Copper-catalyzed borylative multi-component synthesis of quaternary -amino esters

DOI:
10.1021/acscatal.8b04563

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
ACS Catalysis

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Copper-catalyzed borylative multi-component synthesis of quartenary α-amino esters

Kay Yeung,† Fabien J. T. Talbot,† Gareth P. Howell,‡ Alexander P. Pulis,† and David J. Procter*†

†School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
‡Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, UK

ABSTRACT: Copper-catalyzed coupling of readily available ketiminoesters, allenes and a diboron affords densely functionalized quartenary α-amino esters bearing adjacent stereocenters and versatile vinyl boronate motifs. The method utilizes a commercially available copper(I) catalyst, operates at ambient temperature and features a catalytic allyl cupration of ketiminoesters.

KEYWORDS: copper catalysis, multicomponent reaction, allenes, borylation, allylation

Due to their enhanced metabolic stability towards hydrolysis and the structural rigidity they lend to peptide backbones, quartenary α-amino acids are vital building blocks in pharmaceutical research and the study of proteins.† Although some quartenary α-amino acids arise naturally from post-translational modification,‡ their synthesis in the laboratory is important and remains a challenge due to the inherent steric congestion encountered during the construction of the fully-substituted stereogenic center at the heart of the motif.

The stereoselective synthesis of quartenary α-amino acids and their derivatives presents a particularly important challenge. Various strategies have been developed including amination at the α-position of carbonyls, introduction of the carboxyl group via nitrile addition, and modification of precursors such as azlactones and ketiminoesters. The latter approaches are particularly attractive as a variety of substituents can potentially be introduced at the quartenary center. With particular regard to the use of readily-available ketiminoesters, they have been employed as both nucleophile and electrophilic partners in approaches to quartenary α-amino acids. For example, using an umpolung strategy, nucleophilic attack of an organometallic reagent on nitrogen of ketiminoesters generates enolates that can be quenched using various electrophiles (Scheme 1A). Ketiminoesters can also be used as electrophiles in additions of stoichiometric organometallic reagents, organoboranes, and organosilanes. Crucially, while metal-catalyzed additions to aldiminoesters are widespread, there are relatively few examples of metal-catalyzed additions to ketiminoesters and these typically involve alkyne and styrene coupling partners (Scheme 1B).

Allenes have acquired privileged status in synthesis and are prized for their utility in mild and atom efficient transformations, including multi-component reactions. Despite this, allenes have rarely been used in the synthesis of acyclic quartenary α-amino acids. Nonetheless, we envisaged that allenes would serve as suitable precursors to allyl metals for catalytic coupling with ketiminoesters and the construction of high-value quartenary α-amino esters. Inexpensive copper catalysts are able to functionalize allenes by selective addition of an in situ generated copper-element species, formation of a transient allylcopper species, and subsequent electrophilic

Scheme 1. The use of ketiminoesters provides concise access to quartenary α-amino acids. A. Ketiminoesters as pro-nucleophiles. B. The use of ketiminoesters as electrophiles in catalytic couplings is rare. C. This work: Ketiminoesters in a copper-catalyzed, borylative coupling with allenes.
trapping. However, the use of imines as electrophiles in copper-catalyzed couplings with allenes remains rare and ketimines have not been used in such couplings to prepare α-quaternary amino acid derivatives. Herein, we describe a stereocontrolled, copper-catalyzed coupling of ketiminoesters, allenes, and bis(pinacolato)diboron to afford highly functionalized quaternary α-amino esters (Scheme 1).

