Highlights

- Ramp syncline basins were identified above thick salt in the São Paulo Plateau, Santos Basin

- They form by translation over a thick salt detachment with basal relief due to viscous drag and salt flux variations

- They record 28-32 km of SE translation during the Late Cretaceous to Paleocene

- They form by translation over basinward-dipping and landward-dipping base-salt ramps

- Stratal terminations and architecture vary along-dip and strike within these systems
Geometry and Kinematics of Salt-detached Ramp Syncline Basins

*Leonardo M. Pichel¹; Frank Peel²,³, Christopher A-L. Jackson²,³; Mads Huuse¹,

1 – School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK

2 – The University of Texas at Austin, Bureau of Economic Geology, Jackson School of Geosciences, Austin, Texas, USA

3 – Basins Research Group (BRG), Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, SW7 2BP, United Kingdom

Corresponding author: leonardo.munizpichel@manchester.ac.uk
+44 (0) 7479011308

Frank.peel@beg.utexas.edu
C.jackson@imperial.ac.uk
Mads.huuse@manchester.ac.uk

Key-words: SALT TECTONICS, RAMP-SYNCLINE BASINS, MINIBASINS, TRANSLATION, BASE-SALT RELIEF, GRAVITY-DRIVEN DEFORMATION
ABSTRACT

Ramp-syncline basins (RSBs) are characterized by asymmetric depocentres formed by translation above salt detachments with basal steps. Recognition of these minibasins allows quantification of the magnitude and rates of overburden translation above a deforming salt layer. 3D seismic data from the São Paulo Plateau, Santos Basin, Brazil image a series of RSBs formed above thick salt, and distributed above and/or basinward of pronounced base-salt steps. The RSBs are composed of landward-dipping and gently folded sigmoidal strata, recording 28-32 km of SE-directed translation during the Late Cretaceous and Paleocene, at an average rate of 0.8-0.9 mm/year. We present several examples of RSBs, in addition to results from numerical forward models, to analyse the 3D kinematics of RSBs and their interaction with base-salt structures. The RSBs form not only by translation above basinward-dipping ramps, but also over landward-dipping ramps. Translation over stepped ramps generates stacked RSBs. Thickness maps show translation is higher at the centre of RSBs and that depocentres become progressively more affected by diapirism as they evolve. This study presents the first analysis of the 3D kinematics of ramp-syncline basins, and the first documentation of their occurrence above thick salt in the Santos Basin, Brazil. It applies realistic numerical models that treat the detachment as a volume of viscous material, improving our understanding of these systems. RSBs are important to understand slope and deep-basin tectono-stratigraphic architecture of supra-salt units and can also guide the identification of pre-salt structures, thus contributing to the exploration of salt basins.
1. **Introduction**

Ramp-syncline basins (RSBs) are common features in extensional basins, being first recognized in the Gulf of Lyon, offshore France (e.g. Benedicto et al. 1999; Sanchis and Séranne, 2000) and the Kvamshesten Basin, onshore Norway (Osmundsen et al. 2000). They were initially described through conceptual (Gibbs, 1984) and physical models (Ellis and McClay, 1988; McClay, 1990, 1996; McClay and Scott, 1991), as forming above the hangingwall of ramp-flat extensional faults whose basal detachments dip in the direction of tectonic transport. The hanging wall is warped down above the ramp to create a relatively narrow basin. As the hangingwall block moves, the locus of subsidence (located above the footwall ramp) remains fixed in space, but its previous sediment fill is progressively moved away from it, producing a characteristic asymmetric, shingled stratal unit (Fig. 1a-b).

A second type of RSB has been identified above salt-detached systems in which the base of the moving unit is a salt layer (Fig. 1c-d) (e.g. Kwanza Basin, Angola, Peel et al. 1998; Marton et al. 1998; Jackson et al. 2001). Jackson and Hudec (2005) reviewed the processes and kinematics of RSBs on the Angolan margin using highly schematized sections and 2D seismic data. These authors described salt-detached RSBs as being formed by translation of sediments above a salt layer with a basinward-dipping ramp at its base (Fig. 1c-d). Movement over the base-salt ramp generates downwarp of the overburden, creating accommodation. Moreover, translation over two or more base-salt ramps can generate vertically stacked RSB systems (Jackson and Hudec, 2005).
Both extensional and salt-detached RSBs are characterized by an asymmetric synclinal depocentre defined by a basinward-dipping axial-trace (Fig. 1) (Jackson and Hudec, 2005). Thus, sediment layers within RSBs typically dip in the opposite direction to tectonic transport, defining “pseudo-clinoforms” (Fig. 1). The dip of the depositional axial-trace defines relative ratios of aggradation (\(\dot{\gamma} \)) and translation (\(\dot{\alpha} \)) rates (Jackson and Hudec, 2005). Gently-dipping axial traces indicate low \(\dot{\gamma}/\dot{\alpha} \) whereas steeply-dipping axial traces indicate high \(\dot{\gamma}/\dot{\alpha} \). This ratio tends to increase through time as translation rates usually decrease due to salt thinning and coeval overburden thickening (Jackson and Hudec, 2005). Although geometrically similar, extensional and salt-detached RSBs differ in terms of their stratal architecture, kinematics and the depositional settings in which they form; such aspects will be addressed in detail in this study.

The geometry and stratigraphy of RSBs can provide important information on the evolution of salt-bearing sedimentary basins. They present an excellent and potentially continuous record of the translation history of salt and overburden revealing total duration, displacement distance, speed, and direction (Hudec and Jackson, 2005). If the age of the RSB sedimentary fill is known, it is possible to identify whether the translation rate was uniform or time-variant, allowing us to accurately estimate rates of overburden translation and deformation on salt-detached gravity-driven systems (Jackson and Hudec, 2005). This can be extrapolated to more structurally complex domains, such as the updip extensional and downdip contractional provinces, where measuring total strain and unravelling the kinematic history can be significantly more problematic (Jackson et al. 2014).
Furthermore, in regions where the base-salt surface or pre-salt stratigraphy are not clearly imaged, the identification of RSBs may indicate the presence, geometry and location of pre-salt highs, as RSBs updip edges occur immediately above them (Fig. 2). This may, in turn, assist the identification of hydrocarbon targets in pre-salt highs sealed by the salt layer; which form the foundation of prolific plays in many deep-water South Atlantic basins (Gomes et al. 2012; Flinch, 2014; Mohriak, 2015). RSBs also control slope and abyssal plain deposition and, thus, can influence the distribution of hydrocarbon reservoirs in supra-salt intervals. Salt-detached gravity-driven translation causes a seaward-shift of supra-salt strata, which can result in juxtaposition of supra-salt sandier intervals initially deposited on the shelf and upper-slope, above mature pre-salt source rocks on the lower-slope and deep-basin (Fig. 2). If a salt weld is formed below the RSB, these supra-salt reservoirs can be charged by hydrocarbon migration from the pre salt section (Rowan 2004; Jackson et al. 2014). Wherever RSBs are present, one cannot fully understand supra-salt stratigraphic architecture without understanding the kinematics of RSBs.

Despite their notable value for both academia and industry, there has been little further research on RSBs since Jackson and Hudec (2005). For example, there has been no investigation of the 3D kinematics and stratigraphic architecture of natural RSBs, or physical or numerical modelling to constrain the few previous observations. Moreover, very few studies have documented RSBs outside their type-area in the Kwanza Basin: Rowan (2014) in the Red Sea and Dooley et al. (2016) in the Campos Basin, Brazil. Nevertheless, we contend RSBs have been
shown in previous works without being explicitly recognized and/or studied in detail (Alves et al., 2016; Jackson and Hudec, 2017).

