers. For a given hardware platform, one can perform such a task in an optimized way, i.e., by minimizing the number of the required clock cycles.

III. Performance Analysis

In this section, the OP performance at T_2 will be analyzed. The performance analysis at T_1 can be obtained in a similar fashion and thus mathematical derivations are omitted for brevity. For writing simplicity, some definitions are given as follows.

Definition 1:

$$\sum_{1,k_1} \sum_{k_i=0}^{N} \binom{N}{k_i} (-1)^{k_i} \sum_{2,k_i} \sum_{k_i=0}^{N} \binom{N}{k_i} (-1)^{k_i+1}k_i,$$

and

$$\sum_{3,k_1,k_2} \frac{1}{\pi^2} \sum_{k_{i}=0}^{N-1} \sum_{k_{j}=0}^{N-1-q} \binom{N}{k_{i}} \binom{q-1}{k_{j}} \left(\frac{1}{N - q} \right)^{k_{i}+k_{j}}.$$
The distributions of $\gamma_{1,2}$ and γ_{ASDE} will be firstly presented in the following theorems, which lay the foundation for performance analysis.

A. Distribution of the received SNR

Theorem 1: When one antenna is selected for relaying between T_1 and T_2, i.e., the antenna indices $l^* = r^*$, the CDF of the received SNR at terminal T_2, i.e., $\gamma_{1,2}$, can be expressed in closed-form as

$$F_{\gamma_{1,2}}(z) = 1 + \sum_{1,k_1 \neq 0} \sum_{2,k_2 \neq 0} \frac{2k_1 k_2}{k_2} e^{-\frac{k_1}{k_2}} K_1 \left(\sqrt{\frac{2k_1 k_2 z}{\gamma}} \right).$$

Proof: See Appendix A.

Theorem 2: When two antennas are selected for relaying between T_1 and T_2, i.e., the antenna indices $l^* \neq r^*$, the CDF of the upper bound on $\gamma_{2,2}$, i.e., $F_{\gamma_{ASDE}}(z)$, is given as

$$F_{\gamma_{ASDE}}(z) = \begin{cases} \mathcal{L}_1, & a = b \\ \mathcal{L}_2, & a \neq b \end{cases}$$

where

$$a = \frac{k_2 + 1}{\gamma}, \quad b = \frac{N + k_1 - q - k_2}{\gamma},$$

$$\mathcal{L}_1 = \sum_{3,k_1,k_2} \left[\frac{1}{a(a + b)} + \sum_{1,k_3 \neq 0} \frac{k_3 c z}{a \gamma} e^{-\frac{k_3}{a \gamma}} K_2 \left(2 \sqrt{\frac{k_3 a c z}{\gamma}} \right) \right]$$

and

$$\mathcal{L}_2 = \sum_{3,k_1,k_2} \left[\frac{1}{a(a + b)} + \sum_{1,k_3 \neq 0} \frac{2 c e^{-\frac{k_3}{a \gamma}}}{b - a} K_1 \left(2 \sqrt{\frac{k_3 a c z}{\gamma}} \right) - \sqrt{\frac{2k_3 z}{(a + b) c \gamma}} K_1 \left(\sqrt{\frac{2k_3(a + b) c z}{\gamma}} \right) \right].$$

Proof: See Appendix B.

Theorem 3: When two antennas are selected, i.e., $l^* \neq r^*$, the CDF of the lower bound on $\gamma_{2,2}$, i.e., $F_{\gamma_{ASDE}}(z)$, is given as

$$F_{\gamma_{ASDE}}(z) = \sum_{3,k_1,k_2,k_3} \left(\int_{0}^{1} e^{-\frac{k_3}{a \gamma}} A_1 d\zeta + \int_{0}^{0.5} e^{-\frac{2k_3}{a \gamma}} A_2 d\zeta \right)$$

where

$$A_1 = -\frac{1 + \frac{a c}{\gamma} + \frac{b c}{\gamma}}{(\zeta - 1)(\zeta) + b^2} e^{-\frac{a c}{\gamma}},$$

and

$$A_2 = -\frac{e^{-\frac{a c}{\gamma}}}{(\zeta - 1)(\zeta) + b^2} \left(-1 + \frac{a c}{\gamma} + \frac{b c}{\gamma} \right).$$

Proof: See Appendix C.

