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In this thesis, we study certain subgroups of the exceptional group of Lie-type,
E8(2). In particular, we explore subgroups H of E8(2) where F ∗(H) is isomorphic
to one of the following simple groups: U4(2), Sp6(2), Ω−8 (2), Ω+

8 (2), Ω+
8 (4), Sp8(2),

Sp4(4), or L4(4). In the case of F ∗(H) being isomorphic to Ω+
8 (2), Ω+

8 (4), or Sp8(2),
we construct representatives of all classes of subgroups isomorphic to H in E8(2). In
the other five cases, we find representatives of some, but possibly not all, classes of
subgroups isomorphic to H in E8(2). In all cases except where F ∗(H) is isomorphic
to Ω−8 (2), Ω+

8 (4), or L4(4), we prove that H is not maximal in E8(2). All of the main
results in this thesis are proved computationally, making use of the computer algebra
package, Magma. Furthermore, this thesis is accompanied with files compatible with
Magma containing representatives of the classes of subgroups of E8(2) constructed
throughout the thesis, as well as some groups which were used in the construction of
said subgroups. Much of this work is a contribution toward classifying the maximal
subgroups of E8(2).
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Chapter 1

Introduction

For almost as long as the notion of a group has been defined, there has been interest

in classifying maximal subgroups of finite groups. While this is a subject that has

enjoyed much success in recent decades, significant progress was made in the early

20th Century. In 1901, Dickson in [17] classified the maximal subgroups of L2(q), for

q a power of a prime, and so began the classification of maximal subgroups of classical

groups of small dimension. In the next two decades, the maximal subgroups of L3(q)

were classified by Mitchell in [37] for q odd, and by Hartley in [21] for q even.

More recent progress was made in 1979 with the O’Nan-Scott Theorem, which

classified the maximal subgroups of symmetric groups. This is stated in the appendix

of [2] by Aschbacher and Scott. This was later expanded upon in 1986 by Liebeck,

Praeger, and Saxl in [28], where they classify the maximal subgroups of finite sym-

metric and alternating groups, while also listing cases for which subgroups of the finite

symmetric and alternating groups are not maximal.

Turning our attention to recent work on the finite simple groups, in 1984 As-

chbacher classified the maximal subgroups of finite simple classical groups in [1]. As

for the sporadic groups, the maximal subgroups of all the sporadic groups except the

Monster group are described in the ATLAS [14]. However, this was not true at the

time of publication. We will provide a brief survey of maximal subgroups of sporadic

simple groups here, but a more detailed history can be found in [53].

This is a topic that received much attention in the seventies through to the nineties,

but began with Janko categorising the maximal subgroups of the Janko group J1 in

1966. In 1970, Magliveras classified the maximal subgroups of the Higman-Sims group,

8



CHAPTER 1. INTRODUCTION 9

HS [36], while Choi began work on M24 in 1972 [12]. The maximal subgroups of M24

were later classified by Curtis [15] in 1976. Later that decade, Finkelstein classified the

maximal subgroups of the Janko group J2 [19] in 1973 in collaboration with Rudvalis,

and, later that year and the year after, the Conway group Co3 and McLaughlin group

McL in [18] and the Janko group J3 in [20], the latter again being in collaboration

with Rudvalis. Work in the eighties began with Butler, who classified the maximal

subgroups of the Held group, He in [11]. The rest of the eighties was dominated

by Wilson, who classified the maximal subgroups of the Suzuki group Suz [43] and

Conway’s groups Co2 [42] and Co1 [44] in 1983; the Rudvalis group Ru [45] in 1984;

the O’Nan group O′N [47] and the Lyons group Ly in [48]; the Harada-Norton group

HN [39] in 1986 in collaboration with Norton; the Fischer group Fi22 [46] in 1987 and

later the Fischer group Fi23 [25] in 1989 in collaboration with Kleidman and Parker;

and the Janko group J4 [26] in 1988 in collaboration with Kleidman. Wilson’s first

Ph. D. student, Linton, then classified the maximal subgroups of the Thompson group

Th [30] in 1989, who later collaborated with Wilson to classify the maximal subgroups

of the Fischer group Fi24 [31] in 1991. Finally, Wilson completed the classification

of the maximal subgroups of the Baby Monster B in [50]. A turning point for this

was, as Wilson describes in [53], when Wilson built a degree-4370 representation of B

over GF (2) in [49], which enabled a new computational approach. This is a theme for

much of the work on maximal subgroups; early work was done by hand whereas later

work was carried out computationally.

Note that we have not yet discussed the Mathieu groups M11, M12, M22, and M23.

As Wilson notes in [53], there do not seem to be any publications detailing the proofs

of the classification of the maximal subgroups of these groups. However, these results

are well known and can be verified with modern computational techniques. Finally,

we have the Monster groupM. Again, we recommend [53] for an in-depth examination

of the current state of the classification of its maximal subgroups.

A good source for the whole history of finite simple groups and efforts to find their

maximal subgroups is Wilson’s book The Finite Simple Groups [51]. In his section on

applications of the classification of finite simple groups, he discusses the problem of

finding maximal subgroups of finite simple groups, concluding with the remark that,

hopefully, lists of maximal subgroups will one day exist for the exceptional groups of
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Lie type.

Such lists exist already for certain exceptional groups of Lie type. Efforts to produce

such lists began in 1981 with Cooperstein classifying the maximal subgroups of G2(q)

for q even in [13]. The classification for G2(q) was extended to q odd by Kleidman [23]

in 1988. The same year, Kleidman classified the maximal subgroups of 3D4(q) in [24].

The maximal subgroups of F4(2) were classified in [40] in 1989, while Magaard, in his

1990 Ph. D. thesis [35], classified the maximal subgroups of F4(q) where q is not a

power of 2 or 3. In the same year, Kleidman and Wilson also published their work

in [27], classifying the maximal subgroups of E6(2). Even more recently the maximal

subgroups of E7(2) were classified in 2015 by Ballantyne, Bates, and Rowley in [6].

As for 2E6(2), the classification of its maximal subgroups has been known for many

years, but only earlier this year was a proof published in [52] by Wilson.

This brings us today. An as yet unpublished paper [5] by Aubad, Ballantyne,

McGaw, Neuhaus, Rowley, and Ward classifies the maximal subgroups of E8(2). This

thesis details the work undertaken on certain subgroups of E8(2), finding conjugacy

classes of subgroups in E8(2) and proving that certain subgroups are not maximal

in E8(2). The vast majority of this work is computer-assisted, making use of the

computer algebra package Magma [7].

The bulk of this thesis is contained within eight chapters, each exploring a different

group. Before we get there, we have chapter 2 dedicated to the background material

and notation used throughout. Included in Chapter 2 are elementary group theoretic

results which are of particular use to us, as well as some more advanced results about

groups in general and about E8(2) specifically. An entire section is devoted to conju-

gacy class fusion of semisimple elements in E8(2). In general, if G is any group, then

fusion refers to the question of, given H ≤ G and h ∈ H, which G-conjugacy class h

– and, therefore, all of its H-conjugacy class – belongs to. Through the use of Brauer

characters, we are able to deduce that for a certain groups H, if H is isomorphic to a

subgroup of G, then there are limited possibilities for how the H-conjugacy classes fuse

to the G-conjugacy classes. Sometimes, this information is enough for us to deduce

immediately that a subgroup isomorphic to H is not maximal in G.

A crucial part of Chapter 2 is a list of potential maximal subgroups of E8(2),

which serves as a motivation for the subgroups considered in this thesis. This list is
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an amalgamation of the work of several authors. In our paper [5] on the maximal

subgroups of E8(2), it serves as a checklist for all the groups we must eliminate as

being maximal in E8(2). This thesis focuses on several of the subgroups considered

there, with the added focus of finding all conjugacy classes in E8(2) of these subgroups.

We then move to Chapter 3, another chapter preceding the main eight chapters,

which provides an overview of the methodology used throughout the thesis. This

includes Section 3.1 on computing in Magma, as, although the reader might be fa-

miliar with Magma, there are certain current limitations of Magma that deserve

to be explored in full. Section 3.2 is a section devoted to computational methods

applied to working with E8(2) specifically. It should be noted that the methodology

discussed here is applicable to any group, although, it will usually only be required

when working with large groups. The methods required to prove the results of the

eight main chapters are similar, so this section should be seen as a menu of techniques

and computational procedures which the later chapters will select from.

The first topic of this section discusses a technique for calculating sets of centralis-

ing involutions of subgroups of E8(2). This is often a challenging task, considering the

size of E8(2), but we have developed routines of several steps allowing these sets to be

constructed for certain subgroups of E8(2). The second topic discussed in Section 3.2

is that of sieving sets of involutions. Again, we note that several of the procedures

discussed here can be applied to any set, not just sets of involutions. The proof of

the main result of nearly every subsequent chapter involves sieving a set of involu-

tions, so we provide a list of the most common sieves we utilise there. Finally, we

provide some results and techniques for how we show two isomorphic subgroups of

E8(2) are conjugate in E8(2). The primary theme of this thesis can be thought of as

finding all subgroups of E8(2) isomorphic to certain almost simple groups, up to con-

jugacy in E8(2). Showing subgroups are conjugate in E8(2) is, again, often a difficult

computational task.

We will now give an outline of the main eight chapters, beginning with Chapter 4.

Here, we will explore the existence of U4(2) subgroups in E8(2). We note that we often

make use of the term copy when refering to subgroups of E8(2). For example, instead

of saying that we have a subgroup of E8(2) isomorphic to U4(2), we simply say that we

have a copy of U4(2) in E8(2). We begin by looking at a Sylow 3-subgroup of E8(2),
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and finding all subgroups in there isomorphic to a Sylow 3-subgroup of U4(2). This

serves as a starting point for our hunt for U4(2) subgroups. Using the U4(2) fusion

information given in Proposition 2.2, we are able to further limit the Sylow 3-subgroups

we can build up to a U4(2) subgroup. Once we have obtained U4(2) subgroups, we

then find their automorphism extensions U4(2) : 2. We then show that no U4(2) or

U4(2) : 2 subgroup of E8(2) is a maximal subgroup. All this forms the first main result

of this thesis. Before we state it, let us clarify the language used regarding conjugacy

class fusion. In Proposition 2.2, we see that there are nine possibilities for how the

conjugacy classes of any U4(2) subgroup fuse into the conjugacy classes of E8(2). These

are numbered (i)–(ix). Throughout this thesis, if we want to assume that a potential

U4(2) subgroup of E8(2) is such that its conjugacy classes fuse into the E8(2)-conjguacy

classes as stated in Proposition 2.2 (i), we use the phrase, “assume U4(2) follows fusion

possibility 2.2 (i)”, or the phrase “assume H ≤ E8(2) with H ∼= U4(2) and suppose H

follows U4(2) fusion possibility (i)”.

Before we state the first main result, let G ∼= E8(2). Throughout this thesis,

whenever G ∼= E8(2), it should be assumed for computational purposes that G is the

degree-248 matrix representation of E8(2) over GF (2), so G ≤ GL248(2). This can

be constructed in Magma using Procedure B.1. Additionally, throughout the whole

thesis V will denote the 248-dimensional GF (2) E8(2)-module. We also note that in

the statement of these main results we are using the fact that the automorphism group

of all simple groups H which we consider are split extensions, as is shown in [34]. As

for the structure of these automorphism groups, see section 1.7.2 of [9].

Theorem 1.1. Suppose H ≤ G with F ∗(H) ∼= U4(2). Moreover, suppose F ∗(H) does

not follow fusion possibility 2.2 (viii) or (ix). Then:

(i) if H ∼= U4(2), then there are exactly three G-conjugacy classes of subgroups

isomorphic to H;

(ii) if H ∼= U4(2) : 2, then there are exactly three G-conjugacy classes of subgroups

isomorphic to H.

We limit our focus to those U4(2) subgroups not following fusion possibility 2.2

(viii) or (ix), as cases (viii) and (ix) are not computationally viable using the techniques
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developed in this thesis. Moreover, as far as the maximality question is concerned, we

will see that any U4(2) subgroup of E8(2) following fusion possibility 2.2 (viii) or (ix)

can easily be shown to not be maximal.

In Chapter 5, we will turn our focus to Sp6(2). We will provide the number of

conjugacy classes of Sp6(2) subgroups of E8(2) following certain fusion possibilites

for Sp6(2) given in Proposition 2.3. The main tactic used in this chapter is the fact

that U4(2) : 2 is a maximal subgroup of Sp6(2). So, after careful consideration of the

Sp6(2) fusion possibilities, we can construct Sp6(2) by “building up” from the copies

of U4(2) : 2 found in the preceding chapter. This forms the basis for the second main

result, which we will now state.

Theorem 1.2. Suppose H ≤ G with H ∼= Sp6(2). If H follows fusion possibility 2.3

(ii) or (iii), then there are three G-conjugacy classes of subgroups isomorphic to H.

Again, we limit our focus to those Sp6(2) subgroups of E8(2) not following fusion

possibility 2.3 (v) or (vi), as those copies following fusion possibility 2.3 (v) or (vi)

contain U4(2) subgroups which necessarily follow fusion possibility 2.2 (viii) or (ix).

We did not construct these U4(2) subgroups in Chapter 4.

Chapter 6 focuses on compiling certain classes of Ω−8 (2) subgroups of E8(2). Again,

the primary tactic involved here is to observe that Sp6(2) is a maximal subgroup of

Ω−8 (2), so we construct Ω−8 (2) subgroups by building up from the copies of Sp6(2)

found in Chapter 5. This gives rise to the third main result.

Theorem 1.3. Suppose H ≤ G with F ∗(H) ∼= Ω−8 (2). Assume that F ∗(H) follows

Ω−8 (2) fusion possibility 2.4 (ii), then:

(i) if H ∼= Ω−8 (2), then there is exactly one G-conjugacy class of subgroups isomor-

phic to H;

(ii) if H ∼= Ω−8 (2) : 2, then there is exactly one G-conjugacy class of subgroups

isomorphic to H.

Again, our focus is restricted to certain fusion possibilities for Ω−8 (2) due to the

restriction to certain fusion possibilities for Sp6(2). It is at the end of Chapter 6 where

we will actually present a proof of Theorems 1.1, 1.2, and 1.3. This is because the

proofs of the earlier theorems rely on results proved in later chapters. For example,
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part of the proof of Theorem 1.1 regarding U4(2) relies on results found about Ω−8 (2)

in Chapter 6.

Next, we shift our attention to Ω+
8 (2) in Chapter 7, which is the most substantial

chapter in this thesis. There, we will no longer build up from subgroups already

constructed in previous chapters. Instead, we start with a Sylow 5-subgroup of E8(2)

and construct all possible subgroups isomorphic to a Sylow 5-subgroup of Ω+
8 (2). Like

with the Sylow 3-subgroup of U4(2), this list of all Sylow 5-subgroups is used as a

base for our construction of copies of Ω+
8 (2). The reason this chapter is comparatively

long is because we make no limitation regarding the fusion possibilities of our Ω+
8 (2)

subgroups. While this results in some arduous computations, the reward is arguably

the cleanest main result in the thesis, as we wind up constructing, up to conjugacy,

all possible subgroups of E8(2) isomorphic to Ω+
8 (2) or an automorphism extension of

Ω+
8 (2).

Theorem 1.4. Suppose H ≤ G with F ∗(H) ∼= Ω+
8 (2). Then:

(i) if H ∼= Ω+
8 (2), then there are exactly seven G-conjugacy classes of subgroups

isomorphic to H;

(ii) if H ∼= Ω+
8 (2) : 2, then there are exactly seventeen G-conjugacy classes of sub-

groups isomorphic to H;

(iii) if H ∼= Ω+
8 (2) : 3, then there are exactly six G-conjugacy classes of subgroups

isomorphic to H;

(iv) if H ∼= Ω+
8 (2) : Sym(3), then there are exactly ten G-conjugacy classes of sub-

groups isomorphic to H.

Continuing on from Chapter 7 is Chapter 8. Here, we find all Ω+
8 (4) subgroups

up to conjugacy in E8(2). This is a continuation as Ω+
8 (2) ≤ Ω+

8 (4), and so, as with

building up from U4(2) to Sp6(2), we build up subgroups of E8(2) isomorphic to Ω+
8 (4)

from the copies of Ω+
8 (2) found in Chapter 7.

Theorem 1.5. Suppose H ≤ G with F ∗(H) ∼= Ω+
8 (4). Then:

(i) if H ∼= Ω+
8 (4), then there are exactly two G-conjugacy classes of subgroups iso-

morphic to H;
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(ii) if H ∼= Ω+
8 (4) : 2, then there are exactly six G-conjugacy classes of subgroups

with the same shape as H;

(iii) if H ∼= Ω+
8 (4) : 3, then there is exactly one G-conjugacy classes of subgroups

isomorphic to H;

(iv) if H ∼= Ω+
8 (4) : 22, then there are exactly two G-conjugacy classes of subgroups

isomorphic to H.

(v) if H ∼= Ω+
8 (4) : 6, then there is exactly one G-conjugacy classes of subgroups

isomorphic to H;

(vi) if H ∼= Ω+
8 (4) : Sym(3), then there are exactly two G-conjugacy classes of sub-

groups isomorphic to H;

(vii) if H ∼= Ω+
8 (4) : Dih(12), then there is exactly one G-conjugacy classes of sub-

groups isomorphic to H.

Also following on from Chapter 7 is Chapter 9, in which we seek to find all Sp8(2)

subgroups of E8(2). Again, we use the fact that Ω+
8 (2) ≤ Sp8(2) and build up to

Sp8(2) using the copies of Ω+
8 (2) found in Chapter 7.

Theorem 1.6. Suppose H ≤ G with F ∗(H) ∼= Sp8(2). Then there are exactly four

G-conjugacy classes of subgroups isomorphic to H.

From here, we are finished with subgroups containing Ω+
8 (2). Then we turn our

attention to Sp4(4) in Chapter 10. We observe that a Sylow 5-subgroup of Sp4(4)

is isomorphic to a Sylow 5-subgroup of Ω+
8 (2). Hence, from our work on Ω+

8 (2) in

Chapter 7, we have a head start on constructing Sp4(4) subgroups, since we can

build up from the same Sylow 5-subgroups as used to construct copies of Ω+
8 (2). We

state the result regarding Sp4(4) now, remarking that we are back to restricting our

attention to considering only those Sp4(4) following certain fusion possibilities given in

Proposition 2.5. We will now state the main result which is to be proved in Chapter 10.

Theorem 1.7. Suppose H ≤ G with F ∗(H) ∼= Sp4(4) and that F ∗(H) does not follow

Sp4(4) fusion 2.5 (iii) or (iv). Then:

(i) if H ∼= Sp4(4), then there are exactly five G-conjugacy classes of subgroups of G

isomorphic to H;



CHAPTER 1. INTRODUCTION 16

(ii) if H ∼= Sp4(4) : 2, then there are exactly four G-conjugacy classes of subgroups

of G isomorphic to H;

(iii) H � Sp4(4) : 4.

Again, the techniques developed in this thesis are not suitable for constructing all

Sp4(4) subgroups following fusion possibilities 2.5 (iii) and (iv).

Finally, in Chapter 11 we examine subgroups of E8(2) isomorphic to L4(4). Here,

we use the fact that Sp4(4) ≤ L4(4) and build up to L4(4) using the copies of Sp4(4)

constructed in Chapter 10.

Theorem 1.8. Suppose H ≤ G with F ∗(H) ∼= L4(4) and that F ∗(H) does not follow

L4(4) fusion possibility 2.6 (i). Then:

(i) if H ∼= L4(4), then there is one G-conjugacy class of subgroups of G isomorphic

to H;

(ii) if H ∼ L4(4) : 2, then there are exactly three G-conjugacy classes of subgroups

of G with the same shape as H;

(iii) if H ∼= L4(4) : 22, then there is one G-conjugacy class of subgroups of G isomor-

phic to H.

We conclude Chapter 11 with a proof of Theorem 1.8.

Finally, we conclude this thesis with two appendices. Appendix A provides a

detailed description of all the files compatible with Magma which accompany this

thesis. Appendix B lists some procedures utilised in the computations throughout the

thesis, all of which can be applied in Magma.



Chapter 2

Background

2.1 Notation

We begin this chapter by stating all the notation used throughout this thesis. Let G

be a group. Then if H is a subgroup of G we write H ≤ G and if H is a normal

subgroup of G we write H E G. We will use |G| to denote the order of G and |S| for

the cardinality of a set S. Furthermore, [G : H] will denote the index of H in G. We

will also use 1 to denote both the identity of a group and the trivial group – the context

will always be clear. Z(G) will denote the centre of G; CG(g) denotes the centraliser

in G of an element g while NG(H) denotes the normaliser in G of a subgroup H. If G

acts on a vector space V and g ∈ G, then CV (g) = {v ∈ V : vg = v} denotes the fixed

space in V of g and StabG(U) = {g ∈ G : ug ∈ U for all u ∈ U} denotes the stabiliser

in G of a subspace U of V . If N E G then G/N will denote the factor group. If p is

a prime dividing |G| then Sylp(G) is the set of all Sylow p-subgroups of G. Now, let

g, h ∈ G. Then gh = h−1gh and [g, h] will denote the commutator g−1h−1gh. We will

also use o(g) to refer to the order of g. If q is a power of a prime, then GF (q) denotes

the Galois field of cardinality q. Before we move onto talking about specific groups,

we also state that we will use A tB to denote a union of disjoint sets A and B.

Let n, k ∈ N. The cyclic group of order n is denoted n; if p is prime then a p-group

of unknown structure denoted [pk]; the elementary abelian group of order pk is denoted

pk. A direct product of groups G and H is denoted G×H and their central product

G ◦H. If G is isomorphic to H then we write G ∼= H, but if G and H only have the

same shape then we write G ∼ H. Split extensions will be denoted with a colon –

17
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G = N : H where here N E H and G/N ∼= H. When discussing particular groups, we

will adhere to many conventions set down by the Atlas of Finite Groups [14], which

we will refer to as the ATLAS, with the following exceptions. We use Sym(n) and

Alt(n) to denote, respectively, the symmetric and alternating groups of degree n, while

Dih(n) denotes the dihedral group of order n. Additionally, Ω+
n (q) and Ω−n (q) denote

the simple projective orthogonal groups of plus type or minus type respectively, while

Spn(q) denotes the symplectic group of degree n over GF (q).

Finally, we will also use ATLAS notation when referring to conjugacy classes. If

G is a group and n ∈ N is such that there exists an element of order n in G, then

nA refers to the G-conjugacy class of elements of order n with the shortest length, nB

for the G-conjugacy class of elements of order n with the second-shortest length, and

so on. If two classes have the same length, they will either be ordered according to

ATLAS convention or arbitrarily.

Also, if H ≤ G and g ∈ H, then we will use the subscript H to denote the H-

conjugacy class of g and a G subscript to refer to its G-conjugacy class. For instance,

suppose g ∈ H ≤ G is of order 3. Then it could be the case that g belongs to the

H-conjugacy class 3A while belonging to the G-conjugacy class 3B. To clarify this

distinction in classes, we write g ∈ 3AH and g ∈ 3BG.

2.2 Motivation

We continue this chapter with a short introduction on the motivation behind the

selection of subgroups of E8(2) examined in this thesis. Although this thesis is themed

around an exploration of subgroups of E8(2), exactly which subgroups we have selected

to examine is down to their potential for maximality in E8(2). In our unpubished

paper, The Maximal Subgroups of E8(2) [5], we compile a list of all the potential

maximal subgroups of E8(2), then proceed to show that most of them are, in fact, not

maximal. Here, we will provide a specific case of the result used to compile this list

which is relevant to the groups discussed in this thesis.

Theorem 2.1. Let G ∼= E8(2) and suppose H ≤ G is maximal such that F ∗(H) =

H(2n) is simple and in Lie(2). Then rk(H(2n)) ≤ 4 and one of the following holds:

(i) 2n ≤ 9;
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(ii) H(2n) ∼= A1(16) or 2A2(16);

(iii) 2n ≤ 1312 and H(2n) ∼= A1(2n) or 2B2(2n).

Proof. This is a special case of Theorem 2.1 (vi) in [5] and can be found in Theorem

8 VI of [29]. �

If we combine this result with the classification of finite simple groups, we obtain

a list of potential maximal subgroups of E8(2) which are simple and belong to Lie(2).

These are, for each n ∈ {1, 2, 3}:

(i) L5(2n), L4(2n), L3(2n), and L2(2m) for m ∈ {3, . . . , 10};

(ii) Sp8(2n), Sp6(2n), Sp4(23), Sp4(22) and Sp4(2)′;

(iii) U5(2n), U4(2n), U3(24), U3(23), and U3(22);

(iv) Ω+
8 (2n) and Ω−8 (2n);

(v) G2(23), and G2(22);

(vi) Sz(2l) for l ∈ {3, 5, 7, 9};

(vii) F4(2n);

(viii) 3D4(2n);

(ix) 2F4(23)′ and 2F4(2)′;

In particular, the groups we will examine in this thesis – U4(2), Sp6(2), Ω−8 (2), Ω+
8 (2),

Ω+
8 (4), Sp8(2), Sp4(4), and L4(4) – appear in the list.

2.3 Conjugacy Class Fusion in E8(2)

Propositions 2.2 to 2.6 will be stated without proof. These results were all obtained

by Neuhaus and a full description of how they were obtained will be given in his

thesis [38]. Before we proceed, we will explain the notation used throughout these

results. In a given statement, the ϕi will denote the irreducible Brauer characters of

the given group over GF (2). If the proposition refers to the fusion of a group H into

G ∼= E8(2), then notation nX → nY means that the H-conjugacy class nX fuses to
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the G-conjugacy class nY. As an example, let us examine U4(2) fusion possibility 2.2

(i). It states 3A→3C. So, if U4(2) ∼= H ≤ G ∼= E8(2) and we assume that H follows

U4(2) fusion possibility 2.2 (i), then we have that if h ∈ H ∩ 3AH then h ∈ 3CG.

We also use the term cohomological dimension throughout these results, which we

will define now. More generally, let S be a group and V be a KS-module.

(i) A 1-cocycle is a map ϕ : S → V such that ϕ(gh) = ϕ(g) + g.ϕ(h). The additive

group of all 1-cocycles is denoted Z1(S, V );

(ii) A 1-coboundary is a 1-cocycle ϕ such that ϕ(g) = g.v − v for some v ∈ V . The

subgroup of Z1(S, V ) of all 1-coboundaries is denoted B1(S, V ).

(iii) The cohomology group for V is denoted by H1(S, V ) and is defined to be the

quotient Z1(S, V )/B1(S, V ).

The cohomology group is a K-vector space and its dimension is what we term the

cohomological dimension of V .

Proposition 2.2. (Neuhaus) Suppose U4(2) ∼= H ≤ G ∼= E8(2). Then the conjugacy

classes of H must fuse into the conjugacy classes of G in one of the following nine

ways. Moreover, the cohomological dimensions of the ϕi are ϕ2 = 0, ϕ3 = 2, ϕ4 = 1,

ϕ5 = 0, ϕ6 = 0.

(i) 6ϕ1+4ϕ2+4ϕ3+3ϕ4+2ϕ5+1ϕ6 (3A→3C, B∗∗ →3C, 3C→3D, 3D→3C, 5A→5B,

9A→9C, B∗∗ →9C);

(ii) 8ϕ1+8ϕ2+7ϕ3+4ϕ4+2ϕ5+0ϕ6 (3A→3C, B∗∗ →3C, 3C→3D, 3D→3B, 5A→5B,

9A→9D, B∗∗ →9D);

(iii) 12ϕ1 + 0ϕ2 + 5ϕ3 + 2ϕ4 + 1ϕ5 + 2ϕ6 (3A→3C, B∗∗ →3C, 3C→3D, 3D→3B,

5A→5B, 9A→9B, B∗∗ →9B);

(iv) 2ϕ1+5ϕ2+2ϕ3+4ϕ4+2ϕ5+1ϕ6 (3A→3C, B∗∗ →3C, 3C→3C, 3D→3D, 5A→5B,

9A→9D, B∗∗ →9D);

(v) 10ϕ1 + 5ϕ2 + 6ϕ3 + 4ϕ4 + 1ϕ5 + 1ϕ6 (3A→3C, B∗∗ →3C, 3C→3C, 3D→3B,

5A→5B, 9A→9C, B∗∗ →9C);
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(vi) 4ϕ1+2ϕ2+1ϕ3+4ϕ4+1ϕ5+2ϕ6 (3A→3C, B∗∗ →3C, 3C→3B, 3D→3D, 5A→5B,

9A→9C, B∗∗ →9C);

(vii) 6ϕ1+6ϕ2+4ϕ3+5ϕ4+1ϕ5+1ϕ6 (3A→3C, B∗∗ →3C, 3C→3B, 3D→3C, 5A→5B,

9A→9D, B∗∗ →9D);

(viii) 46ϕ1 + 10ϕ2 + 16ϕ3 + 1ϕ4 + 0ϕ5 + 0ϕ6 (3A→3C, B∗∗ →3C, 3C→3B, 3D→3A,

5A→5A, 9A→9A, B∗∗ →9A);

(ix) 18ϕ1 + 17ϕ2 + 2ϕ3 + 8ϕ4 + 0ϕ5 + 0ϕ6 (3A→3C, B∗∗ →3C, 3C→3A, 3D→3B,

5A→5A, 9A→9B, B∗∗ →9B).

Proposition 2.3. (Neuhaus) Suppose Sp6(2) ∼= H ≤ G ∼= E8(2). Then the conjugacy

classes of H must fuse into the conjugacy classes of G in one of the following six ways.

Moreover, the cohomological dimensions of the ϕi are ϕ2 = 1, ϕ3 = 0, ϕ4 = 0, ϕ5 = 1,

ϕ6 = 0, ϕ7 = 0, ϕ8 = 0.

(i) 6ϕ1 + 4ϕ2 + 2ϕ3 + 3ϕ4 + 2ϕ5 + 1ϕ6 + 0ϕ7 + 0ϕ8 (3A→3D, 3B→3C, 3C→3C,

5A→5B, 7A→7B, 9A→9C, 15A→15G);

(ii) 8ϕ1 + 8ϕ2 + 5ϕ3 + 4ϕ4 + 2ϕ5 + 0ϕ6 + 0ϕ7 + 0ϕ8 (3A→3D, 3B→3C, 3C→3B,

5A→5B, 7A→7B, 9A→9D, 15A→15G);

(iii) 4ϕ1 + 2ϕ2 + 0ϕ3 + 4ϕ4 + 1ϕ5 + 2ϕ6 + 0ϕ7 + 0ϕ8 (3A→3B, 3B→3C, 3C→3D,

5A→5B, 7A→7B, 9A→9C, 15A→15F);

(iv) 6ϕ1 + 6ϕ2 + 3ϕ3 + 5ϕ4 + 1ϕ5 + 1ϕ6 + 0ϕ7 + 0ϕ8 (3A→3B, 3B→3C, 3C→3C,

5A→5B, 7A→7B, 9A→9D, 15A→15F);

(v) 46ϕ1 + 10ϕ2 + 16ϕ3 + 1ϕ4 + 0ϕ5 + 0ϕ6 + 0ϕ7 + 0ϕ8 (3A→3B, 3B→3C, 3C→3A,

5A→5A, 7A→7A, 9A→9A, 15A→15A);

(vi) 18ϕ1 + 17ϕ2 + 2ϕ3 + 8ϕ4 + 0ϕ5 + 0ϕ6 + 0ϕ7 + 0ϕ8 (3A→3A, 3B→3C, 3C→3B,

5A→5A, 7A→7B, 9A→9B, 15A→15B).

Proposition 2.4. (Neuhaus) Suppose Ω−8 (2) ∼= H ≤ G ∼= E8(2). Then the conjugacy

classes of H must fuse into the conjugacy classes of G in one of the following five

ways. Moreover, the cohomological dimensions of the ϕi are ϕ2 = 0, ϕ3 = 0, ϕ4 = 2,

ϕ5 = 1, ϕ6 = 0, ϕ7 = 0, ϕ8 = 1, ϕ9 = 2, ϕ10 = 0, ϕ11 = 0, ϕ12 = 0.
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(i) 2ϕ1 +0ϕ2 +0ϕ3 +0ϕ4 +0ϕ5 +0ϕ6 +0ϕ7 +1ϕ8 +0ϕ9 +0ϕ10 +0ϕ11 +0ϕ12 (3A→3B,

3B→3D, 3C→3C, 5A→5B, 7A→7B, 9A→9C, 15A→15G, B∗ →15G, 15C→15F,

17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D;

(ii) 4ϕ1 +2ϕ2 +2ϕ3 +2ϕ4 +1ϕ5 +1ϕ6 +0ϕ7 +0ϕ8 +0ϕ9 +0ϕ10 +0ϕ11 +0ϕ12 (3A→3D,

3B→3B, 3C→3C, 5A→5B, 7A→7B, 9A→9D, 15A→15F, B∗ →15F, 15C→15G,

17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D;

(iii) 8ϕ1 +5ϕ2 +0ϕ3 +4ϕ4 +2ϕ5 +0ϕ6 +0ϕ7 +0ϕ8 +0ϕ9 +0ϕ10 +0ϕ11 +0ϕ12 (3A→3A,

3B→3B, 3C→3C, 5A→5A, 7A→7B, 9A→9B, 15A→15E, B∗ →15E, 15C→15B,

17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D;

(iv) 16ϕ1 + 1ϕ2 + 1ϕ3 + 8ϕ4 + 0ϕ5 + 0ϕ6 + 0ϕ7 + 0ϕ8 + 0ϕ9 + 0ϕ10 + 0ϕ11 + 0ϕ12

(3A→3A, 3B→3B, 3C→3C, 5A→5A, 7A→7B, 9A→9B, 15A→15A, B∗ →15A,

15C→15B, 17A→17A/B, B∗2→17A/B, C∗3→17A/B, D∗6→17A/B;

(v) 30ϕ1 + 8ϕ2 + 8ϕ3 + 1ϕ4 + 0ϕ5 + 0ϕ6 + 0ϕ7 + 0ϕ8 + 0ϕ9 + 0ϕ10 + 0ϕ11 + 0ϕ12

(3A→3B, 3B→3A, 3C→3C, 5A→5A, 7A→7A, 9A→9A, 15A→15B, B∗ →15B,

15C→15A, 17A→17A/B, B∗2→17A/B, C∗3→17A/B, D∗6→17A/B.

Proposition 2.5. (Neuhaus) Suppose Sp4(4) ∼= H ≤ G ∼= E8(2). Then the conjugacy

classes of H must fuse into the conjugacy classes of G in one of the following eight

ways. Moreover, the cohomological dimensions of the ϕi are ϕ2 = 2, ϕ3 = 2, ϕ4 = 0,

ϕ5 = 0, ϕ6 = 0, ϕ7 = 0, ϕ8 = 0, ϕ9 = 0, ϕ10 = 0.

(i) 8ϕ1 + 4ϕ2 + 2ϕ3 + 2ϕ4 + 0ϕ5 + 1ϕ6 + 0ϕ7 + 0ϕ8 + 1ϕ9 + 0ϕ10 (3A→3D, 3B→3B,

5A→5B, B∗ →5B, 5C→5B, D∗ →5B, 5E→5B, 15A→15G, B∗ →15G, 15C→15F,

D∗ →15F, 17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D);

(ii) 8ϕ1 + 2ϕ2 + 4ϕ3 + 0ϕ4 + 2ϕ5 + 0ϕ6 + 1ϕ7 + 1ϕ8 + 0ϕ9 + 0ϕ10 (3A→3B, 3B→3D,

5A→5B, B∗ →5B, 5C→5B, D∗ →5B, 5E→5B, 15A→15F, B∗ →15F, 15C→15G,

D∗ →15G, 17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D);

(iii) 32ϕ1 + 8ϕ2 + 1ϕ3 + 1ϕ4 + 8ϕ5 + 0ϕ6 + 0ϕ7 + 0ϕ8 + 0ϕ9 + 0ϕ10 (3A→3B, 3B→3A,

5A→5A, B∗ →5A, 5C→5A, D∗ →5A, 5E→5A, 15A→15A, B∗ →15A, 15C→15B,

D∗ →15B, 17A→17A/B, B∗2→17A/B, C∗3→17A/B, D∗6→17A/B);
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(iv) 32ϕ1 + 1ϕ2 + 8ϕ3 + 8ϕ4 + 1ϕ5 + 0ϕ6 + 0ϕ7 + 0ϕ8 + 0ϕ9 + 0ϕ10 (3A→3A, 3B→3B,

5A→5A, B∗ →5A, 5C→5A, D∗ →5A, 5E→5A, 15A→15B, B∗ →15B, 15C→15A,

D∗ →15A, 17A→17A/B, B∗2→17A/B, C∗3→17A/B, D∗6→17A/B);

(v) 16ϕ1 + 4ϕ2 + 9ϕ3 + 0ϕ4 + 4ϕ5 + 0ϕ6 + 2ϕ7 + 0ϕ8 + 0ϕ9 + 0ϕ10 (3A→3B, 3B→3D,

5A→5A, B∗ →5A, 5C→5B, D∗ →5B, 5E→5B, 15A→15E, B∗ →15E, 15C→15G,

D∗ →15G, 17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D);

(vi) 16ϕ1 + 9ϕ2 + 4ϕ3 + 4ϕ4 + 0ϕ5 + 2ϕ6 + 0ϕ7 + 0ϕ8 + 0ϕ9 + 0ϕ10 (3A→3D, 3B→3B,

5A→5B, B∗ →5B, 5C→5A, D∗ →5A, 5E→5B, 15A→15G, B∗ →15G, 15C→15E,

D∗ →15E, 17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D);

(vii) 8ϕ1 + 4ϕ2 + 2ϕ3 + 0ϕ4 + 0ϕ5 + 2ϕ6 + 0ϕ7 + 1ϕ8 + 0ϕ9 + 0ϕ10 (3A→3D, 3B→3D,

5A→5B, B∗ →5B, 5C→5B, D∗ →5B, 5E→5B, 15A→15G, B∗ →15G, 15C→15G,

D∗ →15G, 17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D);

(viii) 8ϕ1 + 2ϕ2 + 4ϕ3 + 0ϕ4 + 0ϕ5 + 0ϕ6 + 2ϕ7 + 0ϕ8 + 1ϕ9 + 0ϕ10 (3A→3D, 3B→3D,

5A→5B, B∗ →5B, 5C→5B, D∗ →5B, 5E→5B, 15A→15G, B∗ →15G, 15C→15G,

D∗ →15G, 17A→17C/D, B∗2→17C/D, C∗3→17C/D, D∗6→17C/D).

Proposition 2.6. (Neuhaus) Suppose L4(4) ∼= H ≤ G ∼= E8(2). Then the conjugacy

classes of H must fuse into the conjugacy classes of G in one of the following two

ways. Moreover, the cohomological dimensions of the ϕi are ϕ2 = 0, ϕ3 = 0, ϕ4 = 0,

ϕ5 = 0, ϕ6 = 0, ϕ7 = 2, ϕ8 = 0, ϕ9 = 0, ϕ10 = 0, ϕ11 = 0, ϕ12 = 2, ϕ13 = 2, ϕ14 = 0,

ϕ15 = 0, ϕ16 = 0, ϕ17 = 0, ϕ18 = 0, ϕ19 = 0, ϕ20 = 0, ϕ21 = 2, ϕ22 = 0, ϕ23 = 0,

ϕ24 = 0.

(i) 8ϕ1 +0ϕ2 +0ϕ3 +4ϕ4 +2ϕ5 +2ϕ6 +1ϕ7 +2ϕ8 +1ϕ9 +0ϕ10 +0ϕ11 +0ϕ12 +0ϕ13 +

0ϕ14 +0ϕ15 +0ϕ16 +0ϕ17 +0ϕ18 +0ϕ19 +0ϕ20 +0ϕ21 +0ϕ22 +0ϕ23 +0ϕ24 (3AB→

3C, 3C→ 3A, 3D→ 3B, 5AB→ 5A, 5CD→ 5A, 5E→ 5A, 7A→ 7B, 7B→ 7B,

9AB→ 9B, 15AB→ 15B, 15CD→ 15B, 15EF→ 15B, 15G→ 15B, 15H→ 15B,

15IJ→ 15D, 15KL→ 15D, 15MN→ 15A, 17AB→ 17AB, 17CD→ 17AB, 21AB→

21F, 21CD→ 21F);

(ii) 4ϕ1 +2ϕ2 +2ϕ3 +2ϕ4 +1ϕ5 +1ϕ6 +1ϕ7 +1ϕ8 +0ϕ9 +0ϕ10 +0ϕ11 +1ϕ12 +1ϕ13 +

0ϕ14 +0ϕ15 +0ϕ16 +0ϕ17 +0ϕ18 +0ϕ19 +0ϕ20 +0ϕ21 +0ϕ22 +0ϕ23 +0ϕ24 (3AB→
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3C, 3C→ 3D, 3D→ 3B, 5AB→ 5B, 5CD→ 5A, 5E→ 5B, 7A→ 7B, 7B→ 7B,

9AB→ 9D, 15AB→ 15C, 15CD→ 15C, 15EF→ 15G, 15G→ 15G, 15H→ 15G,

15IJ→ 15D, 15KL→ 15D, 15MN→ 15E, 17AB→ 17CD, 17CD→ 17CD, 21AB→

21F, 21CD→ 21F).

We conclude this section with a result providing us with a means of establishing

whether a given subgroup of G following a specific fusion possibility fixes a non-zero

vector in V .

Proposition 2.7. Suppose H ≤ G where H follows the fusion possibility provided by

λ1ϕ1 + . . .+ λnϕn, where ϕi for each i ∈ {1, . . . , n} is an irreducible Brauer character

of H over GF (2) and ϕ1 is the trivial character. Let di be the cohomological dimension

of ϕi. If λ1 > λ2d2 + . . .+ λndn, then dimCV (H) > 0.

Proof. See Proposition 3.6 (i) in the Ph. D. thesis of Litterick [33]. �

2.4 Useful Results

Here we provide some general group theoretic results which we make extensive use of

throughout this thesis, as well as some established facts about E8(2).

Proposition 2.8. If G is a group with S ⊂ G, then for all g ∈ G we have

CG(Sg) = CG(S)g and NG(Sg) = NG(S)g.

Proposition 2.9. (Burnside’s Theorem) Suppose G is a group with |G| = pnqm, where

p and q are prime and n,m ∈ N ∪ {0}. Then G is soluble.

Proof. See [10]. �

Proposition 2.10. Suppose G is a finite group and let P ∈ Sylp(G). Then P is a

characteristic subgroup of NG(P ).

Proof. We will show that P is the unique Sylow p-subgroup of NG(P ). First note that

P ≤ NG(P ) so it is true that P ∈ Sylp(NG(P )). Now suppose that P0 ∈ Sylp(NG(P )).

By Sylow’s Theorems, P and P0 are conjugate in NG(P ), so there is some element

n ∈ NG(P ) with P n = P0. But n normalises P , so we have P = P n = P0. Hence P

is the unique Sylow p-subgroup of NG(P ), so any automorphism of NG(P ) must fix

P . �
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Much of this thesis deals with the issue of computing centralisers of elements inside

large groups. The next result provides us with a method for calculating centralisers of

involutions.

Proposition 2.11. (This is the basis of a method devised by Bray in 2.2 of [8].)

Suppose G is a finite group and let t ∈ G be an involution. Now let h ∈ G. Let n be

the order of the commutator [t, h]. Now set

g =

[t, h]
n
2 , if n even,

h[t, h]
n−1
2 , otherwise.

Then g ∈ CG(t). Upon repeating this process we can find multiple elements in CG(t),

which, in some cases, may eventually form a generating set for the whole of CG(t).

Proposition 2.12. Let G be a finite group with K ≤ H ≤ G. Suppose also that we

have a complete list K1, . . . , Km ≤ G such that for all K0 ≤ G with K0
∼= K, K0 is

G-conjugate to Ki for some i ∈ {1, . . . ,m}. Then given any H0 ≤ G with H0
∼= H,

there exists g ∈ G such that Ki ≤ Hg
0 , for some i ∈ {1, . . . ,m}. In other words, H0 is

G-conjugate to an overgroup of some Ki.

Proof. If H0 ≤ G and H0
∼= H, then we must have K0 ≤ H0 with K0

∼= K. But K0

must be G-conjugate to Ki for some i ∈ {1, . . . ,m}. Let g ∈ G be such that Kg
0 = Ki

and now

Ki = Kg
0 ≤ Hg

0

as required. �

It may have been a straightforward result, but it is essential in our work in

E8(2). Often, we are in a situation where we have already calculated representa-

tives K1, . . . , Km of all the subgroups of G isomorphic to K up to G-conjugacy. We

then want to find representatives of all the subgroups of G isomorphic to H up to

G-conjugacy. But since K ≤ H we may assume, without loss of generality, that every

H subgroup we desire exists as an overgroup to one of our Ki.

Another problem we frequently encounter is the following. Once we have found

H ≤ G where H is simple, we want to know whether H ≤ K ≤ G where K is

isomorphic to a subgroup of Aut(H). The next result, known as Frattini’s Argument,

gives us a starting point to look for potential generators of Aut(H).
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Proposition 2.13. (Frattini’s Argument) If G is a finite group with H E G and

P ∈ Sylp(H) for some prime p, then

G = NG(P )H.

Proof. Showing G ⊃ NG(P )H is trivial as both H and NG(P ) are subgroups of G. So

let g ∈ G. Then P g ≤ Hg = H as H is normal in G. Since |P | = |P g| we have that

P g ∈ Sylp(H) and so, by Sylow’s Theorems, there is some h ∈ H for which P g = P h.

Hence P gh−1
= P which gives gh−1 ∈ NG(P ) and so g ∈ NG(P )h. Thus, G = NG(P )H

as the choice of g was arbitrary. �

Now we state a specific case of Frattini’s Argument that relates directly to auto-

morphism groups.

Corollary 2.14. Suppose H ≤ G with G isomorphic to a subgroup of Aut(H) for

some finite simple group H. Let P ∈ Sylp(H). Then

G = NG(P )H.

Proof. As G is isomorphic to a subgroups of Aut(H) we clearly have that for all g ∈ G,

Hg = H and so H E G. Now we apply Frattini’s Argument and the result follows. �

We use the corollary as a starting point for how we might construct subgroups

of Aut(H) inside a larger group. The next few results explore this further. Beyond

this background chapter, G will denote E8(2), as this is the group we are trying to

construct subgroups of. The next few results can be thought of in that specific context,

but the results will be presented in general.

Proposition 2.15. Let G be a finite group. Let H ≤ G be simple with P ∈ Sylp(H).

Suppose g ∈ G such that 〈H, g〉 is isomorphic to a subgroup of Aut(H). Then

(i) g ∈ NNG(P )(NH(P ));

(ii) g ∈ NG(H).

