Energy Balance at the Soil Atmospheric Interface

DOI:
10.1680/jenge.15.00054

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Environmental Geotechnics

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Energy Balance at the Soil Atmospheric Interface

Majid Sedighi1,2,*, Benjamin D.P. Hepburn1, Hywel R. Thomas1, Philip J. Vardon1,3

1 Geoenvironmental Research Centre, School of Engineering, Cardiff University, The Queen’s Buildings, The Parade, Cardiff, CF24 3AA, United Kingdom.

2 School of Mechanical, Aerospace and Civil Engineering, Faculty of Engineering, The University of Manchester, Sackville Street, Manchester, M1 3BB, United Kingdom (Current affiliation)

3 Section of Geo-Engineering, Delft University of Technology, PO Box 5048, 2600 GA, Delft, The Netherlands (Current affiliation)

*Corresponding Author (majid.sedighi@manchester.ac.uk)

Number of words in the main text = 5281
Number of tables = 0
Number of figures = 9
Abstract:

Soil atmospheric interactions play an important role within the thermal energy balance and seasonal temperature variations of the ground. This paper presents a formulation for the surface boundary conditions related to interactions between soil and atmosphere. The boundary condition formulated considers heat flow at the soil-atmosphere interface via mechanisms of short wave radiation, long wave radiation, sensible radiation and latent heat radiation. The effects of surface moisture flux on energy balance at the interface are explicitly included in the formulation. The developed boundary condition has been implemented in a numerical model for coupled thermal, hydraulic and mechanical behaviour of unsaturated soils.

The evaporation component of the model is tested and the results are compared with data from an experimental study at the surface of an agricultural land reported in the literature. The results of modelling have been found to compare favourably with the reported dataset.

The formulation developed for the soil atmospheric boundary condition, allows climatic variables including solar radiation, ambient air temperature, relative humidity, wind speed, rainfall and evaporation to be incorporated in the long terms analysis of energy balance. This also enables a further detailed inspection of the climate’s role in ground thermal in ground source heat systems.

Keywords

Energy balance, ground source heat, surface boundary, seasonal variation, atmospheric effects
1. Introduction

Ground Source Heat Pump (GSHP) systems are among the low entropy geothermal energy extraction methods which allow energy extraction from the shallow depth of the Earth’s crust in order to provide space heating and/or cooling (Sanner et al., 2003). The ground temperature at shallow depths is predominantly a function of the upper surface processes, i.e. climatic conditions such as solar radiation and ambient air temperature. At greater depths, temperature increases with depth according to the geothermal gradient that is determined by the vertical heat flow in the Earth and the thermal properties of local geology (e.g. Busby et al., 2011). The ground located in the closest proximity to the surface is subject to the greatest changes due to climatic variations and atmospheric conditions. Depending on the local climate and ground conditions, the annual temperature variations can typically occur within only the upper 10 m of ground depth, (e.g. Busby et al., 2011). Beyond this depth, there are limited ground temperature variations within the shallow geothermal region.

Within the scope of closed-loop ground source heat systems, various configurations exist which can be employed to exchange heat with the ground. The ground-loop types can be broadly split into two categories according to their orientation; namely vertical and horizontal ground-loops. Vertical systems are conventionally installed within boreholes with depths typically ranging between 20 and 200 m (Yang et al., 2010). Horizontal systems on the other hand typically range in depth between 1 and 2 m (Wu et al., 2010). Fig.1 presents a schematic of a horizontal ground source heat system where the buried ground loop is shown in the cut-away section.

Analysis of GSHP systems requires consideration of two boundary conditions including: i) the ground surface boundary and ii) ground-loop boundary. The ground surface boundary represents the heat and mass exchange at the soil atmospheric interface. The ground-loop boundary represents the ground interaction with the buried ground-loop pipe surface where the heat is exchanged with the ground via the heat pump system. Fig. 2 presents a schematic of the boundary conditions of a horizontal ground source heat system.