Remark 4: Theorem 3 involves the computation of the integrals with integrands composed of elementary functions. Although such integrals are not in closed-form, they can be easily evaluated numerically by employing standard techniques available in the most common mathematical software packages, such as Matlab, Maple, or Mathematica.

B. Outage Probability

The OP is defined as the probability that the instantaneous SNR falls below a given threshold γ_{th}, i.e.,

$$P_{out}(\gamma_{th}) = \Pr[\gamma < \gamma_{th}] = F_{\gamma}(\gamma_{th}).$$

We note that the OP at T_j, $j = 1, 2$ is given by

$$P_{out}(T_j) = \Pr[\gamma < \gamma_{th}]$$

The OP results are presented in the following corollaries.

Corollary 1: In the joint AS-DE scheme, the tight upper and lower bounds on the OP at T_2 can be calculated as

$$P_{out,ub}(\gamma_{th}) = p_N F_{\gamma_{ASDE}}(\gamma_{th}) + p_N \sum_{q=1}^{N-1} F_{\gamma_{ASDE}}(\gamma_{th}),$$

and

$$P_{out,lb}(\gamma_{th}) = p_N F_{\gamma_{ASDE}}(\gamma_{th}) + p_N \sum_{q=1}^{N-1} F_{\gamma_{ASDE}}(\gamma_{th}),$$

respectively, where $p_N = p_N’ = 1/N$, $F_{\gamma_{ASDE}}(\gamma_{th})$ and $F_{\gamma_{ASDE}}(\gamma_{th})$ are presented in Theorem 1, Theorem 2 and Theorem 3, respectively.

Remark 5: The probabilities p_N in (24) and (25) are for the event that one antenna is selected. From (6), it can be seen that among the $N \times N$ pairs (h_i, g_j), there are N pairs (h_i, g_j) with $l^* = r^* = 1, \cdots, N$. We note that each pair is selected with the same probability, since we assume all h_is and g_js are i.i.d. distributed. Therefore, the probability that one antenna is selected, is $p_N = N/(N \times N) = 1/N$. In (24) and (25), $p_N’$ is equal to $(1 - 1/N)/(N - 1)$, where $1 - 1/N$ is the probability that two different antennas have been selected, i.e., $l^* \neq r^*$, and $1/(N - 1)$ is the probability that q takes a specific value in $\{1, \cdots, N - 1\}$.

C. Diversity Order

Corollary 2: The proposed joint AS-DE scheme can achieve full diversity, i.e., the diversity order is N.

Proof: See Appendix D.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, computer simulations are carried out to demonstrate the performance of the joint AS-DE scheme with $\gamma_{th} = 3$, $P = 1$ and $P_r = 2P = 2$ in all figures, $\Omega = 1$ in Figs. 1-3, and $\Omega = 1/(1 - d)^{-3}$ in Fig. 4 where d and 3 denote the distance between T_1 and R and the path-loss exponent, respectively. In addition, numerical results obtained from Corollary 1 are also used to show the accuracy of the developed analytical results. We note that in order to guarantee comparison fairness, the same power consumption used by the joint AS-DE scheme as in the max-min, the max-sum and the max-max schemes is considered. For the max-min and max-sum schemes which select a single antenna at R,
the whole transmit power at R is $P_r = 2$. For the proposed AS-DE and max-max schemes, if one antenna is selected, the transmit power of the selected antenna at R is $P_r = 2$; otherwise, each selected antenna broadcasts the signal with power $P_r/2 = 1$, indicating that the whole transmit power at R is $P_r + P_r/2 = 2$.