Proof. (i) By Corollary 2.14 we know we can choose g ∈ NG(P ). Hence P g = P

and so NH(P g) = NH(P ). This gives us NH(P )g = NH(P ) by Proposition 2.8.

Thus, g ∈ NNG(P )(NH(P )).
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(ii) Since g ∈ 〈H, g〉 where 〈H, g〉 is isomorphic to a subgroup of Aut(H), we must

have Hg = H and hence g ∈ NG(H).

�

To clear up some of the cumbersome notation here, we will commonly set

E0(H) = NNG(P )(NH(P )) ∩NG(H)

as our initial set of potential generators of a subgroup of Aut(H).

Proposition 2.16. Suppose x, y ∈ E0(H) such that x and y are conjugate in E0(H).

Then

(i) x /∈ H if and only if y /∈ H;

(ii) for all n ∈ N we have that xn ∈ H if and only if yn ∈ H;

(iii) 〈H, x〉 = 〈H, y〉 are conjugate groups.

Proof. Let g ∈ E0(H) such that xg = y. Recall that, by definition of E0(H), we have

that Hg = H.

(i) Assume y /∈ H and x ∈ H. Then

y = xg ∈ Hg = H,

a contradiction, so we must also have that x /∈ H. A similar argument holds for

showing that x /∈ H implies y /∈ H.

(ii) Now let n ∈ N and assume that xn ∈ H. Then

yn = (xg)n = (xn)g ∈ Hg = H

and similarly to show that yn ∈ H implies xn ∈ H.

(iii) Here, we simply observe that 〈H, x〉g = 〈Hg, xg〉 = 〈H, y〉.

�

Proposition 2.17. Suppose H E H0 ≤ G with H0
∼= H : q for some q ∈ N. If g ∈ G

such that 〈H, g〉 = H0, then gq ∈ H.
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Proof. This is clear from the fact that the qth power of any element in the cyclic group

q is the identity. �

We complete our discussion on automorphism extensions of groups with the fol-

lowing result, which often eliminates many cases without the need for computation.

Proposition 2.18. Suppose G is a finite group acting on a vector space V over GF (2).

Now suppose we have H ≤ G such that dimCV (H) > 0. Then if H ≤ H0 ≤ G where

H0
∼= H : [2k] for some k ∈ N, then dimCV (H0) > 0.

Proof. Suppose dimCV (H) = n > 0. Then there are 2n − 1 non-trivial vectors in

CV (H) which split into orbits under the action of H0. Each orbit has length dividing

|H0/H| = 2k, so each orbit either has length 1 or has even length. However, the sum

of all these orbit lengths is 2n − 1, which is odd, so there must be at least one orbit

which has length 1. This orbit contains a non-zero vector which is fixed by H0 and so

belongs to CV (H0). �

We will now shift our focus and explore some useful results about E8(2) specifically.

For the rest of this chapter, let G ∼= E8(2). The adjoint representation of E8(2) is the

representation of smallest degree. This has degree 248, and so, usually, G can be

thought of as a subgroup of GL248(2). The first result states some useful facts about

the four conjugacy classes of involutions in G.

Proposition 2.19. Let V be the 248-dimensional GF (2) G-module. Suppose t is an

involution of G, and set U = O2(CG(t)), the maximal normal unipotent subgroup of

CG(t).

(i) If t ∈ 2A, then dim(CV (t)) = 190 and CG(t) = UL with U ∼ 21+56 and L ∼=

E7(2).

(ii) If t ∈ 2B, then dim(CV (t)) = 156 and CG(t) = UL where U ∼ [278] and L ∼=

Sp12(2).

(iii) If t ∈ 2C, then dim(CV (t)) = 138 and CG(t) = UL with U ∼ [281] and L ∼=

Sym(3)× F4(2).

(iv) If t ∈ 2D, then dim(CV (t)) = 128 and CG(t) = UL with U ∼ [284] and L ∼=

Sp8(2).
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Proof. See (17.15) of Aschbacher, Seitz [3] for the shape of CG(t). In Magma we use

the commands Dimension and Eigenspace to determine dimCV (t). �

Theorem 2.20. (Aubad, Ballantyne, McGaw, Neuhaus, Phillips, Rowley, Ward):

Let G ∼= E8(2) and let V be the 248-dimensional GF (2) G-module. The semisimple

conjugacy classes of G, their centraliser structures, dimensions of their fixed spaces of

V , and power maps are displayed in Table 2.1.

Proof. See [4]. �
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Proposition 2.21. Let g ∈ G have order 2k for some k ∈ N. Then g is unipotent.

Moreover, if U ≤ G such that |U | = 2n for some n ∈ N, then U is a unipotent group.

Proposition 2.22. Suppose T is a maximal torus of G. Then:

(i) T is cyclic of order 85, 105, 127, 195, 205, 217, 219, 241, 255, 273, 315, 331, 357,

381, 465, 511, or 651; or

(ii) T is isomorphic to one of: 3× 51, 3× 63, 3× 93, 3× 105, 5× 35, 5× 65, 7× 91,

132, 152, 172, 212, 312, 3× 52, 32 × 21, 32 × 15, 52 × 15, 72 × 21, 34, 54, or 74.

Moreover, if H ≤ G where F ∗(H) is isomorphic to U4(2), Sp6(2), Ω−8 (2), or Sp4(4),

then H does not contain a maximal torus of G.

Proof. For the isomorphism types of maximal tori in G, see Table IV of [16]. The

result regarding subgroups H of G with F ∗(H) isomorphic to U4(2), Sp6(2), Ω−8 (2), or

Sp4(4) can easily be verified by Lagrange’s theorem and Magma. �

This next result is key to showing that many subgroups we examine in this thesis

are not maximal. It is an adaptation of Lemma 1.3 found in [41] by Sietz.

Proposition 2.23. If H ≤ G and dimCV (H) > 0, and H is neither a maximal

parabolic subgroup of G nor contains a maximal torus of G, then H is not maximal in

G.

Proof. See [41]. �

As a result of Proposition 2.22, we can apply Proposition 2.23 to subgroups H ≤ G

with F ∗(H) isomorphic to U4(2), Sp6(2), Ω−8 (2), or Sp4(4). Since these groups are not

maximal parabolic groups of G, if they fix a non-zero vector of V , then they are

not maximal. Note that, as stated in [29], the maximal parabolic subgroups of G

correspond to those obtained by removing a node of the E8 Dynkin diagram and

therefore do not correspond to any of the above subgroups.



Chapter 3

Methodology

All the results in this thesis are proved computationally using the computer algebra

package Magma. Similar methods and variations of the same algorithms are employed

in order to prove each of the main results. In this chapter, we will provide a general

breakdown of these methods and algorithms.

3.1 Computing in Magma

This section will outline some basic techniques on how to use Magma as well as some

common tactics we employ when the computational power of Magma falls short. We

begin with a discussion on how groups can be presented in Magma. Cayley’s theorem

tells us that every finite group G is isomorphic to a subgroup of Sym(n), for some

n ∈ N. A consequence of this is that G can be faithfully representated as a subgroup

of GL(V ), the general linear group over some vector space V . In Magma, any finite

group can be presented as a group of permutations or as a group of matrices. Both

have their advantages, and often it is beneficial to switch between them.

The faithful matrix representation of E8(2) with smallest degree has degree 248.

Magma can handle some operations on 248×248 matrices without issue. For example,

most linear algebra operations, such as finding the eigenspace or determinant of a given

matrix, are carried out quickly. But there are two major drawbacks with working with

such large matrices. The first is that group theoretic operations are often very slow.

These are operations like finding the order of a group generated by a selection of such

matrices. The second is that such matrices take a lot of memory to store – a single

35
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element of GL248(2) takes up approximately 181KB of memory, so storing lots of such

matrices quickly becomes impractical or, indeed, impossible. We combat both of these

issues by shifting group presentations, but it should be noted that this is not always

possible.

Before we proceed, for the rest of this chapter we will discuss various Magma

functions. These will be written in the standard verbatim typeface. It should always

be assumed that, if we are discussing an object represented symbolically by a single

letter, that same letter will be used to represent that object in Magma. For instance,

if we are discussing a group G and a matrix x, then these will be represented in

Magma using G and x respectively. Furthermore, if subscripts are used, then the

numbers will be appended to the Magma objects – x1 and x2 will be called x1 and

x2, for example. If the context requires objects with more complex names, they will

always be explained as and when they are introduced.

Given a finite group G, the command

p,P:=PermutationRepresentation(G);

returns P , a subgroup of Sym(n) for some n ∈ N which is isomorphic to G. It also

gives an isomorphism p : G → P . Several group theoretic operations work much

faster in the permutation group setting. Note that some randomness is associated

with the algorithm Magma uses to determine P . As a result, it is possible to obtain a

permutation representation of high degree. We often wish to find a permutation group

isomorphic to G of smaller degree, where computations may run even faster. Here, we

might use

R,r:=DegreeReduction(P);

to find R ∼= P where the degree of R is at most that of P , and an isomorphism

r : P → R.

A common tactic is to run the necessary computations in P , then map the results

back to the matrix setting, G. For example, let’s say we would like to find all the

subgroups of G. This is often time consuming (or impossible) to run in the matrix

setting, so we run the following.

p,P:=PermutationRepresentation(G);

Subs:=Subgroups(P);
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S:={Subs[i]‘subgroup@@p : i in [1..#subs]};

This finds S, a set of all subgroups of G, even though the Subgroups command was

run on P . Here is the same example after finding a permutation representation of G

of smaller degree.

p,P:=PermutationRepresentation(G);

R,r:=DegreeReduction(P);

Subs:=Subgroups(R);

S:={Subs[i]‘subgroup@@r@@p : i in [1..#subs]};

This is such a common tactic for us that it would be burdensome to have to detail

the same set of procedures whenever it is employed. Instead, we will use the phrase

“turn G into a permutation group” whenever we are finding a permutation group

isomorphic to G. We realise that this is not strictly true, but, for our purposes, this

language is simply shorthand. Through an abuse of notation, we will also commonly

refer to the permutation group isomorphic to G as G itself. With this language, the

above process of finding the subgroups of G would be described as such: We turn G into

a permutation group and employ the command Subgroups, then pull the subgroups

back into the matrix setting.

Permutation groups also alleviate the second issue – the storage problem – de-

scribed earlier. If we want to save a multitude of matrices, we can turn the group to

which they belong into a permutation group and save the elements as permutations.

So, if G is a matrix group and we want to save some element g ∈ G we could carry

out

p,P:=PermutationRepresentation(G);

gp:=p(g);

PrintFileMagma("gp",gp);

to save g as a permutation. This causes a new problem, however, for when we open

a new session and wish to load the permutation g, there is no guarantee that running

PermutationRepresentation will yield the same isomorphism or even a permutation

group of the same degree. Thus, we have no way of recovering the original matrix g.

To solve this, we must always save the original isomorphism and re-load it in a new

session. We save maps by running
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Gg:=SetToSequence(Generators(G));

Pg:=[p(g) : g in Gg];

PrintFileMagma("Gg",Gg);

PrintFileMagma("Pg",Pg);

which saves the ordered generating set {g1, . . . , gk} of G and the ordered generating

set {p(g1), . . . , p(gk)}. Since any homomorphism is defined by its action on the group

generators, we can now setup the same map in a new session by carrying out

Gg:=eval Read("Gg");

Pg:=eval Read("Pg");

P:=Universe(Pg);

p:=Homomorphism(G,P,Gg,Pg);

gp:=eval Read("gp");

g:=gp@@p;

and now g has been recovered as the original matrix.

Another form of group presentation we frequently take advantage of are power-

conjugate presentations. Let G be a finite soluble group. A power-conjugate presen-

tation of G is a presentation of the form

〈a1, . . . , an : a
pj
j = wjj, 1 ≤ j ≤ n, aaij = wij, 1 ≤ i < j ≤ n〉

where

(i) pj is the least prime such that a
pj
j ∈ 〈aj+1, . . . , an〉 for j < n and a

pj
j = 1 for

j = n;

(ii) wij is a word in the generators ai+1, . . . , an.

We refer to groups presented this way as pc-presentations of pc-groups. Like per-

mutation groups, pc-groups lend themselves to certain computations which are slow

in a matrix setting. The phrase “turn G into a pc-group” will be used in the same

context as with permutation groups.

Note that only soluble groups have pc-presentations. If G is a matrix group, the

command

S,P,p:=LMGSolubleRadical(G);
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outputs S, the soluble radical of G, P ∼= S where P is a pc-group, and an isomorphism

p : S → P . Note that the soluble radical of G is the largest soluble normal subgroup

of G. If G itself is soluble, then its soluble radical is G. In this case, S = G and we

have an isomorphism p : G→ P , effectively turning G into a pc-group.

We remark here that LMGSolubleRadical is an LMG command, which stands for

large matrix group. These commands can only be called on matrix groups and use

algorithms which are typically faster than their non-LMG counterpart when called on

a matrix group of sufficiently large degree. For example, calling LMGOrder often works

faster than simply calling Order. Since we are working with E8(2) – in particular, its

248-degree matrix representation – we make extensive use of these LMG commands

throughout the thesis. As stated in the Magma handbook, there is a small probability

of failure or returning incorrect results. We use the command LMGInitialise to

combat this.

3.2 Working with E8(2)

We now examine some of the specific methods we use when working with E8(2), and

some algorithms used throughout this thesis. On top of the fact that the smallest

matrices forming the elements of E8(2) are 248 × 248, there is another, more glaring

computational hurdle to overcome when working with E8(2). Having over 1074 ele-

ments, E8(2) is a truly gargantuan group with more elements than there are atoms in

the Milky Way galaxy. Let G ∼= E8(2) and H ≤ G. A frequent challenge for us is to

find CG(H). Simply running through the elements of G and collecting the ones cen-

tralising H is not a sensible idea. Given the size of G, it is likely that such a procedure

would continue until long after the death of the sun. Fortunately, there are ways in

which we can drastically reduce the group through which we must sift for centralising

elements. It should be noted that, throughout, G will denote E8(2) as a subgroup of

GL248(2), and that many of these methods could be generalised to working with other

matrix groups.

To give some context, the next few results should be read with the following prob-

lem in mind. Given H ≤ G ∼= E8(2), construct I(CG(H)). (Here, given a group or a

set of group elements S, I(S) denotes the set of involutions in S.) We will explore the
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process of whittling down where the centralising involutions can be found in G. Many

of these results will be drawn upon throughout the following chapters.

A frequent place to start is by choosing an element h ∈ H and constructing CG(h).

If h is an involution, we can use the intrinsic Magma command

CentraliserOfInvolution(G,h)

which implements the Bray method (see 2.11) and outputs CG(h). (Note that, con-

trary to most intrinsic Magma commands, this only works with the U.K. spelling

“centraliser” and not the U.S. spelling “centralizer”.) If h is semisimple (of odd or-

der), we can often use the FindCent procedure (see B.3) developed by Ballantyne

and Rowley to find CG(h). For computational reasons, it is often beneficial to choose

h ∈ Z(H), as the next result shows.

Proposition 3.1. Let z ∈ Z(H). Then H ≤ CG(z) and CG(H) ≤ CG(z).

Proof. Let h ∈ H. Then as z is central in H, we must have zh = hz and so h ∈

CG(z). Now, if g ∈ CG(H), then g commutes with everything in H, including z, so

g ∈ CG(z). �

While these facts are fairly clear, it gives a crucial starting point in cutting the

group we must sieve down from G to CG(z). Moreover, the fact that H ≤ CG(z)

enables us to utilise further computational techniques, as we will employ in the next

result and its following procedure.

Proposition 3.2. Let C = CG(z) where z ∈ Z(H). Let C = C/N where N E C.

Then CG(H) is contained in the full inverse image of CC(H). (That is, B such that

N ≤ B ≤ C and for all b ∈ B, b ∈ CC(H).)

Proof. Let g ∈ CG(H). We must show that g ∈ CC(H). Since CG(H) ≤ C, we know

g ∈ C. And now for all h ∈ H we have that gh = hg which implies gh = hg and so

gh = hg. Thus, g ∈ CC(H), as required. �

It is worth noting that the inverse image of CC(H) and CC(H) are not necessarily

the same group – the former contains, but may contain much more than, the latter.

Regardless, we have again trimmed down the group through which we must sieve. We

will commonly refer to the inverse image of CC(H) as C1(H). We will now discuss
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a procedure we can use in order to construct C1(H) in Magma, in the case where

N = O2(C). Further to our earlier discussion on how we name objects in Magma, we

will name any object expressed as a letter with a bar with that letter and append the

letter “b”. For example, to refer to the object C in Magma we will use the name Cb.

Procedure 3.3. Starting with C, we wish to construct C/O2(C). The command

Cb,p,W:=LMGRadicalQuotient(C);

outputs C ∼= C/Rad(C), where Rad(C) is the soluble radical of C. (In all cases in

this thesis where this procedure is used, we will have Rad(C) = O2(C).) Note that C

is given as a permutation group. We also have an epimorphism p : C → C with kernel

W , which in our case is O2(C).

Since H ≤ C = CG(z) by Proposition 3.1, H is in the domain of p so we can apply

p to H and obtain H. We can then use the command Centraliser to compute CC(H)

and find the inverse image by applying the inverse of p. If we use the name C1H to

refer to C1(H), this whole process is carried out using

C1H:=Centraliser(Cb,p(H)) @@ p;

and hence we have C1(H).

Now we seek to trim C1(H) to an even smaller group which still contains I(CG(H)).

Before we get to the next procedure, however, we require two lemmas.

Lemma 3.4. Let S ∈ Syl2(C1(H)) and let Γ = {γ1, . . . , γn} be a right transversal for S

in C1(H). Then given any involution t ∈ C1(H), there exists γi ∈ Γ such that t ∈ Sγi.

Proof. By Sylow’s Theorems, we have that t belongs to some Sylow 2-subgroup of

C1(H), and that this Sylow 2-subgroup is conjugate to S. Say t ∈ Sg for some g ∈

C1(H). Now, since C1(H) = Sγ1 t . . . t Sγn, we have that g ∈ Sγi for some γi ∈ Γ.

Then g = sγi for some s ∈ S. And now

t ∈ Sg = Ssγi = Sγi

as required. �
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Recall that V is the natural 248-dimensional GF (2) G-module, and that if U is a

subspace of V and A is some subgroup of G, then the stabiliser of U in A is defined

to be

StabA(U) = {g ∈ A : ug ∈ U, for all u ∈ U}.

Recall, also, that we are looking for involutions centralising H. We know they must

all be contained in C1(H), so we are looking for CC1(H)(H) or something containing

this group.

Lemma 3.5. Let F = CV (H). Then CC1(H)(H) ≤ StabC1(H)(F ).

Proof. Let g ∈ CC1(H)(H). We must show that given any v ∈ F , we have vg ∈ F . So,

let v ∈ F and h ∈ H. Then, as v is in the fixed space of H, we have vh = v. And, as

g centralises H, we have gh = hg. And so

vg = (vh)g = (vg)h

and hence vg ∈ F .

�

Now we get to the crux of the last two lemmas.

Proposition 3.6. Using the notation established in the last two results, we have

I(CG(H)) ⊆ 〈StabSγi (F ) : γi ∈ Γ〉.

Proof. Let t ∈ I(CG(H)). Then by Proposition 3.2 we know t ∈ C1(H). By Lemma 3.4

we know that for some γi ∈ Γ, we have t ∈ Sγi . And now, by Lemma 3.5 we have

CSγi (H) ≤ StabSγi (F ). Hence, every element in I(CG(H)) is contained in StabSγi (F )

for some i ∈ {1, . . . , n} and so the result follows. �

We will set C2(H) = 〈StabSγi (F ) : γi ∈ Γ〉, as this is the next subgroup in our ever-

decreasing chain of subgroups containing I(CG(H)). We will now look at calculating

C2(H) in practice. Note that there are several different procedures here depending on

the size of C1(H), and which one we use is situational. For each procedure, we will

give the approximate circumstances under which it ought to be used, however, there

isn’t a complete set of hard and fast rules to follow, as certain situations call for slight
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variations of the presented algorithms. In later chapters when we actually implement

these procedures, we will always state exactly which procedure we will use.

For the following procedures, let |C1(H)| = 2mk where m, k ∈ N and such that

2m+1 - |C1(H)|. In practice, m will typically be large (around 90) and the procedure

used will depend on the size of k. Before we begin, we must first discuss how to

compute fixed space stabilisers in Magma. First, note that to calculate F = CV (H)

we can carry out

F:=Fix(GModule(H));

Now, given a 2-group S, note that S is a unipotent group by Proposition 2.21, so we

may use

UnipotentStabiliser(S,F);

to calculate the stabiliser in S of F . With that out of the way, let us list the procedures

we can use to generate C2(H).

Procedure 3.7. As stated previously, we have |C1(H)| = 2mk with S ∈ Syl2(C1(H))

and Γ a right transversal for S in C1(H). The procedure used to find C2(H) depends

on k.

(i) k = 1: This is the simplest case, for here, C1(H) is a 2-group, so S = C1(H)

and Γ = {1}, so we can simply calculate C2(H) = StabC1(H)(F ) using the

UnipotentStabiliser command.

(ii) k > 1 and k is “small”: The word “small” here is situation-dependent, but we

will clarify what it means shortly. Here, C1(H) is not a 2-group so we obtain S

using

S:=LMGSylow(C1H,2);

where here, recall that C1H is a stand-in for C1(H). Now we find Γ using

Gamma:=Transversal(C1H,S);

which outputs a right transversal of S in C1(H). We say that k is “small” when

Magma can actually execute the Transversal command. This is dependent

on various factors such as the available memory and processing power of the

machine used, and the order of C1(H). Now we run through each element γ ∈ Γ
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and calculate StabSγ (F ), building the group generated by all of them. Here is

a sample code we can use to execute this procedure, where the object Q denotes

GL248(2).

Gamma:=Transversal(C1H,S);

U:=sub<Q|Id(Q)>;

for g in Gamma do;

Sg:=S^g;

UU:=UnipotentStabiliser(Sg,F);

U:=sub<Q|U,UU>;

end for;

LMGInitialise(U:Al:="CompositionTree");

LMGFactoredOrder(U);

Note that at the end of this code we request the order of U using the command

LMGFactoredOrder. However, as discussed, there is a small possibility of receiv-

ing an erroneous output here, unless we first initialise U , hence the command

LMGInitialise.

Now we will discuss a different procedure we can use in the case where k is still

small enough that we can use Transversal, but so large that the above algorithm

becomes impractical. This happens because on each pass, we are adding more

generators to the generating set of U . If k is sufficiently large, there are so many

generators that the commands LMGInitialise and LMGFactoredOrder take a

long time – or, in some cases, fail – to execute.

This is a procedure suggested by Derek Holt, and it essentially involves building

U from a subset of Γ. Then we run through the remaining γ ∈ Γ and check

first whether StabSγ (F ) is a subgroup of U . Only when it’s not do we add it to

the generators of U . This accomplishes the result, however, the generators of U

only increase when U itself increases. This algorithm is, therefore, more efficient,

and is used in cases where k > 150. Here is some sample code carrying out this

algorithm.

/*
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First we build a subset of at most 50 elements of Gamma.

(Sometimes, due to the Random command, we build a set of fewer

than 50 elements, but this doesn’t matter for our purposes.)

*/

Gamma:=Transversal(C1H,S);

SubGamma:={@@};

for i in [1..50] do;

Include(~SubGamma,Random(Gamma));

end for;

/*

Now we build an initial U from the elements of SubGamma.

*/

U:=sub<Q|Id(Q)>;

for g in SubGamma do;

Sg:=S^g;

UU:=UnipotentStabiliser(Sg,F);

U:=sub<Q|U,UU>;

end for;

LMGInitialise(U:Al:="CompositionTree");

LMGFactoredOrder(U);

/*

Now we run through the remaining elements of Gamma, only including

UU into U if UU is not already a subgroup of U.

*/

for g in Gamma do;

if g notin SubGamma then;

Sg:=S^g;

UU:=UnipotentStabiliser(Sg,F);

if LMGIsSubgroup(U,UU) eq false then;

U:=sub<Q|U,UU>;

end if;

end if;
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end for;

LMGInitialise(U:Al:="CompositionTree");

LMGFactoredOrder(U);

In either case, it is helpful to reduce the generators of U before continuing. This

is because, at this stage, U could have a generating set of potentially thousands

of elements. To reduce generators, we simply take a random selection of 50 (or

similar) elements of U and find the order of the group U0 they generate. If it

is smaller than U , we take a random element U which is not in U0 and add it

to the generators of U0. We repeat this process until |U | = |U0|, after which we

redefine U as U0. Hence U is the group C2(H).

(iii) k > 1 and k “large”: Here we mean that k is so large that we cannot execute

the Transversal command. These cases are infrequent in this thesis, and will

be discussed in greater detail as and when they occur.

From here, C2(H) is usually sufficiently small that we can calculate C3(H) :=

CC2(H)(H) directly. Note that C2(H) is usually soluble so we can turn it into a pc-

group using LMGSolubleRadical and running Centraliser in the pc-group setting.

That concludes our discussion on how to construct a group small enough that we can

start sieving for involutions, which is the subject of the next subsection.

Sieving for Involutions

This subsection will discuss several sieving procedures. There are many reasons why

sieves might need to be implemented, but the primary reason we require them is to

solve the following problem. Let G and H be a finite groups with S ≤ G and X ⊂ G, a

set of involutions. We want to sieve X for involutions x such that 〈S, x〉 ∼= H. Again,

this thesis is concerned with constructing subgroups of E8(2), but the sieves will be

discussed in a general setting.

A sieve is any procedure that removes unwanted involutions from X, hopefully

by performing a few simple checks to rule out x ∈ X as a potential generator of

H. Sieves are utilised because running through all the elements of X and checking

which are such that 〈S, x〉 ∼= H is often impractical for two main reasons. Firstly,
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in practice, X can be a very large set (multiple billions) and, secondly, the Magma

command IsIsomorphic can often take a while to execute.

The first sieve we will discuss is used in every subsequent chapter of this thesis and

will be referred to as the “order of random elements” sieve.

Procedure 3.8. Let L = {o(h) : h ∈ H}, the set of all possible element orders of

elements in H. This sieves takes x ∈ X and builds Y = 〈S, x〉. Now, it takes a random

element r1 ∈ Y and checks if o(r1) ∈ L. If o(r1) /∈ L, then we can eliminate x as a

potential generator of H, as the subgroup it generates cannot possibly be isomorphic

to H, seeing as it contains an element of invalid order. If o(r1) ∈ L, then we choose

another random element r2 ∈ Y and make the same enquiry. We repeat this process

n times (where n is usually 100). If o(ri) ∈ L for every i ∈ {1, . . . , n} then we say x

“survives” the sieve and we store it as a potential generator.

There are many advantages of this sieve which make it a fast one to implement.

Determining element orders, even when those elements are large matrices, is a quick

process. Moreover, as soon as we encounter some ri for which o(ri) /∈ L, we can

eliminate x immediately and move onto the next element of X. Finally, since we

are usually working in E8(2), if Y � H then it is quite likely that we will quickly

encounter a random element of invalid order, given the plethora of possible element

orders in E8(2).

Below is a sample code of this procedure where n = 100. It makes use of the break

command, which forces an early exit of a for..do loop. We use this to stop checking

element orders as soon as a random element is found of invalid order; we only keep x

in the set named KeepX when all 100 random elements pass the test.

KeepX:={@@};

for x in X do;

Y:=sub<Q|S,x>;

for j in [1..100] do;

r:=Random(Y);

if Order(r) notin L then break j;

end if;

if j eq 100 then Include(~KeepX,x);
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end if;

end for;

end for;

Generally, this is the fastest and most efficient sieve, so it is usually the first one

we run when faced with a large set of involutions.

We will now discuss how we deal with X when it is too large. As usual, “large”

is a vague term which depends on available computational power but here it simply

means so large that the order of random elements sieves is impractical to implement

directly. We will now suppose X ≤ G and discuss the task of constructing and sieving

I(X). There are a few methods we can implement here.

The first is used when X is a 2-group. Let E ≤ Z(X) where E is elementary

abelian. Let Γ = {γ1, . . . , γn} be a right transversal for E in X. Then the following

results, while straightforward, provide us with a clear way of accessing the involutions

of X.

Lemma 3.9. Let x ∈ X and γi ∈ Γ such that x ∈ Eγi. Then x2 = 1 if and only if

γ2
i = 1.

Proof. Let ε ∈ E such that x = εγi. Then recall first that, since E is an elementary

abelian 2-group, we have ε2 = 1 and, secondly, that E ≤ Z(X) so ε commutes with

everything in X. Now assume that x2 = 1. Then 1 = x2 = (εγi)
2 = ε2γ2

i = γ2
i , as

required. Conversely, suppose γ2
i . Then x2 = ε2γ2

i = 1. �

We remark here that we have used γ2
i = 1 instead of stating “γi is an involution”

as the latter would rule out the possibility that x ∈ E.

Proposition 3.10. Without loss of generality, let {γ1, . . . , γk} be such that γ2
i = 1 for

each i ∈ {1, . . . , k}. Then

I(X) ⊆ Eγ1 t . . . t Eγk.

Proof. Let x ∈ I(X) and let γi ∈ Γ such that x ∈ Eγi. By Lemma 3.9 we know that

we must have γ2
i = 1 and hence i ∈ {1, . . . , k}. �

Again, we remark that the only reason we don’t have an equality of sets is that

the identity appears in Eγ1 t . . . t Eγk.
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The advantage of this construction is that if 1 6= γ ∈ Γ is not an involution, then

we know that Eγ contains no involutions. In effect, we are sieving for involutions

in Γ and throwing away entire cosets of unwanted elements, instead of sieving for

involutions in the entirety of X. In practice, we are often fortunate enough that E is

usually large enough that the amount of elements we must sieve is reduced by several

orders of magnitude.

The following code utilises this process instead of building I(X) directly. Note

that Sieve(x) is a stand-in for whatever sieve we wish to run, and that Gamma will be

used to represent Γ. This code simply runs through each element of γ ∈ Γ, then, if

γ2 = 1, runs through each element of ε ∈ E, and runs the sieving procedure on εγ –

essentially, this sieves each coset Eγ in turn.

for g in Gamma do;

if g^2 eq Id(X) then;

for e in E do;

x:=e*g;

Sieve(x);

end for;

end if;

end for;

We will now discuss how we handle some of these situations in practice because,

despite the above process being an efficient way of buliding I(X), it doesn’t actually

sieve the elements themselves any faster. The reader should keep in mind that, while

we are sieving the cosets Eγ1, . . . , Eγk, in practice k is often very large (hundreds of

thousands or even millions). As a result, there are often too many elements to con-

struct and sieve. To solve this problem, we utilise parallel processing – the practice of

partitioning I(X) into many disjoint subsets and sieving each of them simultaneously

across multiple Magma sessions. The next procedure will discuss an effective way of

partitioning I(X).

We keep with E ≤ Z(X) where E is elementary abelian, and now let E ≤ S ≤ X

such that [X : S] is the desired number of sets in our partition of X. We will refer

to this as the number of “screens”, since the screen command enables us to open
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multiple Magma sessions which we may detach from and leave running without being

present.

Now, we redefine Γ = {γ1, . . . , γm} to be a right transversal for E in S, and let

∆ = {δ1, . . . , δn} be a transversal for S in X.

Proposition 3.11. The set

{γiδj : γi ∈ Γ, δj ∈ ∆}

is a right transversal for E in X.

Proof. We must show that these elements form a set of distinct right coset represen-

tatives for E in X – that is, that

X =
n⊔
j=1

(Eγ1δj t . . . t Eγmδj).

We start by showing that these cosets are disjoint. Clearly, Sδ1, . . . , Sδn are disjoint

cosets, as ∆ is a transversal. Hence, we fix k ∈ {1, . . . , n} and if we show that

Eγ1δk, . . . , Eγmδk are disjoint, we are done. Suppose we have i, j ∈ {1, . . . ,m} such

that i 6= j and Eγiδk ∩ Eγjδk 6= ∅. Then we can choose x ∈ Eγiδk ∩ Eγjδk. Hence

we have εi, εj ∈ E with x = εiγiδk = εjγjδk. But now, xδ−1
k = εiγi = εjγj and so

xδ−1
k ∈ Eγi ∩ Eγj, which is a contradiction, as Γ is a transversal for E in S.

We will now prove equality of the sets. A counting argument is sufficient here but

we will give more detail, as it will make the essence of the procedures later in this

section clearer. Showing ⊇ is trivial, so now let x ∈ X. Since X = Sδ1 t . . . t Sδn,

we have x ∈ Sδj for some δj ∈ ∆. Hence there exists s ∈ S such that x = sδj. Now,

recall that S = Eγ1 t . . . t Eγn, so we have s ∈ Eγi for some γi ∈ Γ. But if s ∈ Eγi,

then x = sδj ∈ Eγiδj, as required. �

In practice, we typically take |∆| = n to be 8, 16, or 32 and save it as an ordered

set. We then open one screen per element of ∆; δ1 is loaded in screen 1, δ2 is loaded

in screen 2, and so on. Then screen i sieves the coset Sδi, meaning that so long as

we save S and ∆, we can partition X across n screens having only saved a handful

of elements. We remark that there is no need to save Γ, because the last result holds

for any right transversal of E in S, so we can calulate Γ afresh in each screen. The

following procedure discusses how to employ this technique in practice.
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Procedure 3.12. First, a note on constructing S. Recall that E ≤ S ≤ X such that

[X : S] = n. To build S, we simply take a random element r1 ∈ X and calculate the

order of 〈E, r1〉. If this is too small, we take another random element r2 ∈ X and

calculate the order of 〈E, r1, r2〉. We repeat this process, adding more elements to the

generating set until we have a group of the desired order. (If we generate a group

that’s too large, we can remove generating elements.) Since we always include E in

the generating set, E will be a subgroup of the generated group. Once the order is

correct, this becomes S. Now, we find ∆ using

Delta:=Transversal(X,S);

which outputs an ordered right transversal of X in S. We now save ∆ and S before

proceeding.

We will now fix i ∈ {1, . . . , n} and focus on what happens in screen i of n parallel

screens. The following code sieves the coset Sδi for involutions. Recall that we will

compute Γ to be a transversal of E in S and that x ∈ Sδi is such that x2 = 1 if and

only if (γδi)
2 = 1, where γ ∈ Γ is such that x ∈ Eγδi by Lemma 3.9. Again, the

command Sieve is a stand-in for whatever sieve we wish to implement.

d:=Delta[i];

Gamma:=Transversal(S,E);

for g in Gamma do;

if (g*d)^2 eq Id(X) then;

for e in E do;

x:=e*g*d;

Sieve(x);

end for;

end if;

end for;

The final procedure we will discuss in this section on sieving can be used when

X is not a 2-group. The essence of this procedure will be to sieve for involutions

which are in the 2-core of X, then for those not in the 2-core, while implementing the

procedures we have discussed already. All the groups encountered where this method
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will be used are split extensions of the form X = [2n] : L, where O2(X) = [2n] and

X = X/O2(X) ∼= L.

Let t ∈ X be an involution. Then, clearly, either t ∈ O2(X) or t /∈ O2(X). Since

O2(X) is a 2-group we can sieve it for involutions using Procedure 3.12. Hence the

rest of this section will be devoted to creating a set containing I(X) \ O2(X). Once

this and O2(X) have been sieved, we will have sieved every involution in X.

Suppose t /∈ O2(X). Then we observe that t is an involution in X. Indeed, if

t2 = 1, then t
2

= 1 which implies t = 1 or t is an involution. But t = 1 if only if

t ∈ O2(X), which contradicts our assumption. Now let t1, . . . , tk be a complete list of

X-conjugacy class representatives for its classes of involutions. Finally, let Ti be the

full inverse image of 〈ti〉 in X and let Ri be a right transversal for CX(ti) in X, for

each i ∈ {1, . . . , k}.

Lemma 3.13. We have t = t
r
i for some i ∈ {1, . . . , k} and some r ∈ Ri.

Proof. We have already established that t is an involution in X, so it must be X-

conjugate to ti for some i ∈ {1, . . . , k}. Say t = t
x
i for some x ∈ X. But Ri is a

transversal for CX(ti) in X. Hence there is some r ∈ Ri for which x ∈ CX(ti)r and so

x = cr for some c ∈ CX(ti). And now we have that

t = t
cr
i = t

r
i .

as required. �

We now define a set called Ri. This will be a collection of elements in X such that

{r : r ∈ Ri} = Ri,

and given any r ∈ Ri, there is some unique s ∈ Ri such that s = r. Essentially, it is

a set of representatives taken from each coset r ∈ Ri. Note that it is not the inverse

image of Ri, as we have only taken one representative from each coset. Now we can

state a second result about this setup.

Lemma 3.14. We have t ∈ T ri for some r ∈ Ri.

Proof. Choose r ∈ Ri such that t = t
r
i , which must exist due to Lemma 3.13. This

implies that t
r−1

= ti and so tr−1 ∈ 〈ti〉. Now, since Ti is the full inverse image of 〈ti〉,

we have that tr
−1 ∈ Ti. Thus, t ∈ T ri , as required. �
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Thus we conclude that given any t ∈ I(X) \ O2(X), we have t ∈ T ri for some

i ∈ {1, . . . , k} and some r ∈ Ri. But we can actually do better than this. Let

Ni = Ti \O2(X)

and we claim that

t ∈ T ri \O2(X) if and only if t ∈ N r
i .

Indeed, suppose t ∈ T ri \ O2(X) with t = tri for some ti ∈ Ti. Then we have

ti /∈ O2(X), otherwise ti ∈ O2(X) which implies t = tri ∈ O2(X) as O2(X) is normal

in X. Hence ti ∈ Ni by the definition of Ni and hence t ∈ N r
i . Now suppose t ∈ N r

i ,

so t = tri for some ti ∈ Ni. Clearly, t ∈ T ri but assume t ∈ O2(X). But now

ti = tr
−1 ∈ O2(X) as, again, O2(X) is normal in X. This contradicts the supposition

that ti /∈ O2(X). Hence the claim holds and so we have

I(X) \O2(X) =
k⋃
i=1

⋃
r∈Ri

I(Ni)
r.

The advantages of this method are numerous. Firstly, we have a natural way of

partitioning X \O2(X) – we can split the various Ni across multiple screens. Secondly,

all of these sets are easy to construct in Magma and we don’t have to store large sets

in order to reconstruct the partitions of X \ O2(X); we only have to store Ni and Ri

for each i ∈ {1, . . . , k}. Finally, we are often in a situation when we are sieving that

we only require involutions belonging to a certain conjugacy class of G. Say we only

require t ∈ I(X) \O2(X) such that t ∈ 2DG. Then we can change Ni to the following

set:

Ni = (Ti \O2(X)) ∩ 2DG.

Then all of the involutions in N r
i will also lie in 2DG.

We will not provide a detailed breakdown of how to implement this prodcedure in

practice here. Instead, we will provide such detail as and when this procedure is used.

This is simply because this procedure is very case-specific.

Showing Subgroups are Conjugate in E8(2)

Another common challenge we encounter is the following. Suppose G ∼= E8(2) with

H1, H2 ≤ G such that H1
∼= H2. How do we determine whether H1 and H2 are
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conjugate in G as groups? There is an awfully large number of elements g ∈ G to run

through and test if Hg
1 = H2. Fortunately, we can limit the group through which we

must search for such conjugating elements, as explored in the next result. It requires

many assumptions about H1 and H2, but these will often be satisfied due to how

we construct subgroups in G in this thesis. Again, we will present this result for an

arbitrary finite group G but in this thesis it will only ever be applied to E8(2).

Proposition 3.15. Let G be a finite group with H1, H2 ≤ G such that H1
∼= H2. Let

P ∈ Sylp(H1) ∩ Sylp(H2) and suppose N := NH1(P ) = NH2(P ) (so N is a subgroup

common to H1 and H2). Then

H1 and H2 are conjugate in G if and only if H1 and H2 are conjugate in NNG(P )(N).

Proof. Clearly, if H1 and H2 are conjugate in NNG(P )(N), then they are conjugate in

G, as NNG(P )(N) ≤ G. So now let g ∈ G such that Hg
1 = H2. Since P ≤ H1 we

have that P g ≤ Hg
1 = H2. As |P | = |P g| we have that P, P g ∈ Sylp(H2). By Sylow’s

Theorems, there is h ∈ H2 such that P h = P g. Therefore, NH2(P
h) = NH2(P

g) and

so NH2(P )h = NH2(P )g by Proposition 2.8. Recalling that N = NH2(P ), we now see

that Nh = N g and therefore N = N gh−1
. Thus, we conclude that gh−1 ∈ NG(N).

Now let g = nh for some n ∈ NG(N). Now we have H2 = Hg
1 = Hnh

1 which

implies that Hh−1

2 = Hn
1 but since h ∈ H2 we know Hh−1

2 = H2. Therefore, Hn
1 = H2

where n ∈ NG(N). Since n normalises the normaliser of a Sylow p-subgroup, it must

also normalise that Sylow p-subgroup by Proposition 2.10. Hence n ∈ NG(P ) and so

n ∈ NNG(P )(N), as required. �

We now provide a straightforward result which is useful for demonstrating that

two subgroups of G are not conjugate.

Proposition 3.16. Suppose K1, K2 ≤ G with K1
∼= K2. Now suppose that there is

some group H1 ≤ G such that K1 ≤ H1, and no subgroup H2 with K2 ≤ H2 and

H1
∼= H2. Then K1 and K2 are not conjugate in G.

Proof. Assume that there is some g ∈ G such that Kg
1 = K2. But now we have

K2 = Kg
1 ≤ Hg

1
∼= H1, a contradiction. �

We conclude this chapter with a simple yet useful technique which addresses the

following problem. Suppose we have a set of elements S ⊆ G and we generate H =
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〈S〉 ≤ G. Now suppose we wish to find |H| or the structure of H. However, it could

very well be the case that H = G. Calling LMGFactoredOrder on H is then asking

Magma to calculate the order of E8(2). This is a lengthy calculation. Therefore, it

is helpful to rule out the case that H = G before calling LMGFactoredOrder. We do

this by noting that if the output of

#CompositionFactors(GModule(H))

is greater than 1, then H < G.



Chapter 4

U4(2) and Its Extensions

For the rest of this thesis, G will denote E8(2). In this chapter, we will prove that if

H ≤ G with F ∗(H) ∼= U4(2) and F ∗(H) not following U4(2) fusion possibility (viii) or

(ix) as shown in Proposition 2.2, then, up to conjugacy in G, there are at most three

subgroups of G isomorphic to U4(2) and at most three subgroups of G isomorphic to

U4(2) : 2. We will also show that any H ≤ G with F ∗(H) ∼= U4(2) is not maximal in

G. Let us eliminate fusion possibilities (viii) and (ix) from our discussion in our first

result.

Lemma 4.1. Suppose that U4(2) ∼= H ≤ G such that H follows U4(2) fusion possibility

(viii) or (ix). Then H is not maximal in G.

Proof. By Proposition 2.7, H fixes a non-zero vector in V . Hence, by Proposition 2.23,

H is not maximal in G. �

We will now proceed to construct all U4(2) subgroups of G which do not follow

fusion possibilities (viii) or (ix).

4.1 Constructing U4(2) Subgroups of G

For the rest of this section, we will suppose we have H ≤ G with H ∼= U4(2) following

neither fusion possibility (viii) nor (ix). Then |H| = 26.34.5 and the following result

will outline our approach for constructing such subgroups in G.

Proposition 4.2. Let H ∼= U4(2) and R ∈ Syl3(H). Then:

56
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(i) There exists a unique subgroup E ≤ R such that E ∼= 33;

(ii) NH(E) = ES where S ∼= Sym(4) and any element of order 3 in S lies in 3DU4(2);

(iii) H = 〈ES, x〉 where x is the involution such that 〈x〉 = CH(S). Note also that x is

H-conjugate to the single class of involutions in S \O2(S), and that CH(E)∩S =

1.

Proof. All of these facts can be easily verified using Magma. �

We will now outline how to implement these results in the setting of G. This list

also provides the structure of this section.

1. We will find all the subgroups in G isomorphic to R, up to G conjugacy, then

extract their elementary abelian subgroups of order 33. We will call these groups

E1, . . . , Em.

2. For each i ∈ {1, . . . ,m}, we will find, up toG-conjugacy, all subgroups S
(i)
1 , . . . , S

(i)
ni

isomorphic to Sym(4) which normalise Ei.

3. For each i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni}, we will construct and sieve the set

of involutions centralising S
(i)
j for involutions x such that 〈EiS(i)

j , x〉 ∼= U4(2).

To proceed with the first step – finding all subgroups in G isomorphic to R ∈

Syl3(U4(2)) up to G-conjugacy – we must first examine how the elements of a potential

R will fuse in G.

Lemma 4.3. Let H ∼= U4(2) and R ∈ Syl3(H). Suppose now that H ≤ G. Then R

has 44 elements of order 3 and 36 elements of order 9, and the possibilities for how

many belong to each G-class is given in Table 4.1.

Proof. This can be seen by noting that R has four elements in 3AU4(2), four elements

in 3BU4(2), six elements in 3CU4(2), and thirty elements in 3DU4(2). R also has eighteen

elements in 9AU4(2) and eighteen elements in 9BU4(2). This all obtainable through

direct calculation in Magma. By examining the fusion possibilities in Proposition 2.2

we arrive at the information in the table. �

With these possibilities in mind, we can begin our hunt for subgroups of G which

are isomorphic to R.
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Fusion Combination 3A 3B 3C 3D 9A 9B 9C 9D
(i) 0 0 38 6 0 0 36 0
(ii) 0 30 8 6 0 0 0 36
(iii) 0 30 8 6 0 36 0 0
(iv) 0 0 14 30 0 0 0 36
(v) 0 30 14 0 0 0 36 0
(vi) 0 6 8 30 0 0 36 0
(vii) 0 6 38 0 0 0 0 36
(viii) 30 6 8 0 36 0 0 0
(ix) 6 30 8 0 0 36 0 0

Table 4.1: Fusion of elements of order 3 and order 9 of a Sylow 3-subgroup of U4(2)
in E8(2)

Lemma 4.4. Up to G-conjugacy, there are at most fourteen subgroups of G which are

isomorphic to R.

Proof. Recall that we are only interested in these subgroups up to G-conjugacy. As

the desired subgroups are 3-groups, they must all lie inside Sylow 3-subgroups. Thus,

we may restrict our search to a single Sylow 3-subgroup of G, which we will call K.

This is saved (see Appendix A) and for details on how a Sylow 3-subgroup of G was

constructed, see 4.1 in [5], case p = 3. Now, we turn K into a permutation group and

use

Subgroups(K : OrderEqual:=81)

to find all the subgroups of K with order 34, up to conjugacy in K. We find 719,558

of them, but only 24,435 are isomorphic to R.

