Validation of gait event detection by centre of pressure during target stepping in healthy and paretic gait

DOI:
10.1016/j.jbiomech.2018.07.039

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Journal of biomechanics

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Validation of gait event detection by centre of pressure during target stepping in healthy and paretic gait

Susanne M. von der Veen⁎, a snj.vanderveen@gmail.com
Ulrike Hammerbeck b, ulrike.hammerbeck@manchester.ac.uk
Richard J. Baker c, r.j.baker@salford.ac.uk
Kristen L. Hollands c, k.hollands@salford.ac.uk

a Salford University, School of Health Science, Salford, United Kingdom, Ohio University, Health Sciences Professions, Athens, United States

b University of Manchester, Manchester, United Kingdom

c Salford University, School of Health Science, Salford, United Kingdom

⁎ Corresponding author at: Ohio University, Health Sciences Professions, Grover Center W379, Athens, 45701 OH, United States.

1 Stroke and Vascular Centre, Faculty of Medical and Human Sciences, University of Manchester, Clinical Sciences Building, Room 235, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD

2 Salford University, School of Health Science, Allerton Building, Friedrich road, Salford, United Kingdom, M6 6PU.

Abstract

Background

Target-stepping paradigms are increasingly used to assess and train gait adaptability. Accurate gait-event detection (GED) is key to locating targets relative to the ongoing step cycle as well as measuring foot-placement error. In the current literature GED is either based on kinematics or centre of pressure (CoP), and both have been previously validated with young healthy individuals. However, CoP based GED has not been validated for stroke survivors who demonstrate altered CoP pattern.

Methods

Young healthy adults and individuals affected by stroke stepped to targets on a treadmill, while gait events were measured using three detection methods; vertices of CoP cyclograms, and two kinematic criteria, vertical velocity and position and of the heel marker, anterior velocity and position of the heel and toe marker, were used. The percentage of unmatched gait events was used to determine the success of the GED method. Differences between CoP and kinematic GED methods were tested with two one sample (two-tailed) t-tests against a reference value of zero. Differences between group and paretic and non-paretic leg were tested with a repeated measures ANOVA.

Results

The kinematic method based on vertical velocity only detected about 80% of foot contact events on the paretic side in stroke survivors while the method on anterior velocity was more successful in both young healthy adults as stroke survivors (3% young healthy and 7% stroke survivors unmatched). Both kinematic methods detected gait events significantly earlier than CoP GED (p < 0.001) except for foot contact in stroke survivors based on the vertical velocity.

Conclusions

CoP GED may be more appropriate for gait analyses of SS than kinematic methods; even when walking and varying steps.
1 Introduction

Force instrumented treadmills facilitate online kinetic measurement of a high volume of steps in a small space with the safety of support harnesses (Merholz and Elsner, 2014) and, combined with visual projection, can allow practice of altering walking in response to cues (e.g. stepping to targets, over or around obstacles (Heeren et al., 2013). For these reasons use of instrumented treadmills for rehabilitation and clinical assessment is increasing (Bank et al., 2011; Duyens et al., 2012; Heeren et al., 2013; Hollands et al. (2014); Hollands et al., 2013; Mazaheri et al., 2015; Mazaheri et al., 2014; Peper et al., 2015; Timmermans et al., 2016; van Ooijen et al., 2015; Weerdesteyn et al., 2006).

Single uniaxial force instrumentation of the treadmill belt affords centre of pressure (CoP) gait event detection (GED) as a proxy for gold standard kinetic (dual, multi-axial, force-plates) or kinematic GED. CoP GED has been shown to correspond well with kinematic GED during steady-state treadmill walking in young healthy adults (Roerdink et al., 2008). However, it is not known whether CoP GED corresponds with kinematic GED when steps are altered in response to environmental cues, or when alterations in CoP trajectories occur due to pathology (i.e. stroke (Wong et al 2004)).

To support valid gait assessment in the context of growing treadmill use in clinical assessment, this study aimed to determine if there are differences in CoP and kinematic GED in young healthy (YH) and stroke survivors (SS) during treadmill walking. We compare GED methods in the walking condition of varying steps; the context in which they are increasingly being applied. Specific questions are:

1. Are there significant differences between methods within groups?
2. Are differences between methods greater in SS than YH (and according to paretic and non-paretic limbs)?

2 Methods

2.1 Participants

YH, aged 18-35 years, were recruited by poster advertisement across the University. SS were recruited from community stroke support and exercise groups in Greater Manchester. Participants were included if they could walk ten-metres within 30 s, had no visual impairments preventing sight of stepping targets, and no co-morbidities affecting walking.