The proximity of horizontal ground-loops to the ground surface, positions this type of systems within a ground depth that is subjected to annual temperature variations (Leong et al., 1998). The ground thermal behaviour is a function of the thermal energy extracted from/injected into the ground, climatic and surface conditions and ground properties. The interactions between the ground and the atmospheric can play an important role within the surface energy balance and can affect the seasonal ground temperature variations (Deardorff, 1978). This can affect thermal, hydraulic and mechanical behaviour in various ways (e.g. Vardon, 2015). The seasonal ground temperature variations with depth have been extensively studied (e.g. De Vries and Van Wijk, 1966). It has been shown that the
thermal behaviour of the ground and interactions with the atmosphere can be influenced by the ground surface vegetation coverage (Gonzalez et al., 2012).

A number of investigations into the ground thermal behaviour of GSHP systems have been reported for a range of ground conditions, e.g. arid ground in Asia (Esen et al., 2007), North America (Mei, 1986) and the UK (Wu et al., 2011). Wu et al. (2011) presented a study on thermal performance of a horizontal system and ground temperature distributions considering fixed ambient air temperatures and fixed wind speeds. It was reported that an intermittent cycle has led to a reduced system performance for all ambient air temperature and wind speed cases. Esen et al. (2007) studied the efficiency of a horizontal ground source heat system in Turkey during the cooling mode operation (i.e. storing heat in the ground) which was located at 2 m depth. Using an analytical model, it was shown that the efficiency of the system under cooling mode has decreased from 56% to 46% when the ambient air temperature increased from 0 °C to 25 °C. The majority of investigations reported have considered a simplified form of the description for the energy balance at the ground surface (i.e. as a fixed temperature boundary condition based upon annual ambient air temperature variations). An extensive experimental investigation of a horizontal ground source heat system and ground temperature response has also been presented by Thomas et al. (2013); Hepburn (2014) and Hepburn et al. (2016). This investigation presents the soil thermal response in relation to seasonal variations and heat extraction.

The so called ‘energy balance equation’ has been reported to provide a prediction of annual and diurnal variations of ground temperature (Deardorff, 1978; Bhumralkar, 1975). The energy balance equation essentially calculates the overall radiant energy being absorbed or emitted by the thin upper layer of the ground surface. This paper re-visits the energy balance at the ground atmospheric interface with the aim to provide a comprehensive description of the ground boundary condition for ground source heat system studies. A formulation for the surface boundary conditions related to thermal and hydraulic interactions between soil and atmosphere is presented in this paper. The boundary condition developed considers the heat flow at the interface between soil and atmosphere via mechanisms of short wave radiation, long wave radiation, sensible radiation and latent heat radiation. In addition, the effects of surface moisture flux on energy balance at the interface are explicitly considered in the coupled formulation proposed. The developed boundary condition has been implemented in a numerical model for coupled thermal, hydraulic and mechanical behaviour of unsaturated soils (e.g. Thomas and He, 1995). The accuracy of the surface boundary condition and the implementation of the model is tested against a series of experimental data.

2. Energy balance at the soil atmospheric interface
The surface boundary condition presented here considers the heat and moisture flow at the soil atmospheric interface. The energy balance equation is used to provide a description of the annual and diurnal ground temperature variation (Deardorff, 1978). Four major mechanisms of heat exchange between the ground surface and atmosphere are considered, given as (van Wijk, 1966):

1) Short-wave heat radiation
2) Long-wave heat radiation
3) Sensible heat radiation
4) Latent heat radiation

Fig. 3. presents a schematic of the heat exchange mechanisms considered at the soil-atmosphere interface.

A general form of the energy balance equation can be presented as (van Wijk, 1966):

\[H = H_{SW}^{Absor} - (H_{LW}^{Net} + H_{SN} + H_{LE}) \]

(1)

where \(H \) is the total radiation heat flux absorbed or emitted at the soil surface. \(H_{SW}^{Absor} \) is the absorbed short-wave radiation flux, \(H_{LW}^{Net} \) is the net long-wave radiation flux, \(H_{SN} \) represents the sensible heat flux and \(H_{LE} \) is the latent heat flux. It is noted that the unit of heat flux used is W/m².

The following sections provide the details of the individual components of the surface energy balance equation described in Eq. 1.