We bring these subgroups back into the matrix setting and, for each, we determine

how many of their elements of order 3 belong to each G-class using the Eigenspace

command. If one of our subgroups has elements of order 3 which do not match one of

the rows in Table 4.1, we discard it. This leaves us with 449 subgroups, which we sort

into five sets depending on which fusion combination they correspond to, as shown in

Table 4.2.
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Fusion Combination Number of subgroups isomorphic to R

(ii) 102

(iii) 26

(vi) 304

(viii) 4

(ix) 13

Table 4.2: Number of subgroups isomorphic to R corresponding to each fusion combi-

nation

Note that all of these subgroups represent distinct classes of subgroups in K. How-

ever, some of these subgroups may be conjugate under the action of a larger group.

We introduce L ≤ G such that L ∼ 38.(2.Ω+
8 (2).2) and K ≤ L. See [5] for details on

how L was constructed. Therefore, all of our potential subgroups lie inside L and we

may see if any are L-conjugate. Note that subgroups with different fusion combina-

tions cannot possibly be conjugate in G. We run Procedure B.4 to obtain L-classes of

subgroups for each fusion combination, and our results are displayed in Table 4.3.

Fusion Combination Number of L-classes of subgroups isomorphic to R

(ii) 6

(iii) 2

(vi) 3

(viii) 1

(ix) 2

Table 4.3: Number of L-classes of subgroups isomorphic to R corresponding to each

fusion combination

Here are our fourteen subgroups, completing the proof. �

We will now introduce some notation. For each subgroup isomorphic to R we

will take its elementary abelian subgroup of order 33 and denote it by E
(i)
j . The

superscript will denote which fusion possibility it follows, but i will be given as the

number the fusion Roman numeral represents. So, we have E
(2)
1 , . . . , E

(2)
6 , the six

copies of 33 corresponding to fusion possibility (ii); E
(3)
1 , E

(3)
2 corresponding to fusion
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possibility (iii); and E
(6)
1 , E

(6)
2 , E

(6)
3 corresponding to fusion possibility (vi). We proceed

by showing that some of these groups are actually G-conjugate.

Lemma 4.5. For all i, j ∈ {1, . . . , 6}, we have that E
(2)
i and E

(2)
j are G-conjugate.

Also, for each i, j ∈ {1, . . . , 3}, we have that E
(6)
i and E

(6)
j are G-conjugate.

Proof. We will use the same method on each pair of copies of 33 we wish to show are

conjugate. To simplify the notation, suppose E1 and E2 are two subgroups following

the same fusion possibility. We begin by taking random elements h ∈ L until we find

one such that Eh
1 ∩E2 6= 1. Now we seek to show that Eh

1 is G-conjugate to E2. Note

that any element conjugating Eh
1 into E2 must fix their intersection. Hence, a good

place to look for such elements is in the centraliser of a non-trivial element in Eh
1 ∩E2.

So, let r ∈ Eh
1 ∩E2. In all cases, we have that r ∈ 3BE8(2) or r ∈ 3DE8(2), which means

we can calculate CG(r) using the FindCent procedure (see B.3).

Let C = CG(r). We now use the command LMGRadicalQuotient to find C =

C/O2(C) and the natural homomorphism ϕ : C → C. Mapping Eh
1 and E2 into C, we

use the command IsConjugate to find an element x ∈ C such that Eh
1

x
= E2. Now,

taking an inverse image of x, we have Ehx
1 = E2 and we take g = hx ∈ G to be our

conjugating element. �

Hence, removing conjugate cases, we now proceed with the group E
(2)
1 following fu-

sion possibility (ii); E
(3)
1 , E

(3)
2 following fusion possibility (iii); and E

(6)
1 following fusion

possibility (vi). We remark that in Lemma 4.4 we found three subgroups isomorphic

to R which follow U4(2) fusion (viii) or (ix). Since we are attempting to construct

U4(2) subgroups of G which do not follow fusion possibility (viii) or (ix), we abandon

these subgroups here and proceed with those following (ii), (iii), or (vi). We must now

find copies of Sym(4) which normalise each of these copies of 33.

Lemma 4.6. Let H ∼= U4(2), R ∈ Syl3(H), and E ≤ R where E is the unique

elementary abelian subgroup of R with order 33. Now take x, y ∈ E ∩ 3CU4(2) with

〈x〉 6= 〈y〉. Then:

NH(E) = 〈NCH(x)(E), NCH(y)(E)〉.

Proof. This can be directly verified using Magma. �
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Now, if H ≤ G, it is clear that:

NH(E) = 〈NCH(x)(E), NCH(y)(E)〉 ≤ 〈NCG(x)(E), NCG(y)(E)〉.

Hence we will begin by calculating 〈NCG(x)(E), NCG(y)(E)〉 for each of our cases

and hunting in there for subgroups isomorphic to Sym(4).

Lemma 4.7. Let (i, j) ∈ {(2, 1), (3, 1), (3, 2), (6, 1)} and let E = E
(i)
j . Now set

D
(i)
j := 〈NCG(x)(E), NCG(y)(E)〉

where x, y ∈ E are such that 〈x〉 6= 〈y〉 and belong to 3CU4(2). Note that 3CU4(2) fuses

to a different G-conjugacy class of elements of order 3 depending on i. Then |D(i)
j | for

each case is given in Table 4.4

i j |D(i)
j |

2 1 28.39

3 1 25.310

3 2 25.310

6 1 26.39

Table 4.4: Orders of D
(i)
j

Proof. First, we will focus on the cases where i = 2, 3. In these cases, 3CU4(2) fuses to

3DE8(2). Hence we choose x, y ∈ E ∩ 3DE8(2) with 〈x〉 6= 〈y〉. By using the FindCent

procedure (see B.3) we can calculate CG(x) and CG(y), both of which are isomorphic

to 3× U9(2) by Theorem 2.20.

Now, we use the command LMGRadicalQuotient to obtain CG(x) := CG(x)/3 ∼=

U9(2) as a permutation group, as well as the natural homomorphism ϕx : CG(x) →

CG(x). Note that as E is abelian, we have E ≤ CG(x), and so we may apply ϕx to E

and obtain E. In this permutation setting, we are able to directly calculate NCG(x)(E).

Finally, we take the full inverse image – a group which necessarily contains NCG(x)(E)

– and find the normaliser in here of E. Hence we have found NCG(x)(E).

We repeat these steps for CG(y), finding NCG(y)(E). Now, finding D
(i)
j is simply a

matter of calculating 〈NCG(x)(E), NCG(y)(E)〉.

The case where i = 6 has 3CU4(2) fuse to 3BE8(2), so we choose x, y ∈ E ∩ 3BE8(2)

with 〈x〉 6= 〈y〉. We are, again, able to use the FindCent procedure to calculate CG(x)
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and CG(y). This time, these groups are isomorphic to 3 × Ω−14(2). Still, we are able

to follow the exact steps as in the i = 1, 2 cases in order to obtain NCG(x)(E) and

NCG(y)(E), thereby obtaining D
(i)
j . �

Each of the groups D
(i)
j are relatively small, so we can begin hunting in there for

viable subgroups isomorphic to Sym(4).

Proposition 4.8. Let (i, j) ∈ {(2, 1), (3, 1), (3, 2), (6, 1)}. Then the orders of C
D

(i)
j

(E
(i)
j )

and number of viable Sym(4) subgroups normalising each E
(i)
j is given in Table 4.5.

i j |D(i)
j | |CD(i)

j
(E

(i)
j )| Number of Sym(4) subgroups

2 1 28.39 24.38 4

3 1 25.310 24.39 0

3 2 25.310 24.39 0

6 1 26.39 22.38 2

Table 4.5: Orders of C
D

(i)
j

(E
(i)
j ) and Number of Viable Sym(4) Subgroups in D

(i)
j

Proof. Recall that by Lemma 4.6 and the remark following the proof that every Sym(4)

normalising E
(i)
j is to be found in D

(i)
j . Before we begin the search, we make it clear

which Sym(4) subgroups in D
(i)
j are deemed viable. Suppose Sym(4) ∼= S ≤ D

(i)
j . We

only wish to keep the subgroups S which could potentially generate a copy of U4(2).

These must satisfy the following conditions:

• By Lemma 4.2 (iii), S∩C
D

(i)
j

(E
(i)
j ) = 1 and hence, since E

(i)
j is abelian, we know

S ∩ E(i)
j = 1;

• By Lemma 4.2 (ii), for all s ∈ S where o(s) = 3, s ∈ 3DU4(2).

We begin by looking at the case where i = 3. Given that |D(3)
j | = 25.310 and

|C
D

(3)
j

(E
(3)
j )| = 24.39, we see that D

(3)
j cannot possibly contain any subgroups S of

order 24 = 23.3 such that S ∩ C
D

(3)
j

(E
(3)
j ) = 1. Indeed, if such an S did exist then for

all s1, s2 ∈ S where s1 6= s2, the cosets s1CD(3)
j

(E
(3)
j ) and s2CD(3)

j
(E

(3)
j ) are disjoint.

But now:

D
(3)
j =

⊔
s∈S

sC
D

(3)
j

(E
(3)
j )
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which implies

25.310 = |D(3)
j | =

∑
s∈S

|sC
D

(3)
j

(E
(3)
j )| = 24(24.39) = 27.310,

which is a clear contradiction. Hence the case where i = 3 has been eliminated entirely

from our potential set of generators of a U4(2) subgroup of G.

Now, we move on to examine the cases where i = 2, 6. We first convert D
(i)
j into a

permutation group and use the Subgroups command to find, up to conjugacy in D
(i)
j ,

all the subgroups of D
(i)
j of order 24. In the case where i = 2, we find 3,920 of them;

for i = 6 we find 954. Now we sieve these for subgroups which are actually isomorphic

to Sym(4) and have trivial intersection with C
D

(i)
j

(E
(i)
j ). For those that survive, we

also sieve by the following condition, recalling that all viable Sym(4) subgroups are

such that all their elements of order 3 belong to 3DU4(2).

• For i = 2, 3DU4(2) fuses to 3BE8(2), so we only keep the Sym(4) subgroups whose

elements of order 3 belong to 3BE8(2).

• For i = 6, 3DU4(2) fuses to 3DE8(2), so we only keep the Sym(4) subgroups whose

elements of order 3 belong to 3DE8(2).

Note that we determine which G-class the elements of order 3 belong to using the

Eigenspace command. After checking these conditions, we find four Sym(4) subgroups

in the i = 2 case, and two in the i = 6 case. We name these S
(i,j)
k where: if i = 2 and

j = 1, then k ∈ {1, 2, 3, 4}; and if i = 6 and j = 1 then k = 1, 2. �

We now seek to find all the involutions centralising our copies of Sym(4), then sieve

them for elements forming a generating set for U4(2). The process we follow will be

the same for each Sym(4) subgroup, so, to simplify notation, let S = S
(i,j)
k . We will

start by taking Dih(8) ∼= Y ∈ Syl2(S) and z ∈ Z(Y ) to be the unique involution.

Then we calculate CG(z) using CentraliserOfInvolution. By Proposition 3.1 we

have that CG(S) ≤ CG(z). We now find C1(S) as defined in Proposition 3.2 and the

remarks that follow, which, by the same proposition, contains all the involutions of

interest. Next, we find C2(S) as defined in Proposition 3.6 and the remarks that follow

– that proposition also tells us that C2(S) also contains the involutions of interest. The

results of this process are given in the next proposition.
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Proposition 4.9. The orders of Cm(S
(i,j)
k ) for viable choices of i, j, k and m ∈ {1, 2}

are given in Table 4.6.

i j k C1(S
(i,j)
k ) C2(S

(i,j)
k )

2 1 1 298.32.5 229.32.5
2 1 2 294.3 219.3
2 1 3 294.3 219.3
2 1 4 294 218

6 1 1 295.3 211

6 1 2 295.3 211

Table 4.6: Orders of Cm(S
(i,j)
k ) for m ∈ {1, 2}

Proof. We follow Procedure 3.3 to find C1(S
(i,j)
k ) and the procedures detailed in Pro-

cedure 3.7 to find C2(S
(i,j)
k ). Specifically, we use Procedure 3.7 (i) when C1(S

(i,j)
k ) is a

2-group, and Procedure 3.7 (ii) otherwise. �

Taking stock of our current situation, we have C2(S
(i,j)
k ), in which we must locate

all the involutions centralising S
(i,j)
k . This turns out to be a straightforward process

for most cases of S
(i,j)
k , as we will see in the next result.

Proposition 4.10. Let S
(i,j)
k be such that (i, j, k) 6= (2, 1, 1), so |C2(S

(i,j)
k )| 6= 229.32.5.

Let C3(S
(i,j)
k ) = CC2(S

(i,j)
k )

(S
(i,j)
k ). Then there is exactly one involution t such that

〈S(6,1)
1 , t〉 ∼= U4(2), and no involutions such that 〈S(i,j)

k , t〉 ∼= U4(2) for (i, j, k) 6=

(6, 1, 1).

Proof. First, we calculate C3(S
(i,j)
k ) directly by turning C2(S

(i,j)
k ) into a permutation

group and running Centraliser in the permutation group setting. Now, we sieve

C3(S
(i,j)
k ) using sieves described in Chapter 3. Again, for simplicity of notation, let

S = S
(i,j)
k .

Let I0(S) be the set of all involutions in C3(S), which we can find easily by running

through every element of C3(S) and collecting the involutions. Now, we run an order

of random elements sieve on each element of I0(S), storing the elements that survive

in a set called I1(S). For full details on this sieve, see Procedure 3.8. Note that to use

this sieve, we require list of all U4(2) element orders, which is

{1, 2, 3, 4, 5, 6, 9, 12}
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as seen in the ATLAS [14]. Finally, let

I2(S) = {x ∈ I1(S) : 〈S, x〉 ∼= U4(2)}.

The results of this process are displayed in Table 4.7.

i j k |C3(S
(i,j)
k )| |I0(S

(i,j)
k )| |I1(S

(i,j)
k )| |I2(S

(i,j)
k )|

2 1 2 214.3 2,815 4 0
2 1 3 214.3 2,815 6 0
2 1 4 214 2,303 2 0
6 1 1 27 127 2 1
6 1 2 27 127 1 0

Table 4.7: Involutions generating U4(2) for (i, j, k) 6= (2, 1, 1)

The result follows, as is evident from the table. �

We now turn our attention back to (i, j, k) = (2, 1, 1). In this case, |C2(S
(i,j)
k )| =

229.32.5. We also have that this group has 2-core of order 225. We sieve for involutions

in C2(S
(i,j)
k ) by first sieving for those which lie in its 2-core.

Lemma 4.11. Let (i, j, k) = (2, 1, 1). To simplify notation, let E = E
(2)
1 , S = S

(2,1)
1 ,

and C = C2(S
(2,1)
1 ). Then there are ten involutions t ∈ O2(C) such that 〈ES, t〉 ∼=

U4(2).

Proof. First, note that O2(C) ∼= [225] which we will proceed to sieve in the same way

as in Proposition 4.10. The only difference, this time, is that make use of the fact that

by Proposition 4.2 (iii) we have that the involutions we’re hunting for must be chosen

to be G-conjugate to the single class of involutions in S \ O2(S). In this case, that

class is 2CG. Hence we construct the set:

I0(S) = O2(C) ∩ 2CG

which we then sieve using an order of random elements sieve (see Procedure 3.8 for

full details) and store the surviving involutions in I1(S). Finally,

I2(S) = {x ∈ I1(S) : 〈ES, x〉 ∼= U4(2)}.

We find that |I0(S)| = 13, 110, |I1(S)| = 12, and I2(S) = 10, as required. �
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Now, we will sieve for the involutions in C2(S
(2,1)
1 ) which do not lie in its 2-core.

To do this, we refer the reader to the discussion at the end of Chapter 3 for further

details.

Lemma 4.12. Let (i, j, k) = (2, 1, 1). To simplify notation, again let E = E
(2)
1 ,

S = S
(2,1)
1 and C = C2(S

(2,1)
1 ). Then there are no involutions t ∈ C \ O2(C) for which

〈ES, t〉 ∼= U4(2).

Proof. We have C = C/O2(C) ∼= Sym(6) which we obtain by running the command

LMGRadicalQuotient. If t ∈ C \ O2(C) is an involution, then t ∈ C is an involution.

Hence we let c1, c2, and c3 be representatives of the conjugacy classes of involutions in

Sym(6). We also let Ci be the full inverse image of 〈ci〉 in C and Ri a right transversal

for CC(ci) in C, for each i ∈ {1, 2, 3}. Now let Ri be a set of representatives of each

coset in Ri. By Lemma 3.14 we know that t ∈ Cr
i for some i ∈ {1, 2, 3} and r ∈ Ri.

However, since we know that t /∈ O2(C), we also know that t ∈ (Ci \ O2(C))r (see

remarks following the proof of Lemma 3.14). Finally, recall that by Proposition 4.2

we know that t must be G-conjugate to the single class of involutions in S \O2(S). In

this case, this requires that t ∈ 2CG. Hence we construct

Ni = (Ci \O2(C)) ∩ 2CG

and know that t ∈ N r
i .

In practice, we construct Ni then for all x ∈ Ni, we run an order of random elements

sieve on xr for each r ∈ Ri. For full details on the order of random elements sieve, see

Procedure 3.8. In all cases, no involutions survive this process, so we can be certain

that none of them generate a U4(2) subgroup of G, as required. �

In summary, having exhausted all possibilities, we have found eleven U4(2) sub-

groups. However, we will show that this number can be reduced in this next result,

which will conclude the section.

Proposition 4.13. An upper bound for the number of U4(2) subgroups up to G-

conjugacy containing E
(i)
j S

(i,j)
k , for (i, j, k) ∈ {(2, 1, 1), (6, 1, 1)}, is shown in Table 4.8.

Proof. In the case where (i, j, k) = (6, 1, 1), we only have one U4(2) subgroup, so no

additional argument is required to reduce the number of cases. Now fix (i, j, k) =
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i j k Number of U4(2) subgroups containing E
(i)
j S

(i,j)
k

2 1 1 2
6 1 1 1

Table 4.8: Number of U4(2) subgroups up to G-conjugacy

(2, 1, 1) and for simpler notation let E = E
(2)
1 , S = S

(2,1)
1 , and H1, . . . , H10 be the ten

U4(2) subgroups containing ES. First, we find R such that for all l ∈ {1, . . . , 10},

R ∈ Syl3(Hl). This is straightforward to find – we choose any Sylow 3-subgroup of H1

then conjugate it by random elements of H1 until it is also a subgroup of H2, . . . , H10.

Now recall that NHl(E) = ES and note that E is unique in R, so anything nor-

malising R must also normalise E. Therefore, NHl(R) ≤ NHl(E) = ES. This implies

that NHl(R) = NHl0
(R) for any l, l0 ∈ {1, . . . , 10}. Hence Proposition 3.15 applies

and we have that Hl and Hl0 are conjugate in G if only if they are conjugate in

NNG(R)(NHl(R)). And now observe that

NNG(R)(NHl(R)) ≤ NNG(E)(NHl(R)).

Hence we will find conjugating elements in D
(2)
1 (see Lemma 4.7). We find that H1 is

not conjugate to H2 in D
(2)
1 , and H2 is conjugate in D

(2)
1 to Hl for l ∈ {3, . . . , 10}. �

Hence we have, in total, at most three U4(2) subgroups of G, following fusion

possibility (i) to (vii), up to conjugacy in G. We will now attempt to find overgroups

of these groups isomorphic to Aut(U4(2)).

4.2 Extending U4(2) to U4(2) : 2

Of all the automorphism extensions we consider in this thesis, extending copies of

U4(2) to Aut(U4(2)) ∼= U4(2) : 2 is the most straightforward. We obtain a result

analogous to Proposition 4.2 which will allow us to quickly find copies of U4(2) : 2.

Proposition 4.14. Let H ∼= U4(2) : 2 and R ∈ Syl3(H). Then:

(i) There exists a unique subgroup E ≤ R where E ∼= 33;

(ii) NH(E) = ES where S ∼= Sym(4) × 2 and any element of order 3 in S lies in

3CU4(2):2;
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(iii) H = 〈ES, x〉 where x is the involution such that 〈x〉 = CH(S). Note also that x is

H-conjugate to the single class of involutions in S \O2(S), and that CH(E)∩S =

1.

Proof. All these results can be shown through direct calculation in Magma. �

Note that the only difference between this result and Proposition 4.2 is that we

have S ∼= Sym(4)× 2 instead of Sym(4). We also have the following result analogous

to Lemma 4.6.

Lemma 4.15. Let H ∼= U4(2) : 2, R ∈ Syl3(H), and E ≤ R where E is the unique

elementary abelian subgroup of R with order 33. Now take x, y ∈ E ∩ 3CU4(2):2 with

〈x〉 6= 〈y〉. Then:

NH(E) = 〈NCH(x)(E), NCH(y)(E)〉.

Hence, our strategy is clear. Given U4(2) : 2 ∼= H0 such that H ≤ H0 ≤ G and

H ∼= U4(2) follows U4(2) fusion possibility 2.2 (i) to (vii), then H is G-conjugate to

one of the three copies of U4(2) discovered in Proposition 4.13. Thus, we may assume,

by Proposition 2.12, that H0 is an overgroup of one of these groups. Recall that each

of these groups are generated by 〈ES, x〉 where E ∼= 33 and S ∼= Sym(4). If H0

exists as an overgroup of one of these copies of U4(2), then there must be a copy of

S0
∼= Sym(4) × 2 normalising E. If such an S0 exists, it must be conjugate to an

overgroup of S. We will find, by Lemma 4.15, all such Sym(4)×2 in D
(i)
j as defined in

Lemma 4.7 as overgroups of S, and our copies of U4(2) : 2 will be given by 〈ES0, x〉.

Before we find all viable copies of Sym(4)×2, we will state a lemma which will cut

down the number of cases we must consider.

Lemma 4.16. Suppose U4(2) ∼= H ≤ H0
∼= U4(2) : 2. Then the classes of elements of

order 3 in H fuse to the classes in H0 as follows.

3AH → 3AH0 , 3BH → 3AH0 , 3CH → 3BH0 , 3DH → 3CH0 .

Proof. This can be verified in Magma. �

Proposition 4.17. Up to G-conjugacy, there are at most three subgroups H ≤ G such

that H ∼= U4(2) : 2 and such that H follows one of U4(2) fusion possibilities 2.2 (i) to

(vii).
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Proof. We will execute the strategy described in the remarks following Lemma 4.15.

Let H be one of the three U4(2) subgroups found in Proposition 4.13. Let E = E
(i)
j

be the elementary abelian 33 subgroup that H is built up from (so E
(2)
1 , or E

(6)
1

depending on the case), and let D = D
(i)
j as defined in Lemma 4.7. Then we turn D

into a permutation group and find all subgroups of D of order 48, storing them in a

set called S0(D); then we see which of these subgroups are isomorphic to Sym(4)× 2,

storing them in a set called S1(D); then we keep only the ones which intersect trivially

with CD(E) in a set called S2(D).

Now recall that by Proposition 4.14, all of the elements of order 3 in our copies

of Sym(4) × 2 must lie inside 3CU4(2):2. By Lemma 4.16, we know that 3DU4(2) →

3CU4(2):2. Supposing first that H follows U4(2) fusion possibility (ii), we know that,

by Proposition 2.2, 3DH → 3BG and hence 3CH0 → 3BG. Thus we may keep only

those Sym(4) × 2 such that all of their elements of order 3 lie inside 3BG. Secondly,

if H follows U4(2) fusion possibility (vi), then we have, again by Proposition 2.2, that

3DH → 3DG and hence 3CH0 → 3DG. So, in this case, we may keep only the Sym(4)×2

subgroups such that all of their elements of order 3 lie inside 3DG. In either case, we

store the desired subgroups in a set called S3(D).

Finally, recall that we need only take copies of Sym(4)× 2 which are conjugate to

an overgroup of one of the copies of Sym(4) used in the construction of U4(2) – recall

that these were named S
(i,j)
1 . To sieve for this criterion, we take S0, our candidate copy

of Sym(4) × 2, then find S1, S2 ≤ S0 such that S1
∼= Sym(4) ∼= S2. Then we check if

either S1 or S2 are D-conjugate to S
(i,j)
1 . Note that we do this in the permutation group

setting using the command IsConjugate. If they are conjugate, then this command

also returns a conjugating element g ∈ D such that S
(i,j)
1 = Sgk , where k = 1, 2. Then

we have that Sg0 is an overgroup of S
(i,j)
1 . We store the copies of Sym(4)× 2 which can

be conjugated to an overgroup of S
(i,j)
1 in a set called S4(D).

The results of this process are summarised in Table 4.9

i j |S0(D
(i)
j )| |S1(D

(i)
j )| |S2(D

(i)
j )| |S3(D

(i)
j )| |S4(D

(i)
j )|

2 1 2,764 49 5 4 2
6 1 273 5 3 1 1

Table 4.9: Viable Sym(4)× 2 subgroups of D
(i)
j

To complete the proof, we note that every copy of Sym(4)× 2 found this way can
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be used in the generation of a U4(2) : 2 subgroup. Recall that when i = 2, we have

two copies of U4(2). Call these H
(2)
1 and H

(2)
2 . We find that H

(2)
1 can be extended

to two distinct groups isomorphic to U4(2) : 2 using either copy of Sym(4) × 2, and

that H
(2)
2 cannot be extended. This yields two copies of U4(2) : 2. Now fix i = 6 and

j = 1. Recall here that we only have one copy of U4(2), and we found that this can be

extended to a group isomorphic to U4(2) : 2 using the sole viable copy of Sym(4)× 2

found in D
(6)
1 . This yields the third copy of U4(2) : 2. �

So far, we have that there are at most three classes of subgroups isomorphic to

U4(2) and at most three classes of subgroups isomorphic to U4(2), which do not follow

U4(2) fusion possibilities 2.2 (viii) or (ix). However, Theorem 1.1 states that there

are exactly three classes of each subgroup following fusion possibility (viii) or (ix).

We will prove this later, as the lower bound presents itself naturally following results

proved later in the thesis. Now, we will conclude this chapter by demonstrating that

any U4(2) or U4(2) : 2 subgroup of G is not maximal.

Proposition 4.18. Let H0 ≤ G such that F ∗(H0) ∼= U4(2). Then H0 is not a maximal

subgroup of G.

Proof. Let H0 ≤ G such that F ∗(H0) ∼= U4(2). Let H = F ∗(H0) and by Proposi-

tion 2.2, H follows one of nine fusion possibilities. First, suppose that H follows U4(2)

fusion possibility (viii) or (ix). Then, by Proposition 2.7 we have that H fixes a non-

zero vector of V , so, by Proposition 2.18, H0 fixes a non-zero vector of V . Hence, by

Proposition 2.23 we know H0 is not maximal in G.

Secondly, suppose H neither follows U4(2) fusion possibility (viii) nor (ix). Then,

by construction, H is G-conjugate to one of the three U4(2) subgroups found in Propo-

sition 4.13. If H is G-conjugate to the copy of U4(2) which does not extend to U4(2) : 2,

then we find that dimCV (H) = 1 and hence is not maximal by Proposition 2.23. If

H is G-conjugate to one of the two copies of U4(2) which do extend to U4(2) : 2, then

we either have H0 = H – in which case, H0 is not maximal as it is contained in a

U4(2) : 2 subgroup – or H0 is G-conjugate to one of the three copies of U4(2) : 2 found

in Proposition 4.17. We find that, if H follows U4(2) fusion possibility (ii), then both

cases for H0 are such that dimCV (H0) = 3. If H follows U4(2) fusion possibility (vi),

then we have that dimCV (H0) = 1. In either case, we have that H0 is not maximal
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by Proposition 2.23. �



Chapter 5

Sp6(2)

As always, G will denote E8(2). In this chapter, we will show that there are three

conjugacy classes in G of subgroups isomorphic to Sp6(2) which do not follow Sp6(2)

fusion possibility (v) or (vi) as given in Proposition 2.3. We will also show that any

Sp6(2) subgroup of G is not a maximal subgroup. The key to this result is noting that

Sp6(2) contains U4(2) : 2 as a subgroup. Therefore, our strategy will be to build Sp6(2)

subgroups from the copies of U4(2) : 2 we found in Proposition 4.17. However, we must

take care here, as we did not find every U4(2) : 2 subgroup of G up to conjugacy; we

found all U4(2) : 2 subgroups containing U4(2) following fusion possibility 2.2 (ii) or

(vi). But we never ruled out the possibility of U4(2) subgroups existing in G which

follow fusion possibility 2.2 (viii) or (ix). The following result will show that, in order

to show Sp6(2) is not maximal in G, we need not concern ourselves with such cases.

Lemma 5.1. Suppose K ≤ H ≤ G where H ∼= Sp6(2) and K ∼= U4(2). Then

(i) H cannot follow Sp6(2) fusion possibility (i) or (iv);

(ii) if H follows Sp6(2) fusion possibility (ii) or (iii), then K follows U4(2) fusion

possibility (ii) or (vi) respectively;

(iii) if H follows Sp6(2) fusion possibility (v) or (vi), then K follows U4(2) fusion

possibility (viii) or (ix) respectively and, moreover, H is not maximal in G.

Proof. Proving these results is, for the most part, a simple matter of comparing the

U4(2) fusion information given in Proposition 2.2 with the Sp6(2) fusion information

given in Proposition 2.3. First, we recall that in Chapter 4 we proved that any U4(2)
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subgroup of G can only follow fusion possibility 2.2 (ii), (vi), (viii), or (ix). Indeed,

U4(2) contains a Sylow 3-subgroup R of order 34, but the only subgroups of G isomor-

phic to R following any valid U4(2) fusion possibility followed U4(2) fusion possibility

(ii), (iii), (vi), (viii), or (ix), as seen in Lemma 4.4, and the cases following fusion

possibility (iii) were ruled out in Proposition 4.8. Now we will prove each statement

in turn.

(i) Suppose H follows Sp6(2) fusion possibility (i). Then every element of order 9

in H fuses to 9CG, hence K must follow U4(2) fusion possibility (i), (v), (vi).

Now, every element of order 3 in H fuses to either 3CG or 3DG. If K follows

U4(2) fusion possbility (v) or (vi), then there is an element in K fusing to 3BG,

contradicting our assumption of K and hence K follows U4(2) fusion possibility

(i). But this is not possible, as discussed at the beginning of this proof. Thus,

H cannot follow Sp6(2) fusion possibility (i).

Now, suppose H follows Sp6(2) fusion possibility (iv). Then every element of

order 9 in H fuses to 9DG, hence K must follow U4(2) fusion possibility (ii),

(iv), or (vii). Now, every element of order 3 in H fuses to either 3BG or 3CG,

so K cannot follow U4(2) fusion possibility (ii) or (iv), else it would contain an

element of order 3 fusing to 3DG. Hence K follows U4(2) fusion possibility (vii),

which is impossible. Therefore, H cannot follow Sp6(2) fusion possibility (iv), as

required.

(ii) Assume first that H follows Sp6(2) fusion possibility (ii). Then every element

of order 9 in H fuses to 9DG, and hence K must follow U4(2) fusion possibility

(ii), (iv), or (vii). Now we note that, of these options for K, we must have K

following (ii), as the others do not exist in G.

Secondly, assume H follows Sp6(2) fusion possibility (iii). Then every element of

order 9 in H fuses to 9CG, so K must follow U4(2) fusion possibility (i), (v), or

(vi). But of these, only fusion possibility (vi) is possible for K.

(iii) Finally, assume H follows Sp6(2) fusion possibility (v) or (vi). In both of these

cases, every element of order 5 in H fuses to 5AG, so K must follow U4(2) fusion

possibility (viii) or (ix). Now, if H follows Sp6(2) fusion possibility (v), then

every element of order 9 in H fuses to 9AG and hence K must now follow U4(2)
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fusion possibility (viii). Similarly, if we assume H follows Sp6(2) fusion possibility

(vi), then every element of order 9 in H fuses to 9BG, and hence K must follow

U4(2) fusion possibility (ix).

Now, we note that if H follows Sp6(2) fusion possibility (v) or (vi), then H fixes

a non-zero vector of V by Proposition 2.7. Hence, by Proposition 2.23, we have

that H is not maximal in G.

�

We will now state some facts about Sp6(2) which will allude to how we intend to

build Sp6(2) subgroups from our U4(2) : 2 subgroups.

Proposition 5.2. Suppose H ∼= Sp6(2) and U4(2) : 2 ∼= K ≤ H. Let S ∈ Syl2(K).

Then

(i) there is a unique elementary abelian subgroup W ≤ S of order 24 and such that

NK(W ) ∼ 24.Sym(5);

(ii) CH(NK(W )) = 〈t〉 where t is an involution;

(iii) H = 〈K, t〉.

Proof. All of these facts can be verified directly in Magma. �

We will now focus on building Sp6(2) subgroups from copies of U4(2) : 2 found in

Chapter 4.

5.1 Constructing Sp6(2) subgroups of G

For the rest of this chapter, we construct H ≤ G such that H ∼= Sp6(2) and H

follows Sp6(2) fusion possibility (ii) or (iii). Hence, by Lemma 5.1, K ≤ H with K ∼=

U4(2) : 2 contains U4(2) following U4(2) fusion possibility (ii) or (vi). Therefore, K is

G-conjugate to one of the three U4(2) : 2 subgroups constructed in Proposition 4.17.

Without loss of generality, we will actually assume that K is equal to one of these

three subgroups. We will name these subgroups K
(i)
j . Here, i ∈ {2, 6}, and K

(2)
j

contains U4(2) following fusion possibility (ii) for j ∈ {1, 2}, whereas K
(6)
1 contains

U4(2) following fusion possibility (vi).
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Now we implement Proposition 5.2 by following these steps, which form an outline

of this chapter. Fix i and j where i ∈ {2, 6}, j ∈ {1, 2} if i = 2, and j = 1 if i = 6.

1. We will locate 24 ∼= W
(i)
j ≤ K

(i)
j such that N

(i)
j := N

K
(i)
j

(W
(i)
j ) ∼ 24.Sym(5).

2. We will construct I(CG(N
(i)
j )).

3. We will sieve I(CG(N
(i)
j )) for involutions t such that 〈K(i)

j , t〉 ∼= Sp6(2).

The first step is straightforward. Using the Magma command LMGSylow we can

find S
(i)
j ∈ Syl2(K

(i)
j ), then use ElementaryAbelianSubgroups to find representatives

of the three classes of subgroups of S
(i)
j isomorphic to 24. Using Normaliser we

calculate each of their normalisers in K
(i)
j . We identify the 24 subgroup with normaliser

in K
(i)
j with shape 24.Sym(5) and name it W

(i)
j . Now we let N

(i)
j = N

K
(i)
j

(W
(i)
j ) and

our task is now to construct I(CG(N
(i)
j )).

Our strategy here is the same regardless of our choice of i and j, so, to simplify

notation, let K = K
(i)
j , W = W

(i)
j , and N = N

(i)
j . We start by taking R ≤ N

such that R ∼= Sym(5) and D ∈ Syl2(R), so D ∼= Dih(8). Now let z ∈ Z(D) be

the unique involution. Note that, in all cases, z ∈ 2DG so CG(z) ∼ [284].Sp8(2) by

Proposition 2.19. We calculate CG(z) using

CentraliserOfInvolution

which, by Proposition 3.1, contains D and CG(N).

Now we find C1(D) as defined in Proposition 3.2. Recall that if we let C = CG(z)

and C = C/O2(C) ∼= Sp8(2), then C1(D) is defined to be the inverse image of CC(D)

in C. Again, by Proposition 3.2, we have I(CG(N)) ⊆ C1(D).

Next, we find

C2(D) = 〈StabX(F ) : X ∈ Syl2(C1(D))〉

where F = CV (N). By Proposition 3.6 we have that I(CG(N)) ⊆ C2(D).

Finally, let

C3(D) = CC2(D)(N)

which we find directly. The next result shows the outcome of this process.

Proposition 5.3. The order of Ck(D(i)
j ) where k ∈ {1, 2, 3} is given in Table 5.1.
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i j |C1(D
(i)
j )| |C2(D

(i)
j )| |C3(D

(i)
j )|

2 1 298.32.5 212.3 24.3
2 2 298.32.5 210 24

6 1 298.32.5 231.3 2.3

Table 5.1: Order of Ck(D(i)
j ) for k ∈ {1, 2, 3}

Proof. We find C1(D
(i)
j ) using Procedure 3.3; C2(D

(i)
j ) using Procedure 3.7 (ii); and

C3(D
(i)
j ) directly by using Centraliser. �

At this stage, we start sieving C3(D
(i)
j ) for involutions t such that 〈K(i)

j , t〉 ∼= Sp6(2).

We observe that, as far as groups we must sieve go, each C3(D
(i)
j ) is tiny compared

with groups we’ve faced in other cases, making the sieving process quick and straight-

forward.

Proposition 5.4. For each K
(i)
j , there exists H

(i)
j ≤ G with H

(i)
j
∼= Sp6(2) such that

K
(i)
j ≤ H

(i)
j and H

(i)
j is unique up to G-conjugacy.

Proof. Since C3(D
(i)
j ) is so small for each choice of i and j, we need not apply any

complicated sieves. We simply construct the following chain of subgroups directly in

Magma.

I0(N
(i)
j ) = {t ∈ C3(D

(i)
j ) : o(t) = 2},

I1(N
(i)
j ) = {t ∈ I0(N

(i)
j ) : |〈K(i)

j , t〉| = |Sp6(2)|},

I2(N
(i)
j ) = {t ∈ I1(N

(i)
j ) : 〈K(i)

j , t〉 ∼= Sp6(2)}.

The sizes of these sets are displayed in Table 5.2 We see that |I2(N
(i)
j )| = 1 for each

i j |I0(N
(i)
j )| |I1(N

(i)
j )| |I2(N

(i)
j )|

2 1 19 1 1
2 2 11 1 1
6 1 1 1 1

Table 5.2: |Ik(N (i)
j )| for k ∈ {0, 1, 2}

choice of i and j, proving that there is exactly one involution t in each case for which

〈K(i)
j , t〉 ∼= Sp6(2). �

We will call the three subgroups isomorphic to Sp6(2) found in Proposition 5.4

H
(i)
j , where H

(i)
j contains K

(i)
j for each (i, j) ∈ {(2, 1), (2, 2), (6, 1)}. We note here that
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none of these three subgroups are G-conjugate, though, we will not give a full proof

here, as it depends on results established later in the thesis. We will conclude this

chapter by showing that none of these Sp6(2) subgroups are maximal in G.

Proposition 5.5. Let H ≤ G such that H ∼= Sp6(2). Then H is not maximal in G.

Proof. Suppose H ≤ G with H ∼= Sp6(2). By Proposition 2.3, there are six fusion

possibilities for H. By Lemma 5.1, H cannot follow fusion possibilities (i) and (iv),

and if H follows fusion possibility (v) or (vi), then H is not maximal. Now suppose

H follows fusion possibility (ii) or (iii). Then, by construction, H is G-conjugate to

one of the three subgroups found in Proposition 5.4, which we named H
(2)
1 , H

(2)
2 , and

H
(6)
1 . Now, we simply observe that

dimCV (H
(i)
j ) =

3, if i = 2

1, if i = 6

and hence each H fixes a non-zero vector in V . Therefore, by Proposition 2.23, we

have that H is not maximal in G. �



Chapter 6

Ω−8 (2) and Its Extensions

In this chapter, we will prove Theorem 1.3, which is arguably the weakest result in

this thesis, seeing as there are unaddressed cases of Ω−8 (2) which could exist in G and

indeed be maximal. For this reason, this chapter should be viewed as the beginnings

of a proof of such a result, as well as the start of categorising all the Ω−8 (2) subgroups

of G up to conjugacy.

We will start with the observation that Sp6(2) ≤ Ω−8 (2), so our strategy will be to

build up Ω−8 (2) subgroups from the three copies of Sp6(2) found in Chapter 5. Let us

begin with a result exploring the fusion possibilities for Ω−8 (2) in G.

Lemma 6.1. Suppose K ≤ H ≤ G with K ∼= Sp6(2) and H ∼= Ω−8 (2). Then

(i) if H follows Ω−8 (2) fusion possibility (i), then K follows Sp6(2) fusion possibility

(iii);

(ii) if H follows Ω−8 (2) fusion possibility (ii), then K follows Sp6(2) fusion possibility

(ii);

(iii) if H follows Ω−8 (2) fusion possibility (iii) or (iv), then K follows Sp6(2) fusion

possibility (vi);

(iv) if H follows Ω−8 (2) fusion possibility (v), then K follows Sp6(2) fusion possibility

(v). Moreover, H is not maximal in G.

Proof. We prove these results by recalling some results about Sp6(2) subgroups of

G from Chapter 5, and making comparisons between the fusion information given in
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Propositions 2.3 and 2.4. Recall that if Sp6(2) ∼= K ≤ G, then K cannot follow fusion

possibility (i) or (iv). This was proved in Lemma 5.1. With this in mind, we will prove

each statement in turn.

(i) Suppose H follows Ω−8 (2) fusion possibility (i). Then every element in H of

order 9 fuses to 9CG, hence K must follow Sp6(2) fusion possibility (i) or (iii).

However, as stated earlier, no Sp6(2) subgroups of G exist with fusion possibility

(i), hence K follows fusion possibility (iii).

(ii) Suppose H follows Ω−8 (2) fusion possibility (ii). Then every element in H of

order 9 fuses to 9DG, hence K must follow Sp6(2) fusion possibility (ii) or (iv).

However, no Sp6(2) subgroups of G exist which follow fusion possibility (iv), so

K must follow fusion possibility (ii).

(iii) If H follows Ω−8 (2) fusion possibility (iii) or (iv), then every element in H of order

9 fuses to 9BG. Hence, K follows fusion possibility (vi).

(iv) Finally, assume H follows Ω−8 (2) fusion possibility (v). Then every element in H

of order 9 fuses to 9AG. Therefore, K must follow Sp6(2) fusion possibility (v).

In this case, we also see that, by Proposition 2.7, H fixes a non-zero vector of V .

Thus, H is not maximal by Proposition 2.23.

�

Here we see the problem, and why Theorem 1.3 is a weaker result. The fusion

information does not rule out the possibility that an Ω−8 (2) subgroup of G contains a

copy of Sp6(2) which follows fusion possibility 2.3 (vi). Moreover, this case of Ω−8 (2)

may not necessarily fix a non-zero vector of V , as we cannot invoke Proposition 2.7

here. We would require all Sp6(2) subgroups of G up to G-conjugacy which follow

Sp6(2) fusion possibility (vi) to construct these Ω−8 (2) subgroups, which we have yet

been unable to accomplish. We will continue under the assumption, then, that H ∼=

Ω−8 (2) follows fusion possibility (i) or (ii).
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6.1 Constructing Ω−8 (2) subgroups of G

Our strategy here is to build up from our Sp6(2) subgroups found in Proposition 5.4.

Recall that there are three such copies of Sp6(2). The next two results will explore

some information about Ω−8 (2).

Lemma 6.2. Suppose K ∼= Sp6(2). Let R ∈ Syl2(K). Then R has a unique class of

subgroups represented by S of order 27 meeting the three following criteria.

(i) S is normal in R;

(ii) |NK(S)| = 29.3;

(iii) S is isomorphic to the group given by the intrinsic SmallGroup(128,1755).

Proof. S is directly obtainable – and its uniqueness shown – by direct calculation in

Magma. First, we use Subgroups to obtain all 75 subgroups of R of order 27. Sieving

by class length, we find that there are 35 subgroups which have class length 1 (i.e. are

normal in R); three of these have normaliser in K of order 29.3; only one of these is

isomorphic to SmallGroup(128,1755). �

Note that SmallGroup is an intrinsic function of Magma which uses the SmallGroup

library – a catalogue of all groups of certain small orders. For our purposes, we need

not know the exact structure of this group, we simply require a way of uniquely defining

it within R.

Proposition 6.3. Let Sp6(2) ∼= K ≤ H ∼= Ω−8 (2) and let S ≤ K be the group defined

in Lemma 6.2. Then there are four involutions x ∈ CH(S) for which 〈K, x〉 = H and

x ∈ 2AH .

Proof. This is easily verifiable in Magma. �

As usual, we will detail our strategy for employing this result in the context of G,

which also doubles as an outline of the remainder of this chapter. Recall that we have

three Sp6(2) subgroups of G up to G-conjugacy which follow fusion possibility 2.3 (ii)

or (iii) (and hence each of these potentially exist as a subgroup of Ω−8 (2) following

fusion possibility 2.4 (i) or (ii) by Lemma 6.1). We will name these subgroups K
(2)
j for

j ∈ {1, 2} which follow fusion possibility (ii), and K
(3)
1 which follows fusion possibility

(iii). Now fix i and j, where (i, j) ∈ {(2, 1), (2, 2), (3, 1)}.
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1. We identify S
(i)
j ≤ K

(i)
j where S

(i)
j is as defined in Lemma 6.2.

2. We will calculate I(CG(S
(i)
j )).

3. Finally, we will sieve I(CG(S
(i)
j )) for involutions t such that 〈K(i)

j , t〉 ∼= Ω−8 (2).

The first step is a simple one – we obtain S
(i)
j in Magma by following the same

steps as in the proof of Lemma 6.2. We will follow the same strategy in every case of i

and j, so, to simplify notation, let K = K
(i)
j and S = S

(i)
j . In every case, we can choose

x ∈ Z(S) ∩ 2DG, and hence we can find CG(z) ∼ [284] : Sp8(2) using the command

CentraliserOfInvolution. By Proposition 3.1 we know that I(CG(S)) ⊆ CG(z) and

S ≤ CG(z).

Now, we define C1(S) as in Proposition 3.2: Let C = CG(z) and C = C/O2(C) ∼=

Sp8(2), then C1(S) is the inverse image of CC(S). By Proposition 3.2, we know that

I(CG(S)) ⊆ C1(S).

Next, we define C2(S) = 〈StabX(F ) : X ∈ Syl2(C1(S))〉, where F = CV (S), and by

Proposition 3.6 we have that I(CG(S)) ⊆ C2(S). Finally, let

C3(S) = CC2(S)(S),

which is also clearly such that I(CG(S)) ⊆ C3(S). The outcome of this process is

explored in the following result.

Proposition 6.4. The orders of Ck(S(i)
j ) for k ∈ {1, 2, 3} are given in Table 6.1.

i j |C1(S
(i)
j )| |C2(S

(i)
j )| |C3(S

(i)
j )|

2 1 296.3.5 235.3 225.3
2 2 296 231 225

3 1 298.32.5 242.32 28.3

Table 6.1: Orders of Ck(S(i)
j ) for k ∈ {1, 2, 3}

Proof. We find C1(S
(i)
j ) using Procedure 3.3; C2(S

(i)
j ) using Procedure 3.7 (ii); and

C3(S
(i)
j ) directly by using Centraliser. �

We now sieve C3(S) for involutions t such that 〈K, t〉 ∼= Ω−8 (2). We will employ the

usual sieving techniques. The results are given in the following proposition.
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Proposition 6.5. If (i, j) = (2, 2), there is a unique (up to G-conjugacy) subgroup

H
(i)
j
∼= Ω−8 (2) such that K

(i)
j ≤ H

(i)
j . Otherwise, there does not exist an overgroup of

K
(i)
j isomorphic to Ω−8 (2).