Fig. 1 illustrates the Monte-Carlo simulation results on the OP performance of the joint AS-DE scheme in comparison to the max-min, max-sum, max-max schemes versus τ under $N = 2, 4$. It clearly illustrates that under arbitrary N and τ, our proposed joint AS-DE scheme performs much better than the other three AS schemes. For example, when $N = 4$ and at 10^{-4} OP, the joint AS-DE scheme provides a nearly 3 dB gain over those of the max-min and max-sum schemes, about a 10 dB gain over that of the max-max scheme. This result is expected because the joint AS-DE scheme utilizes the "maximum-maximum" and "small-small" channel coefficients combinations, resulting in a larger received SNR. Furthermore, it can also be seen that the joint AS-DE scheme can achieve full diversity as the max-min, max-sum schemes.

Fig. 2 compares the OP performance of the joint AS-DE scheme with the max-min, max-sum and max-max schemes versus the relay antenna number N with $\tau = 10$ dB. It can be also clearly seen that the joint AS-DE scheme outperforms the other three schemes under an arbitrary N.Besides, as the number of relay antennas N increases, the SNR gain that the joint AS-DE scheme achieves over the other three schemes counterpart is further enlarged.

In Fig. 3, the developed analytical results presented in Corollary 1 for the joint AS-DE schemes are compared to the simulation results with $N = 2, 3$ and 4. As can be
observed from the figure, under an arbitrary \(N \), the upper and lower bounds on OP are quite close to the simulation counterparts which verifies our analysis. Furthermore, the lower and upper bound outage curves verify our diversity order analysis, indicating that the joint AS-DE scheme can achieve full diversity.

In Fig. 4, the impact of the relay location on OP for \(T_2 \) is studied in the joint AS-DE scheme. Specifically, the OP is plotted against the distance \(d \) between \(T_1 \) and \(R \) by modeling the path-loss dependent parameters \(\Omega = 1/(1 - d)^{-3} \). As can be observed, the OP performance at \(T_2 \) improves as the relay station gets close to \(T_2 \). Besides, the lower and upper bounds we derived are quite tight under an arbitrary \(d \) indicating the accuracy of our analysis.

V. CONCLUSION

In this paper, we proposed an efficient transmission scheme for multi-antenna AF TWRNs, termed as the joint AS-DE scheme. Particularly, the joint AS-DE scheme utilized the antenna selection criterion in the max-max scheme along with data exchange to transmit data through the links characterized by “maximum-maximum” and “small-small” channel coefficient combinations. We presented the tight lower and upper bounds on the OP for the proposed scheme. Furthermore, our analysis revealed that the joint AS-DE scheme can achieve full diversity. Finally, analysis and simulation results showed that under the same time slots and power consumption, the joint AS-DE scheme outperforms the existing schemes, i.e., the max-min, max-sum and max-max ones. For example, when \(N = 4 \) and at \(10^{-4} \) OP, the joint AS-DE scheme provides a nearly 3 dB gain when compared with the max-min and max-sum schemes, and about a 10 dB gain when compared with the max-max scheme.

APPENDIX A

PROOF OF THEOREM 1

Since all links experience i.i.d. Rayleigh fading, the PDF and CDF of the instantaneous SNR of any links, \(\gamma_1 \) or \(\gamma_1^r \) follow that

\[
 f_{\gamma_1}(x) = \frac{1}{x} e^{-\frac{x}{\theta}}, \quad F_{\gamma_1}(x) = 1 - e^{-\frac{x}{\theta}}.
\]

Based on the order statistics in [20], we have

\[
 F_{\gamma_1(N)}(x) = (F_{\gamma_1}(x))^N = \sum_{1,k_1} e^{-\frac{k_1 x}{\theta}}. \quad \text{(A-1)}
\]

The PDF of \(\gamma_1(N) \) can be obtained as,

\[
 f_{\gamma_1(N)}(x) = \sum_{2,k_2} e^{-\frac{2k_2 x}{\theta}}.
\]

