Clinical and genetic heterogeneity in Melkersson-Rosenthal Syndrome

DOI: 10.1016/j.ejmg.2018.09.003

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
European journal of medical genetics

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Clinical and genetic heterogeneity in Melkersson-Rosenthal Syndrome

Yang Pei, Glenda M. Beaman, David Mansfield, Jill Clayton-Smith, Murray Stewart, William G. Newman

PII: S1769-7212(18)30394-X
DOI: 10.1016/j.ejmg.2018.09.003
Reference: EJMG 3536

To appear in: European Journal of Medical Genetics

Received Date: 27 June 2018
Revised Date: 29 August 2018
Accepted Date: 9 September 2018


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Clinical and genetic heterogeneity in Melkersson-Rosenthal Syndrome

Yang Pei 1, Glenda M. Beaman 1,2, David Mansfield 3, Jill Clayton-Smith 1,2, Murray Stewart 4, William G. Newman 1,2

1Manchester Centre for Genomic Medicine, Evolution and Genomic Sciences, University of Manchester, Manchester, UK.
2Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester UK.

Correspondence to

Prof William Newman,
Manchester Centre for Genomic Medicine,
St. Mary's Hospital,
Manchester, M13 9WL
UK.
William.newman@manchester.ac.uk

Keywords: facial nerve palsy, FATP1; fissured tongue; Melkersson Rosenthal syndrome, orofacial swelling, SLC27A1.
Abstract
Melkersson Rosenthal syndrome (MRS) is a rare autosomal dominantly inherited neurocutaneous syndrome characterized by a triad of facial (seventh cranial) nerve palsy, recurrent orofacial swelling and fissuring of the tongue. A recent report implicated a heterozygous missense variant in \textit{SLC27A1 (FATP1)} as the cause of this condition in members of an affected Chinese family. We undertook Sanger sequencing of this gene in 14 affected unrelated individuals affected by MRS. We did not detect any putative pathogenic variants. Our data indicates that there is both clinical and genetic heterogeneity in this condition and that the causative gene remains to be identified for the majority of cases.
1. Introduction

Melkersson-Rosenthal Syndrome (MRS, MIM155900) is a rare disorder characterised by a triad of clinical features, including recurrent facial nerve palsy, episodic orofacial swelling, and fissuring of the tongue (lingua plicata) (Melkersson, 1928; Rosenthal, 1931). Biopsy of the lip or tongue reveals non-caseating granuloma in affected individuals. There is marked variability in clinical presentation with the majority of affected individuals not manifesting all three features (Elias et al., 2013). Furthermore, there is intra- and inter-familial variability in the age of onset, frequency of inflammatory episodes and response to steroid treatment (Elias et al., 2013). The diagnosis is often made in a single individual in a family, but male to male vertical transmission is described consistent with an autosomal dominant inheritance pattern (Lygidakis et al., 1979). There is important clinical overlap with orofacial granulomatosis and oral Crohn’s disease, both disorders characterised by non-caseating granulomata, but without concomitant facial nerve palsy or tongue fissuring (Wehl and Rauchenzauner 2018).

Through an exome sequencing approach in a single large Han Chinese family affected by MRS, Xu et al. (2017) reported a heterozygous missense variant in SLC27A1 as the most likely causative variant. The proband presented with the diagnostic triad of a right-sided recurrent facial palsy, a fissured tongue and edema of her lower lip and cheek. The mother of the proband was considered affected on the basis that she had a fissured tongue without facial palsy or swelling. The uncle of the patient was unaffected and sequenced as a control. A heterozygous variant, c.68>G in SLC27A1, predicted to result in a missense substitution p.Pro23Arg, was identified in the two affected individuals, and not in the unaffected uncle or 200 healthy controls. SLC27A1 encodes fatty acid transport protein 1 (FATP1) (Xu et al., 2016). The wild type and variant were expressed in human embryonic kidney cells (HEK293), resulting in a reduction in FATP1 levels in cells transfected with the variant and reduced long chain fatty acid (LCFA) uptake.
We therefore undertook a study to determine if novel or very rare variants in \textit{SLC27A1} were present and could result in MRS in our cohort of affected individuals.

2. Patients and methods

Individuals were ascertained on the basis of the presence of the clinical features associated with a diagnosis of MRS: orofacial swelling, facial palsy and a fissured tongue. Ethical approval was obtained from the NHS (11/H1003/3) and from the University of Manchester. Each individual provided written informed consent to participate in the study.

Oligonucleotide primers were designed to amplify all 12 exons of \textit{SLC27A1} (details available on request). Sanger sequencing was performed using the BigDye Terminator v3.1 kit (Life Technologies, CA, USA) according to manufacturer’s instructions and resolved on an ABI3730 sequencer (Life Technologies, CA, USA). Results were analysed using SeqScape v2.5 (Life Technologies, CA, USA).

3. Results

We ascertained 14 individuals who had a minimum of two criteria – orofacial swelling, tongue fissuring, and facial nerve palsy (Table 1). Only five individuals had the full triad of features. In seven of the 14 affected individuals, there was a fissured tongue. Two individuals without orofacial swelling had a positive family history of facial palsy and fissured tongue. Four families had a history in at least one first-degree relative of two or more diagnostic features. Twelve (~85%) of the 14 affected individuals were female. The affected individuals came from six different countries. The age of onset (first episode) ranged from 7 to 58 years for orofacial swelling and 3 to 58 years for facial palsy. No individual had a history of other granuloma-related problems, notably sarcoidosis or inflammatory bowel disease.