Proof. For any i, j, if an overgroup of K
(i)
j isomorphic to Ω−8 (2) exists in G, then there

is some t ∈ C3(S
(i)
j ) such that 〈K(i)

j , t〉 ∼= Ω−8 (2). Hence we must sieve C3(S
(i)
j ) for such

involutions. Again, we will simplify notation by letting K = K
(i)
j and S = S

(i)
j .

We start by letting I0(K) = I(C3(S)), the set of all involutions in C3(S). We find

this in Magma by first turning C3(S) into a pc-group using LMGSolubleRadical. We

can do this as each C3(S) is soluble by Burnside’s Theorem (see Proposition 2.9).

Next, we run an order of random elements sieve on I0(K). For full details on this

sieve, see Procedure 3.8. Note that using this sieve requires a set of all possible element

orders appearing in Ω−8 (2), which is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 21, 30}

as can be seen in the ATLAS [14]. We gather the surviving involutions in a set called

I1(K). Now we define

I2(K) = {t ∈ I1(S) : |〈K, t〉| = |Ω−8 (2)|}

and finally I3(K), a set of elements in I2(K) which generate distinct Ω−8 (2) subgroups.

The results of this process are displayed in Table 6.2.

i j |I0(K
(i)
j )| |I1(K

(i)
j )| |I2(K

(i)
j )| |I3(K

(i)
j )|

2 1 851,967 1 0 0
2 2 425,983 5 4 1
3 1 255 1 0 0

Table 6.2: Sizes of |Ik(K(i)
j )|, for k ∈ {0, 1, 2, 3}

Now we simply observe that I3(K
(i)
j ) contains one involution for (i, j) = (2, 2) and

is empty otherwise. Hence the result follows. �

We give this Ω−8 (2) subgroup of G the name H and proceed to attempt to find

overgroups in G isomorphic to Aut(Ω−8 (2)) ∼= Ω−8 (2) : 2.
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6.2 Extending Ω−8 (2) to Ω−8 (2) : 2

We begin by stating some facts about Ω−8 (2) : 2.

Proposition 6.6. Suppose H ∼= Ω−8 (2) : 2 and R ∈ Syl3(H) with E ≤ R the unique

elementary abelian subgroup of R of order 33. Let x, y ∈ E∩3AH with 〈x〉 6= 〈y〉. Now

let Ω−8 (2) ∼= K ≤ H and define

D = 〈NCH(x)(E), NCH(y)(E)〉.

Then there is some involution t ∈ D such that 〈K, t〉 = H.

Proof. All of these facts can be verified in Magma. �

Because we have adjusted and simplified our notation as we have progressed through

this thesis, let us summarise which groups we have in play. Recall that H is our

sole copy of Ω−8 (2) which were constructed from our Sp6(2) subgroups, which were

constructed from U4(2) subgroups, which were constructed from elementary abelian

subgroups of order 33 which were found and named in Lemma 4.4 in the remarks that

followed. These were named E
(2)
1 , which follows U4(2) fusion possibility (ii), and E

(6)
1 ,

which follows U4(2) fusion possibility (vi). Note now that we have E
(2)
1 ≤ H.

In employing Proposition 6.6, we may take, without loss of generality, E to be E
(2)
1 .

Now, we must choose x, y ∈ E ∩ 3AΩ−8 (2):2 with 〈x〉 6= 〈y〉 and construct

D = 〈NCG(x)(E), NCG(y)(E)〉.

But now note that H follows Ω−8 (2) fusion possibility (ii), and hence we will be taking

x, y ∈ 3DG. Hence D is the same group as constructed in Lemma 4.7. Now, as implied

by Proposition 6.6, we must sieve D for involutions t such that 〈H, t〉 ∼= Ω−8 (2) : 2. We

do this by first constructing I0(D) = I(D), the set of all involutions in D. Then, we

note that if t ∈ D such that 〈H, t〉 ∼= Ω−8 (2) : 2, then t /∈ H and H t = H. Hence t can

be found in

I1(D) := (I0(D) \H) ∩NG(H).

The next proposition states the results of this process.

Proposition 6.7. We have |I0(D)| = 40, 215 and |I1(D)| = 136.
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Proof. We calcuate I0(D) by first turning D into a permutation group and sifting

through its elements, keeping only the involutions. Then we run through the elements

t ∈ I0(D) and keep them only if they satisfy t /∈ H and H t = H; we keep them in

I1(D). �

Now we use the following simple result to drastically reduce the number of involu-

tions we need to concern ourselves with.

Lemma 6.8. Let A = 〈I1(D)〉. Then

(i) A ≤ NG(H);

(ii) If t, s ∈ I1(D) such that t and s are conjugate in A, then 〈H, t〉 and 〈H, s〉 are

conjugate groups.

Proof. (i) Recall that, by construction, for all t ∈ I1(D), we have H t = H. Hence

any element t ∈ A = 〈I1(D)〉 will also be such that H t = H.

(ii) Let a ∈ A such that t = sa. Then by (i) we have Ha = H and therefore

〈H, s〉a = 〈Ha, sa〉 = 〈H, t〉,

as required.

�

We can now complete the process of constructing subgroups of G isomorphic to

Ω−8 (2) : 2.

Proposition 6.9. There is a unique (up to G-conjugacy) subgroup of G isomorphic

to Ω−8 (2) : 2 containing H.

Proof. Here, we pick up from where Proposition 6.7 left off, implementing Lemma 6.8

by constructing A := 〈I1(D)〉. Now, we let A act on I1(D) by conjugation and let

I2(D) be a set of orbit representatives. We find |I2(D)| = 6 and, moreover, each

t ∈ I2(D) is such that 〈H, t〉 ∼= Ω−8 (2) : 2. However, all six involutions in I2(D)

produce the same copy of Ω−8 (2) : 2, so this subgroup is unique up to G-conjugacy. �

In previous chapters, we have concluded with a proof that the subgroup in question

– in this case, Ω−8 (2) – is not maximal in G. However, due to the aforementioned
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limitations, we are unable to provide this for Ω−8 (2). Still, we can rule out some cases

of Ω−8 (2) subgroups of G as being maximal.

Proposition 6.10. Suppose H0 ≤ G such that F ∗(H0) ∼= Ω−8 (2), and that F ∗(H0)

follows Ω−8 (2) fusion possibility 2.4 (i), (ii), or (v). Then H0 is not maximal in G.

Proof. Let Ω−8 (2) ∼= H = F ∗(H0) and assume first that H follows Ω−8 (2) fusion possi-

bility (v). Then, by Proposition 2.7 we have that H fixes a non-zero vector of V . By

Proposition 2.18, H0 fixes a non-zero vector of V . Therefore H0 is not maximal in G

by Proposition 2.23.

Now assume that H follows Ω−8 (2) fusion possibility (i) or (ii). Then, by construc-

tion, H is G-conjugate to the sole copy of Ω−8 (2) found in Proposition 6.5. Therefore,

H0 is G-conjugate to the copy of Ω−8 (2) : 2 found in Proposition 6.9. Calculation

in Magma reveals that dimCV (H0) = 2. Thus, by Proposition 2.23, H0 : 2 is not

maximal. �

We will now finish this chapter by proving Theorems 1.1, 1.2, and 1.3.

6.3 Proof of Theorems 1.1, 1.2, and 1.3

All the results we require to prove these three main results are provided in Chap-

ters 4, 5, and 6. This short section exists to collate this information. We will proceed

by first proving Theorem 1.1 (i), then by proving Theorem 1.1 (ii) and Theorem 1.2

at the same time. We will then conclude by proving Theorem 1.3.

Recall that Theorem 1.1 states that if H0 ≤ G with F ∗(H0) ∼= U4(2) and F ∗(H0)

not following U4(2) fusion possibility 2.2 (viii) or (ix), then there are three G-classes

of subgroups H0
∼= U4(2) and three classes of subgroups H0

∼= U4(2) : 2. Assume

first that H0
∼= U4(2). Then H0 is G-conjugate to one of the three U4(2) subgroups

constructed in Proposition 4.13. We shall call these A
(2)
1 , A

(2)
2 , and A

(6)
1 , where A

(2)
1 and

A
(2)
2 follow U4(2) fusion possibility 2.2 (ii) and A

(6)
1 follows U4(2) fusion possibility 2.2

(vi). Clearly, A
(6)
1 is G-conjugate to neither A

(2)
1 nor A

(2)
2 , as it follows a different

fusion pattern. To see that A
(2)
1 and A

(2)
2 are not G-conjugate, simply observe that, by

Proposition 4.17, A
(2)
1 is contained in some copy of U4(2) : 2 while A

(2)
2 is not. Hence,

by Proposition 3.16, A
(2)
1 and A

(2)
2 are not G-conjugate. This proves Theorem 1.1 (i).
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Now suppose that H0
∼= U4(2) : 2. Then, by Proposition 4.17, we have that H0 is

G-conjugate to one of three U4(2) : 2 subgroups. Let us name these B
(2)
1 , B

(2)
2 , and

B
(6)
1 , where F ∗(B

(2)
1 ) and F ∗(B

(2)
2 ) follow U4(2) fusion possibility 2.2 (ii) and F ∗(B

(6)
1 )

follows U4(2) fusion possibility 2.2 (vi).

Let us now remind ourselves of the statement of Theorem 1.2. It states that there

are three classes of subgroups of G isomorphic to Sp6(2) which follow Sp6(2) fusion

possibilities 2.3 (ii) or (iii). As shown in Proposition 5.4, we have at most three such

classes of Sp6(2) subgroups. Let us call these C
(2)
1 , C

(2)
2 , and C

(6)
1 where B

(i)
j ≤ C

(i)
j for

each (i, j) ∈ {(2, 1), (2, 2), (6, 1)}. Again, it is clear due to fusion patterns that B
(6)
1

is G-conjugate to neither B
(2)
1 nor B

(2)
2 , and that C

(6)
1 is G-conjugate to neither C

(2)
1

nor C
(2)
2 . We will now show that B

(2)
1 is not G-conjugate to B

(2)
2 , and that C

(2)
1 is not

G-conjugate to C
(2)
2 . Here, we simply observe that by Proposition 6.5 we have B

(2)
2

and C
(2)
2 contained in some Ω−8 (2) subgroup of G, while there is no Ω−8 (2) subgroup

containing C
(2)
1 or B

(2)
1 . Thus, by Proposition 3.16, B

(2)
1 and B

(2)
2 are not G-conjugate,

and C
(2)
1 and C

(2)
2 are not G-conjugate. This proves Theorem 1.1 (ii) and Theorem 1.2.

Finally, we must prove Theorem 1.3. This states that ifH0 ≤ G such that F ∗(H0) ∼=

Ω−8 (2) and F ∗(H0) follows Ω−8 (2) fusion possibility 2.4 (i) or (ii), then there is one G-

class of subgroups H0
∼= Ω−8 (2) and one class of subgroups H0

∼= Ω−8 (2) : 2. This

follows directly from Propositions 6.5 and 6.9, where we construct all such Ω−8 (2) and

Ω−8 (2) : 2 subgroups. �



Chapter 7

Ω+
8 (2) and Its Extensions

In this chapter, we will prove Theorem 1.4, showing that there are seven conjugacy

classes of subgroups of E8(2) isomorphic to Ω+
8 (2). Moreover, we will show that if

Ω+
8 (2) ∼= F ∗(H) ≤ E8(2), then H is not maximal. As always let G ∼= E8(2). This case

contains the longest and most complicated set of results in this thesis. This is because,

usually, we eliminate the cases where our chosen group fixes a vector at the start of

the chapter and focus on constructing all subgroups up to G-conjugacy which follow

the other fusion possibilities. We do not do this with Ω+
8 (2). Instead, we proceed to

find all Ω+
8 (2) subgroups in G up to conjugacy, yielding a stronger result.

Suppose now that Ω+
8 (2) ∼= H ≤ G. From the ATLAS [14], we know that |H| =

212.35.52.7. Our starting point for constructing H in G is with its Sylow 5-subgroup.

As we know, a Sylow 5-subgroup of G has order 55. We also have that a Sylow 5-

subgroup of H is isomorphic to 52. Hence our first point of attack is to find all the 52

subgroups in G up to conjugacy.

7.1 Constructing Ω+
8 (2) subgroups of G

Let us begin by compiling some facts about Ω+
8 (2). As usual, we choose a specific way

of generating of H in G and exhaust all possible cases for how H can be generated,

thus finding all possible Ω+
8 (2) subgroups up to G-conjugacy.

Proposition 7.1. Let H ∼= Ω+
8 (2), P ∈ Syl5(H), and T ∈ Syl2(NH(P )). Then the

following hold:

(i) P is elementary abelian of order 52;

87
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(ii) NH(P ) = PT where T ∼= Dih(8) ◦ Z4, T ∩CH(P ) = 1, and all elements of order

4 in T are H-conjugate;

(iii) there exists x ∈ CH(T ) \T such that x is an involution with H = 〈PT, x〉, and x

is H-conjugate to the unique involution in Z(T ).

Proof. These facts are easily verified using Magma and the intrinsic copy of Ω+
8 (2)

given by the command POmegaPlus(8,2). �

Now, we must employ this result in the setting of G. To do this, we follow the

procedure below, which also outlines the structure of this chapter:

1. We will find P1, . . . , Pm such that 52 ∼= Pi ≤ G, a complete list of G-class

representatives of subgroups of G isomorphic to 52.

2. For each i ∈ {1, . . . ,m}, we will calculate NG(Pi) and T
(i)
1 , . . . , T

(i)
ni , a complete

list of NG(Pi)-class representatives of subgroups isomorphic to Dih(8) ◦ Z4.

3. For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}, we will construct and sieve I(CG(T
(i)
j ))

for involutions x such that 〈PT, x〉 ∼= Ω+
8 (2).

As stated at the beginning of this chapter, we will start by finding all 52 subgroups

of G up to G-conjugacy. This will be completed in the following four results.

Lemma 7.2. There are at most six subgroups isomorphic to 52 in G up to G-conjugacy.

Proof. Since we are looking for 52 subgroups up to G-conjugacy, by Sylow’s Theorems,

every 52 can be found in a Sylow 5-subgroup of G and, moreover, that all Sylow 5-

subgroups of G are conjugate. It follows that we can choose any S ∈ Syl5(G) and

find all 52 subgroups of S up to G-conjugacy. Hence we choose S ∈ Syl5(G) (see

Appendix A for a copy of this Sylow 5-subgroup). It can be verified in Magma that S

contains a unique subgroup E ∼= 54. Let N = NG(E), and since S ≤ N (as E is normal

in S) we will actually find all the 52 subgroups of N up to N -conjugacy. We note here

that our unpublished paper [5] contains more details regarding the construction of S

and NG(E).

To see why we do this, we should note that when finding subgroups, we use the

Subgroups command which finds all the subgroups of a given group up to conjugacy
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within that group. This usually means we would like to execute Subgroups on the

largest group we are able to – a larger group tends to have a fewer number of subgroups

of a given order up to conjugacy, since there are more elements with which to conjugate

the subgroups together. However, the larger the group, the longer it takes Magma

to execute Subgroups. Too large, and the command will not work at all. Hence we

must find a balance. Finding subgroups of S will result in too many 52 subgroups to

manage, so we work in N .

Since we are looking for elementary abelian subgroups of order 52, we execute

ElementaryAbelianSubgroups(N : OrderEqual:=25)

which yields six subgroups isomorphic to 52 up to conjugacy in N , as required. We

remark that some of these groups may yet be conjugate under the action of G. �

For the rest of this thesis, let us name these groups Pi for i ∈ {1, . . . , 6}. As alluded

to at the end of the last proof, some of these groups might, in fact, be conjugate. The

next lemma provides us with a clue as to which may be conjugate, as well as allowing us

to eliminate one of our subgroups entirely from our list of potential Sylow 5-subgroups

of an Ω+
8 (2) subgroup.

Lemma 7.3. The numbers of elements in Pi belonging to 5AG and 5BG, for each

i ∈ {1, . . . , 6}, are given in Table 7.1. Moreover, P6 cannot exist as a Sylow 5-subgroup

of an Ω+
8 (2) subgroup of G.

i |Pi ∩ 5AG| |Pi ∩ 5BG|
1 24 0
2 0 24
3 8 16
4 0 24
5 0 24
6 12 12

Table 7.1: Element structure of P1, . . . , P6

Proof. By Theorem 2.20 we know that for all g ∈ G,

g ∈ 5AG if and only if o(g) = 5 and dimCV (g) = 68,

g ∈ 5BG if and only if o(g) = 5 and dimCV (g) = 48,



CHAPTER 7. Ω+
8 (2) AND ITS EXTENSIONS 90

where V is the 248-dimensional GF (2) G-module. Hence, in Magma, for each i ∈

{1, . . . , 6}, we can run through all elements p ∈ Pi of order 5 and carry out the

command:

Dimension(Eigenspace(p,1)).

This provides us with dimCV (p) for each p ∈ Pi of order 5, thereby enabling us to

identify which G-class of elements of order 5 that p belongs to.

Now, if P ∈ Syl5(H) where H ∼= Ω+
8 (2), we have that P contains 8 elements in

5AH , 8 elements in 5BH , and 8 elements in 5CH . Regardless of how the H-classes of

elements of order 5 fuse in G, it is not possible for them to fall into the pattern seen in

P6. Thus we may eliminate P6 as a potential Sylow 5-subgroup of an Ω+
8 (2) subgroup

of G. �

Since three of these groups, P2, P4, and P5, have the same arrangement of elements

of order 5, it is natural to wonder whether they are conjugate in G. This is explored in

the next two results, which will pin down the exact number of classes of 52 subgroups

in G. First, we calculate CG(Pi) for i ∈ {1, . . . , 5}.

Proposition 7.4. The order of CG(Pi), for each i ∈ {1, . . . , 5}, is displayed in Ta-

ble 7.2. Moreover, CG(Pi) ∼= 54 for i ∈ {2, 4, 5}.

i |CG(Pi)|
1 212.35.54.7
2 54

3 24.32.54

4 54

5 54

Table 7.2: Orders of CG(Pi), i ∈ {1, . . . , 5}

Proof. Let i ∈ {1, . . . , 5}. Due to the size of G, it is not practical to use Magma to

calculate CG(Pi) directly. Instead, we choose xi, yi ∈ Pi such that 〈xi, yi〉 = Pi. Our

strategy is to use the fact that CG(Pi) = CCG(xi)(yi). We break this proof up into two

cases, since calculating CG(Pi) depends on which G-class our generators can be chosen

from.

(i) i = 1: In this case, x1, y1 ∈ 5AG. We use the Magma procedure FindCent

(see B.3) to construct CG(x1). We know from Theorem 2.20 that CG(x1) ∼=
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5×Ω−12(2). Now we use the command LMGRadicalQuotient to obtain the soluble

radical R ∼= Ω−12(2) as a permutation group, the natural homomorphism ϕ :

CG(x1) → R, and K = kerϕ ∼= 5. Then CG(Pi) = 〈ϕ−1(CR(ϕ(y1))), k〉 where

k ∈ K#. As R is a permutation group, Magma can easily calculate this.

(ii) i ∈ {2, 3, 4, 5}: In these cases, we can select xi, yi such that xi, yi ∈ 5BG. Again,

we use the FindCent procedure to find CG(xi), which we know from Theorem 2.20

is isomorphic to SU5(4). This group is sufficiently small that we may calculate

CCG(xi)(yi) directly in Magma using the command LMGCentraliser.

Finally, let i ∈ {2, 4, 5}. We see that CG(Pi) ∼= 54 by using the Magma command

IsElementaryAbelian on these groups. �

Proposition 7.5. There are exactly four subgroups isomorphic to 52 in G up to G-

conjugacy.

Proof. From Lemma 7.2 we know there are at most six distinct G-classes of subgroups

isomorphic to 52 in G, and by Lemma 7.3 we see that there are at least four distinct

classes. Indeed, P1, P2, P3, and P6 represent distinct classes – they contain distinct

combinations of elements from 5AG and 5BG, so they cannot possibly be conjugate.

To prove these are, in fact, the four classes, we will show that P2, P4, and P5 are

actually G-conjugate.

First we observe by direct calculation that P2 ≤ E, where E is the unique ele-

mentary abelian subgroup of order 54 in S, our fixed Sylow-5 subgroup of G. Now

let i ∈ {4, 5}. We will show that CG(P2) is G-conjugate to CG(Pi). From Proposi-

tion 7.4 we know that CG(P2) ∼= CG(Pi) ∼= 54. Also, there exists Si ∈ Syl5(G) such

that CG(Pi) ≤ Si. Clearly, as P2 ≤ E, we have CG(P2) = E ≤ S. Recall that from

the proof of Lemma 7.2, we found that any Sylow-5 subgroup of G contains a unique

elementary abelian subgroup of order 54. Therefore, CG(P2) and CG(Pi) are the unique

elementary abelian subgroups of order 54 inside S and Si respectively.

Now, by Sylow’s theorems, we can find g ∈ G such that Sgi = S and because of their

uniqueness, we must have CG(Pi)
g = CG(P2) which implies CG(P g

i ) = CG(P2) = E

using Proposition 2.8, and this implies that P g
i ≤ E. Now, using Magma we find

that E has 806 elementary abelian subgroups of order 52, where 96 of them have all of

their elements of order 5 inside 5BG. However, we find that all 96 of these are actually
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N -conjugate. Since P g
i , P2 ≤ E, both of which contain only elements of order 5 inside

5BG, they are N -conjugate. Thus, there is some n ∈ N such that P gn
i = P2, so Pi and

P2 are G-conjugate, as required. �

Hence we will proceed with only P1, P2, and P3. We now carry out the next step:

calculating NG(Pi) for each i ∈ {1, 2, 3}.

Lemma 7.6. Let i ∈ {1, 2, 3}. Then the following holds:

NG(Pi) = NN(Pi)CG(Pi).

Proof. We will prove this equality by showing that both groups are contained in each

other.

⊇ : Suppose g ∈ NN(Pi)CG(Pi). Then g = nc for some n ∈ NN(Pi) and c ∈ CG(Pi).

Now:

P g
i = P nc

i = (P n
i )c = P c

i = Pi.

Hence g ∈ NG(Pi).

⊆ : Now suppose g ∈ NG(Pi). First, we show that E,Eg ≤ CG(Pi). To see

this, recall that E is abelian and note that by direct calculation we know that

Pi ≤ E. Therefore for all u ∈ E and for all p ∈ Pi, we have that up = pu and

hence E ≤ CG(Pi). Now if we take some ug ∈ Eg we have:

ugPi = g−1ugPi

= g−1ugg−1Pig as P g
i = Pi

= g−1uPig

= g−1Piug as u ∈ CG(Pi)

= g−1Pigg
−1ug

= Piu
g again, as P g

i = Pi.

Hence ug ∈ CG(Pi) and so Eg ≤ CG(Pi).

Now, since E,Eg ∈ Syl5(CG(Pi)) (which can be verified by considering |CG(Pi)|

given in Lemma 7.4), we can find c ∈ CG(Pi) such that Ec = Eg. Then Egc−1
= E

which implies gc−1 ∈ NG(E) = N . Take gc−1 = n for some n ∈ N . Finally,

observe that P n
i = P gc−1

i = P c−1

i = Pi and so n ∈ NN(Pi). Therefore, g = nc for

some n ∈ NN(Pi) and c ∈ CG(Pi), as required.
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Both are subsets of one another, so the result holds. �

Proposition 7.7. The orders of NN(Pi) and NG(Pi) for each i ∈ {1, 2, 3} are displayed

in Table 7.3.

i |NN(Pi)| |NG(Pi)|
1 29.3.54 217.36.54.7
2 25.3.55 25.3.55

3 27.54 29.32.54

Table 7.3: Orders of NN(Pi) and NG(Pi) for i ∈ {1, 2, 3}

Proof. Since N is a fairly small group, we can turn it into a permutation group and

calculate NN(Pi) directly. Now, CG(Pi) was calculated in Proposition 7.4. Hence by

Lemma 7.6, we can calculate NG(Pi) = NN(Pi)CG(Pi). �

Our task is now to find all Dih(8) ◦ Z4 subgroups of NG(Pi) for i ∈ {1, 2, 3}. We

will show, first, that we need only find such subgroups up to conjugacy in NG(Pi).

Lemma 7.8. Let i ∈ {1, 2, 3}. Suppose we have T1, T2 ≤ NG(Pi) such that T1
∼=

Dih(8) ◦ Z4
∼= T2 and T1 and T2 are NG(Pi)-conjugate. Then for any x ∈ CG(T1)

such that 〈PT1, x〉 ∼= Ω+
8 (2), there exists y ∈ CG(T2) such that 〈PT2, y〉 ∼= Ω+

8 (2) and

〈PT1, x〉 and 〈PT2, y〉 are conjugate groups. Conversely, for all y ∈ CG(T2) for which

〈PT2, y〉 ∼= Ω+
8 (2), there exists x ∈ CG(T1) such that 〈PT1, x〉 ∼= Ω+

8 (2) and 〈PT2, y〉

and 〈PT1, x〉 are conjugate groups.

Proof. We have that T1 and T2 are NG(Pi)-conjugate, so let n ∈ NG(Pi) such that

T n1 = T2. Assume we have x ∈ CG(T1) such that 〈PT1, x〉 ∼= Ω+
8 (2). Then take y = xn.

Then y = xn ∈ CG(T1)n = CG(T n1 ) = CG(T2) so y ∈ CG(T2). Moreover, we have

〈PiT1, x〉n = 〈P n
i T

n
1 , x

n〉 = 〈PiT2, y〉

so 〈PT1, x〉 and 〈PT2, y〉 ∼= Ω+
8 (2) are conjugate groups. A similar argument holds for

the converse statement. �

We will now collect some more facts about the Dih(8) ◦ Z4 subgroups we need.

Suppose Dih(8) ◦ Z4
∼= T ≤ NG(Pi) is a valid subgroup. Then, from Proposition 7.1

(ii), we know that all the elements of order 4 must be G-conjugate. Furthermore, we

have that T ∩ CG(Pi) = 1. We will now find all subgroups of NG(Pi) isomorphic to
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Dih(8) ◦ Z4 up to conjugacy in NG(Pi), and then eliminate the ones not satisfying

those criteria.

Proposition 7.9. Let i ∈ {1, 2, 3}. Then the number of classes of viable Dih(8) ◦ Z4

subgroups of NG(Pi) is shown in Table 7.4.

i Dih(8) ◦ Z4 subgroups in NG(Pi)
1 351
2 1
3 4

Table 7.4: Number of classes of viable Dih(8)◦Z4 subgroups of NG(Pi) for i ∈ {1, 2, 3}

Proof. Fix i ∈ {1, 2, 3}. Since we are only interested in subgroups of NG(Pi) up to

NG(Pi)-conjugacy, we start by taking Ri ∈ Syl2(NG(Pi)). Firstly, we turn Ri into a

permutation group and run the Subgroups command to find, up to Ri-conjugacy, all

the subgroups of NG(Pi) of order 16. We store these subgroups in a set called T0(Pi).

Secondly, we build T1(Pi) = {T ∈ T0(Pi) : T ∼= Dih(8) ◦ Z4}. Note that the intrinsic

Magma command SmallGroup(16,13) is a group isomorphic to Dih(8) ◦ Z4, so to

build T1(Pi) we test whether the groups in T0(Pi) are isomorphic to SmallGroup(16,13)

using IsIsomorphic. Thirdly, we construct

T2(Pi) = {T ∈ T1(Pi) : T ∩ CG(Pi) = 1},

which must contain the groups we desire by the remarks preceding this result. Simi-

larly, take only the groups T ∈ T2(Pi) for which all the elements of order 4 in T belong

to the same G-conjugacy class. We store these in a set called T3(Pi). Finally, we let

NG(Pi) act on T3(Pi) by conjugation and collect a set of orbit representatives in our

last set, T4(Pi). Note that we do this using Procedure B.4. This last step ensures

we are only collecting subgroups up to conjugacy in the whole of NG(Pi), not just

conjugacy in Ri. The results of this process are displayed in Table 7.5. Looking at the

rightmost column, we obtain the numbers stated in the result.

�

Here is where things become tricky, as there are 351 subgroups of NG(P1) to deal

with. Most of these subgroups will undergo the same process as with the subgroups

in NG(P2) and NG(P3). Before we reach that stage, let us organise our various cases.
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i |T0(Pi)| |T1(Pi)| |T2(Pi)| |T3(Pi)| |T4(Pi)|
1 1,081,838 336,548 67,828 32,084 351
2 3 1 1 1 1
3 431 4 4 4 4

Table 7.5: Size of Tk(Pi) for k ∈ {0, 1, 2, 3, 4}

For i ∈ {1, 2, 3}, let T (i) be the set of viable subgroups of NG(Pi) isomorphic to

Dih(8) ◦ Z4. (So, using the notation from the latest result, T (i) = T4(Pi).) Then

|T (1)| = 351, |T (2)| = 4, and |T (3)| = 1. Now recall that for each T ∈ T (i), we must find

and sieve I(CG(T )). The starting point for this process will be to find CG(z), where

z is the unique involution in Z(T ). Since many of the groups in T (1) share a common

central involution, we will break up T (1) into subsets corresponding to groups with a

central involution in common.

Formally speaking, we will define the relation ∼ on T (1) as follows. Given T1, T2 ∈

T (1), we have

T1 ∼ T2 if and only if Z(T1) ∩ Z(T2) 6= 1. (7.1)

First, let us prove this is an equivalence relation.

• Reflexivity: If T ∈ T (1), then clearly we have Z(T ) ∩ Z(T ) 6= 1, so T ∼ T and

the relation is reflexive.

• Symmetry: If T1, T2 ∈ T (1) and T1 ∼ T2, then Z(T1) ∩ Z(T2) 6= 1 and so

Z(T2) ∩ Z(T1) 6= 1, hence T2 ∼ T1 and ∼ is symmetric.

• Transitivity: Suppose T1, T2, T3 ∈ T (1) with T1 ∼ T2 and T2 ∼ T3. Here we

must use the fact that Z(Dih(8) ◦ Z4) ∼= Z4. Because of this, we know that the

condition Z(T1) ∩ Z(T2) 6= 1 implies that there is a common central involution

to T1 and T2. Indeed, suppose 1 6= t ∈ Z(T1)∩Z(T2). Then o(t) = 2 or o(t) = 4.

If o(t) = 2, we are done, so instead suppose that o(t) = 4. But as Z(T1)∩Z(T2)

is a group, t2 ∈ Z(T1) ∩ Z(T2) and o(t2) = 2. Now let t be the unique central

involution of T2. Since Z(T1) ∩ Z(T2) 6= 1, we must have t ∈ T1. Likewise, as

Z(T2) ∩ Z(T3) 6= 1, we must also have t ∈ T3. Thus, t ∈ Z(T1) ∩ Z(T3) and so

T1 ∼ T3 and ∼ is transitive.

Hence ∼ induces a partition on T (1). We explore the consequences of this in the

next result.
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Lemma 7.10. When we partition T (1) according to the relation described in (7.1), we

form five subsets T (1,1), . . . , T (1,5). That is, for each i ∈ {1, 2, 3, 4, 5}, T (1,i) is a set

of groups that share a common central involution. Let z(1,i) be the central involution

common to all groups belonging to T (1,i). Information about these subsets is given in

Table 7.6.

i |T (1,i)| G-class of z(1,i)

1 4 2D

2 10 2D

3 10 2D

4 200 2D

5 127 2C

Table 7.6: Sizes of T (1,i) and G-class of z(1,i), for i ∈ {1, 2, 3, 4, 5}

Proof. These sets are easily constructed in Magma. The G-class that z(1,i) belongs to

can be ascertained using the Eigenspace command and using the results in Proposi-

tion 2.19. �

To begin, let T ∈ T (1,1)∪T (1,2)∪T (1,3)∪T (2)∪T (3) and let z ∈ Z(T ) be the unique

central involution in T . Then z ∈ 2DG, so we can use the command

CentraliserOfInvolution

to calculate CG(z) in Magma which, by Proposition 2.19, has shape [284] : Sp8(2).

Now define C1(T ) to be the group defined in Proposition 3.2, which, by the same result,

contains I(CG(T )). That is, if we let C = CG(z) and C = C/O2(C) ∼= Sp8(2), then

C1(T ) is the inverse image of CC(T ) in C.

Next, let C2(T ) = 〈StabX(F ) : X ∈ Syl2(C1(T ))〉 where F = CV (T ). By Proposi-

tion 3.6 we have that I(CG(T )) ⊆ C2(T ). Next, we let C3(T ) = C〈C2(T ),T 〉(T ), which

will clearly contain I(CG(T )). The results of this process are explored in the next

result.

Let us introduce some more notation. Let T
(2)
j for j ∈ {1, 2, 3, 4} be the four groups

belonging to the set T (2); let T
(3)
1 be the group belonging to T (3); and let T

(1,i)
j be a

group belonging to T (1,i), where i ∈ {1, . . . , 5} and j ∈ {1, . . . , |T (1,i)|}. For now, we
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will now focus on the Dih(8) ◦Z4 subgroups belonging to T (2), T (3), and T (1,i), where

i ∈ {1, 2, 3}. We will leave the Dih(8) ◦Z4 subgroups belonging to T (1,4) and T (1,5) for

later.

Proposition 7.11. The sizes of the sets Ck(T (i)
j ) for every subgroup T

(i)
j ∈ T (2)∪T (3),

k ∈ {1, 2, 3}, are shown in Table 7.7. The sizes of Ck(T (i)
j ) for each T

(1,i)
j ∈ T (1,i)

where i ∈ {1, 2, 3} and k ∈ {1, 2, 3}, are shown in Table 7.8.

i j C1(T
(i)
j ) C2(T

(i)
j ) C3(T

(i)
j )

2 1 292 223 217

3 1 291.3 225.3 220.3
3 2 293 224 219

3 3 291 223 214

3 4 291 223 214

Table 7.7: Sizes of Ck(T ) for k ∈ {1, 2, 3} and T ∈ T (2) ∪ T (3)

Proof. We use Procedure 3.3 to calculate C1(T
(i)
j ), Procedures 3.7 (i) and (ii) to find

C2(T
(i)
j ) (note we use (i) when C1(T

(i)
j ) is a 2-group and (ii) otherwise), and we calculate

C3(T
(i)
j ) directly by turning 〈C2(T

(i)
j ), T

(i)
j 〉 into a pc-group using LMGSolubleRadical

(which we can do since, in all cases, 〈C2(T
(i)
j ), T

(i)
j 〉 is soluble by Burnside’s Theorem

– see Proposition 2.9). �

Before sieving C3(T ) for T ∈ T (2) ∪ T (3) ∪ T (1,i), i ∈ {1, 2, 3}, we look to construct

C3(T ) for T ∈ T (1,4). We do this now because the sieving process will be the same

for both sets of groups. However, we encounter a significant hurdle with these cases.

Suppose z is the central involution common to every T ∈ T (1,4) and let C = CG(z)

with C = C/O2(C) ∼= Sp8(2). Now, for every T ∈ T (1,4), we have that T ≤ O2(C).

This is a problem because when we find C1(T ), the full inverse image of CC(T ), we

will obtain C1(T ) = C. This is because, as T ≤ O2(C), then we have that T = 1

and hence CC(T ) = C. In other words, the first step in our usual routine of whittling

down C to a manageable group fails. Moreover, our usual procedures provided in

Procedure 3.7 fail us in trying to find C2(T ) = 〈StabS(F ) : S ∈ Syl2(C1(T ))〉, where

F = CV (T ). This is because, usually, we find S ∈ Syl2(C1(T )) and a transversal R of

S in C1(T ). Then we have C2(T ) = 〈StabSr(F ) : r ∈ R〉. However, in this case, since

C1(T ) = C, we have |C| = 2100.35.52.7.17 and therefore the transversal R would have
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i j |C1(T
(1,i)
j )| |C2(T

(1,i)
j )| |C3(T

(1,i)
j )|

1 1 293 224 219

1 2 293 224 219

1 3 293 224 219

1 4 293 224 219

2 1 289 220 217

2 2 289 220 217

2 3 289 220 217

2 4 289 220 217

2 5 289 221 216

2 6 289 220 217

2 7 289 221 217

2 8 289 220 217

2 9 293.3 225 222

2 10 293.3 228 220

3 1 293 224 218

3 2 293.3 227 220

3 3 292 223 218

3 4 292 222 218

3 5 293 223 218

3 6 293 223 218

3 7 293 223 218

3 8 293.3 227 220

3 9 293.3 228.3 225.3
3 10 293.3 228 225

Table 7.8: Sizes of Ck(T ) for k ∈ {1, 2, 3} and T ∈ T (1,i), for i ∈ {1, 2, 3}
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size 35.52.7.17 = 722, 925, which is too large for our usual method of calculating C2(T )

to be feasible. To combat this, we develop a new method using the next result.

Lemma 7.12. Let S ∈ Syl2(C) and R = {r1, . . . , rm} such that S
r1 ∪ . . . ∪ Srm is an

involution cover of C ∼= Sp8(2). That is,

I(C) ⊆ S
r1 ∪ . . . ∪ Srm .

Now let ri be any representative of the coset ri (so any element in ri \O2(C)), and let

S be the full inverse image of S in C. Then

Sr1 ∪ . . . ∪ Srm

is an involution cover of C.

Proof. Let t ∈ C be an involution. Then either t = 1 or t is an involution in C. Either

way, we have that

t ∈ Sr1 ∪ . . . ∪ Srm

and hence there is some k ∈ {1, . . . ,m} for which t ∈ Srk . Now, we have t = r−1
k srk

for some s ∈ S. Then, without loss of generality, t = r−1
k srk for some s ∈ S and so

t ∈ Srk . Since this holds for any involution t ∈ C, the result follows. �

This is an extremely useful result – instead of having to conjugate a Sylow 2-

subgroup S of C by every element in a transversal for S in C, we only need to conjugate

it by every element in some involution cover for the involutions in Sp8(2). To build

an involution cover of Sp8(2), we start with the intrinsic copy of Sp8(2) in Magma

given by Sp(8,2). Call this K, and now let X ∈ Syl2(K) found using Sylow. Using

Classes, we can obtain conjugacy class representatives for the classes of involutions

in K, and, using Class, we can build each class of involutions and take their union

using join to form I(K). Now, beginning with R := ∅ and Y := I(X), we take

random elements r ∈ K and redefine Y := Y ∪ I(Xr). If Y is bigger than it was

before taking its union with I(Xr), we store r in R. We repeat this until Y = I(K).

By construction, R is such that for all involutions t ∈ K, there is some r ∈ R such

that t ∈ Xr. When we carry this out, we find R such that |R| = 2, 036. We note

that this might not be optimal – a smaller R could exist. However, for our purposes,

having |R| = 2, 036 is adequate. We now save K, X, and R for future use.
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To use this in practice, we load K, X, and R in the screen containing C, C, and

T . Since K ∼= C, we can use the command IsIsomorphic to obtain an isomorphism

σ : K → C. Now let S = σ(X) and R = {σ(r) : r ∈ R}, so that now we have S,

a Sylow 2-subgroup of C and R as described in Lemma 7.12. Now, let ϕ : C → C

given by the command LMGRadicalQuotient. Using this we can obtain representatives

{r1, ..., r2036} of the cosets in R as well as the full inverse image S of S. Let F = CV (T )

and now define

C2(T ) = 〈StabSri (F ) : i ∈ {1, . . . , 2036}〉.

Using the same argument as is in the proof of Proposition 3.6 and combined with

Lemma 7.12, we see that I(CG(T )) ⊆ C2(T ). We also use the same procedure described

in Procedure 3.7 (ii) to calculate C2(T ), but with {r1, ..., r2036} in place of the right

transversal. Finally, as usual, we let

C3(T ) = C〈C2(T ),T 〉(T )

which clearly also contains I(CG(T )). The results of this process are given in the next

result.

Proposition 7.13. The sizes of C2(T ) and C3(T ) for every T ∈ T (1,4) are given in

Table 7.9.

Proof. We follow the process described before the statement of the proposition. �

j |C2(T
(1,4)
j )| |C3(T

(1,4)
j )|

1 230 222

2 230 222

3 230 222

4 229 223

5 230 222

6 229 223

7 230 222

8 230 222

9 230 222

10 229 223

11 230 222

12 229 223

13 233 227

14 229 223

15 231 224
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16 231 225

17 229 223

18 229 223

19 229 224

20 229 223

21 229 223

22 230 222

23 229 223

24 230 222

25 229 223

26 231 224

27 230 222

28 230 222

29 229 223

30 230 222

31 229 223

32 229 223

33 230 222

34 230 222

35 230 222

36 229 223

37 229 223

38 231 224

39 231 224

40 229 223

41 231 225

42 231 225

43 231 225

44 231 225

45 229 224

46 229 224

47 229 224

48 229 224

49 230 222

50 229 223

51 229 223

52 230 222

53 229 223

54 231 225

55 231 226

56 229 223

57 231 226

58 231 226

59 230 222

60 231 226
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61 231 225

62 231 225

63 231 225

64 229 223

65 229 223

66 231 225

67 231 225

68 229 223

69 229 223

70 229 223

71 229 223

72 229 223

73 231 224

74 231 224

75 229 223

76 229 223

77 231 224

78 229 223

79 229 223

80 229 223

81 229 223

82 229 224

83 230 222

84 230 222

85 229 223

86 229 223

87 229 224

88 229 224

89 231 225

90 229 223

91 229 223

92 231 225

93 229 223

94 231 224

95 229 223

96 229 223

97 230 222

98 230 222

99 229 223

100 230 222

101 230 222

102 229 223

103 231 225

104 229 223

105 229 223
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106 229 223

107 229 223

108 229 223

109 229 223

110 230 223

111 230 223

112 230 223

113 230 223

114 231 224

115 231 224

116 231 224

117 229 223

118 234 227

119 234 227

120 234.3 227

121 234 227

122 230 222

123 229 223

124 229 223

125 230 222

126 230 223

127 230 223

128 230 223

129 230 223

130 234 227

131 233 227

132 234 227

133 234.3 227

134 230 222

135 229 223

136 229 223

137 230 222

138 230 222

139 230 222

140 230 222

141 229 223

142 229 223

143 231 225

144 229 223

145 229 223

146 229 223

147 230 222

148 230 222

149 230 222

150 229 223
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151 229 223

152 230 222

153 231 224

154 231 224

155 229 223

156 230 222

157 230 222

158 229 223

159 231 224

160 231 224

161 229 223

162 229 223

163 229 223

164 229 223

165 231 224

166 231 224

167 229 223

168 230 222

169 230 222

170 230 222

171 229 223

172 231 225

173 229 223

174 229 223

175 230 222

176 230 223

177 230 223

178 231 224

179 231 224

180 229 223

181 229 223

182 230 222

183 230 222

184 229 223

185 230 222

186 230 223

187 230 223

188 230 222

189 230 222

190 230 223

191 230 223

192 230 222

193 231 224

194 230 222

195 233 227
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196 229 223

197 229 223

198 230 222

199 230 222

200 230 222

Table 7.9: Size of C2(T ) and C3(T ) for T ∈ T (1,4)

Now we will move on to the cases T ∈ T (1,5). These cases are more difficult, for

the simple reason that z(1,5) ∈ 2CG. To see why this presents a new set of challenges,

observe that, by Proposition 2.19, we know CG(z) ∼ [281] : Sym(3) × F4(2). Now

recall that the first steps in finding I(CG(T )) have been to first find C = CG(z) then

C = C/O2(C) ∼= Sym(3)×F4(2) by using the command LMGRadicalQuotient. While

Magma is able to calculate CG(z) using the usual CentraliserOfInvolution, F4(2)

is too large a group for it to execute LMGRadicalQuotient on C. Hence, our usual

process is disrupted. Over the next few results, we will describe a way to circumvent

this issue.

The key theme of these results is that we are trying to work with C without

explicitly calculating it. Recall that usually, after finding C, we find the inverse image

of CC(T ). We are not able to calculate this full inverse image, for reasons we will

discuss. However, we will devise a way of calculating the inverse image of CC(a) where

a ∈ T is a non-central involution. This is a larger group than the inverse image of

CC(T ), but it is still a smaller group than the whole of CG(z) and provides a starting

point for trimming down the group we must sieve for involutions.

The first step in this process is to find O2(C) without using the usual intrinsic

commands. This result provides us with a means of finding random elements of O2(C).

Lemma 7.14. Let y ∈ C be of order 56. Then y28 ∈ O2(C).

Proof. First note that elements of order 56 do exist in C – these are easily found using

the Element command (see B.2). Now note that there are no elements of order 56 in

the group F4(2). This can be seen by consulting the ATLAS [14]. Hence, there are no

elements of order 56 in the direct product Sym(3)× F4(2).

Take y ∈ C of order 56. As C is a split extension, y = wk where w ∈ O2(C) and

k ∈ Sym(3)× F4(2). Moreover, by the above, w 6= 1. Since O2(C) is normal in C, we
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know that k−1wk = w0 for some w0 ∈ O2(C), therefore wk = kw0. This is useful, since

we may rewrite (wk)n = knw0 for any n ∈ N and some w0 ∈ O2(C). In particular, we

have

1 = y56 = (wk)56 = k56w0

for some w0 ∈ O2(C) and we claim that k56 = 1. Indeed, assume otherwise. Then

k56 = w−1
0 ∈ O2(C), a contradiction, as O2(C)∩ Sym(3)×F4(2) = 1. Hence the order

of k divides 56 – i.e. o(k) = {1, 2, 4, 7, 8, 14, 28}.

Now, consider y28 = (wk)28 = k28w0 for some w0 ∈ O2(C). Note that if o(k) 6= 8,

then o(k) divides 28, and so k28 = 1 and we are done. So, suppose o(k) = 8. But now,

y8 = k8w1 = w1 for some w1 ∈ O2(C) and so

1 = y56 = (y8)7 = w7
1.

But the order of w1 must be even or 1, so the only way w7
1 = 1 is if w1 = 1. This is a

contradiction, as now, y8 = 1, contradicting the order of y. �

We use this result to repeatedly find elements y1, . . . , yn ∈ C of order 56, then take

the subgroup of C given by 〈y28
1 , . . . , y

28
n 〉. Since for every i ∈ {1, . . . , n} we have y28

i ∈

O2(C), then 〈y28
1 , . . . , y

28
n 〉 ≤ O2(C). We keep increasing n until |〈y28

1 , . . . , y
28
n 〉| = 281,

which means this must be O2(C). Now that we have O2(C), the next result gives us

a way of finding random elements belonging to the inverse image of CC(a). It is a

modification of the Bray method (see Proposition 2.11) which we will call the relative

Bray method.

Proposition 7.15. Suppose H is a finite group with N E H and let H = H/N . Let

g ∈ H be an involution. Let h ∈ H and suppose r ∈ N is minimal such that [g, h]r ∈ N .