Similarly, we have

\[
 f_{\gamma_1(N)}(y) = \sum_{2,k_2} e^{-\frac{2k_2 y}{\theta}}.
\]

From (7), \(F_{\gamma_1,T_2}(z) \) can be expressed as

\[
 F_{\gamma_1,T_2}(z) = \int_0^\infty \Pr \left(\gamma_1(N) \leq z + \frac{2cz}{2y} \right) f_{\gamma_1(N)}(y)dy.
\]

Utilizing [12, Eq.(3.471.9)], Theorem 1 can be achieved.

APPENDIX B

PROOF OF THEOREM 2

We will firstly study the distribution of \(\theta = \gamma_q + \gamma_q^r \), and then the distribution of \(u = \theta / (\theta + c) \). Finally, the distribution of \(\gamma_{ASDE,T_2,ub} = \gamma_l(N)u \) will be obtained.

Now, let’s study the CDF of \(\theta = \gamma_q + \gamma_q^r \). Based on the order statistics in [20], the joint PDF of \(\gamma_q \) and \(\gamma_q^r \), \(1 \leq q < N \), is

\[
 f_{\gamma_q,\gamma_q^r}(s,v) = \sum_{3,k_1,k_2} e^{-bs} e^{-av}, \quad \text{(B-1)}
\]

for \(0 < s < v < \infty \).

Therefore, the CDF of \(\theta \), i.e., \(F_\theta(\theta) \), follows that

\[
 F_\theta(\theta) = \int_0^\theta \int_s^\infty f_{\gamma_q}(s,v)dvds = \sum_{3,k_1,k_2} \frac{1}{\theta^2} \int_0^{\theta/2} \left[e^{-(a+b)s} - e^{-(a-b)s-a\theta} \right] ds. \quad \text{(B-2)}
\]

Utilizing [12, Eq. (2.311)], we have

\[
 F_\theta(\theta) = \begin{cases}
 - \sum_{3,k_1,k_2} \frac{1}{\theta^2} \left[a^2 e^{-a\theta} + \frac{e^{(a+b)\theta} - 1}{a+b} \right], & a-b = 0, \\
 \sum_{3,k_1,k_2} \frac{1}{\theta^2} \left[\frac{e^{-(a-b)\theta}}{a-b} + \frac{e^{-(a+b)\theta}}{a+b} \right], & a-b \neq 0.
\end{cases} \quad \text{(B-3)}
\]

From \(u = \theta / (\theta + c) \), we have \(\theta = g(u) \), where \(g(u) = \frac{cu}{1+cu} \). Therefore, \(f_u(u) = f_\theta(g(u))g'(u) \), where \(g'(u) \) denotes the derivative of \(g(u) \).

Taking the derivative of (B-3), we can obtain the PDF of \(\theta \), i.e. \(f_\theta(\theta) \). And then, \(f_u(u) \) can be obtained as follows,

\[
 f_u(u) = \begin{cases}
 - \sum_{3,k_1,k_2} \frac{e^{2cu}}{2(1-u)^2} e^{\frac{cu}{1-u}}, & a = b, \\
 \sum_{3,k_1,k_2} \frac{e^{cu}}{2(1-u)^2} \left(e^{\frac{cu}{1-u}} - e^{\frac{(a+b)cu}{2-a}} \right), & a \neq b, \\
 0, & u > 1.
\end{cases} \quad \text{(B-4)}
\]

The CDF of \(\gamma_{ASDE,T_2,ub} \) is given as follows

\[
 F_{\gamma_{ASDE,T_2,ub}}(z) = \int_{-\infty}^{\infty} F_{\gamma_l}(\frac{z}{u}) f_u(u)du. \quad \text{(B-5)}
\]

Substituting (A-1) and (B-4) into (B-5), with the aid of [12, Eq. (3.351.2)] and [12, Eq. (3.471.9)], Theorem 2 is deduced.