Here we present the first documentation of RSBs in the Santos Basin, Brazil providing a detailed analysis of their 3D geometry, stratigraphic architecture, and kinematics. We present seismic sections and thickness maps of the RSBs, then compare their geometries with numerical forward models simulating cover translation above a salt detachment with variable topography and thickness. These models provide a more comprehensive and realistic evolution of RSBs, as they treat the detachment as a volume of deforming viscous material (Fig. 1c-d), rather than a discrete, undeformable surface (Jackson and Hudec, 2005). This allows us to evaluate the role of diapirism and salt flux variations on RSB evolution. Ultimately, this work aims to improve our current understanding of RSBs and to provide a guide for their identification and analysis in other settings and basins.

2. Tectono-Stratigraphic Framework of the São Paulo Plateau

The São Paulo Plateau (SPP), Santos Basin (Fig. 3) is an area of thick, layered Aptian salt (Gamboa et al., 2009; Davison et al. 2012; Fiduk and Rowan, 2012; Jackson et al. 2014; 2015) and a complex, polygonal pattern of salt diapirs (Guerra and Underhill, 2012; Jackson et al. 2015). The area is a prolific hydrocarbon province, with discoveries in both pre- and post-salt reservoirs, including some of the largest oil discoveries in the last decades (e.g. Tupi and Iracema fields) with reserves over 5 bbl in pre-salt structural highs (Mohriak et al. 2012).
The basin is characterized by a series of NE-oriented graben and half-graben formed during late Barremian-early Aptian rifting. These basins are filled by non-marine clastic strata and are overlain by shallow-marine carbonates (Meisling et al. 2001; Modica and Brush, 2004; Karner and Gambôa, 2007; Mohriak et al. 2008, 2009; Contreras et al. 2010). During the late Aptian, most rift-related faults became inactive and a 1 - 3 km thick post-rift salt succession was deposited (Davison et al. 2012). During the early Albian, the Santos Basin experienced fully marine conditions due to thermally-induced subsidence and eustatic rise. This resulted in widespread deposition of a carbonate-dominated succession expressed as a fine-grained, marl-dominated succession (Modica and Brush, 2004). During the latest Albian, thermal and isostatic subsidence tilted the basin south-eastward, inducing salt-detached gravity gliding and the development of thin-skinned, predominantly seaward-dipping normal faults that dismembered the Albian carbonate platform updip of the study area (Demercian et al. 1993; Cobbold et al. 1995; Mohriak et al. 1995; Guerra and Underhill, 2012; Quirk et al. 2012).

During the Cenomanian-Turonian, drowning of the carbonate platform, in response to a rapid eustatic rise and thermal subsidence, resulted in extensive deposition of shales and marls (Modica and Brush, 2004). Throughout the Late Cretaceous to Paleocene, and despite a continued eustatic sea-level rise, sedimentation was dominated by siliciclastic progradation due to uplift of the Serra do Mar mountain range, with extensive turbidite deposition during the late Campanian (Modica and Brush, 2004). By end Paleocene, sea-level fall resulted in the development of a major regional unconformity, leading to erosion and basinward redistribution of
shelf and slope sediments. Inflated salt on the SPP acted as a topographic barrier to basinward transportation of coarse clastics from the end of the Paleocene onward (Modica and Brush, 2004), resulting in widespread mud deposition in more distal locations.

The SPP is situated at the present-day toe-of-slope, immediately downdip of the Albian extensional domain and the Albian Gap (Fig. 3) (Quirk et al. 2012; Jackson et al. 2015). Some authors suggest regional shortening of the supra-salt cover on the SPP continued throughout the entire late Cretaceous (Quirk et al. 2012; Fiduk and Rowan 2012; Guerra and Underhill, 2012; Alves et al. 2017). Others argue Late Cretaceous deformation was dominated by salt inflation and density-driven processes, with only local contraction and extension (Ge et al. 1997; Gemmer et al. 2004; Jackson et al. 2015; Dooley et al. 2015). However, the aspects and magnitude of salt-related basinward translation of the SPP and its effects on minibasin development have not yet been studied.

3. Methods

3.1. Seismic Interpretation

This study uses a zero-phase processed, time-migrated, 3D seismic reflection dataset covering 20,122 km² of the SPP, Santos Basin, Brazil. Inline (west-east) and crossline (north-south) spacing is 18.75 and 25 m, respectively. The vertical sampling interval is 4 ms two-way time travel (ms TWT), and total record length analysed is 5500 ms TWT. The survey display follows the Society of Economic Geologists normal polarity, where a downward increase in acoustic impedance is
represented by a positive reflection event (white on greyscale seismic sections) and a decrease in acoustic impedance by a negative event (black on greyscale seismic section) (Brown, 2011).

The average dominant frequency in the Aptian salt is c. 36 Hz and the interval velocity is c. 4400 m/s, yielding a vertical resolution of c. 29 m (Rodriguez et al., 2017). The relatively lower velocity of the salt is due to the intra-salt lithological heterogeneity and, more specifically, the presence of acoustically slower potash intervals (Jackson et al., 2015). Overburden strata have a dominant frequency that varies with depth from c. 40-31 Hz and a slower average interval velocity (c. 1900-2015 m/s), which together result in higher vertical resolution (c. 12-17 m) that decreases with depth (Jackson et al., 2015; Rodriguez et al., 2017). Horizontal resolution is twice the seismic line spacing (i.e., 37.5 m in the E–W direction and 50 m in the N–S direction) (Jackson et al. 2015).

In order to constrain the geometry, and to understand the 3D kinematics and tectonostratigraphic evolution of RSBs, 3D seismic mapping of key surfaces within the RSBs were produced to generate thickness maps of key stratigraphic intervals.

We did not use primary well data, with the identification of key seismic stratigraphic surfaces, such as the top and base salt (Figs. 4 and 5a), top Albian, the intra-Paleocene unconformity and top Paleocene, being based on previous publications (Fiduk and Rowan, 2012; Guerra and Underhill, 2012; Jackson et al. 2015). Intra-RSB horizons were chosen based on their reflectivity and continuity.

3.2. Base-salt map
It was vital to have a detailed base-salt map in order to match the observed RSBs to the base-salt topography responsible for their formation. Although the top and base-salt surfaces were readily identified and interpreted in TWT; the presence of a thick, deformed evaporite layer, whose velocity is generally higher than the overlying sediments, introduces distortion of the base-salt and pre-salt section such that the real structure is obscured by velocity pull-ups. Although, in places, syn-rift structures (i.e. normal faults and wedge-shaped intervals) help constrain the location of pre-salt structures (Figs. 6-8), in other areas they could not be readily identified in our TWT base-salt map.

Publically available depth-maps (e.g. Alves et al. 2016, fig. 5b) do not cover the entire study-area nor do we have access to a reliable, high-resolution velocity grid to create maps by conventional depth-conversion. Instead, we developed a reliable base-salt structure map (Fig. 5a) by stretching the thickness of salt by a factor of 1.61 and shifting the base salt accordingly. This is equivalent to a static correction, in which the salt velocity is reduced by 39%. The resulting map is in TWT (Fig. 5a), not depth, representing where the base-salt would be if salt was replaced by an equivalent thickness of sediment. The appropriate factor was obtained iteratively by finding the value that best removed the most evident velocity pull-ups. Finally, a gentle spatial smoothing factor was applied to remove the effect of non-vertical ray paths, which created local high-frequency spikes under the steeply-dipping flanks of salt bodies (Jones and Davison, 2014). The best indicator that our approach was effective is that the resulting map (Figure 5a); (i) shows no discernible imprint of the overlying salt structure; (ii) compares favourably to the depth-map presented by
Alves et al. (2016) (Fig. 5b); and (iii) to a regional, 2D, depth-migrated seismic profile (Fig. 6). Four major base-salt highs are identifiable on the map; each bounded updip and downdip by base salt ramps (Fig. 5). This result compares well with the interpretations shown by Davison et al. (2012) and Alves et al. (2017), both of whom use depth data.