Then let

x =

[g, h]
r
2 , if r even,

h[g, h]
r−1
2 , otherwise.

(7.2)

Then gx = xg and hence x is in the inverse image of CH(g).

Proof. Note that g−1 = g as g is an involution. First we observe that gx = xg if only

if (gx)N = (xg)N , which is equivalent to [g, x] = gx−1gx ∈ N . Hence, to demonstrate

that gx = xg we will demonstrate that [g, x] ∈ N in both cases. First, suppose r is
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even. Then:

[g, x] = gx−1gx

= g([g, h]
r
2 )−1g[g, h]

r
2

= g(gh−1gh . . . gh−1gh)−1g[g, h]
r
2

= g(h−1ghg . . . h−1ghg)g[g, h]
r
2

= (gh−1gh . . . gh−1gh)[g, h]
r
2

= [g, h]
r
2 [g, h]

r
2

= [g, h]r ∈ N.

Now, suppose r is odd. Then:

[g, x] = gx−1gx

= g(h[g, h]
r−1
2 )−1gh[g, h]

r−1
2

= g(h(gh−1gh . . . gh−1gh))−1gh[g, h]
r−1
2

= g((h−1ghg . . . h−1ghg)h−1)gh[g, h]
r−1
2

= (gh−1gh . . . gh−1gh)gh−1gh[g, h]
r−1
2

= [g, h]
r−1
2 [g, h][g, h]

r−1
2

= [g, h]r ∈ N.

Hence we have [g, x] ∈ N and so, by our earlier observations, gx = xg as required. �

We use this result to repeatedly find elements x1, . . . , xn in the inverse image of

CC(a). To do this, we use the procedure ReBray (see B.5). Let X = 〈x1, . . . , xn〉. We

would like to keep increasing n until X is the whole inverse image of CC(a). However,

caution must be taken here. Earlier, we took random elements until we generated the

whole of O2(C). This was fine, because when we knew we had generated the whole

of O2(C). However, we do not yet know when we have generated the whole inverse

image of CC(a). The next two results will deliver all the potential orders of this inverse

image, which is the first step in knowing when to stop adding generators to X.

Lemma 7.16. Let L = Sym(3) × F4(2) and let t ∈ L be an involution. Then there

are seven possible orders of CL(t):



CHAPTER 7. Ω+
8 (2) AND ITS EXTENSIONS 108

(i) 225.35.5.7,

(ii) 225.33.5,

(iii) 221.33,

(iv) 225.34.5.7,

(v) 225.32.5,

(vi) 221.32,

(vii) 2.|F4(2)|.

Proof. Since L is a direct product, we may consider the elements of L as ordered

pairs (gS, gF ) where gS ∈ Sym(3) and gF ∈ F4(2). Now, observe that there are three

possible structures for t. These are (1S, tF ), (tS, tF ), and (tS, 1F ), for some involutions

tS ∈ Sym(3), tF ∈ F4(2), and where 1S and 1F are the identity elements of Sym(3)

and F4(2) respectively. Now note that there are three possible centraliser sizes for

CF4(2)(tF ), which are 224.34.5.7, 224.32.5, and 220.32 – this can be verified using the

ATLAS [14]. And, as Sym(3) only has one conjugacy class of involutions, we know

that CSym(3)(tS) = 2.

Firstly, if t is of the form (1S, tF ), then CL(t) is of the form CSym(3)(1S)×CF4(2)(tF ) =

Sym(3) × CF4(2)(tF ). This has an order of six multiplied by the possibilities for

CF4(2)(tF ) given above, which accounts for cases (i), (ii), and (iii).

Secondly, if t is of the form (tS, tF ), then CL(t) is of the form CSym(3)(tS) ×

CF4(2)(tF ) = 2×CF4(2)(tF ). This has an order of two multiplied by the possibilities for

CF4(2)(tF ) given above, which accounts for cases (iv), (v), and (vi).

Finally, if t is of the form (tS, 1F ), then CL(t) is of the form CSym(3)(tS)× F4(2) =

2 × F4(2). This has order 2.|F4(2)|, accounting for case (vii) and completing the

proof. �

With this, we can now examine a complete list of the possible orders of the inverse

image of CC(a).

Proposition 7.17. Let B be the full inverse image of CC(a) in C. Then there are

eight possibilities for |B|, which are:

(i) 2106.35.5.7,

(ii) 2106.33.5,

(iii) 2102.33,

(iv) 2106.34.5.7,

(v) 2106.32.5,

(vi) 2102.32,

(vii) 282.|F4(2)|,

(viii) |C|.

Proof. By definition, B/O2(C) = CC(a). Therefore |B| = |CC(a)||O2(C)|. Suppose
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first that a /∈ O2(C). Then a is an involution in C. Therefore, CC(a) must have one of

the orders given in Lemma 7.16, and as |O2(C)| = 281, this accounts for cases (i)–(vii).

Now suppose a ∈ O2(C). Then a = 1, so CC(a) = CC(1) = C. Therefore, B = C,

which accounts for case (viii). �

Unfortunately, we are not done. For even if we have |X| matching one of the

eight possibilities given in Proposition 7.17, we still cannot be sure that X = B. For

example, if we generate X such that |X| = 2106.33.5, matching Proposition 7.17 (ii),

we can safely rule out the possibility that |B| = 2102.33, since X ≤ B. However, it

could be the case that no matter how many generators we add to X, it never grows,

and yet, we could be in a situation where, for example, |B| = 2106.35.5.7. For this

reason, we need an effective way to know when we can stop growing X and be sure

we have the entirety of B. The next result describes a method which achieves this. It

involves choosing random elements of C satisfying certain properties which provide a

near-instant check in Magma.

Proposition 7.18. (i) Suppose |X| = |C|. Then X = B.

(ii) Suppose |X| = 2106.35.5.7 and there exists x ∈ C of order 17 such that [x, a] /∈

O2(C). Then X = B.

(iii) Suppose |X| = 2106.33.5. Suppose also that there exists some x ∈ C of or-

der 17 such that [x, a] /∈ O2(C) and some g ∈ C such that, given any n ∈

{1, 2, 3, 4, 6, 12}, we have [a, g]n /∈ O2(C). Then X = B.

(iv) Suppose |X| = 2102.33. Suppose also that there exists x ∈ C of order 17 such that

[x, a] /∈ O2(C) and some g ∈ C such that, given any n ∈ {1, 2, 3, 4, 5, 6, 12, 15},

we have [g, a]n /∈ O2(C). Then X = B.

Proof. We will work through each case in turn.

(i) This case is trivial, for we know that X ≤ B ≤ C and so |X| = |C| yields X = B.

(ii) Suppose |X| = 2106.35.5.7 and assume that X 6= B. Then, as |X| < |B| and by

Proposition 7.17, there are only two possibilities for |B|, namely 282.|F4(2)| and

|C|. But now consider CC(a) = B/O2(C). In these cases, B/O2(C) ∼= 2× F4(2)

or B/O2(C) ∼= Sym(3) × F4(2) respectively. Therefore, F4(2) ≤ B/O2(C) =
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CC(a). Crucially, for all x ∈ F4(2) of order 17, we have xa = ax. Therefore

(xa)O2(C) = (ax)O2(C) and so [x, a] ∈ O2(C).

Now, let x ∈ C of order 17 such that [x, a] /∈ O2(C). Then since x17 = 1, we must

have x /∈ O2(C), as O2(C) is a 2-group and therefore only contains elements of

order a power of 2. Hence, x17 = 1. But note that x ∈ Sym(3) × F4(2) and the

only elements of order 17 in Sym(3)× F4(2) are in F4(2). Hence x ∈ F4(2). But

since [x, a] /∈ O2(C), this is a contradiction.

(iii) Suppose |X| = 2106.33.5 and again suppose that this is not the whole of B. Then,

by Proposition 7.17 (i), (iv), (vii), and (viii) there are four possibilities for |B|,

namely 2106.35.5.7, 2106.34.5.7, 282.|F4(2)|, and |C|.

First, note that the existence of x ∈ C of order 17 such that [x, a] /∈ O2(C)

rules out the possibility that |B| is 282.|F4(2)| or |C|, using the proof of part

(ii). So, suppose now that |B| is 2106.35.5.7 or 2106.34.5.7. Then that means

that a ∈ Sym(3) × F4(2) is of the form (1S, tF ) or (tS, tF ) where tS is an in-

volution in Sym(3) and tF is an involution in F4(2) such that |CF4(2)(tF )| =

224.34.5.7. This corresponds to tF being in 2AF4(2) or 2BF4(2). We know, from

direct calculation in Magma using the intrinsic copy of F4(2) given by the

command ChevalleyGroup("F",4,2), for all t ∈ 2AF4(2) ∪ 2BF4(2), we have

o(ttg) ∈ {1, 2, 3, 4} where g ∈ F4(2). Hence, we claim that for all g ∈ Sym(3) ×

F4(2), o(aag) ∈ {1, 2, 3, 4, 6, 12}. Indeed, let g = (gS, gF ) for some gS ∈ Sym(3)

and gF ∈ F4(2). If a = (1S, tF ) then

o(aag) = o((1S, tF )(1S, tF )(gS ,gF )) = o((1S, tF t
gF
F )) ∈ {1, 2, 3, 4},

and if a = (tS, tF ), then we have

o(aag) = o((tS, tF )(tS, tF )(gS ,gF )) = o((tSt
gS
S , tF t

gF
F )) ∈ {1, 2, 3, 4, 6, 12}.

Now we observe that for all g ∈ C, we have o(aag) ∈ {1, 2, 3, 4, 6, 12} if and

only if, (aag)n = 1 for some n ∈ {1, 2, 3, 4, 6, 12}. This holds if and only if

(aag)n ∈ O2(C) for some n ∈ {1, 2, 3, 4, 6, 12}. This holds for every g ∈ C.

However, this contradicts the fact that we have an element g ∈ C such that for

all n ∈ {1, 2, 3, 4, 6, 12}, [a, g]n /∈ O2(C).
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(iv) Suppose |X| = 2102.33 and again suppose that this is not the whole of B. By

Proposition 7.17 (i), (ii), (iv), (v), (vii), and (viii) there are six possibilities for

|B|. These are: 2106.35.5.7, 2106.33.5, 2106.34.5.7, 2106.32.5, 282.|F4(2)|, and |C|.

First, note that the existence of this particular x rules out possibilities 282.|F4(2)|

and |C| using the argument from part (ii). And the existence of this particular

g rules out possibilities 2106.35.5.7 and 2106.34.5.7 using the argument from part

(iii).

So, suppose |B| = 2106.33.5 or 2106.32.5. This proof will continue on the same lines

as the proof of part (iii). We see that a ∈ Sym(3)×F4(2) is of the form (1S, tF ) or

(tS, tF ) where tS is an involution in Sym(3) and tF is an involution in F4(2) such

that |CF4(2)(tF )| = 224.32.5. In other words, a ∈ 2CF4(2). From direct calculation

in Magma, we know that for all t ∈ 2CF4(2), we have o(ttg) ∈ {1, 2, 3, 4, 5, 6}

where g ∈ F4(2). Therefore, we claim that for all g ∈ Sym(3)× F4(2), o(aag) ∈

{1, 2, 3, 4, 5, 6, 12, 15}.

Again, by considering g as an ordered pair (gS, gF ) ∈ Sym(3) × F4(2), we have

the following possibilities:

if a = (1S, tF ) then o(aag) = o((1S, tF )(1S, tF )(gS ,gF )) = o((1S, tF t
gF
F ));

if a = (tS, tF ) then o(aag) = o((tS, tF )(tS, tF )(gS ,gF )) = o((tSt
gS
S , tF t

gF
F )).

We know that o(tF t
gF
F ) ∈ {1, 2, 3, 4, 5, 6}, therefore o((1S, tF t

gF
F )) ∈ {1, 2, 3, 4, 5, 6}.

Also, as o(tSt
gS
S ) ∈ {1, 3}, we have o((tSt

gS
S , tF t

gF
F )) ∈ {1, 2, 3, 4, 5, 6, 12, 15}. This

proves the claim. But now we know that o(aag) ∈ {1, 2, 3, 4, 5, 6, 12, 15} if and

only if, (aag)n = 1 for some n ∈ {1, 2, 3, 4, 5, 6, 12, 15}. And this is true if

and only if (aag)n ∈ O2(C) for some n ∈ {1, 2, 3, 4, 5, 6, 12, 15}. Thus, for all

g ∈ C, there is some n ∈ {1, 2, 3, 4, 5, 6, 12, 15} for which (aag)n ∈ O2(C). How-

ever, this contradicts the fact that we have an element g ∈ C such that for all

n ∈ {1, 2, 3, 4, 5, 6, 12, 15}, [a, g]n /∈ O2(C).

�

In practice, we continue adding generators to X until its order matches one of the

possibilities given in Proposition 7.17. Then, we utilise simple repeat..until loops

to acquire elements satisfying the properties given in Proposition 7.18. Once these
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elements are found, we can be certain that X is the entire inverse image of CC(a).

(See Procedure B.6 for procedures which find these elements.)

We also remark here that we have not provided ways of finding these “checking”

elements for every possible inverse image order. Indeed, we listed eight possibilities

in Proposition 7.17, but only discussed four of them in Proposition 7.18. However, in

practice, in all 127 cases of T ∈ T (1,5), we only ever encounter an inverse image size

matching one of the four discussed in Proposition 7.18. For this reason, we have no

need of a method finding elements which confirm we have the other possible four sizes.

So that our notation is consistent with prior sections, we will now refer to the full

inverse image of CC(a) as C1(T ). We make very clear that isn’t exactly how C1(T )

was defined in previous sections – usually, C1(T ) represents the full inverse image of

CC(T ). However, we simply use the notation Ck(T ) for k ≥ 0 as shorthand for groups

which contain I(CG(T )) which are successively smaller as k increases.

To execute these methods in practice, we note that we are actually able to choose

non-central involutions common to multiple groups in T (1,5). Hence we are able to split

T (1,5) into 46 disjoint subsets T (1,5,i) for i ∈ {1, . . . , 46} such that there is an involution

a ∈ T for all subgroups T ∈ T (1,5,i) with a 6= z (where z ∈ Z(T ) is the involution for

every T ∈ T (1,5)) and a /∈ O2(C). There is one exception: there is one T ∈ T (1,5) such

that T ≤ O2(C) and hence such an a cannot be chosen for this T . We store this on

its own in T (1,5,1). We will use the notation a(i) to refer to the non-central involution

common to each T ∈ T (1,5,i) for each i ∈ {1, . . . , 46}. The advantage of breaking up

T (1,5) this way is that, if T ∈ T (1,5,i) we can define C1(T ) to be the inverse image of

CC(a(i)), which will be same for every T ∈ T (1,5,i). Hence we must only calculate such

an inverse image 46 times instead of 127 (the total number of subgroups in T (1,5))

times.

Once we have obtained C1(T ) for each T ∈ T (1,5), we define C2(T ) = 〈StabS(F ) :

S ∈ Syl2(C1(T ))〉, which, by Proposition 3.6, contains I(CG(T )). Finally, let C3(T ) =

CC2(T )(T ) which clearly also contains I(CG(T )). These groups are calculated in the

next result. Note that we leave the sole case in T (1,5,1) out of this result.

Proposition 7.19. The sizes of C1(T ), C2(T ), and C3(T ) for every T ∈ T (1,5,i), i ∈

{2, . . . , 46} are given in Table 7.10.
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i |C1(T
(1,5,i)
j )| j |C2(T

(1,5,i)
j )| |C3(T

(1,i)
j )|

2 2106.35.5.7 1 237.3 232.3

2 236 227

3 237 231

4 236 230

5 236 230

6 234 236

7 234 229

8 234 229

9 234 226

10 234.3 226.3

11 235.32 226.3

12 232 226

13 230 225

14 232.3 227.3

3 2106.33.5 1 232.32 225.3

2 235.3 229.3

3 233 228

4 232 226

5 232.3 227.3

6 232 225

7 232.3 225.3

8 232.3 225.3

9 239.3 234.3

10 237 231

11 234.3 227

12 236 230

13 232 226

14 236 230

4 2106.35.5.7 1 233 228

2 232.3 227.3

3 232.3 225.3

4 233.3 227.3

5 233 226

6 233 226

7 235 230

8 237.3 231.3

5 2106.35.5.7 1 235.3 229.3

2 236 230

3 233 226

4 235 230

5 233 228

6 232.3 225.3

6 2106.35.5.7 1 237.32 232.32

7 2106.35.5.7 1 231 224



CHAPTER 7. Ω+
8 (2) AND ITS EXTENSIONS 114

2 233 228

3 235 230

4 233 228

5 231 224

8 2102.33 1 230 223

2 229.3 224.3

3 230 223

4 228 222

5 229.3 224.3

9 2106.33.5 1 231 224

2 236 230

3 234.3 226.3

4 232.3 227.3

10 2102.33 1 228 222

2 228 222

3 228 222

4 228 222

11 2102.33 1 229.3 223.3

2 231.3 225.3

3 231 226

4 231 225

12 2106.33.5 1 232.3 225.3

2 229.3 224.3

3 230 224

4 233.3 227.3

5 237.3 232.3

13 2106.33.5 1 229 223

2 229 223

3 229 223

14 2106.33.5 1 227.3 222.3

2 233 228

3 235.32 229.32

15 2106.33.5 1 231 226

2 234.3 229.3

3 233 228

4 234.3 231.3

16 2102.33 1 228 222

2 228 224

17 2102.33 1 228.3 222.3

2 232.3 226.3

18 2106.33.5 1 227 222

2 227 222

19 2102.33 1 230 223

2 230 224

20 2106.33.5 1 230 224
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2 233 228

21 2106.33.5 1 234.3 226.3

2 232.3 227.3

22 2106.33.5 1 232.3 225.3

2 232.3 227.3

23 2102.33 1 230 224

2 227 222

3 233 227

24 2102.33 1 231.3 225.3

2 230 224

25 2102.33 1 232.3 226.3

2 232.3 224.3

26 2102.33 1 228 222

2 228 222

27 2106.33.5 1 229 222

2 229 222

28 2106.33.5 1 232.3 227.3

29 2106.33.5 1 232.3 226.3

30 2106.35.5.7 1 232.3 227.3

31 2106.33.5 1 229.3 224.3

2 233.3 227.3

3 235.3 229.3

32 2106.35.5.7 1 231.3 226.3

33 2102.33 1 227 222

34 2106.33.5 1 231.3 226.3

35 2106.33.5 1 235.3 229.3

36 2102.33 1 227 222

37 2106.33.5 1 231.3 225.3

38 2102.33 1 233 226

39 2102.33 1 233 226

40 2106.33.5 1 236.3 229.3

41 2106.35.5.7 1 240 235

42 2106.33.5 1 233.3 226.3

43 2106.33.5 1 235.3.5 227.3.5

44 2106.35.5.7 1 235.32 230.32

45 2106.35.5.7 1 237.32 232.32

46 2106.33.5 1 235.3.5 230.3.5

Table 7.10: Sizes of Ck(T ) for k ∈ {1, 2, 3} and T ∈

T (1,5) \ T (1,5,1)

Proof. We calculate C1(T ) using Procedure 3.2 and C2(T ) using Procedure 3.7. When

C2(T ) is soluble, we turn it into a pc-group and calculate C3(T ) directly. Otherwise,
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we calculate it using LMGCentraliser. �

Taking stock of where we are currently, we have C3(T ) for every T ∈ T (2) ∪ T (3).

We broke T (1) into five sets T (1,1), . . . , T (1,5) and we have C3(T ) for every T ∈ T (1,1) ∪

. . .∪T (1,4). Finally, we broke T (1,5) into 46 sets T (1,5,1), . . . , T (1,5,46) and we have C3(T )

for every T ∈ T (1,5,2) ∪ . . . ∪ T (1,5,46). Therefore, the only group T for which we have

not obtained C3(T ) is the sole T belonging to the set T (1,5,1). Let us discuss this group

now.

Fix T ∈ T (1,5,1) and z ∈ Z(T ) the unique central involution. Recall that we have

C = CG(z) ∼ [281] : Sym(3) × F4(2). This case is a nuisance, as T ≤ O2(C). This

happened before with the subgroups belonging to T (1,4), and we dealt with these cases

by building an involution cover of Sp8(2). However, their central involution belonged

to 2DG, where here we have z ∈ 2CG. If we wanted to tackle this case in the same way,

we would need to construct an involution cover of Sym(3)×F4(2). However, F4(2) is a

very large group, and such a construction is not feasible. In fact, this case is so tricky

that we will proceed to sieve C3(T ) for all other cases of T , then return to T ∈ T (1,5,1)

later.

Now, let T ∈ T (i), i ∈ {1, 2, 3}, such that T /∈ T (1,5,1). We must is sieve C3(T )

for involutions t such that 〈PiT, t〉 ∼= Ω+
8 (2). To do this, we must first develop a new

sieve. Usually, an order of random elements sieve (see Procedure 3.8) is sufficient for

our needs but, in many of these cases, we have so many involutions to sieve that this

sieve does not sufficiently cut down our set.

Lemma 7.20. Suppose H ∼= Ω+
8 (2) is generated as in Proposition 7.1 – P ∈ Syl5(H),

T ∈ Syl2(NH(P )) and x ∈ CH(T ) \ T such that H = 〈PT, x〉. Now, let Oi(x) =

|{n ∈ PT : o(nx) = i}|, that is, the number of elements of PT with order i product

with x. Then, the following hold: O2(x) = 8, O4(x) = 24, O5(x) = 8, O6(x) = 64,

O8(x) = 32, O9(x) = 32, O10(x) = 104, O12(x) = 96, O15(x) = 32, and Oi(x) = 0 for

all i /∈ {2, 4, 5, 6, 8, 9, 10, 12, 15}.

Proof. This is easily verified using Magma. �

We can use this information in our hunt for involutions. If H ≤ G, and PiT
(i)
j ≤

H then there must exist some involution t ∈ C3(T
(i)
j ) such that, if Oi(t) = |{n ∈
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PiT
(i)
j : o(nt) = i}|, then for each i ∈ {2, 4, 5, 6, 8, 9, 10, 12, 15}, Oi(t) is as stated in

Lemma 7.20. Hence we will incorporate this into a sieve.

Procedure 7.21. This procedure will be referred to as the action on PT sieve. Let

X be the set of involutions we seek to sieve, and let PT = PiT
(i)
j . For each g ∈ X, we

carry out the following. Let Oi(g) := 0 for each i ∈ {2, 4, 5, 6, 8, 9, 10, 12, 15}. Now,

for each n ∈ PT , if o(ng) = i then we set Oi(x) := Oi(x) + 1. If, once we have run

through every element of PT , we have that Oi(x) is as described in Lemma 7.20 for

every i ∈ {2, 4, 5, 6, 8, 9, 10, 12, 15}, then we keep g in a set called Y . We do this for

every g ∈ X. If Oi(x) is incorrect for any i, then we discard g and move on.

Here is a sample code which executes this procedure.

Y:={};

for x in X do;

O2 :=0;

O4 :=0;

O5 :=0;

O6 :=0;

O8 :=0;

O9 :=0;

O10:=0;

O12:=0;

O15:=0;

for n in PT do;

o:=Order(n*x);

if o eq 2 then O2:=O2+1; end if;

if o eq 4 then O4:=O4+1; end if;

if o eq 5 then O5:=O5+1; end if;

if o eq 6 then O6:=O6+1; end if;

if o eq 8 then O8:=O8+1; end if;

if o eq 9 then O9:=O9+1; end if;

if o eq 10 then O10:=O10+1; end if;

if o eq 12 then O12:=O12+1; end if;
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if o eq 15 then O15:=O15+1; end if;

end for;

if O2 eq 8 then;

if O4 eq 24 then;

if O5 eq 8 then;

if O6 eq 64 then;

if O8 eq 32 then;

if O9 eq 32 then;

if O10 eq 104 then;

if O12 eq 96 then;

if O15 eq 32 then;

Include(~Y,x);

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end for;

We are now ready to sieve each C3(T ) and find if there are any involutions gener-

ating Ω+
8 (2) containing PiT for i ∈ {2, 3}. The following result explores this process

for T ∈ T (2) ∪ T (3).

Proposition 7.22. Let (i, j) ∈ {(2, 1), (3, 1), (3, 2), (3, 3), (3, 4)}. The number of

Ω+
8 (2) subgroups of G up to G-conjugacy for which PiT

(i)
j ≤ Ω+

8 (2) is given in Ta-

ble 7.11.

Proof. Let T = T
(i)
j . First, note that C3(T ) is soluble in every case, so we can convert

it into a pc-group and gather all of its involutions in a set called I0(T ). Then, we run

an order of random elements sieve on each involution in I0(T ) (see Procedure 3.8 for
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i j Number of Ω+
8 (2) subgroups containing PiT

(i)
j

2 1 1
3 1 1
3 2 1
3 3 0
3 4 0

Table 7.11: Ω+
8 (2) subgroups containing PiT

(i)
j

full details). Note that we require a full set of all possible orders of elements appearing

in Ω+
8 (2) to employ this sieve. This is {1,2,3,4,5,6,7,8,9,12,15} which can be seen in

the ATLAS [14]. We store the involutions that survive in a set called I1(T ). Now,

for each involution t ∈ I1(T ), we check that Ok(t) (as defined in Lemma 7.20) has

the correct size for each k ∈ {2, 4, 5, 6, 8, 9, 10, 12, 15} by running Procedure 7.21. If

t survives this sieve, we store it in a set called I2(T ). Finally, for each t ∈ I2(T ), if

〈PiT, t〉 ∼= Ω+
8 (2) and t generates a distinct Ω+

8 (2) subgroup, then we store t in I3(T ).

The results of this process are shown in Table 7.12. The final column of Table 7.12

provides us with the number of Ω+
8 (2) subgroups, as stated. �

i j |I0(T
(i)
j )| |I1(T

(i)
j )| |I2(T

(i)
j )| |I3(T

(i)
j )|

2 1 12,287 28 3 1
3 1 96,255 410 9 1
3 2 43,007 148 3 1
3 3 5,119 148 1 0
3 4 3,071 132 1 0

Table 7.12: |Il(T (i)
j )| for l ∈ {0, 1, 2, 3}

We have found three Ω+
8 (2) subgroups so far. Let us now look at T ∈ T (1,i) for

i ∈ {1, 2, 3, 4}.

Proposition 7.23. Let i ∈ {1, 2, 3, 4}. The number of Ω+
8 (2) subgroups of G up to

G-conjugacy for which P1T
(1,i)
j ≤ Ω+

8 (2) is given in Table 7.13.

i j Number of Ω+
8 (2) subgroups containing P1T

(1,i)
j

1 1, 2, 3, 4 0
2 1, . . . , 10 0
3 1, . . . , 5, 7, . . . , 10 0
3 6 1
4 1, . . . , 119, 121, . . . , 200 0
4 120 1

Table 7.13: Ω+
8 (2) subgroups containing P1T

(1,i)
j , i ∈ {1, 2, 3, 4}
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Proof. We follow the steps of the proof of Proposition 7.22 identically, constructing

sets of involutions Il(T (1,i)
j ) for l ∈ {0, 1, 2, 3}. The results for (i, j) ∈ {(3, 6), (4, 120)}

are displayed in Table 7.14. There are no Ω+
8 (2) subgroups of G containing P1T

(1,i)
j

for (i, j) /∈ {(3, 6), (4, 120)}, so we do not list the results here.

i j |I0(T
(1,i)
j )| |I1(T

(1,i)
j )| |I2(T

(1,i)
j )| |I3(T

(1,i)
j )|

3 6 720,895 6,095 24 2
4 120 1,245,183 19,455 24 2

Table 7.14: |Il(T (1,i)
j )| for l ∈ {0, 1, 2, 3}

Now let (i, j) ∈ {(3, 6), (4, 120)}. There are two Ω+
8 (2) subgroups containing

P1T
(1,i)
j . Let us call them H

(1,i,j)
1 and H

(1,i,j)
2 . In actuality, these are G-conjugate. By

Proposition 3.15, we know that H
(1,i,j)
1 and H

(1,i,j)
2 are conjugate in G if and only if they

are conjugate in the group NNG(P1)(P1T
(1,i)
j ). Recall that we have NG(P1) in Magma

as a permutation group. In this setting, we can easily calculate NNG(P1)(P1T
(1,i)
j ) and

readily find an element that conjugates H
(1,i,j)
1 to H

(1,i,j)
2 . �

We have found an additional two Ω+
8 (2) subgroups. Now, let us see how many

Ω+
8 (2) we can find contining P1T where T ∈ T (1,5), with the exception of T ∈ T (1,5,1).

Proposition 7.24. Recall that we break T (1,5) into 46 sets: T (1,5,1), . . . , T (1,5,46). Let

ni = |T (1,5,i)| for i ∈ {1, . . . , 46}. Let T
(1,5,i)
1 , . . . , T

(1,5,i)
ni be the subgroups contained in

the set T (1,5,i). Then:

(i) there is a unique (up to G-conjugacy) subgroup of G isomorphic to Ω+
8 (2) up to

G-conjugacy containing P1T
(1,5,15)
4 ;

(ii) there are no Ω+
8 (2) subgroups containing P1T

(1,5,i)
j for all choices of i ∈ {2, . . . , 46}

and j ∈ {1, . . . , ni} except (i, j) ∈ {(5, 15)}.

Proof. For the most part, we can again follow the steps of the proof of Proposition 7.22

identically, constructing sets of involutions Il(T (1,5,i)
j ) for l ∈ {0, 1, 2, 3}. However, this

method cannot feasibly be applied to six cases of T
(1,5,i)
j . It should be noted that, given

enough computing power and enough time, then all of these cases can be sieved for

involutions using the techniques described in the proof of Proposition 7.22. However,

we will describe the faster methods for how we dealt with these cases. These cases are

T
(1,5,i)
1 where i ∈ {6, 41, 43, 44, 45, 46} and T

(1,5,2)
9 .
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(i) First, we will sieve C3(T
(1,5,41)
1 ), which is of order 235 by Proposition 7.19. Here,

we use Procedure 3.12. The full details of this procedure are in Procedure 3.12,

but we will go over some of the details here. Let X = C3(T
(1,5,41)
1 ) and we

construct

E ≤ Z(X) ≤ S ≤ X

where E ∼= 26 and |S| = 230. Now, let Γ be a right transversal for E in S

and ∆ = {δ1, . . . , δ32} be a right transversal for S in X. We open a new screen

for each element of ∆; 32 screens in total. Screen i sieves the set Sδi. Then,

combining Propositions 3.10 and 3.11 we know that we must sieve Eγδi for each

i ∈ {1, . . . , 32} and for γ ∈ Γ such that (γδi)
2 = 1. A sample code for the

sieving process is given in Procedure 3.12. For each element in x ∈ Eγδi, we

first check that x ∈ 2C, then run x through an order of random elements sieve

(see Procedure 3.8). No involutions survive this process, so we know there are

no Ω+
8 (2) subgroups containing T

(1,5,41)
1 .

(ii) Next, we will look at sieving C3(T
(1,5,i)
j ) for (i, j) ∈ {(2, 9), (6, 1), (44, 1), (45, 1)}.

Here, we have |C3(T
(1,5,i)
j )| ∈ {234.3, 230.32, 232.32}, but we will use the same

method for each case. First, let X be a Sylow 2-subgroup of C3(T
(1,5,i)
j ) and let R

be a right transversal for X in C3(T
(1,5,i)
j ). (We calculate R using Transversal

but in the case C3(T
(1,5,9)
2 ) we have that |C3(T

(1,5,9)
2 )| = 234.3 so we can choose any

element r ∈ C3(T
(1,5,9)
2 ) of order 3 and R = {1, r, r2} will be a right transversal

for X in C3(T
(1,5,9)
2 ).) Then if t ∈ C3(T

(1,5,i)
j ) is an involution then t ∈ Xr for

some r ∈ R. The method we will employ, therefore, is to find the involutions of

x ∈ X and run xr through our sieves for every r ∈ R. This will ensure that we

will have interrogated each involution in C3(T
(1,5,i)
j ). However, we do not actually

need to sieve Xr for each r ∈ R entirely separately. A more efficient way would

be to first construct I(X) then sieve I(X)r for each r ∈ R, as then, we only need

to construct one set of involutions of a Sylow 2-subgroup then conjugate by r to

cover all the involutions in C3(T
(1,5,i)
j ). Even better still would be to construct

the set I(X) ∩ 2CG then sieve (I(X) ∩ 2CG)r for each r ∈ R. Of course, this

means we only have to sieve one I(X) for involutions in 2CG, then any conjugate

of these involutions will automatically lie in 2CG.
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We will use the method in part (i) to obtain E ≤ Z(X) ≤ S ≤ X where

E is elementary abelian, with Γ a right tranversal for E in S and ∆ a right

transversal for S in X. (Note that for (i, j) = (2, 9) we have E ∼= 26 and choose

S such that [X : S] = 32 and for (i, j) ∈ {(6, 1), (44, 1), (45, 1)} we have E ∼= 28

and choose S such that [X : S] = 8.) We open a new screen for each element

δ ∈ ∆ and each screen then sieves Sδ by first building a set I0(X) = {εγδ :

(γδ)2 = 1, ε ∈ E}. Now let I1(X) = {x ∈ I0(X) : dimCV (x) = 138}, that is,

the elements of I0(X) which lie in 2CG. Now, for every x ∈ I1(X) we run an

order of random elements sieve on xr for every r ∈ R. No involutions survive

this process, so we know there are no Ω+
8 (2) subgroups containing T

(1,5,i)
j for

(i, j) ∈ {(6, 1), (44, 1), (45, 1), (2, 9)}.

(iii) Finally, we will look at the cases where (i, j) ∈ {(43, 1), (46, 1)}. Here we have

|C3(T
(1,5,i)
j )| ∈ {227.3.5, 230.3.5}, but we will proceed the same way in both cases.

Let M = C3(T
(1,5,i)
j ) and let W = O2(M) with M = M/O2(M) ∼= Alt(5). We

calculate W and M using the command LMGRadicalQuotient. Since |W | =

225 or |W | = 228 we can sieve this directly, following the steps of the proof of

Proposition 7.22. This accounts for all the involutions t ∈ W , but now we must

consider the involutions t /∈ W .

In this case, we must have that t ∈ M is an involution. Let m ∈ M be a

conjugacy class representative for the unique M -class of involutions. Then t and

m are conjugate in M , so there is some g ∈ M such that t = mg. Now let R be

a right transversal for CM(m) in M . As g ∈ M we have that g ∈ CM(m)r for

some r ∈ R. Therefore, there exists c ∈ CM(m) such that g = cr. But now

t = mg = mcr = (mc)r = mr.

Hence, for all t ∈M \W , there exists r ∈ R such that t = mr.

Now let A be the inverse image of m and let R = {r1, . . . , r15} ⊂ M be a set

of coset representatives of the cosets r ∈ R. Supposing that t = mri , for some

i ∈ {1, . . . , 15}, we claim that t ∈ Ari . Indeed, we have tr
−1
i = m and hence

tr
−1
i ∈ A which gives us that t ∈ Ari . Since this holds for every involution in
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M \W we have that

I(M \W ) =
⋃
r∈R

(A \W )r.

Moreover, recall that we only require the involutions in M \W which belong to

2CG. Therefore, the involutions we desire will be found in ((A \W ) ∩ 2CG)r for

each r ∈ R.

In practice, A has order 226 or 229. We turn this into a pc-group using the

command LMGSolubleRadical and run through every element x ∈ A, collecting

all the involutions not in W and pulling them back to the matrix setting to keep

them if dimCV (x) = 138. Then, we run an order of random elements sieve (see

Procedure 3.8) on xr for each r ∈ R. No involutions survive this process, so we

know there are no Ω+
8 (2) subgroups containing T

(1,5,i)
j for (i, j) ∈ {(43, 1), (46, 1)}.

The only case in which we find involutions t such that 〈P1T
(1,5,i)
j , t〉 ∼= Ω+

8 (2) is

the case when (i, j) = (15, 4), where we find involutions which generate four distinct

Ω+
8 (2) subgroups. However, we are able to readily find elements in NG(P1) which con-

jugate these copies of Ω+
8 (2) to each other. Hence, there is only one Ω+

8 (2) containing

P1T
(1,5,15)
4 up to G-conjugacy. �

We will conclude this section by finding, up to G-conjugacy, all Ω+
8 (2) subgroups

containing P1T where T is the unique member of the set T (1,5,1).

Proposition 7.25. There is exactly one Ω+
8 (2) subgroup of G up to G-conjugacy

containing P1T where T is the unique member of the set T (1,5,1).

Proof. Let C = CG(z), where z is the unique central involution in T . Then we know,

by Proposition 2.19, that C ∼ [281] : Sym(3)× F4(2). Let W = O2(C) ∼ [281]. In this

case, we see that T ≤ W . This presents us with a difficult situation; usually, we aim

to find the inverse image of CC(T ) in C, where C = C/W . However, as T ≤ W , we

have that T = 1 and therefore CC(T ) is the whole of C and thus its inverse image is

the whole of C. So, we have failed to cut down where we must look for involutions

centralising T .

Instead, let Φ(W ) be the Frattini subgroup of W (the intersection of all maximal

subgroups of W ). We find that Φ(W ) is of order 229 and so W/Φ(W ) is elementary

abelian of order 252. Moreover, we can calculate CW (T ) directly and we find that
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|CW (T )| = 228 with |Φ(W )∩CW (T )| = 227. Now consider the action of C on W/Φ(W )

by conjugation and suppose c ∈ C normalises CW (T ). Given that Φ(W ) ∩ CW (T ) is

normal in CW (T ), for all w ∈ CW (T )\Φ(W ) we have wc ∈ CW (T )\Φ(W ). Therefore,

the element w ∈ W/Φ(W ) is stabilised by any c ∈ NC(CW (T )). Using the command

GModule(C,W,FW)

where the object FW is the Frattini subgroup Φ(W ), we are able to obtain the 52-

dimensional vector space over GF (2) isomorphic to the elementary abelian group

W/Φ(W ) ∼= 252 under the action of C. By the above argument, NC(CW (T )) will

be found in the inverse image of the stabiliser in C of w, where we consider w as a

52-dimensional vector.

Now we claim that CG(T ) lies in NC(CW (T )). Indeed, CG(T ) ≤ CC(T ), so if c

centralises T then c ∈ C and CW (T )c = CW (T c) = CW (T ), so c ∈ NC(CW (T )) as

required. Now, let 〈a, b, c〉 ≤ T where a, b, and c are involutions. Furthermore, we

find that a, b, c can be chosen such that a /∈ Φ(W ), b /∈ Φ(W ), and c /∈ Φ(W ). Now,

any x ∈ CC(T ) must clearly fix a, b, and c by conjugation, and so must stabilise each

of a, b, and c, where here we are considering a, b, and c as 52-dimensional vectors.

Therefore, CG(T ) lies inside the inverse image of the intersection of the stabilisers in

C of w, a, b, and c. Hence we form a chain of nested stabilisers in the vector space

setting, where X is the matrix group representing the action of C on W/Φ(W ):

Sw = StabX(w), Sa = StabSw(a), Sb = StabSa(b), Sc = StabSb(c).

So now we know that CG(T ) must lie in the inverse image in C of Sc. We are unable to

calculate this inverse image directly using Magma. However, we see that Sc ∼= Ω+
8 (2),

and hence we know CG(T ) ≤ [281] : Ω+
8 (2) ≤ C. Let M = [281] : Ω+

8 (2) – the

group which we know must contain CG(T ) but cannot calculate directly. Were we

able to calculate M , we would then proceed to calculate StabM(F ) where F = CV (T ),

which we know also must contain CG(T ). However, we can calculate StabS(F ) where

S ∈ Syl2(C), and if we were able to run through every Sylow 2-subgroup S of C

and take the subgroup generated by all of these stabilisers, we would obtain a group

guaranteed to contain every involution centralising T . However, we need not run

through every Sylow 2-subgroup. After running through 200 Sylow 2-subgroups, we



CHAPTER 7. Ω+
8 (2) AND ITS EXTENSIONS 125

calculate M0 = 〈StabSri (F ) : r1, . . . , r200 ∈ C〉 and find that M0 ∼ [233] : Ω+
8 (2). We

also find that CM0(T ) ∼ [228] : Ω+
8 (2). Hence we conclude that M = WCM0(T ) and so

CM(T ) = CW (T )CM0(T ).

However, we now see that CW (T ) ≤ CM0(T ) and so CM(T ) = CM0(T ). Finally, we

have arrived at a group CM0(T ) we can now proceed to sieve for involutions.

Still, sieving CM0(T ) is a challenge in and of itself. This is the largest subgroup

we must sieve for involutions in this entire thesis. From here on, we will use C0(T ) to

refer to CM0(T ) and recall that we have C0(T ) ∼ [228] : Ω+
8 (2). We will sieve C0(T )

in a similar way to other cases, sieving for involutions which lie in O2(C0(T )) and for

involutions which do not. Suppose x ∈ C0(T ) such that 〈P1T, x〉 ∼= Ω+
8 (2). Then either

x /∈ O2(C0(T )) or x ∈ O2(C0(T )).

Let us first assume that x /∈ O2(C0(T )). Let C0(T ) = C0(T )/O2(C0(T )) ∼= Ω+
8 (2)

and let x1, . . . , x5 be representatives for the classes of involutions in C0(T ). Then x

is an involution and is conjugate to xi for some i ∈ {1, 2, 3, 4, 5}. Let Ri be a right

transversal in C0(T ) for CC0(T )(xi) and let Ri be a complete set of representatives for

the cosets in Ri. Finally, let Ni be the inverse image in C0(T ) of 〈xi〉. Then, by the

same argument seen in the end of the proof of Proposition 7.24 (ii) when dealing with

(i, j) ∈ {(43, 1), (46, 1)}, we have that

x ∈ N r
i

for some r ∈ Ri. Moreover, since we know that x /∈ O2(C0(T )) and we can take

x ∈ 2CG, we know that if

Xi = (Ni \O2(C0(T ))) ∩ 2CG.

then x ∈ Xr
i for some r ∈ Ri. Hence, for each i ∈ {1, 2, 3, 4, 5}, our task is now to

construct Ri and Xi and sieve Xr
i for each r ∈ Ri. First, we will focus on constructing

Xi.

Fix i ∈ {1, 2, 3, 4, 5}. Using the command LMGRadicalQuotient and the homo-

morphism provided, we can obtain Ni and Ri. We now use last procedure described

in Procedure 3.12, obtaining a chain of subgroups

Ei ≤ Z(Ni) ≤ Si ≤ O2(C0(T )) ≤ Ni
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where Ei is elementary abelian. Then, we find a right transversal Γi for Ei in Si, and

a right transversal ∆i for Si in Ni. Then the involutions we require are of the form

εγδ where ε ∈ Ei, γ ∈ Γ, and δ ∈ ∆ such that (γδ)2 = 1 and δ /∈ O2(C0(T ) (see

Procedure 3.12 for full details). Additionally, if εγδ ∈ 2CG then we store εγδ in Xi.

Hence we have constructed Xi.

We must now sieve Xr
i for every r ∈ Ri. So, for each x ∈ Xi, we run through every

element r ∈ Ri and let y = xr. First, we run an order of random elements sieve on y

(see Procedure 3.8). If y survives this sieve, we run an “action on P1T” sieve on y (see

Procedure 7.21). No elements survive both sieves for any i ∈ {1, 2, 3, 4, 5}, so there

are no involutions x ∈ C0(T ) \O2(C0(T )) such that 〈P1T, x〉 ∼= Ω+
8 (2).

Finally, we must sieve O2(C0(T )) for generating involutions. Here, we simply take

x ∈ O2(C0(T )) and run x through a random elements sieve followed by an action on

P1T sieve (see Procedures 3.8 and 7.21) and keep those that survive in a set called

X. We find that |X| = 43, 201. Let xj be the elements of X for j ∈ {1, . . . , 43201}.

We find that 〈P1T, x1〉 ∼= Ω+
8 (2). Moreover, we let N = NG(P1) and observe that

(P1T )n = P1T for all n ∈ N . Now, for every j ∈ {2, . . . , 43201}, we can find some nj

such that xnij ∈ 〈P1T, x1〉. This implies that 〈P1T, xj〉 is a redundant subgroup for all

j ∈ {2, . . . , 43201}. Indeed, we have

〈P1T, xj〉nj = 〈(P1T )nj , x
nj
j 〉 = 〈P1T, x

nj
j 〉 ≤ 〈P1T, x1〉

and so if we have equality then 〈P1T, xj〉 is conjugate to 〈P1T, x1〉, but if we don’t have

equality then 〈P1T, xj〉 � Ω+
8 (2). Thus, we have only one Ω+

8 (2) subgroup containing

P1T , as stated. �

Hence we have at most seven copies of Ω+
8 (2) in G up to G-conjugacy. We will now

seek to extend these.

7.2 Extending Ω+
8 (2) to Ω+

8 (2) : Sym(3)

We will begin this subsection by simplifying our notation. Our three subgroups iso-

morphic to 52 will remain P1, P2, and P3. We will now renumber the Dih(8) ◦ Z4

subgroups, extracting the ones which actually form part of a generating set for an

Ω+
8 (2) subgroup of G. Let T

(1)
1 , T

(1)
2 , T

(1)
3 , and T

(1)
4 be the subgroups T

(1,3)
9 , T

(1,4)
152 ,
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T
(1,5,15)
4 , and T

(1,5,1)
1 respectively. Let T

(2)
1 be the sole Dih(8) ◦ Z4 subgroup normal-

ising P2 and let T
(3)
1 and T

(3)
2 remain as they were in the previous section. Finally,

for each (i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (3, 2)}, we will let H
(i)
j be the

unique (up to G-conjugacy) Ω+
8 (2) subgroup of G containing PiT

(i)
j .

We start by looking for g ∈ G such that 〈H(i)
j , g〉 ∼= Ω+

8 (2) : k, where k ∈ {2, 3}. By

Proposition 2.15 we know that we will find such elements in NNG(Pi)(PiT
(i)
j )∩NG(H

(i)
j ).

We have NG(Pi) as a permutation group, as found in Proposition 7.7. Hence we can

easily calculate N
(i)
j := NNG(Pi)(PiT

(i)
j ) directly in the permutation group setting. The

challenge is now to find which elements in N
(i)
j normalise H

(i)
j . This can be difficult, as

H
(i)
j is not a subgroup of N

(i)
j , so we cannot apply the command Normaliser. Instead,

we apply the following result.

Lemma 7.26. Let F
(i)
j = CV (H

(i)
j ). Then

N
N

(i)
j

(H
(i)
j ) ≤ Stab

N
(i)
j

(F
(i)
j ).

Proof. Let g ∈ N
N

(i)
j

(H
(i)
j ). We must show that for all v ∈ F

(i)
j , we have vg ∈ F

(i)
j .