APPENDIX C

PROOF OF THEOREM 3

We firstly study the distribution of \(\varepsilon = \gamma_q(N) / (\gamma_q + \gamma_q^r + c) \), and then the distribution of \(\gamma_{ASDE,T_2,ub} = \varepsilon \gamma_q^l(N) \).

The CDF of \(\varepsilon \) is given as

\[
 F_\varepsilon(\zeta) = \Pr \left(\frac{\gamma_q(N)}{\gamma_q + \gamma_q^r + c} \leq \zeta \right). \quad \text{(C-1)}
\]
When $1/2 \leq \zeta \leq 1$, substituting (B-1) into (C-1), we have
\[
F_\zeta(\zeta) = \sum_{3,k_1,k_2} \int_0^\infty \int_0^{\frac{\zeta-1}{a+b}} e^{-a v} e^{-b s} \, dv \, ds
\]
\[
= \sum_{3,k_1,k_2} \frac{1}{a(a+b)} + \frac{(-1+\zeta) e^{-a+b}}{a+b(a-b)\zeta}.
\]

When $0 \leq \zeta \leq 1/2$, (C-1) becomes
\[
F_\zeta(\zeta) = \sum_{3,k_1,k_2} \int_{-\infty}^{\frac{\zeta-1}{a+b}} \int_{-\infty}^{\frac{\zeta-1}{a+b}} e^{-a v} e^{-b s} \, dv \, ds
\]
\[
= \sum_{3,k_1,k_2} \left(A_1 + \frac{(-1+\zeta) e^{-a+b}}{a(b-a)\zeta} - \frac{e^{-a+b}}{a(b-a)\zeta} \right).
\]

Therefore, the PDF of ε can be obtained as,
\[
f_\varepsilon(\varepsilon) = \begin{cases} \sum \frac{A_1}{3,k_1,k_2}, & 1/2 < \zeta < 1, \\ \sum (A_1 + A_2), & 0 < \zeta \leq 1/2, \\ 0, & \text{others}. \end{cases}
\]

where A_1 and A_2 are given in (21) and (22), respectively. Therefore, the CDF of γ_{ASDE}, i.e., $F_{\gamma_{\text{ASDE}}}(\gamma_{th})$, is
\[
F_{\gamma_{\text{ASDE}}}(\gamma_{th}) = \int_0^\infty F_\zeta(\zeta) \frac{\gamma_{th}}{\zeta} f_\zeta(\zeta) d\zeta.
\]

Substituting (A-1) and (C-2) into (C-3), Theorem 3 can be reached.

APPENDIX D

PROOF OF COROLLARY 2

The following facts are utilized, i.e., $\lim_{x \rightarrow 0} e^{-x} = 1 - x$, $\lim_{x \rightarrow 0} K_1(x) = 1/x$ and $\lim_{x \rightarrow 0} K_2(x) = 2/x^2$.

Recalling Theorem 1, (18) can be re-expressed as,
\[
F_{\gamma_{1,\text{TH}}}(z) = 1 + \sum_{k_2=1}^N \frac{N}{k_2} (-1)^{k_2+1} \sum_{k_1=1}^N \frac{N}{k_1} (-1)^{k_1} e^{-b z}
\]
\[
= 1 + \left[(1 - e^{-b z})^N - 1 \right].
\]

When $\gamma \rightarrow \infty$, we have
\[
F_{\gamma_{1,\text{TH}}}(z) \xrightarrow{\gamma \rightarrow \infty} \left(\frac{z}{\gamma} \right)^N.
\]

Utilizing (A-1), (C-3) can be rewritten as
\[
F_{\gamma_{1,\text{TH}}}(z) = \int_0^\infty (1 - e^{-b z})^N f_\zeta(\zeta) d\zeta
\]
\[
\xrightarrow{\gamma \rightarrow \infty} \left(\frac{z}{\gamma} \right)^N \int_0^\infty \frac{1}{\zeta^N} f_\zeta(\zeta) d\zeta.
\]

We note that $\int_0^\infty \frac{1}{\zeta^N} f_{\zeta}(\zeta) d\zeta$ is a constant, which is independent of γ.