We began by screening various copper catalysts (5 mol%) for the proposed coupling using ketiminoester (1a) and cyclohexylallene (2a) with Bpin₂. From the outset, NHC–Cu(I) catalyst systems showed promising results, forging the C–B and C–C bonds in 3a despite the build-up of significant steric congestion (Table 1; see Supporting Information for details). While the use of commercial IMesCuCl at ambient temperature gave 3a in moderate yield, albeit with low diastereoselectivity, the use of IPrCuCl gave 3a in high yield with high diastereoselectivity (Table 1, entries 1 and 2). We tentatively suggest that the increase in selectivity observed with the IPr ligand is due to its increased size. Next, a range of bases were screened (see Supporting Information for details). The use of NaOBu and LiO'Bu in place of KO'Bu had a significant detrimental effect on yield (entries 3 and 4). Lowering (0 °C) and raising (50 °C) the reaction temperature decreased the yield and diastereoselectivity (entries 5 and 6). A small increase in the amount of Bpin₂ used afforded 3a in 85% isolated yield on a 0.25 mmol scale (entry 7). Low yields were obtained using other diboron reagents such as B₂(neo)₂ and B₂(cat)₂ (see Supporting Information for details). The relative configuration of 3a was confirmed by X-ray crystallography.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cu catalyst</th>
<th>Base</th>
<th>T (°C)</th>
<th>NMR Yield (%)</th>
<th>dr²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IMesCuCl</td>
<td>BuOK</td>
<td>20</td>
<td>53</td>
<td>41:59</td>
</tr>
<tr>
<td>2</td>
<td>IPrCuCl</td>
<td>BuOK</td>
<td>20</td>
<td>77</td>
<td>92:8</td>
</tr>
<tr>
<td>3</td>
<td>IPrCuCl</td>
<td>BuONa</td>
<td>20</td>
<td>37</td>
<td>91:9</td>
</tr>
<tr>
<td>4</td>
<td>IPrCuCl</td>
<td>BuOLi</td>
<td>20</td>
<td>42</td>
<td>92:8</td>
</tr>
<tr>
<td>5</td>
<td>IPrCuCl</td>
<td>BuOK</td>
<td>0</td>
<td>29</td>
<td>96:4</td>
</tr>
<tr>
<td>6</td>
<td>IPrCuCl</td>
<td>BuOK</td>
<td>50</td>
<td>67</td>
<td>86:14</td>
</tr>
<tr>
<td>7</td>
<td>IPrCuCl</td>
<td>BuOK</td>
<td>20</td>
<td>88 (85)²</td>
<td>92:8</td>
</tr>
</tbody>
</table>

Table 1. Optimization of the copper-catalyzed borylative coupling to give quaternary α-amino esters.

Reaction carried out on a 0.1 mmol scale. NMR yields were determined by 1H NMR analysis of the crude product mixture using an internal standard. dr values were determined by 1H NMR analysis of the crude product mixture. Bpin₂ (1.3 eq) was used.

We next set about assessing the reach of the three-component approach to quaternary α-amino esters. The scope with regard to the C-substituent of the ketiminoester input was first explored (Scheme 2). Aryl substituents bearing trifluoromethyl (3b), bromo (3c), thiomethyl (3d) and methoxy (3e) functionality proved to be compatible with the process. Furthermore, the use of ketiminoesters bearing naphth-2-yl and 2-thienyl units delivered quaternary α-amino esters 3g and 3h, respectively, in high isolated yields and with good diasterecontrol. Finally, a trifluoromethyl substituted ketiminoester underwent efficient coupling to give 3i in good yield and with moderate diasterecontrol.

Scheme 2. Varying the C-substituent of the ketiminoester in the copper-catalyzed three-component coupling.

NMR yield and dr values were determined by 1H NMR analysis of the crude product mixture. Isolated yields are given in parentheses. PMP = 4-C₆H₄OMe.

In addition to employing p-methoxyphenyl as the protecting group on the nitrogen of the ketiminoesters and of our products, the use of other synthetically and medicinally relevant N-substituents was also investigated (Scheme 3). Quaternary α-amino acid esters were constructed with bromo (3j), fluoro (3k), and medicinally-relevant morpholin (3l) groups on the N-aryl substituent. No product was observed using an N-benzyl ketiminoester (1m). This is likely due to the presence of acidic benzylic protons in the ketiminoester. Finally, we varied the ester group of the ketiminoester: The use of benzyl and methyl ester substrates gave the expected products 3n and 3o, respectively, in good yield and with high diasterecontrol (Scheme 3).
Scheme 3. Varying the N-substituent and the O-substituent of the ketiminoester in the copper-catalyzed three-component coupling.

NMR yields and dr values were determined by 1H NMR analysis of the crude product mixture. Isolated yields are given in parentheses. PMP = 4-C$_6$H$_4$OMe.

Scheme 4. Varying the allene in the copper-catalyzed three-component coupling.

NMR yields and dr values were determined by 1H NMR analysis of the crude product mixture. Isolated yields are given in parentheses. PMP = 4-C$_6$H$_4$OMe.