Note that vg ∈ F (i)
j if and only if, (vg)h = vg for all h ∈ H(i)

j . Also note that, since g

normalises H
(i)
j , then for all h ∈ H(i)

j , we have ghg−1 = h0 ∈ H and therefore gh = h0g.

So, let v ∈ F (i)
j and h ∈ H(i)

j , and now:

(vg)h = vgh = vh0g = (vh0)g = vg

and hence vg ∈ F (i)
j . �

Let S
(i)
j = Stab

N
(i)
j

(F
(i)
j ). We will now calculate S

(i)
j and N

S
(i)
j

(H
(i)
j ) for each case.

Proposition 7.27. For each (i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (3, 2)}, the

orders of N
(i)
j , S

(i)
j , and N

S
(i)
j

(H
(i)
j ) are given in Table 7.15.

Proof. As previously stated, we can calculateN
(i)
j directly in the permutation setting of

NG(Pi). Back in the matrix setting, we calculate S
(i)
j using the command Stabiliser.

Now, in every case except (i, j) = (1, 2), we observe that every generator g of S
(i)
j

normalises H
(i)
j and therefore S

(i)
j is in fact N

S
(i)
j

(H
(i)
j ). In the case where (i, j) = (1, 2),

there exists an element g ∈ S(1)
2 which does not normalise H

(1)
2 . Therefore, we have

that N
S
(1)
2

(H
(1)
2 ) � S

(1)
2 . Now, we take random elements of S

(1)
2 which do normalise

H
(1)
2 , and take the subgroup they generate. This will be a subgroup of N

S
(1)
2

(H
(1)
2 ).



CHAPTER 7. Ω+
8 (2) AND ITS EXTENSIONS 128

i j |N (i)
j | |S(i)

j | |N
S
(i)
j

(H
(i)
j )|

1 1 29.3.52 28.3.52 28.3.52

1 2 211.3.52 211.3.52 210.3.52

1 3 213.3.52 211.3.52 211.3.52

1 4 217.36.54.7 211.34.52.7 211.34.52.7
2 1 25.3.52 25.3.52 25.3.52

3 1 26.3.52 26.3.52 26.3.52

3 2 26.52 26.52 26.52

Table 7.15: Orders of N
(i)
j , S

(i)
j , and N

S
(i)
j

(H
(i)
j )

However, we can find a sufficient number of such elements so as we can generate a

subgroup of S
(1)
2 of index 2. This must be the whole of N

S
(1)
2

(H
(1)
2 ) – it cannot be any

larger, since it must be a proper subgroup of S
(1)
2 . This completes the proof. �

We must now sieve each N
S
(i)
j

(H
(i)
j ) for elements g such that 〈H(i)

j , g〉 ∼= Ω+
8 (2) : k,

for k ∈ {2, 3}. Here, we appeal to Proposition 2.17 to see that if g ∈ N
S
(i)
j

(H
(i)
j )

is such that 〈H(i)
j , g〉 ∼= Ω+

8 (2) : k, then g /∈ H
(i)
j and gk ∈ H

(i)
j . Furthermore, by

Proposition 2.16 we know that if g and g0 are conjugate in N
S
(i)
j

(H
(i)
j ), then:

• g /∈ H(i)
j if and only if g0 /∈ H(i)

j ;

• gk ∈ H(i)
j if and only if gk0 ∈ H

(i)
j ;

• 〈H(i)
j , g〉 and 〈H(i)

j , g0〉 are conjugate groups.

Hence we need only find elements up to conjugacy in N
S
(i)
j

(H
(i)
j ). From now on, we will

use E0(H
(i)
j ) to denote N

S
(i)
j

(H
(i)
j ) and we will let E1(H

(i)
j ) be a set of E0(H

(i)
j )-conjugacy

class representatives. Now, we define

E (k)
2 (H

(i)
j ) = {x ∈ E1(H

(i)
j ) : x /∈ H(i)

j and xk ∈ H(i)
j }

for k ∈ {2, 3}. Finally, we construct E (k)
3 (H

(i)
j ), a set of elements from E (k)

2 (H
(i)
j ) which

generate distinct Ω+
8 (2) : k subgroups containing H

(i)
j . The results of this process are

explored now.

Proposition 7.28. The sizes of E1(H
(i)
j ) and E (k)

l (H
(i)
j ) for l, k ∈ {2, 3} are given in

Table 7.16.

Proof. We construct E1(H
(i)
j ) using Classes and E (k)

l (H
(i)
j ) directly. �
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i j |E1(H
(i)
j )| |E (2)

2 (H
(i)
j )| |E (3)

2 (H
(i)
j )| |E (2)

3 (H
(i)
j )| |E (3)

3 (H
(i)
j )|

1 1 80 48 4 2 1
1 2 264 72 4 3 1
1 3 280 108 12 10 0
1 4 320 40 28 3 3
2 1 20 8 4 2 1
3 1 60 28 12 4 0
3 2 40 28 0 2 0

Table 7.16: Sizes of E1(H
(i)
j ) and E (k)

l (H
(i)
j ) for l, k ∈ {2, 3}

We will now show that some of the Ω+
8 (2) : k subgroups we have found are actually

conjugate.

Proposition 7.29. For each k ∈ {2, 3}, the number of Ω+
8 (2) : k subgroups up to

G-conjugacy containing each H
(i)
j is given in Table 7.17.

i j Number of Ω+
8 (2) : 2 subgroups Number of Ω+

8 (2) : 3 subgroups
1 1 2 1
1 2 1 1
1 3 6 0
1 4 3 3
2 1 1 1
3 1 2 0
3 2 2 0

Table 7.17: Number of Ω+
8 (2) : k subgroups of G contining H

(i)
j

Proof. We run through all the elements in N
S
(i)
j

(H
(i)
j ) looking for elements which

conjugate the Ω+
8 (2) : k subgroups containing H

(i)
j to each other. Note that if

L1
∼= L2

∼= Ω+
8 (2) : k are two subgroups such that L1 6= L2, H

(i)
j ≤ L1, and H

(i)
j ≤ L2,

then if there is no element n ∈ N
S
(i)
j

(H
(i)
j ) such that Ln1 = L2, then L1 and L2 are not

conjugate in G. To see why, for this proof let H = H
(i,j)
k and P = Pi. Since H is the

unique Ω+
8 (2) subgroup of L1 and L2, any n ∈ G such that Ln1 = L2 must normalise H.

Then P n ∈ Syl5(H) and so there is some h ∈ H such that P nh = P . Now Hnh = H

where nh ∈ NH(P ). Moreover, NH(P )nh = NH(P nh) = NH(P ). Hence Lnh1 = L2

where nh ∈ NNG(P )(NH(P )) = N
(i)
j , as required. The results of this search are given

in the table. �

Now, clearly, we have that Ω+
8 (2) : Sym(3) ≥ Ω+

8 (2) : 3. Therefore, overgroups

of H
(i)
j isomorphic to Ω+

8 (2) : Sym(3) only exist if there exist overgroups of H
(i)
j

isomorphic to Ω+
8 (2) : 3. Hence, we need only consider extending H

(i)
j to H

(i)
j : Sym(3)
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where (i, j) ∈ {(1, 1), (1, 2), (1, 4), (2, 1)}. To begin, let us consider the following fact

regarding Ω+
8 (2) : Sym(3).

Lemma 7.30. Suppose Ω+
8 (2) ∼= H ≤ H0

∼= Ω+
8 (2) : Sym(3) and let x, y ∈ H0 such

that 〈H, y〉 ∼= Ω+
8 (2) : 3 and 〈H, x, y〉 = H0. Then x2 ∈ H and (xy)2 ∈ H. Moreover,

we have (xy0)2 ∈ H for every y0 ∈ 〈H, y〉 \H.

Proof. As H0
∼= Ω+

8 (2) : Sym(3) is a split extension, we know that H0/H ∼= Sym(3).

Given h ∈ H0, denote by h the coset hH. As 〈H, x, y〉 = H0, we have 〈x, y〉 ∼= Sym(3).

Note that y has order 3, as y3 ∈ H and y, y2 /∈ H. In order for x to generate Sym(3)

along with an element of order 3, it must have order 2. Thus x2 = 1 which implies

that x2 ∈ H. Finally, we know that in Sym(3) the product of any involution with

an element of order 3 is an involution. Therefore, (xy)2 = 1, which is to say that

(xy)2 ∈ H.

Now, let y0 ∈ 〈H, y〉 \H. As H is maximal in 〈H, y〉, we have that 〈H, y〉 = 〈H, y0〉

and hence the above argument holds for y0 in place of y. �

For a fixed H
(i)
j , let k = 1 if (i, j) ∈ {(1, 1), (1, 2), (2, 1)} and k ∈ {1, 2, 3} if (i, j) =

(1, 4). Now, let yk be such that 〈H(i)
j , yk〉 are the distinct copies of Ω+

8 (2) : 3 found

in Proposition 7.28. We now seek to find x such that 〈H(i)
j , x, yk〉 ∼= Ω+

8 (2) : Sym(3).

Since x must normalise H
(i)
j , we know we can restrict our search to N

S
(i)
j

(H
(i)
j ). By

Lemma 7.30 we know that x2 ∈ H(i)
j and (xyk)

2 ∈ H(i)
j . Moreover, x must normalise

〈H(i)
j , yk〉 ∼= Ω+

8 (2) : 3, as Ω+
8 (2) : 3 is a normal subgroup of Ω+

8 (2) : Sym(3) (as it has

index 2). Let L
(i,j)
k = 〈H(i)

j , yk〉. Hence we start by constructing

X0(L
(i,j)
k ) = {x ∈ N

S
(i)
j

(H
(i)
j ) : x2 ∈ H(i)

j , (xyk)
2 ∈ H(i)

j , 〈H
(i)
j , yk〉x = 〈H(i)

j , yk〉}.

Now, suppose x, x0 ∈ X0(L
(i,j)
k ) such that x and x0 are conjugate in 〈X0(L

(i,j)
k )〉. Then

〈H(i)
j , x, yk〉 and 〈H(i)

j , x0, yk〉 are conjugate groups. Indeed, let g ∈ 〈X0(H
(i)
j )〉 such

that xg = x0. Note that, as g ∈ 〈X0(H
(i)
j )〉, we have 〈H(i)

j , yk〉g = 〈H(i)
j , yk〉. And so

we have

〈H(i)
j , x, yk〉g = 〈〈H(i)

j , yk〉, x〉g

= 〈〈H(i)
j , yk〉g, xg〉

= 〈〈H(i)
j , yk〉, x0〉

= 〈H(i)
j , x0, yk〉
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as required. Note that X0(L
(i,j)
k ) is not a group, which is why we demand conjugacy

in 〈X0(L
(i,j)
k )〉. Hence, we need only take elements from X0(L

(i,j)
k ) up to conjugacy in

〈X0(L
(i,j)
k )〉. In fact, we may actually take an arbitrary set of 〈X0(L

(i,j)
k )〉-conjugacy

class representatives, as the next result will show.

Lemma 7.31. Let L = L
(i,j)
k and H = H

(i,j)
k and let X1(L) be a set of conjugacy class

representatives of 〈X0(L)〉. Let x ∈ X1(L) such that x is 〈X0(L)〉-conjugate to some

element x0 ∈ X0(L). Then

(i) x2 ∈ H, x normalises H, and for all y ∈ L such that L = 〈H, y〉, we have

(xy)2 ∈ H;

(ii) 〈H, x, y〉 and 〈H, x0, y〉 are conjugate groups.

Proof. Let g ∈ 〈X0(L)〉 such that x = xg0. Note that Hg = H and Lg = L.

(i) Note that since x0 ∈ X0(L), we have x2
0 ∈ H. Hence

x2 = (xg0)2 = (x2
0)g ∈ Hg = H

as required. Now let y ∈ L such that 〈H, y〉 = L. Then

Lx = Lg
−1x0g = L

as required. Finally, since Lg = L we know that there must exist some y0 ∈ L for

which yg0 = y. And since x0 ∈ X0(L) we have that (x0y)2 ∈ H for all y ∈ L \H.

(xy)2 = (xg0y
g
0)2 = ((x0y0)g)2 = ((x0y0)2)g ∈ Hg = H

as required. This completes part (i).

(ii) Here, we simply have again that L = 〈H, y〉 which is normalised by g, and so

〈H, x, y〉g = 〈L, x〉g = 〈Lg, xg〉 = 〈L, x0〉 = 〈H, x0, y〉

as required, which completes part (ii).

�

Hence, we let X1(L
(i,j)
k ) be a set of 〈X0(L

(i,j)
k )〉-conjugacy class representatives of

X0(L
(i,j)
k ). Finally, we let X2(L

(i,j)
k ) be a set of elements x ∈ X1(L

(i,j)
k ) such that

〈H(i)
j , x, yk〉 is a distinct copy of Ω+

8 (2) : Sym(3). We will give the results of this

process before determining whether any of the copies of Ω+
8 (2) : Sym(3) are conjugate.



CHAPTER 7. Ω+
8 (2) AND ITS EXTENSIONS 132

Proposition 7.32. The sizes of X0(L
(i,j)
k ), 〈X0(L

(i,j)
k )〉, X1(L

(i,j)
k ), and X2(L

(i,j)
k ) are

given in Table 7.18.

i j k |X0(L
(i,j)
k )| |〈X0(L

(i,j)
k )〉| |X1(L

(i,j)
k )| |X2(L

(i,j)
k )|

1 1 1 2,400 4,800 16 2
1 2 1 4,800 9,600 16 4
1 4 1 379,200 29,030,400 24 3
1 4 2 14,400 43,200 16 10
1 4 3 43,200 259,200 16 2
2 1 1 1,200 2,400 8 1

Table 7.18: Sizes of X0(L
(i,j)
k ), 〈X0(L

(i,j)
k )〉, X1(L

(i,j)
k ), and X2(L

(i,j)
k )

Proof. We construct these sets in Magma directly. �

The final part of the construction of Ω+
8 (2) : Sym(3) subgroups is to show that

many of the Ω+
8 (2) : Sym(3) subgroups we have found are actually conjugate.

Proposition 7.33. The number of Ω+
8 (2) : Sym(3) subgroups containing each L

(i,j)
k

up to G-conjugacy is given in Table 7.19.

i j k Number of Ω+
8 (2) : Sym(3) subgroups

1 1 1 2
1 2 1 1
1 4 1 3
1 4 2 2
1 4 3 1
2 1 1 1

Table 7.19: Number of Ω+
8 (2) : Sym(3) subgroups containing each L

(i,j)
k

Proof. We follow the same steps as in the proof of Proposition 7.29. �

Before proving Theorem 1.4, we will provide a proof that none of the subgroups

constructed in this chapter are maximal.

Proposition 7.34. Suppose H ≤ G with F ∗(H) ∼= Ω+
8 (2). Then H is not a maximal

subgroup of G.

Proof. If F ∗(H) ∼= Ω+
8 (2), then F ∗(H) is G-conjugate to one of the seven Ω+

8 (2)

subgroups constructed in this chapter. Recall that these are named H
(i)
j where (i, j) ∈

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (3, 2)}. We will work through each case in turn.
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(i) Case H
(1)
1 : Here we have L1 and L2, two non-conjugate copies of Ω+

8 (2) : 2

containing H
(1)
1 . Also, we have K1 and K2, two non-conjugate copies of Ω+

8 (2) :

Sym(3) containing H
(1)
1 . Then, without loss of generality, we may assume that

Lk ≤ Kk for k ∈ {1, 2}. Indeed, K1 contains one copy of Ω+
8 (2) : 2 up to

conjugacy, and K2 contains one copy of Ω+
8 (2) : 2 up to conjugacy. Since K1 and

K2 are not G-conjugate, it follows that their respective Ω+
8 (2) : 2 subgroups are

not G-conjugate. Since there are only two Ω+
8 (2) : 2 subgroups containing H

(1)
1

– namely L1 and L2 – they must correspond to the Ω+
8 (2) : 2 subgroups found in

K1 and K2.

Define X
(1)
1 = 〈K1, K2〉. By the argument above, we have that every H ≤ G

such that F ∗(H) ∼= Ω+
8 (2) and H

(1)
1 ≤ H is such that H ≤ X

(1)
1 . We construct

X
(1)
1 and find that it is a proper subgroup of G, thereby proving that H is not

maximal.

(ii) Case H
(1)
2 : There is L ∼= Ω+

8 (2) : 2 and K ∼= Ω+
8 (2) : Sym(3) such that H

(1)
2 ≤ L

and H
(1)
2 ≤ K. By the same argument as in part (i), we may assume without

loss of generality L ≤ K. Therefore, every H ≤ G such that F ∗(H) ∼= Ω+
8 (2)

and H
(1)
2 ≤ H is such that H ≤ K. Now we simply find an element m ∈ N (1)

2

such that K < 〈K,m〉 < G, so K is not maximal.

(iii) Case H
(1)
3 : Here we have L1, . . . , L6

∼= Ω+
8 (2) : 2 such that H

(1)
3 ≤ Lk for each

k ∈ {1, . . . , 6}. Now define X
(1)
3 = 〈Lk : k ∈ {1, . . . , 6}〉 and we see that X

(1)
3

is a proper subgroup of G. Hence and H ≤ G such that F ∗(H) ∼= Ω+
8 (2) and

H
(1)
3 ≤ H is not maximal.

(iv) Case H
(1)
4 : In this case, we have three Ω+

8 (2) : 2 subgroups L1, L2, L3 such that

H
(1)
4 ≤ Lk for k ∈ {1, 2, 3}. Moreover, we have six Ω+

8 (2) : Sym(3) subgroups

K1, . . . , K6 such that H
(1)
4 ≤ Kk for k ∈ {1, . . . , 6}. Finally, we have three

Ω+
8 (2) : 3 subgroups R1, R2, R3 such that H

(1)
4 ≤ Rk for k ∈ {1, 2, 3}. Recall

that, by construction, we also have R1 ≤ Kk for k ∈ {1, 2, 3}, R2 ≤ Kk for

k ∈ {4, 5}, and R3 ≤ K6. By the same argument in part (i), we may assume

without loss of generality that Lk ≤ Kk for each k ∈ {1, 2, 3}.

Similarly to part (i), we define X
(1)
4 = 〈K1, . . . , K6〉. By the above, we have that

every H ≤ G such that F ∗(H) ∼= Ω+
8 (2) and H

(1)
4 ≤ H is such that H ≤ X

(1)
4 .
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Upon constructing X
(1)
4 we find that it is a proper subgroup of G, so H is not

maximal.

(v) Case H
(2)
1 : Let K be the sole Ω+

8 (2) : Sym(3) subgroup containing H
(2)
1 . We find

an element m ∈ NG(P2) such that K < 〈K,m〉 < G, thereby proving that K is

not maximal.

(vi) Case H
(3)
1 : Here, we have two Ω+

8 (2) : 2 subgroups L1 and L2 containing H
(3)
1 .

Let X
(3)
1 = 〈L1, L2〉 and we find that X

(3)
1 is a proper subgroup of G. Therefore

any H ≤ G with F ∗(H) conjugate to H
(3)
1 is such that H < X

(3)
1 < G and so H

is not maximal.

(vii) Case H
(3)
2 : We follow the same argument as in part (vi).

By exhaustion of cases, any H ≤ G with F ∗(H) ∼= Ω+
8 (2) is not maximal in G.

�

We will conclude this chapter with a proof of Theorem 1.4. As with other proofs

of the main results, this is mostly a matter of compiling results together from the

rest of the chapter. As always, let P1, P2, and P3 be the elementary abelian 52

subgroups of G used to construct our copies of Ω+
8 (2) and let H

(i)
j
∼= Ω+

8 (2) where

(i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (3, 2)} and Pi ∈ Syl5(H
(i)
j ). Further-

more, recall that PiT
(i)
j = N

H
(i)
j

(Pi) where the subgroups T
(i)
j represent distinct classes

of Dih(8) ◦ Z4 subgroups of NG(Pi). Note that H
(i)
j were constructed as follows. We

found H
(2)
1 , H

(3)
1 , and H

(3)
2 in Proposition 7.22; H

(1)
1 and H

(1)
2 in Proposition 7.23; H

(1)
3

in Proposition 7.24; and H
(1)
4 in Proposition 7.25.

(i) This part states that there are exactly seven G-conjugacy classes of subgroups

isomorphic to Ω+
8 (2). We will now prove that each H

(i)
j represents a distinct

G-conjugacy class of Ω+
8 (2) subgroups of G. That is, for all (i, j), (i0, j0) ∈

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (3, 2)} with (i, j) 6= (i0, j0), H
(i)
j and H

(i0)
j0

are not G-conjugate. Clearly, if i 6= i0, then Pi and Pi0 follow different fusion

patterns (see Lemma 7.3), and by extension, so do H
(i)
j and H

(i0)
j0

. Hence H
(i)
j

and H
(i0)
j0

cannot be conjugate.

Now assume i = i0 and let H = H
(i)
j and H0 = H

(i)
j0

. Also let P = Pi, T = T
(i)
j ,

and T0 = T
(i)
j0

. Let g ∈ G such that Hg = H0. Then P, P g ∈ Syl5(H0) and
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so there is some h ∈ H0 such that P = P gh. Let n = gh and hence Hn = H0

where n ∈ NG(P ). Now note that T normalises P and so T n normalises P as

well. Hence T n ≤ NH0(P ) and so T n, T0 ∈ Syl2(NH0(P )) which means there is

some n0 ∈ NH0(P ) such that T nn0 = T0. But now, since nn0 ∈ NG(P ), we have

a contradiction, as T, T0 represent distinct classes of Dih(8) ◦ Z4 subgroups in

NG(P ). Thus, all seven H
(i)
j are not conjugate in G.

(ii) Here, the theorem states that there are exactly seventeen G-conjugacy classes of

subgroups isomorphic to Ω+
8 (2) : 2. Let K,K0 ≤ G such that K ∼= Ω+

8 (2) : 2 ∼=

K0 and suppose Ω+
8 (2) ∼= L ≤ K and Ω+

8 (2) ∼= L0 ≤ K0. Note that L is unique

inside K and L0 is unique inside K0. Then it follows that if L and L0 are not

conjugate in G, then K and K0 are not conjugate in G. Otherwise, Kg = K0 for

some g ∈ G implies that Lg = L0 by the uniqueness of L and L0. Therefore, by

part (i), if we have (i, j), (i0, j0) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (3, 2)}

with (i, j) 6= (i0, j0), any Ω+
8 (2) : 2 subgroup containing H

(i)
j is not conjugate to

any Ω+
8 (2) : 2 subgroup containing H

(i0)
j0

. By Proposition 7.29, any two Ω+
8 (2) : 2

subgroups containing H
(i)
j are not conjugate. Therefore, all seventeen Ω+

8 (2) : 2

subgroups from Proposition 7.29 are not conjugate in G, yielding the result.

(iii) This part states that there are exactly six G-conjugacy classes of subgroups

isomorphic to Ω+
8 (2) : 3. By the same argument as in the proof of part (ii), all

six Ω+
8 (2) : 3 subgroups constructed in Proposition 7.29 are not conjugate in G.

(iv) Finally, the theorem states here that there are 10 G-conjugacy classes of sub-

groups isomorphic to H ∼= Ω+
8 (2) : Sym(3). By the same argument as in part

(ii), all ten Ω+
8 (2) : Sym(3) subgroups constructed in Proposition 7.33 are not

conjugate in G.

This concludes the proof of Theorem 1.4. �



Chapter 8

Ω+
8 (4) and Its Extensions

In this chapter, we will find all classes of subgroups H of G such that F ∗(H) ∼= Ω+
8 (4).

In contrast to most other chapters, finding all classes of Ω+
8 (4) subgroups in G is

relatively straightforward. Most of the work in this chapter is in aid of extend-

ing these copies of Ω+
8 (4) to various automorphism extension groups. Given that

Aut(Ω+
8 (4)) ∼= Ω+

8 (4) : Dih(12), and that there are five isomorphism types of proper

subgroups of Dih(12), there are six possible overgroups of a given Ω+
8 (4) isomorphic

to some automorphism extension of Ω+
8 (4). We will calculate the possibilities for each

of these in turn. First, we must construct Ω+
8 (4) subgroups of G.

8.1 Constructing Ω+
8 (4) subgroups of G

We will proceed in a manner similar to how we constructed Sp6(2) subgroups by

building up from copies of U4(2); since we know that Ω+
8 (2) ≤ Ω+

8 (4), we can apply

Proposition 2.12 and say that, up to G-conjugacy, any Ω+
8 (4) subgroup of G contains

one of the seven Ω+
8 (2) subgroups found in Chapter 7. This first result will outline our

process for building Ω+
8 (4) subgroups from our Ω+

8 (2) subgroups.

Proposition 8.1. Let Ω+
8 (2) ∼= K ≤ H ∼= Ω+

8 (4) and let P ∈ Syl5(K). Then 54 ∼=

CH(P ) � K and, since K is maximal in H, we have that H = 〈K,CH(P )〉.

Proof. This is directly verifiable in Magma. �

Now, given Ω+
8 (2) ∼= K ≤ G, if some H ∼= Ω+

8 (4) exists with K ≤ H ≤ G then we

must have CH(P ) ≤ CG(P ) and therefore there exists some S ≤ CG(P ) with S ∼= 54

136
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such that

H = 〈K,S〉.

Let us now establish some notation and summarise our results on Ω+
8 (2) from Chap-

ter 7. Recall that there are three elementary abelian subgroups P1, P2, and P3 of G

of order 52 which are contained in Ω+
8 (2) subgroups of G. We will name our Ω+

8 (2)

subgroups K
(i)
j where Pi ≤ K

(i)
j and j ∈ {1, 2, 3, 4} when i = 1; j = 1 when i = 2;

and j ∈ {1, 2} when i = 3. Now recall that in Proposition 7.4 we calculated CG(Pi)

for each i ∈ {1, 2, 3}. Hence we can proceed straight to finding 54 subgroups of each

CG(Pi) and seeing which ones form a generating set for Ω+
8 (4).

Proposition 8.2. There are exactly two classes of Ω+
8 (4) subgroups in G.

Proof. Let us first remind ourselves of |CG(Pi)| for each i ∈ {1, 2, 3}. We have

|CG(P1)| = 212.35.54.7; |CG(P2)| = 54; and |CG(P3)| = 24.32.54. Now we note that, for

each i ∈ {1, 2, 3}, a Sylow 5-subgroup of CG(Pi) is isomorphic to 54. Hence, to sift

through all the elementary abelian subgroups of order 54 in CG(Pi), it is sufficient to

sift through all Sylow 5-subgroups of CG(Pi).

Fix (i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (3, 2)}. Let Si ∈ Syl5(CG(Pi))

and Ri be a right transversal for NCG(Pi)(Si), so that {Sri : r ∈ Ri} is a complete set

of Sylow 5-subgroups of CG(Pi). Now, for each r ∈ Ri we build Y = 〈K(i)
j , S

r
i 〉. We

now run an order of random elements sieve on Y (see Procedure 3.8 for full details).

Note that to use this sieve, we require a list of all possible element orders appearing

in Ω+
8 (4). This is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 20, 21, 30, 34, 51, 63, 65, 85, 255}

as can be seen in the ATLAS [14].

Let (i, j) = (1, 1). After running this sieve, we find four elements y1, y2, y3, and

y4 such that Yk = 〈K(1)
1 , Syk1 〉 ∼= Ω+

8 (4) for k ∈ {1, 2, 3, 4}. Note that we confirm that

these groups are isomorphic to Ω+
8 (4) using LMGChiefFactors. However, we will now

show that all four of these subgroups are G-conjugate. Recall that in Proposition 7.27

we calulated a group normalising K
(1)
1 . Call this A

(1)
1 and we have that |A(1)

1 | = 28.3.52.

For each k ∈ {2, 3, 4} we can find ck ∈ A(1)
1 such that (Syk1 )ck = Sy11 . But since these

elements ck normalise K
(1)
1 , we have that

Y ck
k = 〈K(1)

1 , Syk1 〉ck = 〈(K(1)
1 )ck , (Syk1 )ck〉 = 〈K(1)

1 , Sy11 〉 = Y1.
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Hence all four of these groups are conjugate in G.

Now, let (i, j) = (3, 2). After running the order of random elements sieve, we have

a unique Sylow 5-subgroup S3 ≤ CG(P3) such that 〈K(3)
2 , S3〉 ∼= Ω+

8 (4).

Finally, let (i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 1), (3, 1)}. No Sylow 5-subgroups survive

the sieve in any of these cases. Hence there are no Ω+
8 (4) subgroups of G containing

K
(i)
j .

In the end, we have two distinct Ω+
8 (4) subgroups. Moreover, we know that these

groups are not conjugate as they follow different fusion patterns. �

We will now find automorphism extensions in G of these two copies of Ω+
8 (4).

8.2 Extending Ω+
8 (4) to Ω+

8 (4) : Dih(12)

Let us first identify the groups which we are trying to construct. We know that

Aut(Ω+
8 (4)) = Ω+

8 (4) : Dih(12), and note that there are five non-trivial isomorphism

types of proper subgroups of Dih(12). These are the groups 2, 3, 22, 6, and Sym(3).

Hence we will find all subgroups of G, up to G-conjugacy, isomorphic to each of:

Ω+
8 (4) : 3, Ω+

8 (4) : 22, Ω+
8 (4) : 6, Ω+

8 (4) : Sym(3), and Ω+
8 (4) : Dih(12),

and of shape Ω+
8 (4) : 2. Note that there are three distinct conjugacy classes of groups

isomorphic to 2 in Dih(12), so there are three distinct isomorphism types of subgroups

of shape Ω+
8 (4) : 2 in Ω+

8 (4) : Dih(12).

We will now establish the notation used throughout the remainder of this chapter.

As usual, we will use P1 and P3 to refer to the elementary abelian 52 subgroups of

G contained in some Ω+
8 (4). As we discovered in the previous section, there are two

Ω+
8 (4) subgroups in G up to G-conjugacy. We will call these K1 and K3, where Pi ≤ Ki

for i ∈ {1, 3}. Now let Si ∈ Syl5(Ki) such that Pi ≤ Si, as constructed in the previous

section.

Fix i ∈ {1, 3}. Now apply Corollary 2.14, which implies that if 〈Ki, h〉 is some

automorphism extension of Ki, then g can be chosen such that g ∈ NG(Si) and

〈Ki, g〉 = 〈Ki, h〉.

Proposition 8.3. We have that NG(Si) ∼ 54.((4◦21+4).Alt(6).2) and we have obtained

NG(Si) for each i ∈ {1, 3}.



CHAPTER 8. Ω+
8 (4) AND ITS EXTENSIONS 139

Proof. Since we have that Si ∼= 54, we know that Si is a maximal torus by Proposi-

tion 2.22 and hence NG(Si) has the stated shape and is maximal by 4.5 of [5]. Since

Pi ≤ Si ≤ NG(Pi), we start by calculating NNG(Pi)(Si). Recall that we already have

NG(Pi) from Proposition 7.7, so we can calculate NNG(Pi)(Si) directly. We find

|NNG(Pi)(Si)| =

29.3.54, if i = 1,

27.54, if i = 3.

However, we know that |NG(Si)| = 210.32.55, so we know we have not yet found the

whole of NG(Si). To find the rest, we observe that NG(Si) ≤ StabG(CV (Si)) ≤ G.

But the maximality of NG(Si) yields NG(Si) = StabG(CV (Si)). To generate the rest

of NG(Si), we take t ∈ NNG(Pi)(Si) ∩ 2DG and construct CG(t) using the command

CentraliserOfInvolution. Let X ∈ Syl2(CG(t)) – which we find using LMGSylow –

and calculate StabX(CV (Si)) using UnipotentStabiliser. We repeat this process,

choosing a new t each time, until we find StabX(CV (Si)) � NNG(Pi)(Si) and until

|〈StabX(CV (Si)), NNG(Pi)(Si)〉| = 210.32.55. This is NG(Si), as required. �

Now, clearly, if g ∈ NG(Si) acts as an automorphism on Ki, then g ∈ NNG(Si)(Ki),

which we will calculate in the next result.

Proposition 8.4. We have

|NNG(Si)(Ki)| =

28.32.54, if i = 1,

28.3.54, if i = 3.

Proof. We calculate this by observing that NNG(Si)(Ki) ≤ StabNG(Si)(CV (Ki)), which

can be shown the same way as in the proof of Lemma 7.26. Now we calculate

StabNG(Si)(CV (Ki)) using the command Stabiliser. But then we find that every

generator g ∈ StabNG(Si)(CV (Ki)) is such that Kg
i = Ki, and so we actually have that

NNG(Si)(Ki) = StabNG(Si)(CV (Ki)). Hence we have found NNG(Si)(Ki). Their orders

are as given in the result. �

From here on, we will let E0(Ki) = NNG(Si)(Ki). Now we will begin the process of

constructing automorphism extensions of each Ki, beginning with the construction of

subgroups of shape Ω+
8 (4) : 2 and Ω+

8 (4) : 3. Let k ∈ {2, 3}. Then by Proposition 2.17

we know that if g ∈ E0(Ki) such that 〈Ki, g〉 ∼ Ω+
8 (4) : k, then g /∈ Ki and gk ∈ Ki.
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Furthermore, by Proposition 2.16 every g0 ∈ E0(Ki) which is E0(Ki)-conjugate to g

will be such that g0 /∈ Ki and gk0 ∈ Ki and will generate a conjugate copy of Ω+
8 (4) : k.

Hence we let E1(Ki) be a set of E0(Ki)-conjugacy class representatives and it is in

E1(Ki) we look for our elements.

Now, for each k ∈ {2, 3}, we construct

E (k)
2 (Ki) = {x ∈ E1(Ki) : x /∈ Ki, x

k ∈ Ki}.

Finally, let E (k)
3 (Ki) be a set of elements from E (k)

2 (Ki) which generate distinct sub-

groups of shape Ω+
8 (4) : k. The next result describes the outcome of this process.

Proposition 8.5. For each i ∈ {1, 3}, the sizes of E1(Ki) and E (k)
l (Ki) for k, l ∈ {2, 3}

are given in Table 8.1. Moreover, there are at most six subgroups of shape Ω+
8 (4) : 2

up to conjugacy in G. Three of these contain K1, and the other three contain K3.

Finally, there is exactly one copy of Ω+
8 (4) : 3 up to conjugacy in G.

i |E1(Ki)| |E (2)
2 (Ki)| |E (2)

3 (Ki)| |E (3)
2 (Ki)| |E (3)

3 (Ki)|
1 92 48 5 11 1
3 93 52 3 0 0

Table 8.1: Sizes of E1(Ki) and E (k)
l (Ki) for k, l ∈ {2, 3}

Proof. We calculate E1(Ki) using Classes on E0(Ki) as a permutation group. Then

we calculate E (k)
2 (Ki) for k ∈ {2, 3} directly. We are able to find yn ∈ E (2)

2 (K1)

for n ∈ {1, . . . , 5} with Yn = 〈K1, yn〉 ∼= Ω+
8 (4) : 2 such that for all y ∈ E (2)

2 (Ki),

y ∈ Yn for some n ∈ {1, . . . , 5}. This implies that all y ∈ E (2)
2 (Ki) \ {y1, . . . , y5}

generate redundant subgroups. Indeed, let n ∈ {1, . . . , 5} such that y ∈ Yn. Then

〈K1, y〉 ≤ Yn. If we have equality, then 〈K1, y〉 is a duplicate of Yn; else 〈K1, y〉 is a

proper subgroup of Yn and so clearly is not of shape Ω+
8 (4) : 2. Since we also have

that if m,n ∈ {1, . . . , 5} are distinct, then yn /∈ Ym, each Yn is distinct and therefore

E (3)
3 (K1) = {y1, . . . , y5}. We can now easily find elements c4, c5 ∈ E0(K1) such that

yc44 ∈ Y1 and yc55 ∈ Y3. Hence Y1 is conjugate to Y4, and, Y3 is conjugate to Y5. This

brings the total number of subgroups of shape Ω+
8 (4) : 2 up to conjugacy containing

K1 from five down to three, as stated. A similar situation occurs with E (2)
2 (K3) where

we find three elements instead of five.
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Now, we find a unique element z1 ∈ E (3)
2 (K1) such that Z1 = 〈K1, z1〉 ∼= Ω+

8 (4) : 3,

and for all z ∈ E (3)
2 (K1) we have z ∈ Z1. Hence by the same argument above, we have

that E (3)
3 (K1) = {z1}. �

Before we proceed, a remark on the proof of Proposition 8.5. Due to the sizes of the

groups we are considering, it is not practical to ask Magma directly whether a given

group is isomorphic to Ω+
8 (4) : k for k ∈ {2, 3}. The IsIsomorphic command executes

within seconds for smaller groups, but for groups of this size it can often run for hours

or days without completing. Instead, for example, say we wish to know whether a

given group Y is isomorphic to Ω+
8 (4) : 2. First, we check that |Y | = 2|Ω+

8 (4)|.

This can easily be checked using LMGFactoredOrder or LMGOrder. Secondly, we use

LMGChiefFactors to obtain the composition factors for Y . We know that, in the case

of Ω+
8 (4) : 2, these factors will be 2 followed by Ω+

8 (4). Finally, we must rule out

the possibility that Y ∼= Ω+
8 (4) × 2. We do this by running LMGNormalSubgroups

and seeing that if Y only has three normal subgroups – 1, Ω+
8 (4), and Y itself – then

Y ∼= Ω+
8 (4) : 2. We note that if Y ∼= Ω+

8 (4)× 2, then it would also have 2 as a normal

subgroup. Finally, we note that due to the sizes of these groups, we cannot, at this

stage, demonstrate whether the subgroups of shape Ω+
8 (4) : 2 we have generated are

pairwise non-isomorphic.

We will now move on to constructing overgroups of Ki isomorphic to Ω+
8 (4) : 22.

We will use H
(i)
j to denote one of the copies of subgroups of shape Ω+

8 (4) : 2 containing

Ki, so j ∈ {1, 2, 3}. Now, if an Ω+
8 (4) : 22 subgroup containing Ki exists, then it must

contain a subgroup of shape Ω+
8 (4) : 2. Hence, without loss, we may assume that an

Ω+
8 (4) : 22 subgroup containing Ki contains some H

(i)
j . Now observe that if g ∈ G is

such that 〈H(i)
j , g〉 ∼= Ω+

8 (4) : 22, then g must normalise both Ki and H
(i)
j , as H

(i)
j is a

normal subgroup of 〈H(i)
j , g〉 since it has index 2. Since we already know that such g

must exist in E0(Kj), we now let

E0(H
(i)
j ) = {x ∈ E0(Ki) : (H

(i)
j )x = (H

(i)
j )}.

As usual, by Propositions 2.16 and 2.17, it is sufficient to look for elements in

E0(H
(i)
j ) up to conjugacy. Hence, we let E1(H

(i)
j ) be a set of E0(H

(i)
j )-conjugacy class

representatives. Now let

E2(H
(i)
j ) = {x ∈ E1(H

(i)
j ) : x /∈ H(i)

j and x2 ∈ H(i)
j }
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and finally E3(H
(i)
j ) be a set of elements g ∈ E2(H

(i)
j ) such that 〈H(i)

j , g〉 is a distinct

copy of Ω+
8 (4) : 22. The next results explores the outcome of this process.

Proposition 8.6. Let (i, j) ∈ {(1, 1), (1, 2), (1, 3), (3, 1), (3, 2), (3, 3)}. Then the sizes

of Ek(H(i)
j ) for k ∈ {0, 1, 2, 3} are given in Table 8.2. Moreover, there are two Ω+

8 (4) : 22

in G subgroups up to conjugacy; one containing K1 and one containing K3.

i j |E0(H
(i)
j )| |E1(H

(i)
j )| |E2(H

(i)
j )| |E3(H

(i)
j )|

1 1 28.3.54 93 27 1
1 2 28.32.54 92 37 2
1 3 28.3.54 93 40 1
3 1 28.3.54 93 27 1
3 2 28.3.54 93 37 1
3 3 28.3.54 93 40 1

Table 8.2: Sizes of Ek(H(i)
j ) for k ∈ {0, 1, 2, 3}

Proof. We will first describe how we construct E0(H
(i)
j ). Recall that E0(H

(i)
j ) =

NE0(Ki)(H
(i)
j ). Hence we know that E0(H

(i)
j ) ≤ StabE0(Ki)(CV (H

(i)
j )). Also, in Proposi-

tion 8.5 we found elements h
(i)
j such that H

(i)
j = 〈Ki, h

(i)
i 〉. Hence CV (H

(i)
j ) = CV (Ki)∩

CV (h
(i)
j ) which we can calculate directly. Upon calculating StabE0(Ki)(CV (H

(i)
j )) we

see that all of its generators normalise H
(i)
j , hence we have found E0(H

(i)
j ). Now,

to calculate Ek(H(i)
j ) for k ∈ {1, 2, 3}, we follow the same steps as in the proof of

Proposition 8.5.

We can now find elements in E0(H
(1)
j ) which conjugate the copies of Ω+

8 (4) : 22

containing K1 to each other, thus proving that there is only one Ω+
8 (4) : 22 containing

K1 up to conjugacy. Finally, we see that all three copies of Ω+
8 (4) : 22 containing K3

are actually identical, so there is only one such group. �

Let us take stock of what we have achieved so far. We have found all copies up to

conjugacy of subgroups of shape Ω+
8 (4) : 2, Ω+

8 (4) : 3, and Ω+
8 (4) : 22. However, the

subgroups Ω+
8 (4) : 6, Ω+

8 (4) : Sym(3), and Ω+
8 (4) : Dih(12) remain to be constructed.

Note that these three remaining subgroups contain Ω+
8 (4) : 3 as a subgroup. This

reduces the work we must do, because by Proposition 8.5 only K1 has an overgroup

isomorphic to Ω+
8 (4) : 3, so therefore there are no subgroups of G isomorphic to

Ω+
8 (4) : 6, Ω+

8 (4) : Sym(3), or Ω+
8 (4) : Dih(12) which contain K3. Hence, from now on,

let K = K1.
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First, we will construct copies of Ω+
8 (4) : 6 containing K. To do this, we could

build up from the sole copy of Ω+
8 (4) : 3 containing K. However, we will opt to

construct Ω+
8 (4) : 6 subgroups directly. As usual, we observe that if g ∈ G is such

that 〈K, g〉 ∼= Ω+
8 (4) : 6, then we know that g ∈ E0(K), where E0(K) is as constructed

in Proposition 8.4. Now, by Propositions 2.16 and 2.17, we know that it is sufficient

to search through a set of conjugacy class representatives of E0(K) and that gn /∈ K

for n ∈ {1, 2, 3, 4, 5} and g6 ∈ K. Hence we will use the set of E0(K)-conjugacy class

representatives E1(K) as constructed in Proposition 8.5 and now let

E (6)
2 (K) = {x ∈ E1(K) : x6 ∈ K, xn /∈ K for n ∈ {1, . . . , 5}}.

and finally let E (6)
3 be a set of elements g ∈ E (6)

2 (K) such that 〈K, g〉 is a distinct copy

of Ω+
8 (4) : 6. The following result shows the outcome of this process.

Proposition 8.7. We have |E1(K)| = 92, |E2(K)| = 7, and |E3(K)| = 1. This implies

that there is a unique copy of Ω+
8 (4) : 6 containing K.

Proof. We follow the same steps as in the proof of Proposition 8.5. �

Let us now find all the Ω+
8 (4) : Sym(3) subgroups containing K. As previously

discussed, we know that such a subgroup must contain a copy of Ω+
8 (4) : 3. There is

a unique Ω+
8 (4) : 3 containing K up to conjugacy, as discovered in Proposition 8.5.

Let H ∼= Ω+
8 (4) : 3 be this unique subgroup and let h be the element we found such

that 〈K,h〉 = H. Now, since Ω+
8 (4) : 3 is an index-2 subgroup of Ω+

8 (4) : Sym(3),

we know that it is normal. Hence, any g ∈ G such that 〈H, g〉 ∼= Ω+
8 (4) : Sym(3)

must normalise H. Note that, as always, we already know that g ∈ E0(K), so now

we construct E0(H) = NE0(K)(H). However, we actually find that every generator of

E0(K) normalises H, so, in fact, E0(H) = E0(K).

Now we use Lemma 7.30, which deals with finding elements extending Ω+
8 (2) : 3

to Ω+
8 (2) : Sym(3) but can easily be adapted to finding elements extending Ω+

8 (4) : 3

to Ω+
8 (4) : Sym(3). It tells us that if g ∈ E0(H) such that 〈H, g〉 = 〈K,h, g〉 ∼=

Ω+
8 (4) : Sym(3), then g /∈ K, g2 ∈ K, and (gh)2 ∈ K. Moreover, any E0(H)-conjugate

g satisfies the same properties (which can be seen by adapting Lemma 7.31) and

generates a conjugate copy of Ω+
8 (4) : Sym(3). Hence we let E1(H) be a set of E0(H)-

conjugacy class representatives, let

E2(H) = {x ∈ E1(H) : x /∈ K, x2 ∈ K, (xh)2 ∈ K},
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and, finally, let E3(H) be a set of elements g ∈ E2(H) such that 〈H, g〉 generates a

distinct copy of Ω+
8 (4) : Sym(3). The next result explores the outcome of this process.

Proposition 8.8. We have |E1(H)| = 92, |E2(H)| = 37, and |E3(H)| = 2. This implies

that there are at most two copies of Ω+
8 (4) : Sym(3) containing K up to conjugacy.

Proof. We follow the same steps as in the proof of Proposition 8.5. �

We will conclude this section by by finding all the Ω+
8 (4) : Dih(12) subgroups

containing K. Note that Ω+
8 (4) : 6 is a normal subgroup of Ω+

8 (4) : Dih(12), and,

by Proposition 8.7, there is only one Ω+
8 (4) : 6 subgroup of G containing K up to

conjugacy. Hence, without loss, to find all Ω+
8 (4) : Dih(12) subgroups up to conjugacy

containing K, we may assume that each such Ω+
8 (4) : Dih(12) contains the sole copy

of Ω+
8 (4) : 6 found earlier. Let this unique (up to conjugacy) Ω+

8 (4) : 6 subgroup

containing K be called L, and let λ be the element such that 〈K,λ〉 = L. Since L

is normal in any potential Ω+
8 (4) : Dih(12) subgroup, we start by finding E0(L) =

NE0(K)(L). However, we once again see that every generator of E0(K) normalises L,

and so E0(L) = E0(K).

As usual, we need only work with E1(L), a set of E0(L)-conjugacy class represen-

tatives. Now, we will state a lemma which will provide us with conditions on the

required elements of E1(L).

Lemma 8.9. Suppose g ∈ E1(L) such that 〈K,λ, g〉 ∼= Ω+
8 (4) : Dih(12). Then g /∈ K,

g2 ∈ K, and (gλ)2 ∈ K.