The University of Salford, College of Health and Social Care Research Ethics Committee approved the study, and all participants provided written informed consent.

2.2 Procedures

Self-selected walking speed (SSWS), functional mobility (10 m walking test (Green et al., 2002); Timed Up and Go (Hiengkaew et al., 2012) and Dynamic Gait Index (Jonsdottir and Cattaneo, 2007)) were collected to ascertain mobility status of the SS.

Participants were acclimatised with walking on the treadmill without stepping targets for approximately 3 min. Each participant’s SSWS was determined by increasing speed from 1 km/h until participants were walking faster than preferred, then decreasing speed to a comfortable pace. Participants walked to targets located at their usual step lengths and widths (established when walking during earlier no-target acclimatisation period) for 1 min, to become acquainted with target stepping. Step characteristics such as speed, step length and width were recorded as a basis for programming the location of targets for subsequent personalised target-stepping tasks.

Participants stepped to targets located according to their personalised protocol, projected on the treadmill belt while walking at SSWS (Fig. 1) according to a previously described paradigm (Hollands et al., 2015). 12 targets (8 cm wide × 40 cm long) were projected at preferred step length and 12 of the same size for both shortening and lengthening steps (±25% of preferred step length). A further 24 targets of different shape (20 cm wide × 15 cm long) were projected on the midline of the treadmill to elicit narrow foot placements. Participants were not allowed to use a handrail for stability; however, SS wore a harness for safety.
2.3 Kinetics

Signals from a single large (0.8 × 3.0 m) uniaxial force plate was conditioned (100 Hz low-pass filter) and recorded at 500 Hz using CueFors1 software in the C-Mill (MotekforceLink, Culemborg, The Netherlands). CueFors1 analyses CoP cyclogram, also defined as gaitogram (Roerdink et al., 2014) (Fig. 2), to generate gait events.

![Fig. 1](image1.jpg)

Fig. 1 Schematic representation of the layout of stepping targets (normal, short, long, and medial).

2.4 Kinematics

Kinematics were collected with a six-camera motion capture system (Qualysis, Gothenburg, Sweden) at 126 Hz for healthy participants and at a minimum sampling rate of 31 Hz for SS (due to synchronisation of high speed video for some participants); kinematic data was subsequently spline interpolated to 500 Hz to match the C-Mill data. Toe and heel markers on the 2nd distal phalangeal head and the calcaneus were used for kinematic GED. The C-Mill and motion capture systems were synchronised with an electronic pulse generated by CueFors1 software that triggered the start of motion capture. Kinematic gait events were detected offline after interpolating and filtering (2nd order bidirectional 6 Hz low pass Butterworth filter).

Two GED algorithms were used to define gait events: the first defined FC as the minima of the vertical displacement of the heel marker (VFC) and FO at the maxima in vertical velocity of the heel marker (VFO) (Pijnappels et al., 2001; Roerdink et al., 2008). The second defined FC as the maximum anterior displacement of the heel marker (AFC) and FO as the instant that the anterior velocity of the toe marker is zero (AFO) when it transitions from posterior to anterior velocity (Zeni et al., 2008).

2.5 Statistical analysis

At least 30 gait events, FC and FO, were detected by both kinematic and CoP algorithms per participant per foot. Data comprised 10 normal steps (before the adjustment protocol) and 60 adaptation steps (30 per foot). CoP events were matched to the kinematic events occurring within 200 ms, if no such match could be made they were recorded as the proportion of steps that could not be matched (unmatched, see Table 2).

To determine if there are significant differences between methods within groups: Differences between matched CoP and kinematic gait event for paretic and non-paretic and left and right side of SS versus YH were compared...
using a one-sample (two tailed) T-test against a reference value of 0 ms (i.e. no difference) (Roerdink et al., 2008).

To determine if differences in methods are greater for SS than YH (and according to limbs): differences between methods were compared in a repeated measures ANOVA, separately for each gait event (FC, FO), with between subjects’ factor group and within subjects factors methods (CoP Vertical, CoP Anterior) and limb.

3 Results

A total of 7 YH and 13 SS participated (demographics see Table 1). No abnormalities in cyclograms which would have prevented CoP GEDs were found on visual inspection of individual participant data (Fig. 2).

Table 1 Participant demographics, tests are represented in their original scoring if no units are indicated in the table (Mean ± SD).