Based on (D-1) and (D-2), at the high SNR regions, (24) can be asymptotically approximated by
\[
F_{\gamma_{1,\text{TH}}}(\gamma_{th}) \xrightarrow{\gamma \rightarrow \infty} \frac{1}{N} \sum_{q=1}^{N-1} \int_0^\infty \frac{1}{\zeta^N} f_{\zeta}(\zeta) d\zeta \left(\frac{\gamma_{th}}{\gamma} \right)^N.
\]

Recalling Theorem 2, L_1 in (19) can be deduced as, when $\gamma \rightarrow \infty$,
\[
L_1 \xrightarrow{\gamma \rightarrow \infty} \sum_{3,k_1,k_2} \frac{1}{a(a+b)} + \frac{1}{2a^2} \sum_{k_3=1}^N \left(N \right) (-1)^{k_3} e^{-b z}
\]
\[
= \sum_{3,k_1,k_2} \left\{ \frac{1}{a(a+b)} + \frac{1}{2a^2} \left[(1-e^{-b z})^N - 1 \right] \right\}
\]
\[
= \sum_{3,k_1,k_2} \frac{1}{a(a+b)} \left(\frac{z}{\gamma} \right)^N.
\]

Similarly, L_2 in (19) can be obtained as follows, when $\gamma \rightarrow \infty$,
\[
L_2 \xrightarrow{\gamma \rightarrow \infty} \sum_{3,k_1,k_2} \frac{1}{a(a+b)} \left(\frac{z}{\gamma} \right)^N.
\]

Utilizing (D-4) and (D-5), when $\gamma \rightarrow \infty$, (19) is deduced as,
\[
F_{\gamma_{1,\text{TH}}}(z) \xrightarrow{\gamma \rightarrow \infty} \sum_{3,k_1,k_2} \frac{1}{a(a+b)} \left(\frac{z}{\gamma} \right)^N.
\]

From (D-1) and (D-6), at the high SNR regions, (25) can be asymptotically approximated by
\[
F_{\gamma_{1,\text{TH}}}(\gamma_{th}) \xrightarrow{\gamma \rightarrow \infty} \frac{1}{N} \sum_{q=1}^{N-1} \sum_{3,k_1,k_2} \frac{1}{a(a+b)} \left(\frac{\gamma_{th}}{\gamma} \right)^N.
\]

Finally, Corollary 2 is proved from (D-7) and (D-3).

REFERENCES

Jing Yang et al.: EFFICIENT TRANSMISSION IN MULTI-ANTENNA TWO-WAY AF RELAYING NETWORKS

Zhiguo Ding (S’03-M’05) received his B.Eng in Electrical Engineering from the Beijing University of Posts and Telecommunications in 2000, and the Ph.D degree in Electrical Engineering from Imperial College London in 2005. From Jul. 2005 to Aug. 2014, he was working in Queen’s University Belfast, Imperial College and Newcastle University. Since Sept. 2014, he has been with Lancaster University as a Chair Professor. From Oct. 2012 to Sept. 2019, he has also been an academic visitor in Princeton University. Dr Ding’ research interests are 5G networks, game theory, cooperative and energy harvesting networks and statistical signal processing. He is serving as an Editor for IEEE Transactions on Communications, IEEE Transactions on Vehicular Technology, and Journal of Wireless Communications and Mobile Computing, and was an Editor for IEEE Wireless Communication Letters, IEEE Communication Letters from 2013 to 2016. He received the best paper award in IET Comm. Conf. on Wireless, Mobile and Computing, 2009, IEEE Communication Letter Exemplary Reviewer 2012, and the EU Marie Curie Fellowship 2012-2014.