Proof. Suppose 〈K,λ, g〉 ∼= Ω+
8 (4) : Dih(12). Then, as this is a split extension, we have

〈K,λ, g〉/K = 〈λ, g〉 ∼= Dih(12). Since we have that λn /∈ K for any n ∈ {1, 2, 3, 4, 5}

and λ6 ∈ K, we have that λ has order 6 in the quotient. Now, g generates Dih(12)

along with λ, and the only elements with this property are involutions with order

2 product with λ. Hence g2 = 1 and (gλ)2 = 1, which is to say that g2 ∈ K and

(gλ)2 ∈ K. �

Applying Lemma 8.9, we let

E2(L) = {x ∈ E1(L) : x /∈ K, x2 ∈ K, (xλ)2 ∈ K}.

Finally, let E3(L) be a set of elements g ∈ E2(L) such that 〈L, g〉 is a distinct copy of

Ω+
8 (4) : Dih(12). We will examine the outcome of this process in the next result.
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Proposition 8.10. We have |E1(L)| = 92, |E2(L)| = 37, and |E3(L)| = 1. This implies

that there is a unique copy of Ω+
8 (4) : Dih(12) containing K.

Proof. We follow the same steps as in Proposition 8.5. �

We remark here that all three copies of subgroups of shape Ω+
8 (4) : 2 containing K

are contained in this sole copy of Ω+
8 (4) : Dih(12).

Now we faced with the question of whether the groups we have found are maximal

in G. Let us return to our previous notation established at the beginning of this

section, where K1, K3
∼= Ω+

8 (4) where 52 ∼= Pi ≤ Ki for i ∈ {1, 3}. Recall that

containing K1 we find up to G-conjugacy: three copies of groups of shape Ω+
8 (4) : 2,

one copy of Ω+
8 (4) : 3, one copy of Ω+

8 (4) : 22, and one copy of Ω+
8 (4) : Sym(3); all of

these are containined in one copy of Ω+
8 (4) : Dih(12). Recall also that containing K3

we find up to G-conjugacy three copies of groups of shape Ω+
8 (4) : 2, all three of which

are contained in a single copy of Ω+
8 (4) : 22. Moreover, the sole copy of Ω+

8 (4) : 22

containing K3 is not contained in an Ω+
8 (4) : Dih(12) subgroup. Hence there are two

subgroups we must test for maximality: the copy of Ω+
8 (4) : Dih(12) containing K1

and the copy of Ω+
8 (4) : 22 containing K3.

Unfortunately, Ω+
8 (4) contains 54, which is a maximal torus in E8(2) by Proposi-

tion 2.22. Hence Proposition 2.23 does not apply, so we cannot show that these groups

are not maximal by showing that they fix a non-zero vector in V . If we suppose these

groups are not maximal in G, then they must be contained in some other maximal

subgroup of G. Here, we appeal to our unpublished paper [5] where we have a com-

plete list of known maximal subgroups of G and a list of potential maximal subgroups

of G. By Lagrange’s theorem, the only possible maximal subgroups of G which could

possibly contain Ω+
8 (4) : 22 or Ω+

8 (4) : Dih(12) are Ω+
16(2) and Ω+

8 (4) : Dih(12). Over

the course of the next two results, we will demonstrate that the copy of Ω+
8 (4) : 22

containing K3 is contained in Ω+
16(2) and is therefore not maximal, and that the copy

of Ω+
8 (4) : Dih(12) containing K1 is in fact maximal.

Lemma 8.11. There are two classes of Ω+
8 (4) : 22 subgroups and no Ω+

8 (4) : Dih(12)

subgroups in Ω+
16(2). Moreover, let Ω+

16(2) ≤ G. Then these Ω+
8 (4) : 22 subgroups are

not conjugate in G.
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Proof. We will construct Ω+
8 (4) : 22 subgroups inside Ω+

16(2) directly. Let K ∼= Ω+
8 (4)

and S ∈ Syl5(K). Then NK(S) = ST where T is isomorphic to the group given by the

intrinsic SmallGroup(192,1493). Furthermore, there are two involutions t ∈ CK(T )

such that 〈ST, t〉 = K. All of the above is directly verifiable in Magma.

Now let H ∼= Ω+
16(2). We can construct H as a subgroup of G using the root

system, then turn it into a permutation group of degree 32,895 using Procedure B.7

written by Ballantyne. In this permutation setting, we can easily find S ∈ Syl5(H)

and NH(S). By running Subgroups on NH(S) and sieving for subgroups isomorphic

to the group given by the intrinsic SmallGroup(192,1493), we find T1 and T2 of the

correct isomorphism type. Fix i ∈ {1, 2} and we find two involutions in t1, t2 ∈ CH(Ti)

such that 〈STi, tj〉 ∼= Ω+
8 (4) for j ∈ {1, 2}. However, by running IsConjugate we

find that 〈STi, t1〉 and 〈STi, t2〉 are H-conjugate. Hence, up to H-conjugacy, there is

one Ω+
8 (4) subgroup of H containing ST1 and one Ω+

8 (4) subgroup of H containing

ST2. Call these L1 and L2 respectively and note that L1 and L2 are not conjugate

in H (verified using IsConjugate). Now we simply take Ni = NH(Li) and find that

Ni
∼= Ω+

8 (4) : 22 for each i ∈ {1, 2}. Since L1 and L2 are not H-conjugate, it follows

that N1 and N2 are not H-conjugate. Thus there are two Ω+
8 (4) : 22 subgroups up to

conjugacy in H, neither of which can be extended to Ω+
8 (4) : Dih(12) in H.

Now, using the maps provided in Procedure B.7, we can map N1 and N2 into G.

There, we take Ri ∈ Syl3(Ni) and observe that the elements in Ri follow different

fusion patterns in G. Specifically, we see that there is some element in R1 belonging to

3DG, while R2 ∩ 3DG = ∅. Hence N1 and N2 are not conjugate in G, as required. �

Proposition 8.12. The Ω+
8 (4) : 22 subgroup of G containing K3 is not maximal, while

the Ω+
8 (4) : Dih(12) subgroup of G containing K1 is maximal.

Proof. Let H1 be the Ω+
8 (4) : 22 subgroup of G containing K1 and H3 be the Ω+

8 (4) : 22

subgroup of G containingK3. Since Ω+
16(2) is a subgroup ofG, by Lemma 8.11 there are

two Ω+
8 (4) : 22 subgroups in Ω+

16(2) up to G-conjugacy. However, by Proposition 8.6,

H1 and H3 are the only two Ω+
8 (4) : 22 subgroups in G up to conjugacy. Hence H1

and H3 must both sit inside an Ω+
16(2) subgroup of G. Therefore, H3 is not maximal.

Now, we know H1 extends to Ω+
8 (4) : Dih(12), which is unique up to conjugacy.

Since Ω+
8 (4) : Dih(12) is a known maximal subgroup of G, which can be seen in
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Theorem 1.1 of [5], and since Ω+
8 (4) : Dih(12) is unique in G up to conjugacy, it must

be the case that the copy of Ω+
8 (4) : Dih(12) containing K1 is maximal in G. �

We will now conclude this chapter with a proof of Theorem 1.5. This is a matter

of coalescing the results from this chapter with some extra steps in some of the cases.

We will prove each part of the theorem in turn.

(i) There are two classes of subgroups of G isomorphic to Ω+
8 (4). This was shown

in Proposition 8.2.

(ii) There are six classes of subgroups of G of shape Ω+
8 (4) : 2. In Proposition 8.8,

it was shown that there are at most six subgroups of shape Ω+
8 (4) : 2 up to

conjugacy in G. There are three containing K1 and three containing K3. Recall

that all three containing K1 are contained in a single copy of Ω+
8 (4) : 22, and all

three containing K3 are contained in a single copy of Ω+
8 (4) : 22. Since there are

three distinct classes of involutions in 22, it follows that there are three distinct

isomorphism types of subgroups of shape Ω+
8 (4) : 2 inside Ω+

8 (4) : 22. Since, by

construction, we found all possible subgroups of shape Ω+
8 (4) : 2 containing Ki

for i ∈ {1, 3}, we conclude that these three distinct groups of shape Ω+
8 (4) : 2

containing Ki must be pairwise non-isomorphic. Hence they cannot by conjugate,

and so each represents a distinct G-conjugacy class of subgroups of shape Ω+
8 (4) :

2, as required.

(iii) There is one class of subgroups of G isomorphic to Ω+
8 (4) : 3; this was shown in

Proposition 8.5.

(iv) There are two classes of subgroups of G isomorphic to Ω+
8 (4) : 22; this was shown

in Proposition 8.6.

(v) There is one class of subgroups of G isomorphic to Ω+
8 (4) : 6; this was shown in

Proposition 8.7.

(vi) There are two classes of subgroups of G isomorphic to Ω+
8 (4) : Sym(3). In Propo-

sition 8.8, it was shown that there are at most two Ω+
8 (4) : Sym(3) subgroups up

to conjugacy in G. Let K1 and K2 be these subgroups and L be the Ω+
8 (4) they

contain. However, both K1 and K2 are contained in the unique Ω+
8 (4) : Dih(12)
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subgroup of G constructed in Proposition 8.10, which was later shown to be

maximal in Proposition 8.12. Since K1 and K2 are not conjugate in H, they are

not conjugate in G by the same argument as in part (ii)

(vii) There is one class of subgroups of G isomorphic to Ω+
8 (4) : Dih(12); this was

shown in Proposition 8.10.

This concludes the proof of Theorem 1.5. �



Chapter 9

Sp8(2)

Here, we will find all Sp8(2) subgroups of E8(2) up to conjugacy. As always, G will

denote E8(2) for the entire chapter. Since we know that Sp8(2) contains Ω+
8 (2) : 2 as

a maximal subgroup – see the ATLAS [14] – we know that, by Proposition 2.12, to

find all Sp8(2) subgroups up to conjugacy in G, we can build up from the seventeen

copies of Ω+
8 (2) : 2 found in Chapter 7.

9.1 Constructing Sp8(2) Subgroups of G

Let us begin with a result which will provide us with a means of buliding Sp8(2) from

our copies of Ω+
8 (2) : 2.

Proposition 9.1. Let Ω+
8 (2) : 2 ∼= K ≤ H ∼= Sp8(2). Let P ∈ Syl5(K) and R ∈

Syl2(NK(P )). Then

(i) R ∼= 4 o 2;

(ii) there are four involutions t1, t2, t3, t4 ∈ CH(R) such that 〈K, ti〉 = H for i ∈

{1, 2, 3, 4};

(iii) without loss of generality, t1 ∈ 2AH , t2 ∈ 2CH , and t3, t4 ∈ 2DH .

Proof. All of these facts are verifiable in Magma using the intrinsic copy of Sp8(2)

given by Sp(8,2). To obtain Ω+
8 (2) : 2 as a subgroup of Sp8(2), we use the command

MaximalSubgroups. �

149
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Now, we observe that all six of the classes of involutions in both K ∼= Ω+
8 (2) : 2 and

H ∼= Sp8(2) have distinct lengths. Thus, the classes 2AK , . . . , 2FK and 2AH , . . . , 2FH

are ordered uniquely. Moreover, we have that 2AK → 2AH , 2BK → 2BH , . . . , 2FK →

2FH . Again, this is verifiable in Magma by calling Classes on both groups to ob-

tain representatives of each class, then calling IsConjugate to see that the relevant

representatives are indeed conjugate in H.

Here, we will give an outline of how we use Proposition 9.1 to build Sp8(2) sub-

groups of G. Let L ≤ G be one of the seven Ω+
8 (2) subgroups found in Chapter 7,

and let K ≥ L be one of the seventeen Ω+
8 (2) : 2 subgroups. Then recall that we have

52 ∼= P ∈ Syl5(L) and T ∼= Dih(8) ◦Z4 such that PT = NL(P ). Now, clearly, we have

PT = NL(P ) ≤ NK(P ) = PR where R ∼= 4o2. Hence we will choose R ∈ Syl2(NK(P ))

such that T ≤ R. We make this choice because, looking at Proposition 9.1, we will

build I(CG(R)) and look for involutions t ∈ I(CG(R)) such that 〈K, t〉 ∼= Sp8(2). But

clearly if T ≤ R then I(CG(R)) ⊆ I(CG(T )). This is significant to us because in Chap-

ter 7 we found a group, C3(T ), containing I(CG(T )) for every possible T . Therefore,

we have I(CG(R)) ⊆ CC3(T )(R), which we will calculate and sieve in Magma.

Let us now establish the notation we will use for the remainder of this chapter.

Recall that in Proposition 7.5 we found exactly four subgroups of G isomorphic to 52,

and we called them Pi for i ∈ {1, 2, 3, 4}. Now, only Pi for i ∈ {1, 2, 3} is contained

in some Ω+
8 (2) subgroup of G. Then we found Dih(8) ◦ Z4 subgroups T

(i)
j normalising

Pi where: if i = 1 then j ∈ {1, 2, 3, 4}; if i = 2 then j = 2; if i = 3 then j ∈ {1, 2}.

Now let the seven Ω+
8 (2) subgroups be denoted by L

(i)
j , where PiT

(i)
j ≤ L

(i)
j . Next,

by Proposition 7.29, we have seventeen Ω+
8 (2) : 2 subgroups which we will denote by

K
(i,j)
k where L

(i)
j ≤ K

(i,j)
k and:

• if (i, j) ∈ {(1, 2), (2, 1)}, then k = 1;

• if (i, j) ∈ {(1, 1), (3, 1), (3, 2)}, then k ∈ {1, 2};

• if (i, j) = (1, 4), then k ∈ {1, . . . , 3};

• if (i, j) = (1, 3), then k ∈ {1, . . . , 6}.

Next, we choose R
(i,j)
k ∈ Syl2(K

(i,j)
k ) such that T

(i)
j ≤ R

(i,j)
k and let r

(i,j)
k ∈ R(i,j)

k \ T (i)
j
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so that 〈T (i)
j , r

(i,j)
k 〉 = R

(i,j)
k . Hence we have

CC3(T
(i)
j )

(R
(i,j)
k ) = CC3(T

(i)
j )

(r
(i,j)
k ),

a group we know contains I(CG(R
(i,j)
k )). From now on, we will refer to CC3(T

(i)
j )

(R
(i,j)
k )

simply as C(R(i,j)
k ). Once we have obtained C(R(i,j)

k ), we sieve it for involutions with

the usual methods.

Proposition 9.2. The order of C(R(i,j)
k ) and the number of Sp8(2) subgroups contain-

ing K
(i,j)
k , up to conjugacy in G, are shown in Table 9.1.

i j k |C3(T
(i)
j )| |C(R(i,j)

k ))| Number of Sp8(2) subgroups containing K
(i,j)
k

1 1 1 225.3 216.3 0
1 1 2 215 0
1 2 1 225 215 0
1 3 1 231.3 218 0
1 3 2 222.3 1
1 3 3 221 0
1 3 4 219 0
1 3 5 218 0
1 3 6 218.3 0
1 4 1 240.35.52.7 227.34.5.7 1
1 4 2 225.32 0
1 4 3 225.32 0
2 1 1 217 29 0
3 1 1 220.3 215.3 2
3 1 2 211 0
3 2 1 219 213 0
3 2 2 212 0

Table 9.1: Number of Sp8(2) subgroups containing K
(i,j)
k

Proof. Let T = T
(i)
j , R = R

(i,j)
k , and r = r

(i,j)
k . Now, choose involutions a, b, c ∈

T such that 〈a, b, c〉 = T and hence R = 〈a, b, c, r〉. When calling the command

LMGCentraliser(X,x) on a group X and an element x, we obtain CX(x) even if

x /∈ X. It only requires that x and X exist in the same universe (in our case, E8(2)).

Hence, in most cases, we can simply calculate C(R) = CC3(T )(r) directly using this

command. However, sometimes this command will not execute (or, at least, not

in a realistic timeframe) when x /∈ X, but will when x ∈ X. For this reason, we

sometimes first calculate C0(R) = C〈C3(T ),r〉(r) first, as, clearly, r ∈ 〈C3(T ), r〉. This

always executes within a matter of minutes at most. Then we test every generator

g ∈ C0(R) to see whether g commutes with each of a, b, and c. If each generator
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does, then C0(R) = C(R). If some generator fails to commute with any of a, b, and

c, then we continue as follows. Suppose y ∈ {a, b, c} such that there exists some

generator g ∈ C0(R) for which gy 6= yg. Then we calculate C1(R) = CC0(R)(y). This is

a group guaranteed to commute with r and y. In all cases where this step is required,

we now observe that every generator g ∈ C1(R) commutes with a, b, and c, and, by

construction, r. Hence C(R) = C1(R) and we have successfully found C(R).

Now, we will sieve C(R(i,j)
k ) for involutions t

(i,j)
k such that 〈K(i,j)

k , t
(i,j)
k 〉 ∼= Sp8(2).

We use the same method for every case of i, j, and k except for the case when

(i, j, k) = (1, 4, 1). Hence, for now, suppose (i, j, k) 6= (1, 4, 1). Firstly, note that in

all cases, we have that 2A
K

(i,j)
k
→ 2BG. Hence, by Proposition 9.1, it is sufficient to

look for involutions in C(R(i,j)
k ) which belong to 2BG. Now, for each such involution

t ∈ C(R(i,j)
k ), we build Y = 〈K(i,j)

k , t〉 and run Y through an order of random elements

sieve (see Procedure 3.8). Note that to use this sieve, we need a set of all potential

element orders appearing in Sp8(2). This is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 17, 18, 20, 21, 24, 30}

as can be seen in the ATLAS [14]. If Y survives this sieve, then we check the order

of Y . If |Y | = |Sp8(2)|, then we check that Y ∼= Sp8(2) by using LMGChiefFactors.

When (i, j, k) = (1, 3, 2) we find that only one involution survives this whole process,

resulting in just one Sp8(2) subgroup containing K
(1,3)
2 .

When (i, j, k) = (3, 1, 1) we find that there are four involutions t1, . . . , t4 such that

Yn = 〈K(3,1)
1 , tn〉 ∼= Sp8(2) for n ∈ {1, 2, 3, 4}. Moreover, we find that if m,n ∈

{1, 2, 3, 4} with m 6= n, then Ym 6= Yn. However, we can readily find elements c2, c3

inside the group

NNG(P3)(P3R
(3,1)
1 )

with Y1 = Y c2
2 = Y c3

3 . Also, for all c ∈ NNG(P3)(P3R
(3,1)
1 ) we have that Y1 6= Y c

4 which

implies, by Proposition 3.15, that Y1 and Y4 are not conjugate in G. Therefore, there

are two Sp8(2) subgroups of G up to G-conjugacy containing K
(3,1)
1 . For all cases with

(i, j, k) /∈ {(1, 3, 2), (1, 4, 1), (3, 1, 1)}, no involutions survive this sieve.

Now we will consider the case when (i, j, k) = (1, 4, 1). Let K = K
(1,4)
1 , R = R

(1,4)
1 ,

and C = C(R). In this case, we have C ∼ [218] : Sp6(2). Let W = O2(C) and C =

C/W ∼= Sp6(2), which we can obtain using LMGRadicalQuotient. We sieve W exactly
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as we do above, finding three involutions t1, t2, t3 such that Yn = 〈K, tn〉 ∼= Sp8(2) for

each n ∈ {1, 2, 3}. However, we find that tn ∈ Y1 for n ∈ {2, 3}, which implies that

Y1 = Y2 = Y3. This is the sole copy of Sp8(2) containing K. We will now proceed to

prove that there are no involutions t ∈ C \W such that 〈K, t〉 ∼= Sp8(2).

Suppose t ∈ C \W is an involution. Then t ∈ C is an involution. Let t1, . . . , t4 be

representatives of the four classes of involutions in C. We obtain these using Classes.

Now, let Sn be a right transversal for CC(tn) in C and let Nn be the inverse image in

C of 〈tn〉, for each n ∈ {1, 2, 3, 4}. Finally, let Sn be a set of representatives for all

the cosets in Sn. By Lemma 3.14, we have that t ∈ N s
n for some n ∈ {1, 2, 3, 4} and

s ∈ Sn. Moreover, since we can demand that t ∈ 2BG and t /∈ W , we have that

t ∈ ((Nn \W ) ∩ 2BG)s,

as shown in the remarks following Lemma 3.14. Let Xn = (Nn \ W ) ∩ 2BG which

we can construct in Magma directly. The sizes of Sn and Xn are given in Table 9.2.

Now, for each n ∈ {1, 2, 3, 4}, we simply run through every x ∈ Xn and every s ∈ Sn

i |Sn| |Xn|
1 63 64
2 315 880
3 945 64
4 3780 0

Table 9.2: Sizes of Sn and Xn

and run the same sieves on xs that we ran in the other cases. We find that no elements

survive the order of random elements sieve, which proves that there are no involutions

t ∈ C \W for which 〈K, t〉 ∼= Sp8(2), as required. �

We remark here that Theorem 1.6 follows immediately from Proposition 9.2. In-

deed, the two Sp8(2) subgroups containing K
(3,1)
1 are not conjugate, as shown in the

proof of Proposition 9.2. Now note that Ω+
8 (2) : 2 is unique in Sp8(2) up to conju-

gacy. Therefore, if we have two Sp8(2) subgroups built up from different Ω+
8 (2) : 2

subgroups, since these Ω+
8 (2) : 2 subgroups are not conjugate (see the proof of Theo-

rem 1.4 at the end of Chapter 7), it must follow that these Sp8(2) subgroups are not

conjugate. Thus we have exactly four classes of Sp8(2) subgroups of G, as required.

We will now conclude this chapter by proving that no Sp8(2) subgroup of G is

maximal.
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Proposition 9.3. Suppose H ≤ G such that H ∼= Sp8(2) or F ∗(H) ∼= Ω+
8 (2). Then

H is not maximal in G.

Proof. By Proposition 9.2, there are four Sp8(2) subgroups in G up to conjugacy. Let

H
(i,j)
k
∼= Sp8(2) such that Ω+

8 (2) : 2 ∼= K
(i,j)
k ≤ H

(i,j)
k . Recall that in Proposition 7.34,

we constructed subgroups X
(i)
j such that K

(i,j)
k < X

(i)
j . Now we simply observe that

H
(i,j)
k < 〈H(i,j)

k , X
(i)
j 〉 < G, thus each Sp8(2) subgroup of G is not maximal. �



Chapter 10

Sp4(4) and Its Extensions

In this chapter, we will prove Theorem 1.7, showing that Sp4(4) and its automorphism

extensions are not maximal subgroups of E8(2). In addition, we will determine certain

Sp4(4) subgroups up to conjugacy in E8(2).

For this chapter, G will continue to denote E8(2). Let H ∼= Sp4(4). Then |H| =

28.32.52.17 and we observe that if P ∈ Syl5(H), then P ∼= 52. To construct all

copies of H in G, we will begin by finding all G-classes of subgroups of G isomorphic

to 52. However, we have a head start here, having already completed this step in

Chapter 7 when working with Ω+
8 (2). In a situation similar to Ω+

8 (2), we will find

specific subgroups normalising these copies of 52, then construct their centralisers.

The first result of this chapter compiles some facts about H and alludes to how we

intend to generate subgroups of G isomorphic to H.

Proposition 10.1. Let H ∼= Sp4(4), P ∈ Syl5(H), and D ∈ Syl2(NH(P )). Then:

(i) P ∼= 52;

(ii) NH(P ) = PD where D ∼= Dih(8) and D ∩ CH(P ) = 1;

(iii) there are exactly four involutions x ∈ CH(D) such that 〈PD, x〉 = H, and x is

conjugate in H to the unique central involution in D.

We must now employ this result in the setting of G. To do this, we will proceed

through the following steps, which also provide an outline of this chapter.

1. Recall that we already have P1, . . . , P4 ≤ G, a complete list of subgroups of

G isomorphic to 52 up to G-conjugacy, by Proposition 7.5. We first determine

155



CHAPTER 10. SP4(4) AND ITS EXTENSIONS 156

which ones could exist as a subgroup of H if H ≤ G.

2. For each viable Pi, we find all subgroups D
(i)
1 , . . . , D

(i)
ni isomorphic to Dih(8)

which normalise Pi, up to conjugacy in NG(Pi).

3. For each viable Pi and each j ∈ {1, . . . , ni}, we find which involutions x central-

ising D
(i)
j are such that 〈PiD(i)

j , x〉 ∼= Sp4(4).

4. For each copy of Sp4(4) we find, we attempt to extend it to Sp4(4) : 2 and

Sp4(4) : 4.

10.1 Constructing Sp4(4) Subgroups of G

In this section, we will prove Theorem 1.7 part (i) – there are at most five G-classes

of subgroups of G which are isomorphic to Sp4(4) which do not follow Sp4(4) fusion

possibility (iii) or (iv). The first step will be to determine which subgroups of G

isomorphic to 52 could exist as a Sylow 5-subgroup of an Sp4(4) subgroup. We will

start with a quick result limiting which Sp4(4) fusion possibilities we will consider.

Lemma 10.2. Suppose H ≤ G with H ∼= Sp4(4) and H following Sp4(4) fusion

possibility (iii) or (iv) from Proposition 2.5. Then H is not maximal in G.

Proof. We can see immediately that H fixes a nonzero vector in V using Proposi-

tion 2.7. Now, by Proposition 2.23, we have that H is not maximal in G �

For the remainder of this section, suppose Sp4(4) ∼= H ≤ G such that H does not

follow Sp4(4) fusion (iii) or (iv). Recall from Chapter 7 that there are exactly four

G-classes of subgroups isomorphic to 52 and these classes are represented by the 52

subgroups P1, P2, P3, and P4. Recall, also, that their elements fall into G-conjugacy

classes as in Table 10.1.

Group No. of Elements in 5AG No. of Elements in 5BG

P1 24 0

P2 0 24

P3 8 16

P4 12 12

Table 10.1: Element structure of P1, . . . , P4
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However, we actually know right away that some of these cases cannot exist as

a Sylow 5-subgroup of H. We do this by examining the Sp4(4)-conjugacy classes of

elements of order 5.

Lemma 10.3. Let P ∈ Syl5(H). Then the elements of order 5 in P fall into the five

H-conjugacy classes as shown in Table 10.2.

H-class 5A 5B 5C 5D 5E
Number of elements of P in that class 4 4 4 4 8

Table 10.2: H-fusion of elements of order 5 in P

Proof. This can be directly verified in Magma. �

Let us now examine the six fusion possibilities for H.

Lemma 10.4. In Sp4(4) fusion possibilities (i), (ii), (v), (vi), (vii), and (viii), the

elements of order 5 in H fuse to the two G-classes of elements of order 5 as follows

(i) 5ABCDE → 5B;

(ii) 5ABCDE → 5B;

(v) 5AB → 5A, 5CDE → 5B;

(vi) 5ABE → 5B, 5CD → 5A;

(vii) 5ABCDE → 5B;

(viii) 5ABCDE → 5B.

Proof. See Proposition 2.5. �

Proposition 10.5. The elements of order 5 in P fuse to the G-classes of elements

of order 5, depending on which fusion possibility H follows, according to Table 10.3.

Moreover, H cannot contain a Sylow 5-subgroup which is G-conjugate to P1 or P4.

Fusion Possibility Number of Elements in 5AG Number of Elements in 5BG

(i), (ii), (vii), (viii) 0 24
(v), (vi) 8 16

Table 10.3: G-fusion of elements of order 5 in P
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Proof. This is simply a combination of Lemmas 10.3 and 10.4. For the last part of

the result, we observe that the element structures for P1 or P4 seen in Table 10.1 do

not appear in Table 10.3, so they (or any G-conjugate group) cannot possibly appear

in H. �

Hence we proceed with P2 and P3 as our viable cases. We must now move onto

the next step – to find all Dih(8) subgroups of G which normalise Pi for i ∈ {2, 3}.

Recall from Chapter 7 we had to calculate NG(Pi) and in Proposition 7.7 we found

the following.

|NG(P2)| = 25.3.53,

|NG(P3)| = 29.32.54.

Fix i ∈ {2, 3}. By the same argument applied in Proposition 7.8, we only need to

find subgroups ofNG(Pi) up toNG(Pi)-conjugacy. Recall also that, by Proposition 10.1

part (ii), any potential Dih(8) we desire must have trivial intersection with CG(Pi).

Proposition 10.6. Up to NG(P2)-conjugacy, there is one subgroup of NG(P2) isomor-

phic to Dih(8) intersecting CG(P2) trivially. Up to NG(P3)-conjugacy, there are seven

subgroups of NG(P3) isomorphic to Dih(8) intersecting CG(P3) trivially.

Proof. We start by converting NG(Pi) into a permutation group. In the permutation

setting, we now run the command

Subgroups(NGPi : OrderEqual:=8);

where the object NGPi is a stand-in for NG(Pi), to find all the subgroups of NG(Pi)

(up to conjugacy in NG(Pi)) of order 8. We now sieve these by demanding that they

be isomorphic to Dih(8), then by demanding that they intersect trivially with CG(Pi).

We find five classes of subgroups of NG(P2) of order 8; one of which is a class

of subgroups isomorphic to Dih(8), which has trivial intersection with CG(P2). Also,

we find 159 classes of subgroups of NG(P3) of order 8; eleven of which are classes of

subgroups isomorphic to Dih(8); seven of which have trivial intersection with CG(P3).

�

We name these Dih(8) subgroups as follows. D
(2)
1 is the unique (up to NG(P2)-

conjugacy) viable subgroup normalising P2. D
(3)
j for j ∈ {1, . . . , 7} are the seven viable
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subgroups normalising P3. We must now work with each of these Dih(8) subgroups in

turn, finding all involutions centralising them.

Fix (i, j) ∈ {(2, 1), (3, 1), (3, 2), . . . , (3, 7)} and let z
(i)
j ∈ Z(D

(i)
j ) be the unique

involution. We note that, by direct calculation, in all cases z
(i)
j ∈ 2DG. To construct

all the involutions centralising D
(i)
j , we will follow the same procedure for each D

(i)
j so,

for now, we will set D = D
(i)
j and z = z

(i)
j so the notation is less cumbersome. This

procedure is laid out in full detail in Section 3.2, but we will provide a general outline

here as we proceed.

We start by computing CG(z) using the command

CentraliserOfInvolution

as, by Proposition 3.1 we have that I(CG(D)) ⊆ CG(z) and D ≤ CG(z). Set C =

CG(z) and by Proposition 2.19 we have C ∼ [284] : Sp8(2). Let C = C/O2(C) ∼= Sp8(2)

and let D be the image of D in C. We now build the group C1(D) as defined in the

remarks following Proposition 3.2, using the process given in Procedure 3.3. Also by

Proposition 3.2, we know that I(CG(D) ⊆ C1(D).

Now let F = CV (D) and define

C2(D) = 〈StabS(F ) : S ∈ Syl2(C1(D))〉

and by Proposition 3.6 we know I(CG(D)) ⊆ C2(D). We construct C2(D) using the

procedures given in Procedure 3.7 (specifically, to find C2(D
(i)
j ) we use Procedure 3.7

(ii) when (i, j) = {(3, 1), (3, 3), (3, 5)}, and Procedure 3.7 (i) otherwise).

Finally, we define

C3(D) = CC2(D)(D)

which also, clearly, is such that I(CG(D)) ⊆ C3(D). We can calculate this in Magma

by choosing involutions d1 and d2 such that D = 〈d1, d2〉. Then, we use the command

LMGCentraliser twice to find CC2(D)(d1) then CCC2(D)(d1)(d2). Alternatively, in the

cases where C2(D
(i)
j ) is soluble (every case except when (i, j) = (3, 3)), we can convert

it into a pc-group and run the centraliser computations in the pc-group setting. The

results of this process are collated in the next result.

Proposition 10.7. Let (i, j) ∈ {(2, 1), (3, 1), (3, 2), . . . , (3, 7)}. Then the orders of

C1(D
(i)
j ), C2(D

(i)
j ), and C3(D

(i)
j ) are presented in Table 10.4.
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i j |C1(D
(i)
j )| |C2(D

(i)
j )| |C3(D

(i)
j )|

2 1 290 226 226

3 1 294.3 230.3 228.3
3 2 294 230 228

3 3 298.32.5 242.32.5 240.32.5
3 4 294 230 228

3 5 295.3 234.3 232.3
3 6 294 230 228

3 7 293 228 227

Table 10.4: |C1(D
(i)
j )|, |C2(D

(i)
j )|, and |C3(D

(i)
j )|

Proof. We follow the procedures outlined in the discussion preceding this result. �

We must now sieve each C3(D
(i)
j ) for involutions x such that 〈PiD(i)

j , x〉 ∼= Sp4(4).

The results of this process for each case except (i, j) = (3, 3) are given in the following

result.

Proposition 10.8. There are two involutions x ∈ C3(D
(2)
1 ) such that 〈P2D

(2)
1 , x〉 ∼=

Sp4(4), four involutions x ∈ C3(D
(3)
5 ) such that 〈P3D

(3)
5 , x〉 ∼= Sp4(4), and four involu-

tions x ∈ C3(D
(3)
7 ) such that 〈P3D

(3)
7 , x〉 ∼= Sp4(4).

Proof. First, we turn C3(D
(i)
j ) into a pc-group and define I0(D

(i)
j ) = I(C3(D

(i)
j )), the

set of all involutions in C3(D
(i)
j ). We construct this set by simply running through all

of the elements of C3(D
(i)
j ) and storing the involutions in another set. Now, recall that,

by Proposition 10.1 (iii), the involutions we desire can be taken to be H-conjugate to

z
(i)
j . Therefore, we can take only involutions belonging to 2DG. We now run through

the elements of I0(D
(i)
j ). If the chosen involution is not in 2DG, we skip it and move

onto the next one. If it is in 2DG, we put it through an order of random elements sieve

– for full details on this, see Procedure 3.8. Note that to use this sieve, we require a

set all of possible element orders of elements in Sp4(4). This is

{1, 2, 3, 4, 5, 6, 10, 15, 17}

which can be seen from the ATLAS [14]. We store the elements that survive this sieve

in sets called I1(D
(i)
j ).

Now let

I2(D
(i)
j ) = {x ∈ I1(D

(i)
j ) : |〈PiD(i)

j , x〉| = |Sp4(4)|}.

Finally, we collect a set of involutions in I2(D
(i)
j ) which generate a distinct Sp4(4)

subgroup. For example, if x, y ∈ I2(D
(i)
j ) are such that 〈PiD(i)

j , x〉 = 〈PiD(i)
j , y〉 ∼=
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Sp4(4), then without loss we can keep only one of x and y. These involutions are

gathered in I3(D
(i)
j ).

The results of this process are collected in Table 10.5.

i j |I0(D
(i)
j )| |I1(D

(i)
j )| |I2(D

(i)
j )| |I3(D

(i)
j )|

2 1 950,271 13 12 2
3 1 1,769,471 11 0 0
3 2 1,638,399 13 0 0
3 4 1,441,791 9 0 0
3 5 29,622,271 54 28 4
3 6 1,638,399 17 0 0
3 7 2,523,135 57 40 4

Table 10.5: |I0(D
(i)
j )|, |I1(D

(i)
j )|, |I2(D

(i)
j )|, and |I3(D

(i)
j )| for (i, j) 6= (3, 3)

An examination of |I3(D
(i)
j )| yields the results stated. �

We name these Sp4(4) subgroups H
(i,j)
k where D

(i)
j ≤ H

(i,j)
k and: if (i, j) = (2, 1)

then k ∈ {1, 2}; if (i, j) ∈ {(3, 5), (3, 7)} then k ∈ {1, 2, 3, 4}.

Now we turn our attention back to the case where (i, j) = (3, 3). This case is more

difficult due to the relatively large order of C3(D
(3)
3 ). For simplicity, let D = D

(3)
3

and C = C3(D
(3)
3 ). By running the command LMGRadicalQuotient on C we obtain

O2(C) ∼= [236] and C = C/O2(C) ∼= Sym(6) as a permutation group. Then if x ∈

C3(D
(3)
3 ) is an involution, we either have x ∈ O2(C) or x /∈ O2(C). We will first sieve

for viable involutions in O2(C).

Proposition 10.9. There are at most 64 Sp4(4) subgroups up to conjugacy in G which

are generated by 〈P3D
(3)
3 , x〉 where x ∈ O2(C).

Proof. To carry out our computations, we use parallel processing using the method

described in full in Procedure 3.12. In this case, we have Z := Z(O2(C)) ∼= 211 and

we construct a group Z ≤ S ≤ O2(C) such that |S| = 233. We let ∆ = {δ1, . . . , δ8}

be a right transversal for S in O2(C). Now, we open eight parallel screens, where

screen i sieves the coset Sδi. We define and construct similar sets as before, where

i ∈ {1, . . . , 8}:

I0(Sδi) = I(Sδi);

I1(Sδi) = {x ∈ I0(Sδi) : x ∈ 2DG and x survives an order of random elements sieve};

I2(Sδi) = {x ∈ I1(Sδi) : |〈P3D
(3)
3 , x〉| = |Sp4(4)|};
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j |I0(Sδi)| |I1(Sδi)| |I2(Sδi)| |I3(Sδi)|
1 18,751 15 11 7
2 18,816 15 13 8
3 18,752 20 14 9
4 18,816 21 15 8
5 18,752 18 14 8
6 18,816 21 15 7
7 18,880 18 14 8
8 18,688 15 13 9

Table 10.6: |I0(Sδi)|, |I1(Sδi)|, |I2(Sδi)|, and |I3(Sδi)|

and I3(Sδi) is a collection of involutions from I2(Sδi) which generate distinct Sp4(4)

subgroups. The results of this process are presented in Table 10.6.

Now, we see that
8∑
i=1

|I3(Sδi)| = 64, which is the required result. �

We will now sieve for involutions in C \ O2(C). The method we will employ is

described in the remarks following Lemma 3.14.

Proposition 10.10. There are no Sp4(4) subgroups in G which are generated by

〈P3D
(3)
3 , x〉 where x /∈ O2(C).

Proof. Recall that C = C/O2(C) ∼= Sym(6). Let c1, c2, and c3 be representatives of

the conjugacy classes of involutions in Sym(6). Furthermore, let Ci be the full inverse

image of 〈ci〉 in C and Ri a right transversal for CC(ci) in C, for each i ∈ {1, 2, 3}.

Finally, let Ri be a set of representatives of each coset in Ri. And now we form

Ni = (Ci \O2(C)) ∩ 2DG

so that
3⋃
i=1

(⋃
r∈Ri

N r
i

)
⊇ I(C \O2(C)) ∩ 2DG

by Lemma 3.14 and the remarks that follow.

In practice, we form these in one “master screen”. We obtain c1, c2, and c3 by

using Classes on C, and Ri by using the command Transversal. We find Ri with:

Ri:={r@@f : r in Rib};

where the objects Ri and Rib represent Ri and Ri respectively, and f denotes the

homomorphism f : C → C provided when we ran LMGRadicalQuotient on C to find

O2(C) and C. And we find Ci using:

Ci:=sub<Cb|cib>@@f;
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where the objects Ci, Cb, and cib represent Ci, C, and ci respectively. Note that

|Ri| = 15 for i = 1, 2, and |R3| = 45, so we are able to save these as sets of matrices.

Also, note that Z(Ci) ∼= 27 for i ∈ {1, 3} and Z(C2) ∼= 28.

Now we will fix i ∈ {1, 2, 3} and discuss how we sieve each Ci. We construct

Z(Ci) ≤ Si ≤ O2(C) ≤ Ci such that |Si| = 231 and therefore [Ci : Si] = 64, and let

∆0 be a right transversal for Si in Ci. Then for all t ∈ Ci, we have t ∈ Siδ for some

δ ∈ ∆0. But recall that we are only interested in t when it is an involution which is

not in O2(C). We claim that

t /∈ O2(C) if and only if δ /∈ O2(C).

Indeed, suppose δ ∈ O2(C). Then we know t = sδ for some s ∈ Si. Since Si ≤ O2(C)

we have s ∈ O2(C) and thus t ∈ O2(C). Now suppose t ∈ O2(C). This time, we see

that s−1t = δ and since t, s ∈ O2(C) we have δ ∈ O2(C). Therefore, the claim holds,

as we have proved both contrapositive results. Hence we need only sieve the cosets

Siδ such that δ /∈ O2(C), so let ∆ = {δ ∈ ∆0 : δ /∈ O2(C)} = {δ1, . . . , δ32}.

We now break the process up into 32 screens and run them in parallel. Fix

j ∈ {1, . . . , 32}. Screen j will sieve the coset Siδj, so in screen j we load ∆, Si,

Ri, and Ci. Then, we let Γ be a right transversal for Z(Ci) in Si (we do this by run-

ning Transversal in the pc-group setting). By Proposition 3.11, we have that every

involution in Siδj is given in the form zγδj for some z ∈ Z(Ci) and γ ∈ Γ. We also

know, by Lemma 3.9, that (zγδj)
2 = 1 if and only if (γδj)

2 = 1.

Let I0(Siδj) = {γδj : (γδj)
2 = 1}. We now build a set called I1(Siδj) by carrying

out the following. For each x0 ∈ I0(Siδj), we run through the elements z ∈ Z(Ci)

and build x = zx0 (as we are now essentially sieving the cosets Z(Ci)x0). Now, if

x ∈ 2DG, we run through each r ∈ Ri and consider xr. (Recall we are sieving N r
i for

all r ∈ Ri.) If xr survives an order of random elements sieve (see Procedure 3.8 for

full details) then we keep xr in the set I1(Siδj). Having carried out this process for

each i ∈ {1, 2, 3} and each j ∈ {1, . . . , 32}, we now construct

I1(C) =
3⋃
i=1

(
32⋃
j=1

I1(Siδj)

)
,

the union of all I1(Siδj) across all screens. Then |I1(C)| = 50 and now let

I2(C) = {x ∈ I1(C) : |〈P3D
(3)
3 , x〉| = |Sp4(4)|}
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but we find that I2(C) = ∅. Hence there are no involutions in C \ O2(C) which

generate Sp4(4) along with P3D
(3)
3 . �

We will now work to prove that many of the copies of Sp4(4) we have found

are actually conjugate in G. Let (i, j) ∈ {(2, 1), (3, 3), (3, 5), (3, 7)} and recall we

have PiD
(i)
j ≤ H

(i,j)
k ≤ G for H

(i,j)
k
∼= Sp4(4), where k ∈ {1, . . . , nij} and nij is the

number of Sp4(4) subgroups containing PiD
(i)
j (so n21 = 2, n33 = 64, n35 = 4, and

n37 = 4). Recall that PiD
(i)
j = N

H
(i,j)
k

(Pi), so Proposition 3.15 applies and we have,

for k, k0 ∈ {1, . . . , nij}, that H
(i,j)
k and H

(i,j)
k0

are G-conjugate if and only if H
(i,j)
k and

H
(i,j)
k0

are NNG(Pi)(PiD
(i)
j )-conjugate.

Hence the first step in showing some of our found subgroups are conjugate is to

construct NNG(Pi)(PiD
(i)
j ).

Lemma 10.11. Let (i, j) ∈ {(2, 1), (3, 3), (3, 5), (3, 7)}. The orders of NNG(Pi)(PiD
(i)
j )

are given in Table 10.7.

i j |NNG(Pi)(PiD
(i)
j )|

2 1 25.35

3 3 26.3.53

3 5 26.52

3 7 25.52

Table 10.7: |NNG(Pi)(PiD
(i)
j )| for (i, j) ∈ {(2, 1), (3, 3), (3, 5), (3, 7)}

Proof. We already have NG(Pi) for i ∈ {2, 3}. To find NNG(Pi)(PiD
(i)
j ) we first turn

NG(Pi) into a permutation group. Since PiD
(i)
j ≤ NG(Pi) we can map PiD

(i)
j into the

permutation group setting and calculate the normaliser there directly. �

With these groups constructed, we can now proceed to show which of our Sp4(4)

subgroups are conjugate in G.

Proposition 10.12. The number of Sp4(4) subgroups up to G-conjugacy containing

PiD
(i)
j , for (i, j) ∈ {(2, 1), (3, 3), (3, 5), (3, 7)}, is shown in Table 10.8.

Proof. First, let (i, j) 6= (3, 3). Choose any k, k0 ∈ {1, . . . , nij}. Then, using the

group NNG(Pi)(PiD
(i)
j ) we can readily find an element n ∈ NNG(Pi)(PiD

(i)
j ) such that

(H
(i,j)
k )n = H

(i,j)
k0

. We find these elements with a simple repeat..until loop. For the

case where (i, j) = (3, 3), we use the same method, except the subgroups fall into two

conjugacy classes. Hence the result follows by Proposition 3.15. �
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i j Number of Sp4(4) subgroups containing PiD
(i)
j

2 1 1
3 3 2
3 5 1
3 7 1

Table 10.8: Number of Sp4(4) subgroups up to G-conjugacy

Now that we have constructed all possible subgroups of G isomorphic to Sp4(4) up

to conjugacy in G and which follow Sp4(4) fusion (i), (ii), (v), (vi), (vii), or (viii), we

now seek to extend them to groups isomorphic to subgroups of Aut(H).

10.2 Extending Sp4(4) to Sp4(4) : 4

Before we begin the hunt for subgroups isomorphic to subgroups of Aut(H), let us first

redefine our notation. For the rest of this chapter, we will denote our copies of Sp4(4)

by H
(2,1)
1 , H

(3,3)
1 , H

(3,3)
2 , H

(3,5)
1 , and H

(3,7)
1 , where PiD

(i)
j ≤ H

(i,j)
k . First, we state that

Aut(Sp4(4)) ∼= Sp4(4) : 4, which can be seen in the ATLAS [14]. To find elements

extending these copies of Sp4(4), we will appeal to some results in Section 2.4, which

we will gather together in the following lemma.

Lemma 10.13. Suppose g, g0 ∈ G such that 〈H(i,j)
k , g〉 ∼= Sp4(4) : 2 and 〈H(i,j)

k , g0〉 ∼=

Sp4(4) : 4. Then

(i) g, g0 ∈ E0(H
(i,j)
k ) := NNG(Pi)(PiD

(i)
j ) ∩NG(H

(i,j)
k );

(ii) g, g0 /∈ H(i,j)
k and g2, g4

0 ∈ H
(i,j)
k ;

(iii) all the E0(H
(i,j)
k )-conjugates of g, respectively g0, generate conjugate copies of

Sp4(4) : 2, respectively Sp4(4) : 4.

Proof. Part (i) follows from Proposition 2.15, part (ii) from Proposition 2.17, and part

(iii) from Proposition 2.16. �

This lemma provides us with an outline on how we will proceed to find elements

extending our copies of Sp4(4). After constructing E0(H
(i,j)
k ), we will build E1(H

(i,j)
k ),

a set of E0(H
(i,j)
k )-conjugacy class representatives. Then we build

E (2)
2 (H

(i,j)
k ) = {x ∈ E1(H

(i,j)
k ) : x /∈ H(i,j)

k and x2 ∈ H(i,j)
k };
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E (4)
2 (H

(i,j)
k ) = {x ∈ E1(H

(i,j)
k ) : x /∈ H(i,j)

k and x4 ∈ H(i,j)
k };

and finally

E (2)
3 (H

(i,j)
k ) = {x ∈ E (2)

2 (H
(i,j)
k ) : 〈H(i,j)

k , x〉 ∼= Sp4(4) : 2};

E (4)
3 (H

(i,j)
k ) = {x ∈ E (4)

2 (H
(i,j)
k ) : 〈H(i,j)

k , x〉 ∼= Sp4(4) : 4}.