4. Observations (Ramp-Syncline Basins)

Both simple (section 4.1.) and stacked RSBs (section 4.2) were identified above thick salt (1.5-2 km) on the SPP, distributed above and basinward of the main base-salt steps (Figs. 4-5). These basins trend NNE to NE (Figs. 4-5), and are composed of 9-20 km wide by 15-35 km long continuous panels of landward-dipping and thickening strata that become younger landward (Figs. 6-12). The RSBs contain stratigraphic successions up to 600 ms (~700 m) thick (Fig. 8); with average thickness of 400 ms (400-450 m, figs. 7 and 9-11); this corresponds to 25-35% of total post-salt succession (Fig. 12a).

The base-salt steps associated with the RSBs trend mainly NNE-NE, parallel to the RSBs, although the northernmost high trends NNW and, thus, slightly oblique (Fig. 5a-b). These steps have approximately 0.5-2 km of structural relief, dipping predominantly landward to the west and basinward to east within the study-area, being associated with a large pre-salt structure known as the Outer High (Fig. 6) (Gomez et al., 2012). In this study, we present the five least deformed, largest, and thus best imaged examples of RSBs in order to analyse their 3D geometries,
kinematics, tectono-stratigraphic evolution, and interaction with base-salt structures.

4.1. Simple Ramp-Syncline Basins

Simple RSBs are characterized by asymmetric sigmoidal growth strata dipping and expanding landwards towards a diachronous basal boundary (Figs. 7-9). The RSBs are capped by a diachronous top unconformity and terminate landward above a base-salt ramp that may dip basinward (Fig. 7) or landward (Figs. 8-9). Their depositional axial-trace dips predominantly basinward, becoming broadly steeper landward within the uppermost strata and with minor switches in their dip-direction due to simultaneous diapirism, folding, and rotation (Figs. 7-9 and 12b). In the majority (85%) of RSBs, lowermost strata onlap against the top of the broadly isopachous, 300-400 m thick, Albian succession (Figs. 7 and 9-11). In the other RSBs, the first onlaps are against younger, Late Cretaceous strata (Fig. 8, and landward panels of figs. 9 and 11).

4.2. Stacked Ramp-Syncline Basins

In the north-central and northeast of the study-area, RSBs are characterized by stacked onlap surfaces and ramp-syncline strata (Figs. 10 and 11), being more complex than the ones further south. They are located above pairs of basinward-dipping ramps (Fig. 10), and above a NNW-trending pre-salt horst block defining landward and basinward-dipping base-salt ramps (Figs. 5 and 11). The stratigraphic architecture of stacked RSBs is similar to simple RSBs described previously (Figs. 7-9), with landward-dipping sigmoidal growth strata defined by a
predominantly basinward-dipping axial-trace (Figs. 10, 11 and 12c). The lower RSB terminates updip above the landwardmost base-salt ramp, whereas the upper RSB terminates over the basinwardmost base-salt ramp (Figs. 10, 11 and 12c). The unconformity bounding the top of the lower, landward RSB acts as the basal onlap surface for the upper RSB along most of the stacked section, being commonly separated by a thin drape interval updip (Figs. 10, 11 and 12c).

5. Interpretation

Simple RSBs are interpreted to form by salt-related translation above a single base-salt ramp, whereas stacked RSBs form by simultaneous translation above two or more base-salt ramps, as in examples from their type-area in the Kwanza Basin, Angola (Jackson and Hudec, 2005). The lower, landward RSB forms by translation above the landward ramp, whereas the upper, basinward RSB forms by translation above the basinward ramp. If the distance between base-salt ramps is smaller than the amount of translation, the updip portion of the basinward RSB overlaps the downdip portion of the landward RSB, generating stacked RSBs (Figs. 10-11). Thus, the distance between steps is inversely proportional to the width of the stacked RSB section. Deposition occurs simultaneously within both stacked RSBs, so the first and last deposited strata, and equivalent onlap points in each RSB have the same age and, accordingly, the amount of translation recorded by each RSB is the same (Jackson and Hudec, 2005). Along-strike correlation around salt walls indicate that, in some cases (Figs. 8-11), RSB panels now separated by salt walls can form by translation above the same base-salt ramp (Fig. 12a-b), being subsequently segmented by synchronous-to-subsequent
diapirism. In these cases, the landward panels are composed of younger strata onlapping a thicker and younger pre-translation section relative to their basinward and older panels (Figs. 8-11) (c.f. Jackson and Hudec, 2005).

Translation above a thick salt detachment is driven by viscous drag within the salt (Rowan et al., 2004; Peel 2014), which simultaneously produces localized rotation, cover deformation, and diapirism (Dooley et al., 2016). These processes are represented in our study-area by faulting at the flanks and/or crests of diapirs, and folding and rotation of RSB strata, generating additional complexities and acting as secondary controls on the evolution of RSBs. Additionally, as RSBs form above a thick salt interval, density-driven processes such as salt expulsion and inflation occur in tandem with translation and RSB development (Jackson and Hudec, 2005). We see this where RSBs have a more symmetric geometry, usually in their uppermost sections (Figs. 7-11), and where salt has drastically thinned beneath them (SE edge of RSB 3, Fig. 9).

5.1. Stratal Variation within RSBs

In both simple and stacked RSBs, stratal termination can vary along dip and strike (Figs. 7-11). Thus, in this section we present a summary of the stratigraphic architecture and terminations for both simple and stacked systems (Fig. 12). Lower boundaries are generally characterized by a well-defined, diachronous onlap surface that becomes younger landward (Figs. 9-11). Apparent downlaps are typical of the lowermost RSB fill, which has been progressively rotated during translation (Figs. 7-11) whereas original onlap relationships are most easily
discerned for the younger and, thus, less rotated packages preserved in landward positions (Figs. 7-11). In places, the basal boundary is defined by a transition from a thicker, landward-dipping section to a drape interval that has the regional dip (Figs. 9-11 and 12b-c). We thus interpret the apparent downlaps as originally forming as onlaps against paleo-bathymetric highs and/or diapirs above base-salt ramps. These terminations dominate where strata are older and consequently have been translated further and rotated more.

Like the lower boundaries, the upper RSB boundaries also become younger landward, being defined in places by erosional truncation, most commonly in the downdip part of the system where strata are usually steeper (orange to blue horizons, fig. 8c-d). Elsewhere, the upper boundary is defined by toplaps (light-blue horizon, fig. 8c-d) or, most commonly in the updip portions of the system, by an abrupt transition from a thin, draping section of regional dip, to a thicker, more steeply-dipping section (light-orange horizon, fig. 8). Steep stratal dips and erosional truncation are possibly caused by a combination of: i) uplift due to salt drag (see model in fig. 1c-d) and/or salt inflation at the edge of the RSB; and ii) a higher degree of translation and rotation of older RSB strata.

A landward shift from abrupt to subtle transitional limits along the upper and lower boundaries of the RSBs (Fig. 12b-c) is explained by an increase in the aggradation/translation ratio (\(\Delta/\Delta\)). This is evidenced by landward steepening of the depositional axial-trace in areas where the RSBs are less folded (Fig. 7-11). Additionally, as the RSBs evolve and \(\Delta/\Delta\) increases, the overburden thickens such that loading and salt expulsion become progressively more important control on
their evolution. As in simple RSBs, the boundaries of each stacked RSB can be defined by a transition from steeper, thickened section within the RSB, to thin, draping strata away from it (Figs. 10 and 11b). This explains the development of thin drape intervals separating the lower RSB top unconformity from the upper RSB onlap surface (Figs. 10 and 11), typically in their uppermost sections (Fig. 12c).