Jing Yang was born in Shandong, China, in 1982. She received her Ph. D. degree in communications and information systems from Southwest Jiaotong University, Chengdu, in 2013. Since Mar. 2013, she has been with the School of Information Engineering, Yangzhou University, as a Associate Professor. From Sep. 2015 to Feb. 2016, she was a Visiting Scholar in University of Victoria, Canada. Her research interests include 5G networks, cooperative and energy harvesting networks, physical layer security and massive MIMO.

Lei Chen was born in Jiangsu, China, in 1991. She received the B.S. degree in communication engineering from Yangzhou University, Jiangsu, in 2009. She is currently working towards her M.S. degree in the School of Information Engineering, Yangzhou University. Her research interests are in cooperative relaying communications, cognitive radio networks, physical layer security.

Lei Chen

Xianfu Lei was born in 1981. He received the Ph.D degree in communication and information systems from Southwest Jiaotong University, China, in 2012. From 2012 to 2014, he was a Research Fellow with the Department of Electrical & Computer Engineering, Utah State University, USA. Since 2015, he has been an Associate Professor with Southwest Jiaotong University. His research interests include 5G communications, cooperative communications, and energy harvesting. He has authored over 70 research papers on these topics. He received the Exemplary Reviewer Certificate of the IEEE Communications Letters and an Exemplary Reviewer Certificate of the IEEE Wireless Communications Letters in 2013. He has been a TPC Chair of several international conferences and workshops, including the most recently the IEEE ICC18 Symposium on Ad-Hoc and Sensor Networking. He currently serves as an Editor of the IEEE COMMUNICATIONS LETTERS and the IEEE ACCESS. He has served as a Guest Editor of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.

Pingzhi Fan (M’93-SM’99-F’15) received his PhD degree in Electronic Engineering from the Hull University, UK. He is currently a professor and director of the institute of mobile communications, Southwest Jiaotong University, China. He is a recipient of the UK ORS Award, the Outstanding Young Scientist Award by NSFC, and the chief scientist of a national 973 research project. He served as general chair or TPC chair of a number of international conferences, and is the guest editor-in-chief, guest editor or editorial member of several international journals. He is the founding chair of IEEE VTS BI Chapter and IEEE ComSoc CD Chapter, the founding chair of IEEE Chengdu Section. He also served as a board member of IEEE Region 10, IET(IEEE) Council and IET Asia-Pacific Region. He has over 200 research papers published in various academic English journals (IEEE/IEE/IEEE, etc.), and 8 books (incl. edited), and is the inventor of 22 granted patents. His research interests include high mobility wireless communications, 5G technologies, wireless networks for big data, signal design & coding, etc. He is an IEEE VTS Distinguished Lecturer (2015-2019), and a fellow of IEEE, IET, CIE and CIC.
Xi Qi Gao (S’92-AM’96-M’02-SM’07-F’15) received the Ph.D. degree in electrical engineering from Southeast University, Nanjing, China, in 1997. He joined the Department of Radio Engineering, Southeast University, in April 1992. Since May 2001, he has been a professor of information systems and communications. From September 1999 to August 2000, he was a visiting scholar at Massachusetts Institute of Technology, Cambridge, and Boston University, Boston, MA. From August 2007 to July 2008, he visited the Darmstadt University of Technology, Darmstadt, Germany, as a Humboldt scholar. His current research interests include broadband multicarrier communications, MIMO wireless communications, channel estimation and turbo equalization, and multirate signal processing for wireless communications. From 2007 to 2012, he served as an Editor for the IEEE Transactions on Wireless Communications. From 2009 to 2013, he served as an Associate Editor for the IEEE Transactions on Signal Processing. From 2015 to 2017, he served as an Editor for the IEEE Transactions on Communications. Dr. Gao received the Science and Technology Awards of the State Education Ministry of China in 1998, 2006 and 2009, the National Technological Invention Award of China in 2011, and the 2011 IEEE Communications Society Stephen O. Rice Prize Paper Award in the field of communications theory.