2.1. Short-wave radiation

Short-wave radiation is a combination of direct and diffused solar radiation striking the Earth’s surface. The diffuse radiation is primarily caused by clouds, dust and molecular scattering in the atmosphere (van Wijk and Scholte Ubing, 1966). This is commonly referred to as short-wave radiation as the majority of the associated radiation has the wavelengths within the infra-red and visible bands of the electromagnetic spectrum. (van Wijk and Scholte Ubing, 1966). The total short-wave flux striking the Earth’s surface varies on a diurnal and annual basis, depending on the solar inclination and climatic conditions. A considerable fraction of the short-wave flux that reaches the Earth’s surface is reflected. The exact proportion of the radiation reflected depends on the ground surface coverage and reflection properties. The fraction of the short wave radiation flux absorbed at the surface can be presented as (Deardorff, 1978):

\[H_{SW}^{Absor} = \varepsilon_{SW} H_{SW} \]

(2)
where H_{SW}^{Absor} is the heat flux associated with the absorbed short-wave radiation and ε_{SW} is the short-wave reflection factor associated with the ground surface type.

In order to calculate the short-wave radiation component, a representative value of short-wave radiation is required. Values can either be obtained via monitoring, using appropriate historical records or can be approximated using irradiance models. A number of theoretical and empirical irradiance models have also been proposed (e.g. van Wijk and Scholte Ubing, 1966; Woodward et al., 2001). The short wave reflection factor varies for different surfaces and recommended values have been provided in the literature (e.g van Wijk and Scholte Ubing, 1966).

2.2. Net long-wave radiation

The net long-wave radiation at the ground surface can be described as a combination of long-wave radiation being emitted from the ground and long-wave radiation being absorbed from the atmosphere. Within the context of this formulation, the absorbed radiation is referred to as the long-wave radiation passing from the atmosphere towards the Earth’s surface, with the emitted radiation travelling in the opposite direction. This can be expressed as:

$$H_{LW}^{Net} = H_{LW}^{Absorbed} - H_{LW}^{Emitted}$$

where $H_{LW}^{Absorbed}$ is the radiation flux absorbed at the ground surface and $H_{LW}^{Emitted}$ is the radiation flux emitted from the ground surface.

The amount of long-wave radiation absorbed from the atmosphere is dependent on cloud formation. The approaches proposed commonly incorporate coefficients which are specific to local regions. A general approach was formulated by Imberger and Patterson (1981) to calculate the long-wave radiation being absorbed at the ground surface from the atmosphere, given as:

$$H_{LW}^{Absorbed} = \varepsilon_{LW}^A \sigma \left(T_{air}^4 + 0.17 C_{cloud}^2 \right)$$

where ε_{LW}^A is the long-wave emissivity of the air at ground level (non-dimensional), C_{cloud} is the fractional cloud cover coefficient ($C_{cloud} = 0$ for clear sky and $C_{cloud} = 1$ for the total overcast) and T_{air} is the absolute temperature of the air adjacent to the ground surface.

The long-wave radiation being emitted by a body can be calculated using Stefan-Boltzmann’s law (Woodward et al., 2001). The Stefan-Boltzmann law states that the energy emitted by a body is directly proportional to the forth power of its absolute temperature, given as (Lewis et al., 2004);

$$H_{LW}^{Emitted} = \varepsilon_{LW} \sigma T^4$$
where ε_{LW} is the long-wave emissivity of the body (dimensionless) and σ is the Stefan-Boltzmann constant (5.67×10^{-8} W.m$^{-2}$.K$^{-4}$). T represents the absolute temperature.

2.3. Sensible heat radiation

Sensible heat radiation can be defined as the heat exchange within a thermodynamic system that has a sole effect of temperature variation on the constituent bodies (i.e. not energy associated with a phase change). Sensible heat radiation is a function of both thermal conduction and convection. With respect to the ground surface boundary, the sensible heat flux is (Deardorff, 1978; Choudhury and Moeith, 1988):

$$H_{SN} = \frac{\rho_a C_p}{r_a} (T - T_{air})$$

where ρ_a is the air density (kg.m$^{-3}$), C_p is the ground specific heat capacity (J.kg$^{-1}$.K$^{-1}$), r_a is the aerodynamic resistance.

The aerodynamic resistance accounts for the mixing and turbulence of the air above the evaporating surface (Fuchs and Tanner, 1967). For the formulation of the surface boundary condition presented here, the following transition function proposed by Sverdrup (1946) is applied:

$$r_a = \frac{k^2 u_z}{(\ln \frac{z}{z_0})^2}$$

where k is the von Karman constant (equal to 0.41) and u_z is the wind speed at the reference elevation. z_0 is the surface roughness which allows the surface texture (e.g. grass, concrete) to be considered when calculating the mixing characteristics of the air immediately above the ground surface. When considering the effect of the surface boundary, this feature can be important in the recharge of the ground.