5.2. Translation history and depocentre migration

To analyse RSB kinematics, we present true-stratigraphic thickness maps from the largest example found within the area (RSB 5, figs. 11 and 13), which is the best representative of all others RSBs mapped. The isopachs are located basinward of or above base-salt ramps with the main depocentres having similar trends and shapes (Fig. 13). They present consistent amounts (1.8-3.1 km) and directions of offset (120 ± 15°), through time, towards the SE-ESE, which is parallel to the regional gravity-driven tectonic transport direction (Quirk et al 2012; Jackson et al 2014), roughly perpendicular to the trend of the main base-salt steps. The constancy of these values indicates these depocentres likely formed in response to a single, relatively steady SE-ESE-oriented process (i.e. basinward translation over base-salt relief).

By summing the offsets between the thickest points on each isochron map in fig. 13, a total translation of 26.9 km was obtained for RSB 5. This, however, represents a minimum distance as we were not able to include isopachs of the first and last onlapping intervals, due to intense faulting and folding at both their eastern and western edges (Figs. 11 and 13). Nevertheless, it was possible to obtain
confident translation estimates for each RSB by measuring the distance of their
first onlap points to the top of their corresponding ramps, (c.f. Jackson and Hudec,
2005). RSB 5 records the larger amount of translation of all RSBs on the SPP,
estimated at 32 (± 2) km (Fig. 11 and 13). In many other examples, we were only
able to determine a minimum translation because they are located at the eastern
edge of the data, such as in RSB 1 (9.5 km of translation), RSB 2 (18 km) and RSB
4 (16 km); or are eroded or heavily deformed by diapirism. Nonetheless, less-
deformed and less–eroded examples situated more centrally in our dataset allowed
more precise estimates of cover translation in the area, which varied from 28 km in
the south (RSB 3, fig. 8) to 32 km to the north (RSB 5, fig. 11). Stacked RSBs were
important to guarantee a higher degree of certainty in areas of complex salt
deformation or erosion, as they record the same amount of translation (Jackson
and Hudec, 2005) and, thus, can be used as a cross-check. As seen in RSB 5,
both landward and basinward RSBs document 32 km of translation (Fig. 11).

Thickness maps also demonstrate the discrepancy between the vertical and true
(i.e. stratigraphic) thickness of strata preserved in the RSBs. RSB 4, for example,
has a vertical thickness of c. 500 ms (Fig 10), but, by adding the true thickness of
each of its mapped intervals, a total of 2130 ms (c. 2400 m) (> 4 times its vertical
thickness) is obtained. This contrast occurs because, as RSB strata translate, they
rotate and move away tens of kilometres from where they were originally
deposited; while new sediments accumulate at the fixed depocentre. As RSBs are
capped by Top-Cretaceous or Intra-Paleocene erosional unconformities (Figs. 6-
11), stratigraphic thicknesses preserved within them likely represent a minimum.
Using age constraints provided by Modica and Brush (2004); Guerra and Underhill, (2012) and Jackson et al. (2015), and the observation that oldest RSB strata onlap the Albian section, we suggest translation commenced at the end of the Albian. Furthermore, we estimate the end of translation to vary from end Cretaceous (Fig. 7) to middle Paleocene (Fig. 8-11). Although there is a degree of uncertainty regarding these age estimates, we can obtain an approximate average translation rate of 0.7–0.8 mm/yr (0.7-0.8 km/Myr.).

6. RSB Modelling and Kinematics

Our seismic based observations from the Santos Basin were compared with forward models reproducing what we inferred as the main process generating RSBs, i.e. cover translation above a thick salt detachment. Numerical models have been used extensively in salt tectonics studies, providing important insights into the sequential evolution of salt structures and the mechanics of salt flow (Gemmer et al., 2004, Albertz and Ings, 2010; Gradmann and Beaumount, 2015; Weijermars et al., 2015; Pichel et al., 2017). Our simulations allowed us to evaluate the kinematics and processes controlling the development of RSBs, and to confirm that the observed geometries could be interpreted in the context of the interpreted base-salt topography. In our models, translation of the cover is accommodated by layer-parallel shearing of the whole thickness of the salt, i.e. Couette flow (Weijermars, 1993; Cotton and Koyi, 2000; Rowan et al. 2004; Weijermars et al., 2015), as opposed to movement on a fault (McClay, 1990; 1996) or a discrete detachment (Jackson and Hudec, 2005).
Modelling was performed using SaltDragon©, a novel application created in Microsoft Excel©. This application provides a simple but effective 2D model of the stratal geometries produced in RSBs by simulating viscous salt drag and overburden translation above a salt detachment with variable thickness and basal topography. The geometry of the decollement and the rate of sediment accumulation can be adjusted in order to replicate the general form of the natural RSBs observed in seismic data, and to investigate the possible controls on RSB geometry. The application is non-dimensional (i.e. scale-independent), so the computations relate to grid cells, and are valid regardless of the dimension of the grid or vertical scaling factor.

The overburden is offset horizontally, one grid cell per time increment, over the viscous decollement, with an initially uniform top and a base of user-defined irregularity. The pre-salt interval remains fixed and rigid. The post-salt pre-translation interval is tabular, and syn-kinematic sedimentation is added continuously and at a constant rate through time. After each increment, the overburden is deformed by vertical shear to maintain contact with the top of the salt. The height of the new sediment depositional surface at each point in time is user-defined. The calculated accommodation (space between the new depositional surface and the top surface of the deformed overburden) determines the thickness of new sediment deposited in each increment. There is no compaction or erosion in this model, and the depositional surface is presumed to be planar and uniformly dipping, which is likely applicable to the deep-water settings considered in our
natural example. The process is repeated sequentially, creating a complete realisation of the evolution of the system.

The shear strain associated with the layer-parallel shearing within the salt is assumed to be uniform throughout each vertical column (Fig. 14). Thus, where salt is thinner, the total flux of dragged salt is lower than where the salt is thicker and vice versa (Fig. 14). As the original salt thickness changes across base-salt topography, the overall salt flux also changes (Dooley et al. 2016). As a result, parts of the section may experience net loss or gain of salt, resulting in salt thickness variations, and subsidence or uplift of the overlying sediments (Fig. 14). This controls the deposition and stratigraphic architecture of syn-kinematic strata, and the development of RSBs.

Because the models begin with a planar top-salt surface, the generation of subsidence and uplift in the initial stages is entirely due to the effect of salt drag and laterally varying salt flux (Figs. 14a-b). However, as the model evolves, significant topography is created on the top salt surface and a second factor, vertical movement, comes into play. The cover moves with a downward component where the top-salt dips in the direction of tectonic transport, and an upward component where the top of salt dips in the opposite direction (Figs. 14c). This produces local subsidence and uplift, in addition to those created by local thinning or thickening of salt. An important consequence of this is that regions of local uplift can develop on the downdip side of RSBs, even where the cover is moving over a basinward-dipping ramp (Fig. 14c-d). This is recognized in the Santos Basin by development of prominent erosional unconformities on the downdip sides of RSBs.
As top-salt relief develops, the amount and extent of uplift should progressively increase (Figure 14c-d). In nature, a combination of Couette and Pouiseuille salt-flow would intensify the uplift as salt would be laterally expelled from beneath the RSB, resulting in inflation and diapirism at its edges.

Whilst the models appear to broadly reproduce the main geometries observed in the Santos Basin, they do not reproduce the entire kinematics of the system. In particular, these models do not replicate diapirism and Pouiseuille-flow driven by differential loading. Also, our models assume: 1) the overburden neither stretches nor shortens laterally as it moves, 2) the overburden has very little resistance to vertical shear, so there is no salt return Poiseuille-flow component, as would be the case with a more rigid roof; and 3) the pre-translation interval is perfectly tabular and isopachous. Nevertheless, separating the contribution of one factor alone (entrainment of the viscous decollement layer by drag, modelled as Couette flow) allows us to explore the influence of this important component of salt tectonics. Furthermore, the fact that this approach produces results that are remarkably similar to RSBs observed in both the Santos and Kwanza basins, suggests it is a valid first-order approximation of the dynamics of these systems.