<table>
<thead>
<tr>
<th></th>
<th>Young healthy</th>
<th>Stroke Survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (Female)</td>
<td>7(4)</td>
<td>13(3)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>26.44 ± 4.22</td>
<td>66.77 ± 8.67</td>
</tr>
<tr>
<td>Time since stroke (month)</td>
<td>-</td>
<td>86.54 ± 134.43</td>
</tr>
<tr>
<td>Paretic right (number and percentage)</td>
<td>-</td>
<td>5 (23.1%)</td>
</tr>
<tr>
<td>SSWS (m/s)</td>
<td>1.11 ± 0.15</td>
<td>0.47 ± 0.19</td>
</tr>
<tr>
<td>Berg balance scale</td>
<td>-</td>
<td>53.31 ± 5.54</td>
</tr>
<tr>
<td>Fugl-Meyer assessment</td>
<td>-</td>
<td>25.92 ± 3.90</td>
</tr>
<tr>
<td>Dynamic gait index</td>
<td>-</td>
<td>17.92 ± 5.62</td>
</tr>
<tr>
<td>10 m-walking speed (s)</td>
<td>-</td>
<td>13.13 ± 4.07</td>
</tr>
<tr>
<td>Timed up and go (s)</td>
<td>-</td>
<td>14.55 ± 5.11</td>
</tr>
<tr>
<td>Montreal cognitive assessment</td>
<td>-</td>
<td>25.08 ± 4.37</td>
</tr>
<tr>
<td>Apples test</td>
<td>-</td>
<td>46.85 ± 4.52</td>
</tr>
<tr>
<td>Falls reported in the last year</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>No fall</td>
<td></td>
<td>69.2%</td>
</tr>
<tr>
<td>1 fall</td>
<td></td>
<td>7.7%</td>
</tr>
<tr>
<td>1 < fall</td>
<td></td>
<td>23.1%</td>
</tr>
</tbody>
</table>

3.1 Foot contact

Detailed timings of gait events are reported in Table 2. VFC detected FC significantly earlier than CoP in YH (p < 0.001) but there were no differences between methods in FC detection for SS (on either paretic and non-paretic side). FC via AFC was detected significantly earlier than CoP in healthy participants (p < 0.001) and in SS on both paretic and non-paretic sides (p < 0.001 for both).

Table 2 Difference between kinematic gait event detections relative to CoP detection in ms. Means and SDs and the percentage of matches within 200 ms of 38–51 strides per participant are provided for each gait event detection method. A negative sign indicates the kinematic method detected the event before the CoP method. *p<0.005 **p<0.001.

<table>
<thead>
<tr>
<th>Stroke survivors</th>
<th>AFC</th>
<th>VFC</th>
<th>AFO</th>
<th>VFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paretic</td>
<td>Mean IC Unmatched%</td>
<td>Mean IC Unmatched%</td>
<td>Mean IC Unmatched%</td>
<td></td>
</tr>
<tr>
<td>-80° -95 to -64</td>
<td>7</td>
<td>-1</td>
<td>-17 to 15</td>
<td>20</td>
</tr>
</tbody>
</table>
A significant interaction effect between limb, GED method and group (F(18) = 4.960, p = 0.039) indicates that the difference between COP and AFC GED is smaller on the non-paretic side than the paretic side. Additionally, FC identified in stroke survivors using VFC were matched with CoP detections less often (P 20% and nP 9% was unmatched), than AFC across all participants (YH 3%, SS P 7% and nP 4%).

3.2 Foot off

The AFO algorithm worked with similar success in both groups and sides (3% unmatched FO). The VFO was less successful with 7% and 11% unmatched FO in SS and YH subsequently. FO was detected earlier in VFO than COP in all participants (p < 0.001). FO was detected earlier in AFO compared with CoP in YH and in SS for both paretic and non-paretic sides (P < 0.001).

A significant interaction effect between limb, GED method and group (F(1,18) = 9.173, p = 0.007) was found indicating the difference between CoP and AFO GED is significantly larger on the non-paretic than paretic limbs.

3.3 Step times

Phase durations (e.g. swing and stance), calculated using the times of FC and FO, looked similar; on visual inspection (see Fig. 3), between FC and FO detected with AFC, AFO kinematic criteria and CoP detected gait events. Conversely, temporal gait parameters using VFC and VFO kinematic criteria yielded a significantly shorter stance and longer swing phase (Fig. 3); as a result of slightly late FC detection and early FO detection in SS (see Table 2).

4 Discussion

Traditionally, GED is applied during steady state walking on a treadmill/over-ground (Roerdink et al., 2008; Roerdink et al., 2007). However, owing to the importance of adapting steps in response to environmental cues and the increasing use of instrumented treadmills to train and assess gait in this context, we robustly compared the performance of GED methods during step alterations (longer, shorter, and narrowing) for both YH and SS.