The relationship presented Eq.6 is essentially a form of Fourier’s law of conduction which forms the foundation of one-dimensional heat conduction (Deardorff, 1978). The components of ρ_a, C_p and r_a provide a modified thermal conductivity value; thereby incorporating a convective component within the equation (Deardorff, 1978).

2.4. Latent heat radiation
Latent heat radiation can be defined as the absorption or release of energy within a thermodynamic system that occurs without a change in temperature (i.e. energy related to molecule changes of state). In the context of the surface boundary condition, this is primarily linked to the evaporation of water from the upper regions of the ground surface.

The latent heat flux due to evaporation is calculated as follows:

\[H_{LE} = LE \]

where \(L \) is the latent heat of vaporisation (kJ/kg) and \(E \) is evaporation flux.

The water vapour flux presented in Eq. 7 is the moisture flux at the ground surface which represents the evaporation from the soil surface. The evaporation process is affected and controlled by atmospheric, surface and ground factors (Deardorff, 1978; Fuchs and Tanner, 1967). The rate of evaporation is greatly influenced by the moisture content of soil at the ground surface, linking the boundary to the moisture transfer in the soil. Based on the calculations of Dalton’s mass transfer formula, the evaporation rate can be given as (Deardorff, 1978):

\[E = \rho_a r_a (q - q_{air}) \]

where \(q \) is the soil specific humidity (mass of water vapour in a unit mass of moist air) at the ground surface and \(q_{air} \) is the air specific humidity.

Equation 9, with substitution of equation (6) and energy balance (without short and long-wave radiation) can yield the Penman-Monteith equation (Monteith, 1965) that includes the effects of the vegetation bulked on the aerodynamic resistance. Maintaining the separation of these terms, makes easier substitution into a coupled model, with each of the boundary conditions separately addressed.

The value of the rate of evaporation \((E) \), calculated by Eq. 8 is equal to the so called “Potential Evaporation”. The term Potential Evaporation can be described as the upper limit or maximum rate of evaporation from a surface (Barton, 1979). With respect to the evaporation from soil, The Potential Evaporation remains a valid approximation of the overall evaporation provided that there is a constant supply of available water at the ground surface, i.e. when the ground surface is saturated (Wilson et al., 1997). As the surface of soil enters the unsaturated state, the availability of water depends on the water retention characteristics of the soil. Wilson et al. (1997) presented a modified Dalton’s mass transfer equation to predict the evaporative rates from unsaturated soil surfaces:

\[E_a = E \left(\frac{h - h_{air}}{1 - h_{air}} \right) \]

where \(E_a \) is the actual evaporation flux, \(h \) is relative humidity of the ground surface and \(h_{air} \) is the air relative humidity at ground surface.
The latent heat flux due to evaporation can therefore be expanded as follows:

\[H_{LE} = L \rho_a r_a (q - q_{air}) \left(\frac{h - h_{air}}{1 - h_{air}} \right) \]

(11)

2.5 Surface moisture flux

In order to model the coupled heat and mass boundary condition, a representative mass boundary describing hydrological processes at the ground surface is presented. Assuming that the net moisture flux at the surface boundary is a function of hydrological process only, the following equation can be applied to calculate the ground surface moisture flux (Fredlund et al., 2011):

\[Q_m = P - E_a - R \]

(12)

where \(Q_m\) is the net mass flux at the ground surface (kg/m\(^2\)), \(P\) is the precipitation mass flux, \(E_a\) is the evaporation mass flux according to Eq.10 and \(R\) is the run-off.

For highly compressible soils, consolidation processes should also be taken into account, see for example Vardon et al. (2014), however, it would be unlikely that such soils would be selected for use for GSPH systems

Eq.12 presents the surface moisture exchange in terms of liquid and vapour phases. Precipitation data is available for specific geographical regions; therefore representative values can be obtained and prescribed in most cases.