We present four models testing the effects of different base-salt topography and variable salt thickness on overburden translation, deformation and stratigraphic architecture. Model 1 simulates translation above a basinward-dipping ramp, and model 2 reproduces translation above a pair of basinward-dipping ramps. In Model 3, we evaluate translation over a landward-dipping ramp and, in Model 4,
translation over a base-salt horst defined by landward- and basinward-dipping base-salt ramps.

6.1. Model 1 (single basinward-dipping ramp)

In Model 1, salt and overburden translate over a basinward-dipping ramp. As salt is thinner updip of the step (Figs. 14a and 15), less salt is dragged into the step than out of it (Dooley et al. 2016). This salt deficit results in local salt thinning and cover subsidence (Fig. 14a and 15a-b), and the generation of an asymmetric depocentre above the ramp. As translation continues, previously deposited strata are moved out of the ramp while new sediments are deposited immediately above it. This results in the development of a RSB, characterized by an asymmetric growth interval that dips and expands landwards towards a diachronous basal boundary. The top of the RSB is being truncated by a diachronous unconformity (Fig. 15c-d), similar to examples from the SPP (Fig. 7-9).

The axial-trace and bounding surfaces are sub-parallel (Fig. 15d). Initially, they dip gently in the direction of tectonic transport, i.e. basinward (Fig. 15b) but, as translation progresses, salt drag and uplift rotate them, flipping their dip direction, i.e. landward, at the downdip edge of the system (Fig. 15c and d). Because in the model translation and sedimentation rate are constant, this change in geometry happens entirely in response to shear drag, and the consequent upward translation and rotation of syn-kinematic strata. In reality, folding and rotation of RSBs internal intervals and surfaces can be even more pronounced due to a combination of: i)
variations in $\frac{\Delta V}{\Delta t}$, ii) salt expulsion and diapirism, and ii) overburden extension and contraction.

Basal surfaces of salt-detached RSBs are usually diachronous and shingled (i.e. not a discrete surface as in extensional RSBs (McClay, 1990; 1996) as sediments may also be deposited upslope of the RSB in the form of a thin drape fringing the main depocentre (Fig. 15c and d). In our seismic examples, thin drape horizons usually occur at the updip portions of the systems, being usually 1-2 seismic reflections thick (Figs. 8-11), equivalent to only a few tens of meters.

Model 1 is also run with a higher $\frac{\Delta V}{\Delta t}$ to illustrate how varying the relative rates of aggradation and translation produces different RSB stratal architectures (Fig. 16). Translation rate ($\frac{\Delta t}{\Delta \dot{X}}$) is kept constant while aggradation rate ($\frac{\Delta V}{\Delta \dot{X}}$) is increased 3-fold (Fig. 16a-b). When $\frac{\Delta V}{\Delta \dot{X}}$ is low, the RSB is more asymmetric, and its boundaries are defined by abrupt strata terminations and diachronous unconformities (Fig. 16a). The basal boundary is an onlap surface whereas the top boundary is defined by offlap/toplap geometries. Conversely, when $\frac{\Delta V}{\Delta \dot{X}}$ is high, the RSB is less asymmetric, the synclinal axial-trace is steeper, and diachronous boundaries are characterized by a transition from a thicker, steeper section within the RSB to thinner intervals at regional dip outside it (Fig. 16b). If $\frac{\Delta t}{\Delta \dot{X}}$ is higher than $\frac{\Delta V}{\Delta \dot{X}}$, local uplift on the downdip side of the RSB is not enough to generate sea-floor exposure and erosion (Fig. 16b), which in a deep-water setting such as on the SPP, could be driven by sea-bottom currents. Although not shown here, variations of sedimentation rate during the development of RSBs can also produce intra-RSB unconformities and offlap terminations.
6.2. Model 2 (two basinward-dipping ramps)

Model 2 simulates cover translation above a thick salt layer with two closely-spaced, base-salt basinward-dipping ramps (Fig. 17). Basin geometry and evolution above each base-salt ramp is similar to Model 1, such that a landward RSB forms above the landward ramp while a basinward RSB develops above the basinward ramp (Fig. 17b-c). As translation continues, these basins are vertically juxtaposed, forming stacked RSBs (Fig. 17c-d) (c.f. our seismic examples in figs. 10-11). Deposition occurs simultaneously within both RSBs (Fig. 17b-d), which means the first and last deposited strata, and respective onlap points in each of the stacked RSBs, have the same age and, accordingly, record the same amount of translation (Fig. 17) (Jackson and Hudec, 2005).

The basinwardmost interval of each RSB corresponds to older strata that have translated further and are, therefore, more rotated and uplifted by shear drag than younger intervals (Fig. 17). If the aggradation rate is lower than the rate of salt movement, salt drag results in exposure of the basinward side of each RSB (Fig. 17d), leading to localized erosion, (c.f. our natural examples, i.e. landward and basinward RSBs in fig. 11 and landward RSB in fig. 10). The width of the exposed area is smaller in the landward RSB, presumably because it is progressively and partially buried by the basinward RSB strata, onlaping onto the landward RSB top unconformity (Fig. 17d).

Our model shows that the lower, landward RSB top unconformity acts as the basal onlap surface of the upper, basinward RSB (dashed black line in fig 17d) (c.f. figs.
When the sedimentation rate is lower than the translation rate, the stacked RSBs top unconformities merge landward, and their basal onlap surface merge basinward (Fig. 17). Although there is a level of uncertainty due to the presence of folds and diapirs in the study area, this pattern is seen in portions of RSB 5 (Fig. 11a-b), where the RSB interval is thinner. When sedimentation rate is relatively high, a thin drape interval can separate these boundaries (Fig. 10).

As seen in Model 2, each RSB terminates landward above the top of its respective ramp (Fig. 17d). This is seen in many of our seismic examples (LW ramp and middle ramp RSBs in Fig. 11), although, in some areas, diapirism and overburden deformation can laterally offset their landward edges from the top of their respective ramps by up to 1-2 km (Fig. 10). These complexities, however, lead to only a minor amount of uncertainty when compared to the total translation of these systems (see section 5.2.) and are, therefore, not enough to invalidate our translation estimates.

6.3. Model 3 (Landward-dipping Ramp)

Model 3 simulates cover translation above a thick salt detachment with a landward-dipping basal step, generating similar syn-kinematic stratal geometries to Model 1. However, in this case, the RSB forms immediately basinward of the ramp, above a base-salt flat (Fig. 18), instead of above the ramp as in Models 1-2 (Fig. 14-17) (c.f. RSBs 2-3 in figs. 7 and 8). As salt moves from an area of thick to thin salt across the ramp, more salt is dragged into the ramp than out it (Figs. 14b and 18a-b) (Dooley et al. 2016). This salt surplus results in salt thickening and cover uplift.
above the ramp, and generation of accommodation around the salt anticline formed over the ramp. As translation continues, more salt is fed into the anticline, causing it to widen basinward without leaving its original position. Thus, whilst its landward flank remains static, the basinward flank translates and acts as a basinward-dipping ramp forming an asymmetric depocentre above it. Synkinematic strata onlap and thicken towards this flank, while being progressively rotated and translated basinward (Fig. 18b-c).

The geometry and evolution of the asymmetric growth interval are notably similar to RSBs formed above basinward-dipping ramps (compare figs. 15 and 18) and to natural examples of RSBs formed above landward-dipping steps (Figs. 7 and 8). These RSBs are composed of shingled sigmoidal strata that dip and expand landward, being located basinward of a landward-dipping base-salt ramp and above a base-salt flat (Figs. 7 and 8). They are bound on their landward edge by a wide diapir (Fig. 7) or salt anticline (Fig. 8), which are situated directly above the top of the ramp (c.f. fig. 18).