No rare (minor allele frequency <2%) or novel coding variants in \textit{SLC27A1} were identified in any of the cases.
4. Discussion

Our data indicate that variants in *SLC27A1* do not account for the majority of cases of MRS and support a concept of genetic heterogeneity. It is possible, but unlikely, that copy number or non-coding variants, not assessed by this analysis, affecting *SLC27A1* expression or function could result in the MRS phenotype in some of our cases. Notably in the control exome sequence database EXAC ([http://exac.broadinstitute.org](http://exac.broadinstitute.org)) of approximately 60,000 individuals, there is no skewing of the numbers of observed versus expected missense or loss of function variants, suggesting that *SLC27A1* tolerates variants in this gene and that they are not more likely to be associated with inherited disorders.

Our small cohort is similar to previous series in that there is a female preponderance ([Elias et al., 2013](#)), suggesting that hormonal influences may be relevant triggers for episodes of orofacial swelling or facial palsy. There is phenotypic variability with a wide spectrum at age of onset and presence of the key clinical features, which may indicate genetic heterogeneity or certainly genetic modifiers of clinical presentation. In contrast to our cohort, in other series affected individuals have described a number of co-morbidities ([Elias et al 2013](#)). The episodic nature of the condition with resolution between flares shares similarities with some cardiac or neurological disorders due to channelopathies or periodic auto-inflammatory disorders. The majority of these disorders are autosomal dominant and often due to activating mutations. Therefore, they are tractable for inhibitory therapeutic approaches. This extrapolation informs the prioritisation of variants for future gene discovery studies in MRS and provides stimulus to undertake this work.

Acknowledgments

We thank the patients and their families. The work was supported by funding from the Dowager Countess Eleanor Peel Trust and Manchester NIHR Biomedical Research Centre.

Conflict of Interest
The authors have no conflict of interest to declare.
References


**Table 1**
Clinical presentation for each MRS proband

<table>
<thead>
<tr>
<th>Individual</th>
<th>Sex</th>
<th>Origin</th>
<th>Family history</th>
<th>Facial Palsy</th>
<th>Facial Swelling including lips, orbits, cheeks</th>
<th>Fissured Tongue</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age of onset (years)</td>
<td>Location</td>
<td>Recurrent</td>
<td>Age of onset (years)</td>
</tr>
<tr>
<td>P1</td>
<td>F</td>
<td>UK</td>
<td>-</td>
<td>15</td>
<td>L</td>
<td>Y</td>
<td>15</td>
</tr>
<tr>
<td>P2</td>
<td>F</td>
<td>USA</td>
<td>-</td>
<td>20s</td>
<td>L</td>
<td>Y</td>
<td>20s</td>
</tr>
<tr>
<td>P3</td>
<td>M</td>
<td>Serbia</td>
<td>-</td>
<td>58</td>
<td>U</td>
<td>N</td>
<td>58</td>
</tr>
<tr>
<td>P4</td>
<td>M</td>
<td>Spain</td>
<td>-</td>
<td>35</td>
<td>B</td>
<td>Y</td>
<td>35</td>
</tr>
<tr>
<td>P5</td>
<td>F</td>
<td>UK</td>
<td>-</td>
<td>20s</td>
<td>R</td>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td>P6</td>
<td>F</td>
<td>Netherlands</td>
<td>-</td>
<td>12</td>
<td>B</td>
<td>Y</td>
<td>10</td>
</tr>
<tr>
<td>P7</td>
<td>F</td>
<td>Poland</td>
<td>-</td>
<td>14</td>
<td>B</td>
<td>Y</td>
<td>29</td>
</tr>
<tr>
<td>P8</td>
<td>F</td>
<td>UK</td>
<td>-</td>
<td>4</td>
<td>B</td>
<td>Y</td>
<td>20</td>
</tr>
<tr>
<td>P9</td>
<td>F</td>
<td>UK</td>
<td>-</td>
<td>8</td>
<td>B</td>
<td>Y</td>
<td>18</td>
</tr>
<tr>
<td>P10</td>
<td>F</td>
<td>UK</td>
<td>-</td>
<td>3</td>
<td>B</td>
<td>Y</td>
<td>27</td>
</tr>
<tr>
<td>P11</td>
<td>F</td>
<td>UK</td>
<td>+</td>
<td>20s</td>
<td>B</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>P12</td>
<td>F</td>
<td>UK</td>
<td>+</td>
<td>12</td>
<td>B</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>P13</td>
<td>F</td>
<td>UK</td>
<td>+</td>
<td>36</td>
<td>U</td>
<td>Y</td>
<td>16</td>
</tr>
<tr>
<td>P14</td>
<td>F</td>
<td>UK</td>
<td>+</td>
<td>37</td>
<td>B</td>
<td>Y</td>
<td>37</td>
</tr>
</tbody>
</table>

This table summarises the clinical features for ten singletons (P1 – P10), and the probands of four familial cases (P11 – P14).

F = female; M = male; U = unilateral; B = bilateral; R = right side; L = left side; Y = present; N = not present; N/A = not applicable.