The scope with regard to the allene input was also assessed (Scheme 4). Gratifyingly, a range of primary alkyl allenes bearing various substituents, including linear and branched alkyl groups (3p, 3q, 3r), silyl ether (3s) and alkyl bromide (3t) functionality, afforded the desired products in good yield (up to 91%) and moderate to good diastereoselectivity (up to 80:20 dr). The chemoselectivity observed in the presence of an electrophilic primary alkyl bromide group is particularly noteworthy (formation of 3t).

Aryl allenes were also compatible with the copper-catalyzed process. For example, phenylallene afforded 3u in 75% yield and 92:8 dr. Aryl allenes bearing fluoro (3w), amidyl (3x), and chloro (3y) substituents also delivered the corresponding products with good to high diastereocontrol (up to 86:14 dr) albeit in moderate yield (42-61%).

The proposed catalytic cycle for the multi-component coupling (Scheme 5) is thought to involve initial formation of the ligated copper-alkoxide complex I and subsequent transmetalation with B$_2$pin$_2$ to afford borylcopper species II. Complex II reacts with allene 2 through a chemo- and regioslective borocupration to generate an allylcopper intermediate. Due to the bulkiness of the NHC ligand, copper coordinates to the terminal double bond of the allene, avoiding unfavourable steric interactions with the R^4 group, and adds to the least hindered terminal carbon to give Z-allylcopper III. Allylcopper III then undergoes γ-addition to the ketiminoester 1, generating two stereocenters. Copper-alkoxide I or borylcopper species II is then regenerated from copper amide V. The desired quaternary α-amino esters are obtained by hydrolysis of V upon work up.

Scheme 5. Proposed catalytic cycle.

X-ray crystallographic analysis reveals that ketiminoesters 1 possess Z-geometry. However, ketimines are prone to E/Z isomerization and this could take place under the conditions of the reaction. Thus, to probe the importance of ketiminoester configuration and conformation, we prepared a substrate in...
which both are locked and explored its reactivity: Cyclic ketimineoester 1z, locked in a Z-configuration and with a mandatory s-trans conformation gave product 3aa in only 11% yield albeit with high diastereoselectivity. This suggests that the reaction can proceed with Z-ketiminoesters, however, the ability to access the s-cis conformation and/or E-imine geometry could be important for optimal cross-coupling.

Scheme 6. A. Using a configurationally and conformationally locked ketimineoester.

NMR yield and dr value was determined by ¹H NMR analysis of the crude product mixture. Isolated yield is given in parentheses. B. Possible transition states for the coupling of the Z-allylcopper and ketiminoester.

Based on this and previous observations, we propose two possible transition states for the addition of the allylcopper intermediate to the ketiminoester that are consistent with the relative stereochemistry observed in the products (Scheme 6B). It has previously been suggested that Z-allylcopper species undergo 1,2-addition to imines through a chair-like transition state involving coordination of copper to the nitrogen of the imine. Thus transition structure A, featuring a Z-configured imine may be relevant. However, the control experiment using locked substrate 1p may implicate a boat-like transition structure B in which both the imine nitrogen and ester coordinate to copper. Crucially, in transition structure B, isomerization to the E-ketiminoester and adoption of an s-cis conformation is necessary thus explaining why 1p performs poorly in the coupling (Scheme 6B).

The use of 1,1-disubstituted allenes in couplings to form quaternary α-amino acid esters bearing two new, vicinal fully-substituted centers was investigated: ketimineoester 1a underwent smooth coupling with 1,1-dimethylallene 2l to give a mixture of regioisomers in 73% yield. Interestingly, tetrasubstituted vinylboronate 3aa was the major product although the highly-congested, terminal vinyl boronate 3a was also formed (3aa/3aa', 17:83 rs) (Scheme 7A). Such a switch in regioselectivity with 1,1-disubstituted allenes has not previously been observed in catalytic allyl copper addition to imines. Suspecting that the initially formed primary allyl copper may isomerize to the tertiary allyl copper prior to γ-addition to the ketiminoester (Scheme 7B), and thus leading to 3aa as the major regioisomeric product, we proposed that a larger ligand on copper might prevent isomerization on steric grounds. Thus, we employed Sollogoub’s large cyclodextrin NHC-Cu catalyst ([(β-ICyD)CuCl]) and observed a dramatic switch in regioselectivity and the major regioisomeric product was now 3aa (3aa/3aa', 87:13 rs).