3. Numerical implementation and model development

The surface boundary conditions described in previous section have been implemented within an existing numerical model of coupled thermal, hydraulic and mechanical behaviour of unsaturated soils (Thomas et al., 1995). The model considered the heat and moisture flow in unsaturated soils.

The governing equation of moisture flow is based on the principle of mass conservation and following the formulation provided by Thomas and He (1995). This can be expressed as:

\[\frac{\partial}{\partial t} (\rho_l \theta_l \delta V) + \frac{\partial}{\partial t} (\rho_v \theta_a \delta V) = -\delta V \nabla \cdot (\rho_l \mathbf{v}_l) - \delta V \nabla \cdot (\rho_v \mathbf{v}_v) - \delta V \nabla \cdot (\rho_v \mathbf{v}_a) \]

(13)

where \(t\) is time (s), \(\rho_l\) is the density of liquid water (kg/m\(^3\)), \(\theta_l\) is the volumetric water content, \(\rho_v\) is the density of water vapour (kg/m\(^3\)) and \(\theta_a\) is the volumetric air content. \(\nabla\) is the gradient operator and \(\delta V\) is the incremental volume of the soil. \(\mathbf{v}_l\) is the velocity of liquid (m/s), \(\mathbf{v}_v\) is the velocity of vapour (m/s) and \(\mathbf{v}_a\) is the velocity of air (m/s).
The governing equation of heat transfer is based on the energy conservation law in unsaturated porous media (Thomas and He, 1995). Based on the formulation presented Thomas and He (1995), the governing equation of heat transfer can be presented as:

\[
\frac{\partial}{\partial t}[H_c(T - T_r)] = -\delta \nabla \cdot \left[-\lambda_T \nabla T + A(T - T_r) + L(\rho_l v + \rho_v v_a) \right]
\]

(14)

where, \(H_c\) is the heat storage capacity (J/K), \(T_r\) stands for the reference temperature (K), \(\lambda_T\) is the thermal conductivity (W/mK) and \(A\) stands for the sum of the heat convection components.

Details of the expanded for the governing equations for moisture and heat transfer presented in Eq. (13) and (14) can be found in Thomas and He (1995).

The formulation of water flow has been implemented within an existing numerical model (COMPASS) developed at the Geoenvironmental Research Centre, Cardiff University which is based on finite element and finite difference methods (Thomas and He, 1995; Thomas et al., 2012). The Galerkin weighted residual method has been adopted by which the spatial discretisation is developed and the temporal discretisation is achieved by applying an implicit finite difference algorithm (Thomas and He, 1995). The model has been extensively tested and applied to study the coupled behaviour of unsaturated soils (e.g. Thomas et al., 2012). Details of the numerical formulation and computational aspects have been discussed in previous publications (e.g. Thomas and He, 1998); therefore the details are not repeated here.

Implementation of the developed surface boundary formulations within the numerical model is presented here. Fig.4 shows a schematic of the ground surface boundary and a model domain discretised into a number of elements. Based on the series of theoretical formulations provided in section 2, the climatic variables that are required to model the surface are:

1) Ambient air temperature
2) Solar radiation flux
3) Air relative humidity
4) Wind speed
5) Rainfall variables

The climatic variables listed above are commonly monitored in the field and representative values can be obtained for most regions from metrological data. The climatic variables are prescribed in the model as time dependent variables for the computation of the surface boundary condition. A linear interpolation is used to calculate the representative climatic variables between the time-dependant values. The resolution of the prescribed data is dependent on the nature of the variables (i.e. fluctuating on hourly or diurnal basis), the maximum simulation time-step and the resolution of the original data.
The ground surface boundary is prescribed by two fluxes, one representing hydraulic surface interactions (i.e. moisture) and the other representing thermal interactions. These two fluxes are connected in two ways: i) by the coupled heat and moisture flow formulation and ii) by the latent heat component of the energy balance equation. In order to calculate these fluxes in the model, a sequential algorithm was developed and implemented within the existing numerical code. The heat and moisture fluxes representing the ground surface boundary are calculated first at each time-step. According to the surface boundary formulation, calculation of the fluxes requires ground surface information regarding temperature, relative humidity and degree of saturation. The ground properties previously listed are extracted at the beginning of flow analysis at each time-step for each node located at the ground surface within the model domain. This allows the surface fluxes to be locally calculated on a node by node basis for the analysis. Further details can be found in Hepburn (2014).