We found that, for SS, detecting FC using VFC and FO using VFO (Pijnappels et al., 2001; Roerdink et al., 2008) kinematic criteria failed too often to be considered reliable. Conversely, AFC and AFO kinematic criteria were more successful (Table 2). Where kinematic event detection was successful, there was agreement between methods to within 100 ms (Fig. 3). This may provide sufficient resolution for CoP GED in many training and assessment applications beyond steady-state walking. However, the kinematic criteria suggested (Zeni et al., 2008) for use with SS treadmill walking (AFO, AFC) had the largest differences with CoP GED for FC and varied according to limb. These contextual differences between CoP and kinematic GED methods are considered further to inform application.
The FC detection based on VFC is determined as the local vertical minimum of the heel. Whilst there is a systematic difference between this and CoP methods, it is small (a difference of 29 ms in YH, P 1 ms and nP 5 ms in SS) and of little practical significance. More importantly, however, many SS have abnormalities in foot and ankle movement (Burridge and McLellan, 2000; Stein et al., 2010) which often result in a mid-FC, with the heel continuing to lower after contact. This would lead to the minimum heel height occurring after FC, as observed here. Such abnormalities may also explain why the VFC method appears to fail more frequently in paretic FC in SS (20%).

The AFC method defines FC as the most anterior position of the heel. In most people, however, knee flexion commences before initial contact (Winter, 1992) resulting in the heel moving posteriorly at initial contact, leading to early detection compared to CoP. This corresponds with our data and suggesting CoP more accurately reflects weight transfer at FC than actual movement (AFC).

VFO identifies the maximum vertical velocity of the heel marker as FO. This is considerably earlier than toe-off and leads to an early (positive) FO detection (Table 2). FO detection using AFO is based on the zero-crossing of the forward velocity of the toe. Because the toe marker in our model is placed on the base of the 2nd metatarsal on the shoe, the shoe could be moving forward while the heel lifts, leading to an earlier detection. Some of the differences in this study compared to previous validations of CoP GED in YH (Roerdink et al., 2008) could, thus, be explained by differences between weight shift and actual movement.

Differences observed in detection of gait events between CoP and kinematics could affect calculations of gait phase durations. However, early detection of FC would lead to a longer stance phase which in-turn would be offset by a shorter swing phase (Fig. 3). This has been observed both in this study of SS and in previous validations of CoP GED in YH (Roerdink et al., 2008). Overall, phase duration calculations derived from GED agree within 100 ms which is acceptable for most applications.

Given the limitations of kinematic GED methods noted, CoP GED may be a more appropriate way of detecting gait events in SS. However, SS in this study all had butterfly shaped cyclograms. Therefore, CoP GED algorithms might not work for SS with more severely affected gait (Wong et al., 2004). Future work of CoP GED for more severely affected gait could be validated by using a (fore aft) split-belt treadmill. The cyclogram could be computed by combining signals from the two force plates with gait detection on the basis of the magnitude of the ground reaction under each foot separately.

5 Conclusion

This study showed that CoP based GED agreed within 100 ms with kinematic algorithms suggested for use with SS walking on a treadmill. The differences in GED methods reflect the differences between movement (kinematics) vs weight transfer (kinetics) and suggest CoP GED may be more appropriate for gait analyses of SS than kinematic methods; even when walking and varying steps.

Conflict of interest statement

We confirm that there is no conflict of interest with the current submission and a full review and understanding of copyright guidelines has been completed.

References

Bank PJ., Roerdink M. and Peper C.E., Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!, Exp. Brain Res. 209, 2011, 159-169.

Peper C.L., de Dreu M.J. and Roerdink M., Attuning one’s steps to visual targets reduces comfortable walking speed in both young and older adults, *Gait Posture* **41**, 2015, 830-834.

Queries and Answers

Query: Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact e.rajesh@elsevier.com immediately prior to returning your corrections.

Answer: Yes

Query: The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.

Answer: Yes

Query: Please confirm that the provided email ‘smj.vanderveen@gmail.com’ is the correct address for official communication, else provide an alternate e-mail address to replace the existing one, because private e-mail addresses should not be used in articles as the address for communication.
Answer: smvanderveen@vcu.edu

Query: Please check the edit made in corresponding author address and correct if necessary.
Answer: Virginia commonwealth university, Physiotherapy and occupational health, Richmond, VA, USA. West Hospital, 1200 E Broad St, RM B-045 PO BOX 980224

Query: As Table 1 and 2 were provided in a picture that was not directly usable for production, the Tables were keyed-in for typesetting purpose. Kindly check the correctness of the equations and amend wherever required.
Answer: correct

Query: Please specify the significance of footnote "* and **" cited in the Table 2, as a corresponding footnote text has not been provided.
Answer: * p<0.005 ** p<0.001.