The results of this process are given in the next result.

Proposition 10.14. Let (i, j, k) ∈ {(2, 1, 1), (3, 3, 1), (3, 3, 2), (3, 5, 1), (3, 7, 1)}. Then

the sizes of the sets Em(H
(i,j)
k ) where m ∈ {0, 1} and E (n)

m (H
(i,j)
k ) where m ∈ {2, 3} and

n ∈ {2, 4} are given in Table 10.9. Moreover, the two elements g, g0 ∈ E (2)
3 (H

(3,3)
1 ) are

such that 〈H(3,3)
1 , g〉 and 〈H(3,3)

1 , g0〉 are conjugate in G as groups.

i j k |E0(H
(i,j)
k )| |E1(H

(i,j)
k )| |E (2)

2 (H
(i,j)
k )| |E (2)

3 (H
(i,j)
k )| |E (4)

2 (H
(i,j)
k )| |E (4)

3 (H
(i,j)
k )|

2 1 1 400 16 6 1 6 0
3 3 1 24,000 62 16 2 22 0
3 3 2 1,600 46 30 1 36 0
3 5 1 400 16 6 1 6 0
3 7 1 200 14 0 0 0 0

Table 10.9: Sizes of the sets E0(H
(i,j)
k ), E1(H

(i,j)
k ), and E (n)

m (H
(i,j)
k ) for m ∈ {2, 3} and

n ∈ {2, 4}

Proof. We first construct E0(H
(i,j)
k ). Note that we already constructed NNG(Pi)(PiD

(i)
j )

in Lemma 10.11; now we run through every element in that group and store the ones

that normalise H
(i,j)
k . This is E0(H

(i,j)
k ). Using Classes we obtain E1(H

(i,j)
k ), and now

some simple for..do loops build the rest of the sets.

Now let g, g0 ∈ E (2)
3 (H

(3,3)
1 ) with g 6= g0. We can then, using a repeat..until

loop, easily find an element n ∈ NNG(Pi)(PiD
(i)
j ) such that 〈H(3,3)

1 , g〉n = 〈H(3,3)
1 , g0〉,

thus these groups are conjugate in G as required. �

Hence we have, up to G-conjugacy, at most four subgroups isomorphic to Sp4(4) : 2

and no subgroups isomorphic to Sp4(4) : 4 containing an Sp4(4) following fusion

possibility 2.5 (i), (ii), (v), (vi), (vii), or (viii). Note that Theorem 1.7 states that

there are exactly five classes of subgroups isomorphic to Sp4(4) following these fusion

possibilities, and exactly four classes of subgroups isomorphic to Sp4(4) : 2 containing

an Sp4(4) following these fusion possibilities. So far, we have only obtained upper

bounds. We will prove Theorem 1.7 at the end of this chapter, as we will use results
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established later. We will now prove that no Sp4(4), Sp4(4) : 2, or Sp4(4) : 4 subgroups

are maximal in G.

Proposition 10.15. Suppose H0 ≤ G with H = F ∗(H0) ∼= Sp4(4). Then H0 is not

maximal in G.

Proof. By Proposition 2.5 we know that H must follow one of eight fusion possibil-

ities. If H follows Sp4(4) fusion possibility (iii) or (iv), then H is not maximal by

Lemma 10.2. Moreover, H0 must also fix a non-zero vector by Proposition 2.18 and

so is not maximal in G by Proposition 2.23.

So, assume H follows fusion possibility (i), (ii), (v), (vi), (vii), or (viii). Then H is

G-conjugate to one of the five copies of Sp4(4) constructed in Proposition 10.12 and

the preceding results. Hence, without loss of generality, if we show that these five

copies of Sp4(4) – and their automorphism extensions, if they exist – are not maximal

in G, we are done.

We start with H
(3,7)
1 , which has no automorphism extensions in G. We also find

that dimCV (H
(3,7)
1 ) = 0 but we can use a repeat..until loop to find an element

m ∈ NNG(P3)(P3D
(3)
7 ) with H

(3,7)
1 ≤ 〈H(3,7)

1 ,m〉 < G. And so, H
(3,7)
1 is not maximal in

G.

Now let (i, j, k) ∈ {(2, 1, 1), (3, 3, 1), (3, 3, 2), (3, 5, 1)}. In all of these cases, we have

that H
(i,j)
k ≤ H

(i,j)
k : 2, so none of H

(i,j)
k are maximal in G. As for the groups H

(i,j)
k : 2,

we find that

dimCV (H
(i,j)
k : 2) =

1, if (i, j, k) ∈ {(2, 1, 1), (3, 3, 2), (3, 5, 1)},

4, if (i, j, k) = (3, 3, 1).

In all cases, dimCV (H
(i,j)
k : 2) > 0 so H

(i,j)
k : 2 fixes a non-zero vector of V and

therefore is not maximal in G by Proposition 2.23. This exhausts all possibilities for

H0. �

We will conclude this chapter by proving Theorem 1.7. To prove part (i), we must

show that if H0 ≤ G such that H = F ∗(H0) ∼= Sp4(4) and H does not follow Sp4(4)

fusion possibility 2.5 (iii) or (iv), then there are five classes of subgroups H0
∼= Sp4(4),

four classes of subgroups H0
∼= Sp4(4) : 2, and no subgroups H0

∼= Sp4(4) : 4.

We begin by recalling that by Proposition 10.12 and the preceding results we have

five subgroups H
(i,j)
k isomorphic to Sp4(4), where (i, j, k) ∈ {(2, 1, 1), (3, 3, 1), (3, 3, 2),
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(3, 5, 1), (3, 7, 1)}. Recall also that Pi ∈ Syl5(H
(i,j)
k ). Since P2 and P3 follow dif-

ferent fusion patterns, it follows that H
(2,1)
1 is not G-conjugate to any H

(i,j)
k such

that (i, j, k) ∈ {(3, 3, 1), (3, 3, 2), (3, 5, 1), (3, 7, 1)}. Moreover, H
(3,3)
1 and H

(3,3)
2 are

not conjugate by Proposition 10.12. We must now show that if (j, k), (j0, k0) ∈

{(3, 1), (3, 2), (5, 1), (7, 1)} such that j 6= j0, thenH
(3,j)
k andH

(3,j0)
k0

are notG-conjugate.

We claim that H
(3,j)
k and H

(3,j0)
k0

are G-conjugate if and only if they are NG(P3)-

conjugate. Indeed, suppose g ∈ G with (H
(3,j)
k )g = H

(3,j0)
k0

. Then P g
3 ∈ Syl5(H

(3,j0)
k0

)

and so there is some h ∈ H
(3,j0)
k0

such that P gh
3 = P3 by Sylow’s Theorems. Then

gh ∈ NG(P3). Now we have (H
(3,j)
k )gh = (H

(3,j0)
k0

)h = H
(3,j0)
k0

. Hence H
(3,j)
k and

H
(3,j0)
k0

are conjugate in NG(P3). Now, assume there exists n ∈ NG(P3) such that

(H
(3,j)
k )n = H

(3,j0)
k0

. Then (D
(3)
j )n ≤ H

(3,j0)
k0

but since (D
(3)
j )n must also normalise

P3 we have that (D
(3)
j )n ≤ N

H
(3,j0)
k0

(P3). However, D
(3)
j0

is unique in N
H

(3,j0)
k0

(P3) up

to conjugacy, so let h ∈ N
H

(3,j0)
k0

(P3) such that (D
(3)
j )nh = D

(3)
j0

. But now we have

nh ∈ NG(P3). This is a contradiction, because – by Proposition 10.6 – D
(3)
j and D

(3)
j0

represent distinct classes of Dih(8) subgroups in NG(P3). Hence H
(3,j)
k and H

(3,j0)
k0

are

not NG(P3)-conjugate and thus are not G-conjugate, as claimed.

To prove Theorem 1.7 (ii), we have at most four classes of Sp4(4) : 2 subgroups

constructed in Proposition 10.14. We will name the representatives of these classes

K
(i,j)
k such that (i, j, k) ∈ {(2, 1, 1), (3, 3, 1), (3, 3, 2), (3, 5, 1)} and H

(i,j)
k ≤ K

(i,j)
k . Let

(i, j, k), (i0, j0, k0) ∈ {(2, 1, 1), (3, 3, 1), (3, 3, 2), (3, 5, 1)} such that (i, j, k) 6= (i0, j0, k0)

and let H = H
(i,j)
k , K = K

(i,j)
k , H0 = H

(i0,j0)
k0

, and K0 = K
(i0,j0)
k0

. We claim that if

K is G-conjugate to K0, then H is G-conjugate to H0. Indeed, if g ∈ G such that

Kg = K0, then Hg ≤ K0. Since H0 is unique up to conjugacy in K0, then we have

some h ∈ K0 for which Hgh = H0. This proves the claim. We showed above that H is

not conjugate to H0, hence K is not conjugate to K0. Since this holds for all choices

of K, K0, we conclude that we have exactly four classes of subgroups isomorphic to

Sp4(4) : 2 which contain Sp4(4) not following fusion possibilities 2.5 (iii) or (iv).

Finally, we see that by Proposition 10.14 there are no Sp4(4) : 4 subgroups con-

taining an Sp4(4) subgroup not following fusion possibilities 2.5 (iii) or (iv). This

concludes the proof of Theorem 1.7. �



Chapter 11

L4(4) and Its Extensions

In this chapter, we will prove Theorem 1.8, showing that there is only one L4(4)

subgroup of G up to G-conjugacy which follows L4(4) fusion possibility (ii). Compared

with other cases, L4(4) is relatively straightforward and mostly a matter of building

up from our copies of Sp4(4) constructed in Chapter 10.

11.1 Constructing L4(4) Subgroups of G

For the rest of this section, we will suppose H ∼= L4(4) and follows L4(4) fusion

possibility (ii).

Lemma 11.1. Let K ≤ H ≤ G with K ∼= Sp4(4). If H follows L4(4) fusion possi-

bility (ii), then K follows Sp4(4) fusion possibility (i), (ii), (v), (vi), (vii), or (viii).

Moreover, H is G-conjugate to a copy of L4(4) subgroup of G containing one of the

copies of Sp4(4) found in Proposition 10.12.

Proof. If we compare the Sp4(4) fusion possibilities with L4(4) fusion possibility (ii),

we see that K cannot follow Sp4(4) fusion possibility (iii) or (iv). This can be seen

by observing that, if K follows fusion (iii) or (iv), then there is some k ∈ K such that

k ∈ 3AG, but there is no h ∈ H such that h ∈ 3AG. This is a clear contradiction. All

the fusion information in Sp4(4) fusion possibilities (i), (ii), (v), (vi), (vii), or (viii) is

consistent with L4(4) fusion (ii) – this completes the first result in the lemma. Now,

we simply observe that in Proposition 10.12, we found all copies of Sp4(4) which follow

these fusion possibilities, up to G-conjugacy. Therefore, Proposition 2.12 yields the

second result of the lemma. �

169
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The rest of this chapter will be devoted to building L4(4) subgroups of G as over-

groups of the five Sp4(4) subgroups found in Proposition 10.12. The next result lists

some properties of L4(4) and provides us with an efficient means of building L4(4) as

an overgroup of Sp4(4).

Proposition 11.2. Let K ≤ H ≤ G with K ∼= Sp4(4). Let P ∈ Syl5(K). Then

(i) K is maximal in H;

(ii) NH(P ) � K;

(iii) for all x ∈ NH(P ) where o(x) = 30, we have 〈K, x〉 = H.

Proof. (i) See the ATLAS [14].

(ii) This is directly verifiable in Magma.

(iii) First, note that there no elements of order 30 in K (again, see the ATLAS [14]).

There are elements x of order 30 in NH(P ). Hence we must have that K <

〈K, x〉 ≤ H and so the result follows by the maximality of K in H.

�

Recall that P2 and P3 are subgroups of G isomorphic to 52, and that in the remark

following Proposition 10.12, after finding the five subgroups isomorphic to Sp4(4),

we named them H
(i,j)
k where (i, j, k) ∈ {(2, 1, 1), (3, 3, 1), (3, 3, 2), (3, 5, 1), (3, 7, 1)}. In

this chapter, we will use the letter K instead, so our five copies of Sp4(4) are now

denoted K
(i,j)
k . Here, we have Pi ∈ Syl5(K

(i,j)
k ).

Proposition 11.2 tells us that if K
(i,j)
k ≤ H ≤ G, then there is an element x of order

30 normalising Pi such that 〈K(i,j)
k , x〉 = H. Recall that we have copies of NG(Pi) for

i ∈ {2, 3}, which we found in Proposition 7.7. Hence, for each i ∈ {2, 3}, we construct

L0(K
(i,j)
k ) = {x ∈ NG(Pi) : o(x) = 30},

a set containing all possible elements forming a required generating set of L4(4). Now,

for each element x ∈ L0(K
(i,j)
k ), we apply a 100 order of random elements sieve to

〈K(i,j)
k , x〉, which is described in full detail in Procedure 3.8. For the elements x which

survive the sieve, we store them in a set called L1(K
(i,j)
k ). Finally, we construct a set

L2(K
(i,j)
k ) ⊆ L1(K

(i,j)
k ) such that
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(i) for all y ∈ L2(K
(i,j)
k ), 〈K(i,j)

k , y〉 ∼= L4(4);

(ii) for all y, y0 ∈ L2(K
(i,j)
k ) with y 6= y0, 〈K(i,j)

k , y〉 6= 〈K(i,j)
k , y0〉;

(iii) for all y0 ∈ L1(K
(i,j)
k ), there exists y ∈ L2(K

(i,j)
k ) such that y0 ∈ 〈K(i,j)

k , y〉.

Essentially, we trim L1(K
(i,j)
k ) down to L2(K

(i,j)
k ) by choosing only elements that gen-

erate all of the distinct copies of L4(4). We will now state the results of this process.

Proposition 11.3. Table 11.1 shows |Lm(K
(i,j)
k )| for m ∈ {0, 1, 2}.

i j k |L0(K
(i,j)
k )| |L1(K

(i,j)
k )| |L2(K

(i,j)
k )|

2 1 1 0 0 0
3 3 1 224,000 800 10
3 3 2 224,000 0 0
3 5 1 224,000 0 0
3 7 1 224,000 0 0

Table 11.1: |Lm(K
(i,j)
k )| for m ∈ {0, 1, 2}

Proof. To build L0(K
(i,j)
k ), we first turn NG(Pi) into a permutation group. Then,

using Classes, we obtain a collection of conjugacy class representatives of NG(Pi)

of elements of order 30. Then we use Class to construct all conjugacy classes of

elements of order 30, and use join to form their union. This is L0(K
(i,j)
k ). We apply

Procedure 3.8 to construct L1(K
(i,j)
k ). Note that to apply this sieve, we use the set of

possible element orders of L4(4) given by

{1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15, 17, 21, 30, 63, 85}

which can be seen by looking at the ATLAS [14]. To build L2(K
(i,j)
k ), we use the

following algorithm. Start with L2(K
(i,j)
k ) := L1(K

(i,j)
k ) as an ordered set. Start

with the first element y1 ∈ L2(K
(i,j)
k ) such that 〈K(i,j)

k , y1〉 ∼= L4(4) then delete from

L2(K
(i,j)
k ) all x such that x ∈ 〈K(i,j)

k , y1〉. Now take the second element y2 such that

〈K(i,j)
k , y1〉 ∼= L4(4) and delete from L2(K

(i,j)
k ) all x such that x ∈ 〈K(i,j)

k , y2〉. We

repeat this process until we choose yn, where n = |L2(K
(i,j)
k )| (so that yn is the last

element in L2(K
(i,j)
k )), at which point there is nothing more to delete. �

Hence we only have one copy of Sp4(4) for which an overgroup of L4(4) exists as a

subgroup of G, namely K
(3,3)
1 . For the remainder of this section, let K = K

(3,3)
1 , as we

have no interest in the other copies of Sp4(4). Proposition 11.3 tells us that there are
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at most ten L4(4) subgroups of G containing K, up to G-conjugacy. The next result

reduces this number.

Proposition 11.4. Up to conjugacy in G, there is exactly one copy of L4(4) containing

K.

Proof. From Proposition 11.3, we have y1, . . . , y10 such that 〈K, yi〉 ∼= L4(4), where

i ∈ {1, . . . , 10}. And, for i, j ∈ {1, . . . , 10}, we have that if i 6= j then 〈K, yi〉 6= 〈K, yj〉.

Now, for each i ∈ {2, . . . , 10}, we take random elements n ∈ NG(P3) until yni ∈ 〈K, y1〉.

When we find such an n, we then check if 〈K, yi〉n = 〈K, y1〉. These elements can be

readily found for each i ∈ {2, . . . , 10}, so we have that all 10 of these copies of L4(4)

are conjugate in G. �

Thus, we have only one L4(4) subgroup of G following fusion possibility (ii), up to

conjugacy in G. We call this subgroup H, and now we endeavour to find H0 ≤ G such

that H0 is isomorphic to a subgroup of Aut(H).

11.2 Extending L4(4) to L4 : 22

Let H be the sole copy of L4(4) in G up to conjugacy. We start with some facts about

Aut(L4(4)).

Proposition 11.5. Let H0
∼= Aut(H). Then H0

∼= L4(4) : 22 and H0 contains

three classes of maximal subgroups with the shape L4(4) : 2 which are pairwise non-

isomorphic. Moreover, if we let Y1, Y2, and Y3 be representatives of these classes, then

if i 6= j then H0 = 〈Yi, Yj〉, for i, j ∈ {1, 2, 3}.

Proof. The existence of such classes of maximal subgroups can be seen in the ATLAS [14].

The final statement is a direct result of the maximality of these subgroups. �

Hence our strategy will first be to find all overgroups of H in G with the shape

L4(4) : 2. For if L4(4) : 22 exists as an overgroup of H in G, it will contain three

non-isomorphic copies of L4(4) : 2.

Recall that P3 ∈ Syl5(H) where P3
∼= 52. Define

E0(H) = NNG(P3)(NH(P3)) ∩NG(H),
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and by Proposition 2.15, any g ∈ G for which 〈H, g〉 ∼ L4(4) : 2 must be such that

g ∈ E0(H). Now we let E1(H) be a set of conjugacy class representatives of the classes

in E0(H), since from Proposition 2.16 we have that if g, h ∈ E0(H) which are conjugate

in E0(H), then 〈H, g〉 and 〈H, h〉 are conjugate groups. Next, let

E2(H) = {x ∈ E1(H) : x /∈ H and x2 ∈ H},

as by Proposition 2.17 we have that all g ∈ G such that 〈H, g〉 ∼ L4(4) : 2 must be

such that g ∈ E2(H). Finally, we build E3(H) ⊆ E2(H), a set containing elements of

E2(H) which generate distinct copies of L4(2) : 2. The next result details the outcome

of this process.

Proposition 11.6. The sizes of the sets Em(H) for m ∈ {0, 1, 2, 3} are shown in

Table 11.2.

|E0(H)| |E1(H)| |E2(H)| |E3(H)|
7,200 78 31 5

Table 11.2: |Em(H)| for m ∈ {0, 1, 2, 3}

Proof. In Magma, we construct E0(H) by calculating NH(P3) directly, then turning

NG(P3) into a permutation group and finding NNG(P3)(NH(P3)) in the permutation

setting. Then, we run through the elements of NNG(P3)(NH(P3)) and keep the ones

which normalise H. We find E1(H) using Classes, then E2(H) with simple for..do

procedures. To construct E3(H) we use an algorithm like that described at the end of

the proof of Proposition 11.3. �

Hence we have five distinct overgroups of H in G with shape L4(4) : 2. Now we

can begin constructing overgroups of H isomorphic to L4(4) : 22.

Proposition 11.7. Suppose H ≤ H0 ≤ G such that H0
∼= L4(4) : 22. Then H0 is

unique up to G-conjugacy.

Proof. First, we will introduce some notation. From Proposition 11.5 we know that

there are three isomorphism types of maximal subgroups of H0 with shape L4(4) : 2.

We will call these L4(4) : 2i for i ∈ {1, 2, 3}. Now, let y1, . . . , y5 be the distinct

elements of E3(H), and Yj = 〈H, yj〉, for each j ∈ {1, 2, 3, 4, 5}. Then we have Y1
∼=

Y3
∼= L4(4) : 21, Y2

∼= L4(4) : 22, and Y4
∼= Y5

∼= L4(4) : 23. Hence all possible
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L4(4) : 22 overgroups of H will be given by 〈Yi, Yj〉 such that i, j ∈ {1, 2, 3, 4, 5},

Yi � Yj, and 〈Yi, Yj〉 ∼= L4(4) : 22. We find that 〈Yi, Yj〉 ∼= L4(4) : 22 when (i, j) ∈

{(1, 2), (1, 4), (2, 3), (2, 4), (2, 5), (3, 5)}. Moreover, let Yij = 〈Yi, Yj〉 and we find that

Y12 = Y14 = Y24 and Y23 = Y25 = Y35 with Y12 6= Y23. Finally, we can readily find

elements n ∈ NG(P3) such that Y n
12 = Y23. Hence, up to G-conjugacy, there is only

one L4(4) : 22 subgroup containing H. �

We remark that the proof of Proposition 11.7 demonstrates that there are exactly

three subgroups of G containing H with shape L4(4) : 2. Indeed, since L4(4) : 22

contains a unique copy of L4(4) : 2i, for each i ∈ {1, 2, 3}, it follows that Y1 and Y3

are G-conjugate and Y4 and Y5 are G-conjugate. Now we will show that none of the

groups we have constructed in this chapter are maximal in G.

Proposition 11.8. Let H ≤ G such that F ∗(H) ∼= L4(4) and F ∗(H) follows L4(4)

fusion possibility 2.6 (ii). Then H is not maximal in G.

Proof. By Proposition 11.4, F ∗(H) is G-conjugate to the sole copy of L4(4) following

fusion possibility 2.6 (ii). Call this group L. By Propositions 11.6 and 11.7, L can

be extended into three groups of shape L4(4) : 2, all of which are contained in an

L4(4) : 22 subgroup, which we will call K. To see that K is not maximal, we find some

x ∈ NG(P3) such that K < 〈K, x〉 < G. �

Let us now conclude this chapter – and thesis – by proving Theorem 1.8. We must

show that if H0 ≤ G such that H = F ∗(H0) ∼= L4(4) and H follows L4(4) fusion

possibility 2.6 (ii), then there is one class of subgroups H0
∼= L4(4), three classes of

subgroups H0 with shape L4(4) : 2, and one class of subgroups H0
∼= L4(4) : 22. The

single class of L4(4) subgroups is constructed in Proposition 11.4, while the latter two

results can be seen from Proposition 11.7 and the remarks following its proof. This

concludes the proof of Theorem 1.8. �
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Appendix A

Guide to Provided Files

Here we will provide a breakdown of all the files compatible with Magma which accom-

pany this thesis. We provide hard copies of all the subgroups constructed throughout

this thesis, as well as some groups used in the construction of these subgroups. While

we will provide a detailed description of the files in this chapter, we have endeav-

oured to name the files as clearly as possible – for example, a file named O8+2:2 is an

Ω+
8 (2) : 2 subgroup of G. Where there are several copies of Ω+

8 (2) : 2 constructed in

that particular case, they are named O8+2:2Copy1, O8+2:2Copy2, and so on. All the

files are organised into four folders, named: GeneralE8(2)Files, U4(2), O8+2, and

Sp4(4).

The contents of folder GeneralE8(2)Files is given in Table A.1. It contains some

files related to E8(2).

File Description
CG3B CG(g) where g ∈ G ∩ 3B
CG3D CG(g) where g ∈ G ∩ 3D
CG5A CG(g) where g ∈ G ∩ 5A
CG5B CG(g) where g ∈ G ∩ 5B
E8Sylow3 H ∈ Syl3(G)
E8Sylow5 H ∈ Syl5(G)
NormOfSylow3 NG(H) where H ∈ Syl3(G)
NormOfElAb5^4SubgroupSylow5 NG(K) where 54 ∼= K ≤ H ∈ Syl5(G)

Table A.1: Contents of folder GeneralE8(2)Files

Folder U4(2)

This folder contains files related to Chapter 4 on U4(2), Chapter 5 on Sp6(2), and

Chapter 6 on Ω−8 (2). The files are organised into five folders: FusionCombination2,

180
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FusionCombination3, FusionCombination6, FusionCombination8, and finally

FusionCombination9. Each folder contains files associated to particular U4(2) fusion

possibilities. These files are described in Table A.2.

File Description
3tothe4s The full set of [34] subgroups described in Table 4.2
Rs The groups in 3tothe4s reduced by conjugacy, as in Table 4.3
Es The set of 33 subgroups of the groups in Rs

Table A.2: Contents of FusionCombination folders

The folders FusionCombination8 and FusionCombination9 contain nothing more.

Folders FusionCombination2 and FusionCombination6 contain elements conjugating

the subgroups in Es. For example, the file ConjElt1and2 contains an element c such

that Ec
1 = E2 where E1 and E2 are the first and second subgroups contained in Es

respectively. These elements were found in Lemma 4.5.

Now we will go on to describe the additional folders inside FusionCombination2,

FusionCombination3 and FusionCombination6. Let i be the number on the folder

(so i ∈ {2, 3, 6}). Folders FusionCombination2 and FusionCombination6 contain

a folder called E1. Folder FusionCombination6 contains folders E1 and E2. These

correspond to the 33 subgroups named E
(i)
j after the proof of Lemma 4.4, where (i, j) ∈

{(2, 1), (3, 1), (3, 2), (6, 1)}. These folders contain E, which is E
(i)
j , R the [34] containing

E
(i)
j , D which is D

(i)
j as defined in Lemma 4.7, and x, y, CGx, and CGy which are x,

y, CG(x), and CG(y) used in the construction of D
(i)
j . Folder FusionCombination3

contains nothing more.

Folder FusionCombination2/E1 contains four more folders, S1, S2, S3, and S4,

while folder FusionCombination6/E1 contains two more folders, S1 and S2. These are

folders relating to the copies of Sym(4) constructed and named S
(i,j)
k in Proposition 4.8.

The contents of these folders are explained in Table A.3.

File Description

S The Sym(4) subgroup S
(i,j)
k

D8 The Dih(8) subgroup of S
(i,j)
k

B C1(S
(i,j)
k ) as defined in Proposition 4.9

U C2(S
(i,j)
k ) as defined in Proposition 4.9

M C3(S
(i,j)
k ) as defined in Proposition 4.10

Table A.3: Contents of the folders related to S
(i,j)
k

Note that there is one exception. The folder FusionCombination2/E1/S1 does not
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contain a file named M. This is because the case with S
(2,1)
1 was resolved differently – see

Lemma 4.12. Furthermore, this folder also contains files Sx2-1 and Sx2-2. Similarly,

folder FusionCombination6/E1/S1 also contains a file called Sx2. These three files are

copies of Sym(3) × 2 used in the generation of U4(2) : 2 in Proposition 4.17. Finally,

there are two additional folders inside FusionCombination2/E1/S1. These are named

U4(2)Copy1 and U4(2)Copy2. The contents of these folders, as well as the additional

contents of folder FusionCombination6/E1/S1, are named following the conventions

stated in Table A.4.

File Description
U4(2) U4(2)

InvolutionGeneratingU4(2) t such that 〈E(i)
j S

(i,j)
k , t〉 ∼= U4(2)

U4(2):2 U4(2) : 2
Sp6(2) Sp6(2)
InvolutionGeneratingSp6(2) t such that 〈U4(2) : 2, t〉 ∼= Sp6(2)
O8-(2) Ω−8 (2)
InvolutionGeneratingO8-(2) t such that 〈Sp6(2), t〉 ∼= Ω−8 (2)
O8-(2):2 Ω−8 (2) : 2
InvolutionGeneratingO8-(2):2 t such that 〈Ω−8 (2), t〉 ∼= Ω−8 (2) : 2

Table A.4: Contents of the folders related to S
(i,j)
k

Where multiple copies of groups are found, we append Copy1, Copy2 etc. to the

name of the group. For example, in the folder FusionCombination2/E1/S1 there

are two copies of U4(2) : 2. These are named U4(2):2Copy1 and U4(2):2Copy2.

Whenever this occurs, we also label the number the generating elements accord-

ingly so that Involution1Generating... is used to generate the group labelled

...Copy1, and so on. We also append With... to the end of a file name where it

is unclear which subgroup we are using to generate the next group. For example,

in the folder FusionCombination2/E1/S1 we have H ∼= Sp6(2) where H is labelled

Sp6(2)Copy2. There exists t such that 〈H, t〉 ∼= Ω−8 (2). This element t is labelled

InvolutionGeneratingO8-(2)WithSp6(2)Copy2. These naming conventions will be

used in the description of files associated with other groups.

Folder O8+2

These files are organised into folders P1, P2, and P3. These correspond to folders

containing files associated with the elementary abelian subgroups P1, P2, and P3 of

order 52 used in the generation of Ω+
8 (2). Note that in Proposition 7.5 we conclude
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that there are four such subgroups up to conjugacy in G. However, in Lemma 7.3

we show that P4 cannot be built into an Ω+
8 (2) subgroup of G. For completeness, we

provide P4 in a file called P4 by itself.

Each folder P1, P2, and P3 contains a file of the same name – these are copies of

P1, P2, and P3 respectively. Folder P1 contains files CGP1 and NGP1, which are CG(P1)

and NG(P1) respectively. Folders P2 and P3 contain similarly named files for CG(P2),

NG(P2), CG(P3), and NG(P3). Additionally, folder P1 contains the following:

• NGP1gen – an ordered generating set for NG(P1) as a subgroup of G;

• NGP1permgen – an ordered generating set for NG(P1) as a permutation group of

degree 40,563;

• NGP1permgenreduced – an ordered generating set for NG(P1) as a permutation

group of degree 4,050.

Calculations inside the permutation group of degree 4,050 are much faster. We use

the following the following procedure to construct map, an isomorphism from NG(P1)

as a matrix group to NG(P1) as a degree-40,563 permutation group, and mapp, an

isomorphism fromNG(P1) as a degree-40,563 permutation group toNG(P1) as a degree-

4,050 permutation group.

NGP1:=sub<Q|NGP1gen>;

Np:=Universe(NGP1permgen);

Npp:=Universe(NGP1permgenreduced);

map:=Homomorphism(NGP1,Np,NGP1gen,NGP1permgen);

mapp:=Homomorphism(Np,Npp,NGP1permgen,NGP1permgenreduced);

Now recall that we have T
(i)
j normalising Pi such that PiT

(i)
j is contained in some

Ω+
8 (2) subgroup of G, where (i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (3, 2)}. Ac-

cordingly, we have a folder for each T
(i)
j . Thus we have folders P1/T1, P1/T2, P1/T3,

P1/T4, P2/T1, P3/T1, and P3/T2. Inside each folder is a file of the same name con-

taining a copy of T
(i)
j
∼= Dih(8) ◦ Z4. Further contents of these folders are given in

Table A.5.
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File Description

C3T C3(T
(i)
j ) as defined before Proposition 7.13

O8+2 Ω+
8 (2)

InvolutionGeneratingO8+2 t such that 〈PiT (i)
j , t〉 ∼= Ω+

8 (2)
O8+2:2 Ω+

8 (2) : 2
ElementGeneratingO8+2:2 t such that 〈Ω+

8 (2), t〉 ∼= Ω+
8 (2) : 2

O8+2:3 Ω+
8 (2) : 3

ElementGeneratingO8+2:3 t such that 〈Ω+
8 (2), t〉 ∼= Ω+

8 (2) : 3
O8+2:Sym(3) Ω+

8 (2) : Sym(3)
ElementGeneratingO8+2:Sym(3) t such that 〈Ω+

8 (2) : 3, t〉 ∼= Ω+
8 (2) : Sym(3)

Table A.5: Contents of the folders related to T
(i)
j

Also in folders P1/T2 and P2/T1 are the files EltToProveO8+2:Sym(3)NotMaximal.

These are elements x such that H < 〈H, x〉 < G where H is the relevant Ω+
8 (2) :

Sym(3) subgroup, which are used to show that H is not maximal in G.

Additionally, in folder P1 is another folder called ConstructionFiles. This is

a folder related to the 351 subgroups isomorphic to Dih(8) ◦ Z4 normalising P1 (see

Proposition 7.9). There are five folders within: Ts1, Ts2, Ts3, Ts4, and Ts5. these cor-

respond to the sets of Dih(8) ◦Z4 subgroups labelled T (1,1), . . . , T (1,5) and constructed

in Lemma 7.10. In each folder is a file of the same name containing an ordered set

of the Dih(8) ◦ Z4 subgroups in T (1,k) for k ∈ {1, 2, 3, 4, 5}. There is also a file called

zCentralInvolution which is the central involution common to all Dih(8) ◦ Z4 sub-

groups in T (1,k).

In Ts5 specifically, let z be the element in zCentralInvolution there are files

named CGz, which contains CG(z), and Core2CGz which is O2(CG(z)) constructed in

the remarks following Lemma 7.14. Recall now that in the passage preceding Proposi-

tion 7.19 we split T (1,5) into 46 sets T (1,5,k) for k ∈ {1, . . . , 46} where each T (1,5,k) is a

set of Dih(8)◦Z4 subgroups such that there is a non-central involution common to each

T ∈ T (1,5,k). Associated with these are 46 folders inside Ts5 called Tset1,. . .,Tset46.

The contents of these 46 folders are given in Table A.6.

File Description
Ts The ordered set T (1,5,k)

a the non-central involution common to all subgroups in T (1,5,k)

B C1(T ) as defined before Proposition 7.19
U1, U2, ... C2(T ) for each T ∈ T (1,5,k) as defined before Proposition 7.19
M1, M2, ... C3(T ) for each T ∈ T (1,5,k) as defined before Proposition 7.19

Table A.6: Contents of the folders related to S
(i,j)
k



APPENDIX A. GUIDE TO PROVIDED FILES 185

Now we move onto the files related to Ω+
8 (4) subgroups of G. Recall that in

Proposition 8.2 we found a copy of Ω+
8 (4) containing P1T

(1) and one containing P3T
(3)
2 .

Accordingly, we have folders named O8+4 in the folders P1/T1 and P3/T2 containing

files associated with Ω+
8 (4) subgroups. In these folders we have Sylow5ForO8+4, which

is R ∼= 54 and TransvEltForO8+4, which is t such that Rt ∈ Syl(H) where H is the

copy of Ω+
8 (4) in question. These were found in Proposition 8.2 and were used in the

construction of Ω+
8 (4) subgroups. We also have NormOfSyl5OfO8+4 which is NG(Rt)

which were found in Proposition 8.3 and was used in the construction of automorphism

extensions of Ω+
8 (4) subgroups. The remaining contents of these folders are explained

in Table A.7.

File Description
O8+4 Ω+

8 (4)
ElementGeneratingO8+4 t such that 〈Ω+

8 (2), t〉 ∼= Ω+
8 (4)

O8+4:2 Ω+
8 (4) : 2

ElementGeneratingO8+4:2 t such that 〈Ω+
8 (4), t〉 ∼= Ω+

8 (4) : 2
O8+4:3 Ω+

8 (4) : 3
ElementGeneratingO8+4:3 t such that 〈Ω+

8 (4), t〉 ∼= Ω+
8 (4) : 3

O8+4:2^2 Ω+
8 (4) : 22

ElementGeneratingO8+4:2^2 t such that 〈Ω+
8 (4) : 2, t〉 ∼= Ω+

8 (4) : 22

O8+4:6 Ω+
8 (4) : 6

ElementGeneratingO8+4:6 t such that 〈Ω+
8 (4), t〉 ∼= Ω+

8 (4) : 6
O8+2:Sym(3) Ω+

8 (4) : Sym(3)
ElementGeneratingO8+2:Sym(3) t such that 〈Ω+

8 (4) : 3, t〉 ∼= Ω+
8 (4) : Sym(3)

O8+2:Dih(12) Ω+
8 (4) : Dih(12)

ElementGeneratingO8+2:Dih(12) t such that 〈Ω+
8 (4) : Sym(3), t〉 ∼= Ω+

8 (4) :
Dih(12)

Table A.7: Contents of the folders related to Ω+
8 (4)

Now we will discuss files associated with Sp8(2) subgroups. By Proposition 9.2

we have four Sp8(2) subgroups: one containing P1T
(1)
3 , one containing P1T

(1)
4 , and

two containing P3T
(3)
1 . Files associated with these Sp8(2) subgroups are, therefore,

contained in the folders P1/T3, P1/T4, and P3/T1. There, we have files named Sp8(2)

or Sp8(2)FromO8+2:2Copy... in folders where there are multiple copies of Ω+
8 (2) : 2

(see the naming conventions established after Table A.4). Also, we have elements t

such that 〈Ω+
8 (2) : 2, t〉 ∼= Sp8(2), which are saved as InvolutionGeneratingSp8(2).

In P1/T4 we also have the group C(R(1,4)
1 ) as defined before Proposition 9.2, saved in

the file CR.
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Folder Sp4(4)

In this final folder, we have all the files associated with Sp4(4) and L4(4) subgroups.

Like the O8+2 folder, folder Sp4(4) is organised into folders P2 and P3 which correspond

to the 52 subgroups P2 and P3. Folder P3 contains seven folders D1,. . .,D7 corresponding

to the seven Dih(8) subgroups D
(3)
i for i ∈ {1, . . . , 7} constructed in Proposition 10.6.

Each of these folders contains a file D which contains the subgroup D
(3)
i . Similarly,

there is a file called D inside the folder P2 containing the subgroup D
(2)
1 . The folders

P2, P3/D3, P3/D5, and P3/D7 also contain files which are described in Table A.8.

File Description
Sp4(4) Sp4(4)

InvolutionGeneratingSp4(4) t such that 〈PiD(i)
j , t〉 ∼= Sp4(4)

Sp4(4):2 Sp4(4) : 2
ElementGeneratingSp4(4):2 t such that 〈Sp4(4), t〉 ∼= Sp4(4) : 2

Table A.8: Contents of the folders related to D
(i)
j

Also in folder P3/D7 is a file EltToProveSp4(4)NotMaximal which is an element x

such that H < 〈H, x〉 < G where P3D
(3)
7 ≤ H ∼= Sp4(4) used to prove that H is not

maximal.

Finally, in folder P3/D3 containing files associated with L4(4). The contents of this

folder are described in Table A.9.

File Description

L4(4) Sp4(4) used to generate L4(4)

L4(4) L4(4)

ElementGeneratingSp4(4) t such that 〈Sp4(4), t〉 ∼= L4(4)

L4(4):2 L4(4) : 2

L4(4):2^2 L4(4) : 22

Table A.9: Contents of the folders related to D
(i)
j

We also have a file EltToProveL4(4):2^2NotMaximal which contains an element

x such that H < 〈H, x〉 < G where H ∼= L4(4) : 22. This is used to prove that H is

not maximal in G.



Appendix B

Procedures

Here we provide some of the procedures used throughout this thesis. We will start

with the code used to construct G ∼= E8(2) as a subgroup of GL248(2). This is included

as all of our computations take place in this matrix representation of E8(2).

Procedure B.1. The following procedure constructs E8(2) ∼= G ≤ GL248(2).

H:=GroupOfLieType("E8",GF(2));

f:=AdjointRepresentation(H);

Q:=Codomain(f);

Hgens:=[];

for i:=1 to 8 do;

Append(~Hgens,elt<H|<i,1>>);

end for;

for i:=1 to 8 do;

Append(~Hgens,elt<H|<120+i,1>>);

end for;

Ggens:=[];

for h in Hgens do;

Append(~Ggens,f(h));

end for;

G:=sub<Q|Ggens>;

Procedure B.2. This procedure is used to find a random element of specified order

in a given group. Here, G is the group we wish to search in, and l is the order we

187
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want our element to be. For example, g:=Element(G,3) will find an element g ∈ G

of order 3. It works by searching for random elements in G until it finds h such that

o(h) divides l. Then it sets g := h
o(h)
l so that o(g) = l.

function Element(G,l);

x:=Id(G);

repeat

r:=Random(G);

o:=Order(r);

if o mod l eq 0 then

k:=IntegerRing()!(o/l);

x:=r^k;

end if;

until Order(x) eq l;

return x;

end function;

Procedure B.3. This procedure was developed by Ballantyne and Rowley and is used

to find the centraliser of an element in E8(2). Here, the parameters are as follows:

• G is the group we wish to find the centraliser in (so in our case E8(2));

• g is the element we wish to find the centraliser of;

• k is an integer at least as large as the dimension of the smallest non-trivial

irreducible 〈g〉-module over F2;

• H is a subgroup of G which is isomorphic to CG(g).

Note that the Element command found in Procedure B.2 must be loaded before

FindCent is used.

procedure FindCent(G,g,k,H)

Q:=GL(248,2);

V:=GModule(H);

CompsV:=CompositionFactors(V);

dimsV:={};
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for c in CompsV do

Include(~dimsV,Dimension(c));

end for;

Cg:=sub<Q|Id(Q)>;

count:=0;

repeat

repeat

t:=Element(G,2);

Y:=sub<Q|t,g>;

U:=GModule(Y);

CF:=CompositionFactors(U);

until #CF ge 10;

for i:=1 to 5 do

thing:=0;

counter:=0;

repeat

a:=Element(Y,2);

L:=sub<Q|a,g>;

W:=GModule(L);

CFW:=CompositionFactors(W);

dims:={};

for c in CFW do

Include(~dims,Dimension(c));

end for;

counter:=counter+1;

if Max(dims) le k then

thing:=1;

end if;

until Max(dims) le k or counter eq 20;

if thing eq 1 then

l:=LMGOrder(L); Factorisation(l);

if l le 2^20 then



APPENDIX B. PROCEDURES 190

CL:=Centraliser(L,g);

Cg:=sub<Q|Cg,CL>;

end if;

end if;

end for;

VCg:=GModule(Cg);

count:=count+1;

count;

CFVCg:=CompositionFactors(VCg);

dimsVCg:={};

for c in CFVCg do

Include(~dimsVCg,Dimension(c));

end for;

if #CFVCg le 20 then

CFVCg;

end if;

until dimsV eq dimsVCg;

PrintFileMagma("Cg",Cg);

end procedure;

Procedure B.4. For some group G, this procedure takes a group H ≤ G and a set

S of subgroups of H and finds orbit representatives in S under the action of H by

conjugation. Here, Calc is the name given to the set S (and note that it is an ordered

set) and ConjGrp is the name given to the group H. Essentially, the code works by first

setting Set to be an idential copy of S. Then it takes the first element X of Set and

deletes all the H-conjugates of X from Set (including X itself). It stores X in a new

set called reps. Then it moves on, choosing the first element of Set and repeating

the above steps until Set is empty. Upon completion, reps will be the desired set

of representatives. Note that the procedure can be easily be modified to find orbit

representatives of a set of group elements rather than subgroups.

This procedure is employed when we have L ≤ H and L is sufficiently small that we

can run Subgroups on L, thereby obtaining all subgroups of the desired order in L up to

L-conjugacy. If we want to reduce the number of subgroups by considering conjugacy
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in the whole of H, we employ this procedure. This usually occurs in situations when

H is too large to employ Subgroups on H directly.

Set:=Calc;

reps:={@@};

for i in [1..(#Calc-1)] do;

if Calc[i] in Set then;

Include(~reps,Calc[i]);

X:=subs[Calc[i]]‘subgroup;

for j in [i..#Calc] do;

if Calc[j] in Set then;

Y:=subs[Calc[j]]‘subgroup;

if IsConjugate(ConjGrp,X,Y) then;

Set:=Set diff {Calc[j]};

end if;

end if;

end for;

end if;

end for;

Procedure B.5. Here is the code for the ReBray function which takes a group G with

N E G and an involution g ∈ G, then outputs an element x ∈ G such that gx = xg,

where g = gN . It works by employing Lemma 7.15.

function ReBray(G,N,g)

h:=Random(G);

o:=Order((g,h));

D:=Divisors(o);

M:={d:d in D| LMGIsIn(N,(g,h)^d)};

r:=Min(M);

if r mod 2 eq 0 then;

m:=(r/2);

k:=IntegerRing()!m;

x:=(g,h)^k;
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else;

m:=(r-1)/2;

k:=IntegerRing()!m;

x:=h*(g,h)^k;

end if;

return(x);

end function;

Procedure B.6. These procedures accompany Proposition 7.18 and are used to find

the desired elements x and g. Note that, in both procedures, the object W represents

O2(C).

(i) This procedure finds x ∈ C of order 17 such that [x, a] /∈ O2(C). Note that the

function Element from Procedure B.2 needs to be loaded first.

repeat

x:=Element(C,17);

until LMGIsIn(W,x*a*(x^-1)*a) eq false;

(ii) This procedure finds g ∈ C such that, given any n ∈ L, [a, g]n /∈ O2(C). De-

pending on the case, L should be taken to either be the set {1, 2, 3, 4, 6, 12} or

{1, 2, 3, 4, 5, 6, 10, 12, 15}.

repeat;

g:=Random(C);

TF:={};

x:=a*(g^-1)*a*g;

for n in L do;

y:=x^n;

tf:=LMGIsIn(W,y);

Include(~TF,tf);

end for;

until TF eq {false};



APPENDIX B. PROCEDURES 193

Procedure B.7. Let E8
∼= G ≤ GL248(2). This procedure, written by Ballantyne,

constructs Ω+
16(2) ∼= K ≤ G as well as P such that P ∼= K and P is a permutation

group of degree 32,895, as well as providing an isomorphism ϕ : P → K. Note that

the E8(2) setup procedure found in Procedure B.1 should be run first. Given p ∈ P ,

by running k:=Evaluate(w(h),K) we obtain k = ϕ(p) ∈ K.

Q:=GL(248,2);

n:=[];

for i:=1 to 8 do

Append(~n,f(elt<H|<i,1>>));

end for;

for i:=121 to 128 do

Append(~n,f(elt<H|<i,1>>));

end for;

Append(~n,f(elt<H|<120,1>>));

Append(~n,f(elt<H|<240,1>>));

K:=sub<Q|n[2],n[3],n[4],n[5],n[6],n[7],n[8],n[10],n[11],n[12],

n[13],n[14],n[15],n[16],n[17],n[18]>;

truth,m1,m2:=ClassicalConstructiveRecognition(K,"Omega+",16,2);

n16:=[];

for i:=1 to 16 do

Append(~n16,m1(K.i));

end for;

Q16:=GL(16,2);

K16:=sub<Q16|n16>;

p,P:=PermutationRepresentation(K16);

sW:=WordGroup(P);

w:=InverseWordMap(P);

WK16:=WordGroup(K16);

wK16:=InverseWordMap(K16);