In Model 3, the salt anticline remains static but, in reality, it may translate downdip after reaching enough thickness and, thus accelerating (Dooley et al., 2016), with a younger salt structure forming updip, above the ramp. After leaving the ramp, the salt anticline may be reactivated by extension, as shown in physical models (Dooley et al. 2016) and seen in seismic examples from the SPP (mid-RSB diapirs in Fig. 8). As the anticline grows and its roof is uplifted above regional, outer-arc extension and erosion (not modelled) can thin the roof and allow diapiric piercing as seen in RSB 2 and 3 (Figs. 7 and 8).
The apparent offset of synkinematic strata across the diachronous onlap surface above the anticline could be erroneously interpreted as a basinward-dipping listric fault (Fig. 18c-d). However, natural examples and models show that this geometry is entirely formed in response to differential uplift and sedimentation during cover translation. As salt thickens above the ramp, sediments are deposited around the anticline while the area above it is uplifted and remains sediment starved (Fig. 18). This pattern is observed in natural examples from the SPP, where RSB strata are separated from equivalent-age non-RSB strata landward by salt walls and/or anticlines (Fig. 8).

6.4. Model 4 (Base-Salt High)

Model 4 illustrates the development of stacked RSBs formed by translation over a horst-like high, defined by a landward-dipping ramp updip and a basinward-dipping ramp downdip (Fig. 19, c.f. RSB 5, fig. 11). Translation across the landward step results in salt thickening above the step and development of a RSB basinward of it, whereas translation over the basinward step results in salt thinning and subsidence, with generation of another RSB above it. As translation progresses, these minibasins overlap and stacked RSBs are formed.

Whereas the basinward RSB is very similar to previous models of basinward-dipping ramps (Figs. 15 and 19), the geometry of the landward RSB is different to that produced in Model 1. More specifically, because the landward RSB moves over the second, basinward-dipping step, it subsides and rotates further, thus, dipping more steeply basinward (Fig. 19). This is seen in RSB 5 where the lower,
landward RSB is steeper above the basinward-dipping ramp, being limited by a 5 km wide salt wall (Fig. 11).

7. Discussion

7.1. Dynamics of RSBs in the Santos Basin

We mapped a series of asymmetric minibasins characterized by landward-dipping and expanding sigmoidal growth strata distributed parallel, above and/or downdip of the main base-salt steps in the study-area, (Figs. 4-11). Similar minibasin architectures were previously recognized over relatively thinner salt in the Kwanza Basin, as formed by translation above basinward-dipping base-salt ramps (Fig. 20) (Peel et al., 1998; Marton et al., 1998; Jackson and Hudec, 2005). We used numerical models to simulate this process (i.e. translation and salt flux variations driven by viscous drag over base-salt ramps) and to test the supra-salt stratigraphic response. Modelling results produced remarkably similar minibasin geometries and relationship with base-salt topography to natural examples from the study-area (Figs. 6-11 and 15-19) and Kwanza Basin (Fig. 20). Models and seismic data, thus, provide evidence that these minibasins are driven by translation and viscous drag of a thick salt interval over complex base-salt relief and, thus, are described as ramp-syncline basins (RSBs). Additionally, the occurrence of intra-salt seaward-vergent shear zones (Figs. 6-11) supports our interpretation of viscous salt drag (i.e. Couette flow) and basinward translation in the study-area.

An alternative hypothesis is that RSBs could be formed as expulsion rollovers as the distinction between salt expulsion (i.e. Pouiseulle flow) and lateral (i.e. Couette)
flow in the generation of accommodation is a typical conundrum in salt tectonics (Hossack, 1995; Jackson and Hudec, 2005; Jackson et al., 2014). Jackson and Hudec (2005) have shown how discordant and stacked onlap surfaces that become younger landward (Figs. 6-11) with common stratigraphic jumps across diapirs (Figs. 9 and 11) as seen in our examples could not be driven by salt expulsion. Thus, the hypothesis of RSBs on the SPP to have formed as expulsion rollovers does not work.

7.2. Extensional vs. salt-related RSBs

Classical RSBs (Fig. 1a-b) are generated by regional extension, in which the controlling fault cuts progressively downwards through pre-kinematic strata. Consequently, the pre-kinematic interval appears both above and below the fault. The basal boundary is, thus, defined by an extensional rollover composed of pre-kinematic strata and a fault surface that is formed at the onset of translation, and which maintains its original geometry through time (Fig. 1a-b). The pattern of vertical movement of the hangingwall is controlled by the shape of the extensional fault. As a consequence, the geometry and location of the subsiding minibasin does not change as the system evolves, and the rate of subsidence is directly proportional to the rate of lateral translation. Therefore, in an extensional RSB, translation of the cover can result in subsidence, but not in uplift (Fig. 1a-b).

In contrast, salt-detached RSBs are not directly driven by extension. Instead, they form by cover translation above salt (Fig. 1c-d), which, in turn, occurs in response to gravity-driven extension updip, and is linked to contraction and/or salt advance
The basal slip surface is stratabound, i.e. parallel to the pre-kinematic stratigraphy (Jackson and Hudec, 2005), so pre-kinematic strata always occur below their basal surface (Fig. 1c-d). The base-salt relief is usually related to inherited topography due to previous basement faulting (Davison et al. 2012); so translation and RSB development occur after and are decoupled from pre-salt deformation.

Movement takes place by shearing of a slip volume (viscous salt) rather than a discrete slip surface (extensional fault in classical RSBs) (Fig. 1c-d). Thus, salt drag, expulsion and diapirism generate vertical movements, additional accommodation, and complexities not observed in extensional systems. The shape and size of the subsiding minibasin changes as the system evolves, because the geometry and thickness of the salt detachment vary as the cover moves. Additionally, as the RSB evolves with increasing displacement, vertical movement of the surface may change from laterally variable subsidence, to subsidence plus local uplift (Figs. 1c-d and 14-19).

7.3. Controls on RSBs style: thick vs. thin salt RSBs

In the Kwanza Basin, offshore Angola, RSBs formed by 23-26 km of salt-detached translation over a major base-salt step (Atlantic Hinge Zone, fig. 20) (Peel et al. 1998, Hudec and Jackson, 2004, Jackson and Hudec, 2005; Peel 2014). These RSBs consist of a synclinal wedge of growth strata that dips and expands landward (E-ENE) towards a diachronous basal boundary that becomes younger and steeper landward (Fig. 20). They are defined by a basinward-dipping axial trace.
that also becomes steeper landward, with their updip edge occurring immediately above a base-salt basinward-dipping ramp (Jackson and Hudec, 2005; Peel 2014). Their geometry, stratigraphic architecture, and relationship with base-salt topography are thus similar to the examples shown here from the Santos Basin (Figs. 6-10).

RSBs on the SPP have a more complex stratigraphic architecture than those offshore Angola, displaying pronounced folding and rotation of syn-kinematic strata (Figs. 6-10), when compared to similar systems in the Kwanza Basin (Figs. 6-10 and 20). This difference can be explained by the stronger effects of synchronous to post-depositional diapirism deforming and segmenting RSBs on the SPP, which, in turn, are related to the differences in salt thickness between the two basins (compare salt thickness between Figs. 3b and 20). More, specifically, in the Kwanza Basin, RSBs are developed above a relatively thin (>1 km, Peel 2014), and, now locally welded salt layer; with most diapirs already present at the onset of translation (Jackson and Hudec, 2005). As a result, vertical salt movements and diapirism during translation and generation of RSBs was limited.