Scheme 7. The use of a 1,1-disubstituted allene in the copper-catalyzed three-component coupling.

The NMR yield and rs value were determined by ¹H NMR analysis of the crude product mixture. The reaction was carried out at 60 °C. PMP = 4-C₆H₄OMe.

The three-component coupling was successfully performed on a gram scale (3.5 mmol) using only 2.5 mol% of the copper catalyst and affording 3a in 83% yield and 92:8 dr (1.75 g). After recrystallization, 3a was obtained with >95:5 dr. The synthetic utility of the quaternary α-amino ester products, bearing multiple functional groups, was investigated using 3a.

Scheme 8. Gram scale three-component coupling and manipulation of 3a.

Dr values were determined by ¹H NMR analysis of the crude product mixture. Isolated yields are given. (a) H₂O₂ (5.0 eq), aq. NaOH (5.0 eq), THF, 0 °C, 0.5 h; (b) LiAlH₄ (1.0 eq), THF, 0 °C, 4 h; (c) (NH₄)₂Ce(NO₃)₃ (3.0 eq), MeCN, H₂O, −10 °C, 1.5 h then HCl (1 M aq. soln, 2.6 eq), 20 °C, 0.25 h; (d) (tert-butoxycarbonyl)glycine (1.0 eq), N-methylmorpholine (1.0 eq), isobutyl chloroformate (1.0 eq), THF, −15 °C to RT, 17 h. PMP = 4-C₆H₄OMe.
The versatile vinyl boronate motif was successfully oxidized using H$_2$O$_2$/NaOH to afford methyl ketone 4 with no erosion of relative stereochemical integrity (Scheme 8). Thus, our method allows facile access to 1,4-dicarbonyl compounds bearing α- and β-stereocenters. Under reducing conditions (LiAlH$_4$), ester 3a was converted to the corresponding primary alcohol 5, with spontaneous formation of aminoboran. B-N heterocycles have found application as isosteres in biomedical research and materials science. Finally, the PMP protecting group on nitrogen was removed using ceric ammonium nitrate (CAN) to afford the primary amine 6, and can be coupled with a glycine derivative to afford dipetide 7.

In summary, we have developed a copper-catalyzed borylative allylation of ketiminoesters using allenenes and bis(pinacolato) diboron. The process involves selective borocupration of allenes and the diastereoselective allylcupration of ketiminoesters, operates at ambient temperature, overcomes significant steric congestion, and delivers quaternary α-amino esters bearing adjacent stereocenters and versatile vinylboronate motifs.

AUTHOR INFORMATION

Corresponding Author
E-mail: david.j.procter@manchester.ac.uk

Author Contributions
All authors have given approval to the final version of the manuscript.

ASSOCIATED INFORMATION

Supporting Information
This following files are available free of charge via the Internet at http://pubs.acs.org.
Detailed experimental procedures and characterizations.
Crystallographic information for 1e, 1d, 1e, 1f, 1g, 1h, 3a, 3c, 3d, 3o, 3u, 3v, 3w.

ACKNOWLEDGMENT
We thank The University of Manchester (President’s Scholarship to K.Y. and Lectureship to A.P.P.), SCI (Scholarship to K.Y.), AstraZeneca (CASE studentship to F. J. T. T.), EPSRC (Studentship to K.Y. and Established Career Fellowship to D.J.P.), and Dr J. Meijide-Suarez, Dr S. Roland and Prof M. Sollogoub ((β-ICyD)CuCl).

REFERENCES

(12) There are only few reports of the synthesis of acyclic quaternary α-amino acids using amines with imines. For a phosphine-catalyzed umpoling addition of ketiminoesters to alkenoates, see Ref. (4e). For the deprotonation of N-CH₃CO-R substituted ketimines and umpoling addition to alkenoates, see Ref. (4f).
(13) For selected recent reviews on the generation of nucleophilic organocopper intermediates by Cu-H, Cu-B and Cu-Si functionality of amines, see: (10b); (10c); Tsuji, Y.; Fujihara, T. Copper-Catalyzed Transformations Using Cu-H, Cu-B, and Cu-Si as Active Catalyst Species. Chem. Rev. 2016, 16, 2294–2313.
(18) For reports of the 1,2-addition of allicylic copper species to imines proceeding through a chemically transition state, see: (14); (a) Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. Enantioselective Syn-