4. Model validation - Evaporation at the soil-atmospheric interface

The formulation developed for the ground surface boundary was tested against the results of an experimental study presented by Gozalez-sosa et al. (1999). The validity of the adopted formulation for evaporation is examined against data provided by Gozalez-sosa et al. (1999) where the long-term exchange of energy and water at the surface of agricultural land in southern France has been studied. As part of the experimental investigation, sensors were installed to measure the surface water exchanges alongside a soil investigation to obtain the soil properties at the site (Gonzalez-sosa et al., 1999). A validation model representing the thermal and hydraulic behaviour of the ground at the site between for the period of monitoring (01/01/1995– 07/01/1995) was developed. The climatic data, surface hydraulic components (i.e. evaporation, precipitation and run-off) and soil properties have been used. The results of hydraulic components of the ground surface boundary condition (i.e. surface run-off and evaporation) predicted by the model are compared with experimental data presented by Gonzalez-sosa et al. (1999).

The soil at the site has been described as a ‘typical hydromorphic boulbene with silt loam texture’ (Gonzalez-sosa, 1999). The soil properties presented by Gonzalez-sosa et al. (1999) were used in the simulation. The properties were presented in the form of discrete strata, the upper and lower levels. Materials were prescribed within the validation model such that they coincided with the defined strata. Beyond the depth of 1.3 m, no material data was available therefore the material parameters for deepest reported strata reported by Gonzalez-sosa et al. (1999a) have been adopted within the remainder of the model (i.e. ground ranging from 1.3 to 10.0 m in depth).

An empirical relationship describing the soil thermal conductivity was used, following Gonzalez-sosa et al. (1999a) for the specific soil type found at the experimental site. The initial pore-water pressure
values at different depths were defined by Gonzalez-sosa et al. (1999a) as a function of pressure head. van Genuchten’s equation was used to describe the Soil Water Characteristic Curve (SWCC) (van Genuchten, 1980) by using the parameters provided by Gonzalez-sosa et al. (1999a). The water-table was reported to be at a depth of 4 m below the ground surface. Initial ground temperatures were provided at depths of 0.01, 0.05 and 0.5 m (Gonzalez-sosa et al., 1999a).

The initial ground temperature beyond a depth of 0.5 m was approximated using an analytical expression proposed by Hillel (1980) which provides the ground temperature profile based on soil parameters and climatic conditions, given as:

\[
T(z,t) = T_a + A_0 \exp \left(-\frac{z}{d} \right) \sin \left[\frac{2\pi(t - t_0)}{365} - \frac{z - \pi}{2d} \right] \tag{15}
\]

where \(T(z,t)\) is the soil temperature at time \(t\) (days) and depth \(z\) beneath the ground surface (m). \(T_a\) is the constant ground temperature (°C), \(A_0\) is the annual amplitude of the surface soil temperature (°C), \(t_0\) is the lag time from arbitrary start date to the occurrence of the minimum soil temperature in a year (days). \(d\) is damping depth which is calculated as:

\[
d = \frac{2D_h}{\omega} \tag{16}
\]

where \(D_h\) is thermal diffusivity (\(m^2s^{-1}\)), \(\omega = \frac{2\pi}{365}\) (days\(^{-1}\)).

The values of \(A_0\) and \(t_0\) were provided in Calvet et al. (1999). The value of \(T_a\) which is equivalent to the constant ground temperature found beyond the ground region affected by seasonal fluctuations. In the northern hemisphere, a reasonable value to assume for this is approximately 12 °C (Busby et al., 2011).

The climatic variables of ambient air temperature, solar radiation, specific air humidity, wind speed and rainfall presented by Gonzalez-sosa et al. (1999) and prescribed in the model are shown in Figs 5 to 7.