Across the Atlantic, on the SPP, the RSBs occur above still thick (>2 km), lithologically and rheologically layered salt. Pre-translation salt structures are rare, with most diapirism occurring during translation and development of RSBs (Figs. 6-11), during the post-Albian (Guerra and Underhill, 2012; Fiduk and Rowan, 2012; Jackson et al. 2015). Layer-parallel shearing (i.e. Couette flow) within the salt was aided by intra-salt layering that accommodated most of basinward flow along multiple detachments and seaward-verging shear zones (Figs. 6-8). Sedimentation
within RSBs loaded the salt beneath them, expelling it and promoting diapirism (Figs. 9-11). Thus, synchronous diapirism was a more important control on the evolution of RSBs on the SPP than the ones in the Kwanza Basin, resulting in higher degree of folding, rotation, and localized erosion (Figs. 9-11), potentially and locally obscuring their original geometries.

Another important contrast between these two basins relates to the timing and rate of translation. In Kwanza, RSBs are capped at their landward edges by the seafloor, demonstrating translation is still ongoing (Fig. 20) (Jackson and Hudec, 2005). These authors estimate that RSB formation and, thus, translation, initiated in the Middle Miocene. If correct, this would correspond to a total translation time of 12-13 Myr and a relatively fast horizontal translation rate of 2 mm/year, 2-4 times higher than the typical deformation rates encountered in salt-detached, gravity-driven systems (Rowan et al. 2004).

On the SPP, translation and RSB generation started at the end of the Albian and stopped during the middle Paleocene (Figs. 7-11). Horizontal translation magnitude varied from 28-32 km, yielding an approximate rate of 0.7–0.8 mm/year; this is also relatively fast, but comparable to rates estimated from the Gulf of Mexico (0.1–0.5 mm/yr) and the Kwanza Basin (0.4-0.5 mm/yr) (Rowan et al. 2000; 2004). In summary, although, the amount and pattern of horizontal translation between the two basins is remarkably similar, the timing and rate are significantly different. We still do not fully understand why these contrasts arise but, due to the nature of the 2D data and the limited well-control from the earlier work of Jackson and Hudec
(2005), we speculate their estimate of when translation began in the Kwanza Basin could be inaccurate.

A relatively recent study by Dooley et al. (2016) documents a RSB from the Campos Basin, Brazil. Here, translation started at the end of the Albian, which is consistent with what we observe further SW in the Santos Basin. As the Kwanza Basin corresponds to the conjugate margin of Campos and Espirito-Santo basins (Lentini et al., 2010; Jackson and Hudec, 2017), it is probable that both margins experienced similar early histories and, thus, translation started earlier than originally estimated by Jackson and Hudec (2005). Deciding why translation is still ongoing in the Kwanza Basin and stopped in the Santos Basin is outside of the scope of this study, as this would require a more regional analysis involving transects comprising the whole extent of both margins. Nevertheless, we may speculate that the following led to this key difference: 1) the mobile halite-dominated interval, represented by the lowermost transparent seismic facies within the salt, thinned dramatically in between diapirs in the SPP (Figs. 7-10), reducing the overall mobility of the system; 2) late dip-reversal of the basal detachment due to significant sedimentary loading associated with formation of the Albian Gap, landward of the SPP (Fig. 3 and 7) (Davison et al. 2012); and 3) progressive basinward translation allowed the system to reach the downdip contractional domain (Fig.3b).

7.4. Occurrence of RSBs in other salt basins
There are currently very few publications describing salt-related RSBs. Apart from Rowan (2014) and Dooley et al. (2016), who briefly describe RSBs in the Red Sea and Campos Basin, respectively, all others previous studies refer exclusively to RSBs in the Kwanza Basin, (Marton et al. 1998, Peel et al. 1998; Jackson and Hudec, 2005). The question that remains is: “how widespread are salt-related RSBs?”.

We believe that because of: (i) their unique and complex stratigraphic architecture, (ii) the lack of a detailed 3D subsurface or outcrop analysis, (iii) physical and numerical modelling of these features, and (iv) because they are commonly affected by other salt tectonic processes, RSBs have been previously overlooked. As an example of their occurrence in other salt basins, we present a 2D seismic profile through a RSB formed above allochthonous salt in the Essaouira-Agadir Basin, offshore Morocco (Fig. 21).

In the western portion of the section, there is a clear example of a RSB formed above thick (~1 km) allochthonous salt. This RSB is underlain by a basinward-dipping ramp at its base. The RSB is characterized by asymmetric and gently folded strata thickening and dipping mainly landward towards a diachronous basinward-dipping onlap surface. The system is defined by a steep, basinward-dipping axial trace and onlap stratal terminations that grade upward into transitional boundaries (Fig. 21), a geometry characteristic of systems with relative high $\Delta A/\Delta \beta$. Total translation recorded is 9.4 km during Paleocene to Pliocene times, equivalent to rates of 0.15-0.2 mm/year, and comparable with previous estimates of salt translation rates (Rowan et al. 2004). The RSB is bounded updip by an extensional
domain with normal faults and an extensional rollover, and downdip by an inflated salt tongue that was formed early by open-toe advance, being subsequently buried, folding and uplifting its roof (Fig. 21). There is also another potential candidate for an RSB occurring further updip but the seismic data quality in this part of the section renders the interpretation of the updip RSB and its causal ramp somewhat speculative.

8. Conclusion

We use 3D seismic reflection data to describe the geometry and tectono-stratigraphic development of salt-detached RSBs formed above thick (> 2 km) salt in the São Paulo Plateau, Santos Basin, Brazil. We compared our observations from this natural system to results of forward models simulating cover translation and viscous salt drag above variable base-salt topography; this allowed us to analyse the kinematics and sequential evolution of RSBs and, explain their geometries and relationship with base-salt topography.

On the SPP, RSBs show consistent magnitudes of total translation, varying from 28 to 32 km, and movement direction, which varies from ESE to SE. We have demonstrated these systems have similar geometries, stratigraphic architecture, and relationship to base-salt steps to previously published examples from the Kwanza Basin, offshore Angola (Jackson and Hudec, 2005, Peel 2014). However, on the SPP, ramp-syncline basins are generally more complex because they occur above thick salt and, consequently, are more affected by synchronous diapirism and salt-related deformation. We have also demonstrated that cover translation
above landward-dipping ramps can generate notably similar stratal geometries to classical examples of RSBs formed above basinward-dipping ramps.

Our from seismic examples and models demonstrate there is a direct relationship between RSB evolution and base-salt topography, as RSBs terminate updip above the top of base-salt ramps, or above diapirs formed over the ramp. Thus, mapping of RSBs can aid the identification of pre-salt structures, which may be useful when exploring for hydrocarbons in areas of limited sub-salt seismic reflection imaging quality when exploring for sub/pre-salt exploration targets. Ultimately, this study improves our current knowledge of RSBs, working as a guide for seismic interpretation and recognition of these systems in other salt basins around the world.

Acknowledgements

We wish to thank Mike Hudec, Tim Dooley, Gillian Apps, Jonathan Redfern and Emma Finch for sharing their insights and criticisms. We thank CGG for providing access to the high-quality 3D seismic dataset used in this study as well as ONHYM for allowing us to use one seismic section offshore Morocco and WesternGeco for the PSDM 2D transect. We also thank the two “anonymous” reviewers for their throughout analysis and constructive criticism that helped strengthening this paper. The main author would also like to thank the Science without Borders program and CNPq, Brazil for sponsoring his PhD research. Schlumberger is also acknowledged for provision of Petrel software to the University of Manchester.

References

Meisling, K. E., Cobbold, P. R., & Mount, V. S. (2001). Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG bulletin, 85(11), 1903-1924.