A two-dimensional simulation was carried out. The soil was assumed to be anisotropic in the vertical direction according to soil data provided. Climatic variables were assumed uniform across the whole site. The ground properties were assumed representative across the whole site. The selected domain extends downwards to a depth of 10 m and across to a width of 0.1 metres. The model was discretised into a mesh consisting of non-structured and non-uniform linear triangular elements, so an upgrade to non-uniform 2D geometry is straightforward. A varying time-stepping algorithm was employed within the simulation. The simulation length was 5,702,400 seconds, coinciding with the 65 day period between January 1\(^{st}\) and March 7\(^{th}\) 1995. Fig. 8 presents a schematic of the initial and boundary conditions for the validation exercise.
The primary aim of this model was to validate the hydraulic component of the developed surface boundary condition. The hydraulic exchange at the ground surface can be analysed knowing the controlling parameters, namely; precipitation, evaporation and run-off (Deardorff, 1978). In this case, the precipitation is a measured value prescribed within the model and therefore is known to be correct. Run-off only occurs once the upper ground surface is saturated. The experimental data reported no run-off during the period investigated, and therefore the applicability of this assumption was not tested. The evaporation component of the boundary condition implemented in the model is tested via comparison with field data.

The simulated evaporation and the measured evaporation based on data collected at the monitoring site can be found in Fig.9. For the purpose of this comparison, the total daily evaporation (mm) for the simulated and measured data has been presented. From Fig.9, it can be seen that the simulated daily evaporation trends were generally in close agreement with those exhibited by the real data. It is noted that the simulated evaporation rates did differ from the experimental results between days 5 and 15. Based on the proximity of the deviations to the beginning of the simulation, it is believed that this period of deviation is due to the initial conditions assumed within the model. Over the 65 day simulation period, the average absolute error between the simulated and experimental data was 0.09 mm per day. The hydraulic component of the developed surface boundary condition was analysed in terms of the predicted run-off and evaporation. At no point during the simulation did the surface reach saturation, leading to no surface run-off, concurring with the reported experimental data. The simulated evaporation showed close agreement with the measured values over the 65 days simulation period with the exception of one ten day period.

5. Conclusions

A formulation for the heat and mass exchange at the soil-atmospheric interface was presented. The surface boundary condition presented includes coupled thermo-hydraulic behaviour by considering a range of climatic variables and mechanisms. These include solar radiation, ambient air temperature, relative humidity, wind speed, rainfall and evaporation. The developed boundary condition has been implemented within a coupled thermal, hydraulic and mechanical numerical model using a sequential approach.

The surface boundary condition was tested against a series of experimental data by which the validity of the hydraulic component of the surface boundary condition implemented was examined. The results of modelling the evaporation at the soil-atmospheric interface were found to compare favourably with the reported values from the site. It is noted that only the results of testing the
The evaporation component of the model has been presented here. Further testing and validation exercises are therefore required to improve the confidence on the developments.

The development and implementation of the boundary allows climatic variables, to be included within future models for studying the effects of boundary condition and climatic interactions on the performance of ground source heat pump systems. This will enable a more detailed inspection of the climate’s role in the coupled thermo-hydraulic ground behaviour in response to heat extraction via ground source heat systems. In particular, using the developed boundary condition, the effects of surface material properties at the soil-atmospheric interface on the performance and recharge of ground source heat systems can be investigated. The developed boundary is more sophisticated than examples found in literature, not only allowing consideration of the climatic variables but also surface material properties. The application of this boundary within a numerical model will allow a better representation of surface materials and climatic conditions.

Acknowledgment

The work described in this paper has been carried out as a part of the GRC’s (Geoenvironmental Research Centre) Seren project, which is funded by the Welsh European Funding Office (WEFO). The financial support is gratefully acknowledged.
References

Fig. 1. Schematic of a horizontal ground source heat system.

Fig. 2. Schematic of the ground surface boundary and ground-loop boundary in a horizontal ground source heat system.
Fig. 3. Major mechanisms of energy exchange at the soil atmosphere interface.

Fig. 4. Schematic of a ground domain showing the ground surface boundary condition and the climatic variables required in order to calculate the ground surface boundary components.
Fig. 5. Daily evolution of air temperature and solar radiation recorded at the site (after Gonzalez-sosa et al., 1999a).

Fig. 6. Daily evolution of specific air humidity and wind velocity recorded at the site (after Gonzalez-sosa et al., 1999a).
Fig. 7. Daily evolution of rainfall recorded at the site (after Gonzalez-sosa et al., 1999a).
Fig. 8. The initial and boundary conditions applied to the surface evaporation test.
Fig. 9. Results of numerical simulations for the total daily evaporation. Experimental results for the total daily evaporation were adopted from Gonzalez-sosa et al. (1999a).