Figure 1: Models of RSB development. (a-b) represent "classic" RSBs (McClay, 1990, 1996; Benedicto et al., 1999), with (a) illustrating the system prior to deformation, and (b), the system during extension with development of a RSB characterized by an asymmetric depocentre with basinward-dipping axial trace (AT) above a discrete extensional fault that cuts down through stratigraphy in a ramp-flat trajectory. Movement of the hanging-wall creates differential amounts of subsidence and as long as the fault is extensional, there is no hanging-wall uplift. This contrasts with the model for salt-detached RSBs shown in (c-d). The process is not extensional; instead the RSB forms by translation of the cover over a viscous salt layer. A downward offset of the base of salt takes the place of the fault ramp. The offset does not cut down through stratigraphy. Shear strain is distributed through the viscous salt and results in uplift on the downdip side of salt-detached RSBs. The base and top boundaries of the RSBs are diachronous, and consist either of onlap/offlap unconformity surfaces, or regions of abrupt stratal thinning.
Figure 2: Schematic cross-sections: (a) illustrating typical geometry of simple RSBs formed above salt-detachments with a basinward-dipping ramp; and (b) displaying potential hydrocarbon plays that can be associated with RSBs in these settings: pre-salt carbonates (blueish green) occurring at the top of the pre-salt ramps and below the updip limit of the RSBs (e.g. Tupi and Iracema discoveries); carbonates on the crest of salt anticlines, and supra-salt sandier intervals juxtaposed above deeper and mature pre-salt source rocks, which can be charged with salt welding below the RSB.
Figure 3: (a) Location map showing the 3D dataset and study-area (Jackson et al. 2015) in its regional context and datasets presented in earlier studies. (b) Simplified geoseismic section across the central Santos Basin illustrating basement structures and salt-related structural provinces. CFF refers to the Cabo Frio “Fault” (Guerra and Underhill, 2012). Vertical exaggeration of cross-section is 20:1 and location is shown in (a).
Figure 4: (a) Top-salt map showing complex pattern of salt walls and stocks. (b) Drawn top-salt map with main structures (adapted from Jackson et al. 2015), and distribution of RSBs. The examples presented in this study are in black polygons (RSB 1-5).
Figure 5: (a) Static-corrected base-salt map showing the largest base-salt highs and steps in the area. They are indicated on map with arrows and trend predominantly NNE-NE, although the northernmost high (beneath RSB 5) trends NNW. Map shows that the RSBs (red and black polygons) are distributed above and/or basinward of these base-salt structures. (b) Base-salt map extracted from 3D PSDM data from Alves et al., 2017, comprising part of our study-area and showing the same pre-salt main structures.
Figure 6: Uninterpreted and interpreted PSDM transect of the Central Santos salt basin comprising the updip extensional domain, Albian Gap, São Paulo Plateau (SPP) and the deep salt basin (marginal through). The section illustrates the regional salt (light blue) structural styles and overall base-salt geometry characterized by multiple base-salt ramps and having 0.5-2 km of structural relief and dipping either basin- or landward in the study-area. The Albian (dark-blue horizon) is broadly tabular in the study-area, whereas the Late Cretaceous-Paleocene section shows stronger thickness variations and asymmetric growth strata defined by predominantly landward-dipping and onlapping sections. The Late Cretaceous-Paleocene unconformity (orange, IP) and top-Paleocene (yellow) stratigraphic section. Main faults in black and key-horizons are: top-Albian (TA), dark-blue; top-Cretaceous (TC, green), Intra-Cretaceous (TR, dark-blue); top-Albian, top-Cretaceous and top-Paleocene (T, yellow).
Figure 7: (a) Interpreted seismic section of RSB 1 with salt in blue and faults in black. Top Albian (TA) and top Cretaceous (TC) horizons based on Jackson et al. 2015. RSB characterized by landward-dipping and thickening sigmoidal strata (green) above an onlap surface (white, top Albian) and capped by a diachronous unconformity (red) that finishes updip at top Cretaceous. RSB axial trace (dashed red) steepens landward. Intra-salt seaward-vergent shear zones (black dashed lines) indicate lateral movement and viscous salt drag. Pre-salt wedges and faults are used as a cross-check of the static-corrected base-salt map and base-salt structures. In (b), the relationship between the RSB and base-salt structure is presented through the static-corrected base-salt (BoSc) which shows that the RSB landward edge occurs above the top of a base-salt basinward-dipping ramp. Uninterpreted (c) and interpreted (d) zooms of the RSB section show in detail its tectono-stratigraphic architecture and key-surfaces. For a complete uninterpreted section, see supplementary material.
Figure 8: Seismic sections of the landward segment of RSB 2. Key horizons based on Jackson et al. 2015 are presented: top Albian (TA), top Cretaceous (TC), intra-Paleocene unconformity (IP) and top Paleocene (TP). In (a), interpretation of RSB 2, characterized by a well-defined onlap surface (white, TC) being onlapped by landward-dipping and thickening strata (colored lines), defined by a landward-steepening axial-trace (dashed red) and capped by the intra-Paleocene unconformity (red). Faults are in black. Pre-salt wedges and faults are used as a cross-check of static-corrected base-salt map and base-salt structures. Base-salt structural relief is shown with TWT values in dashed-white lines below base-salt. In (b), the RSB is presented in the context of the static-corrected base-salt (BoS$_{sc}$) to illustrate that the RSB finishes updip above a base-salt landward-dipping ramp, being surrounded by diapirs. Minimum translation of 18 km is measured from first landward onlap point within the RSB to the top of the ramp. Uninterpreted (c) and interpreted (d) zooms of RSB section are also shown. For a complete uninterpreted section, see supplementary material.
Figure 9: (a) Interpreted seismic section of the entire RSB 3 system showing a total of 28 km of
translation. In (b), RSB is displayed in combination with the static-corrected base-salt (BoSsc) to demonstrate its relationship with base-salt topography and how this approach eliminates velocity artefacts due to high velocities of the salt interval. Base-salt structural relief is shown with TWT values in dashed-white lines below base-salt. The RSB is characterized by a well-defined and diachronous onlap surface (white) being onlapped by landward-dipping and thickening strata (colored lines) and truncated at the top by a diachronous unconformity (red). The basal onlap surface starts at the top Albian (TA) horizon and becomes progressively younger landward. RSB 3 is limited updip by a salt anticline formed above a landward-dipping base-salt ramp, and downdip by a large salt wall that also limits RSB 2 basinward. RSB 3 is segmented and folded by syn- to late diapirism. Faults are in black and pre-salt faults are used as a cross-check of base-salt structures. Base-salt structural relief is shown with TWT values in dashed-white lines below base-salt. Intra-salt shear zones (black dashed lines) indicate basinward movement and shear drag within the salt. For uninterpreted version, see supplementary material.
Figure 10: (a) Interpreted section of RSB 4 showing stacked RSBs and onlap surfaces (white and red). In (b) the stacked RSBs are shown in the context of static-corrected base-salt (BoS$_{sc}$) and key horizons are presented: top Albian (TA), and intra-Paleocene unconformity (IP). Salt is in blue, faults in black and intra-RSB horizons in coloured lines. Onlap surfaces and top unconformity get slightly younger landward. Lower, landward RSB forms by translation over the landward-ramp (LW ramp) and
the upper, basinward RSB over the basinward-ramp (BW ramp). Top unconformity of lower RSB corresponds to the onlap surface of upper RSB (red) until becoming separated landward by a thin drape interval that is deposited updip of the basinward base-salt ramp and RSB. This surface (red) is aged mid-Cretaceous basinward and Intra-Paleocene landward evidencing its diachronity. Base-salt structural relief is shown with TWT values in dashed- lines below base-salt. Only a minimum translation estimate of 14 km is obtained because RSB 5 is located at the edge of the data and is not visualized entirely. For uninterpreted version, see supplementary material.
Figure 11: (a-b) Regional seismic sections of RSB 5 showing stacked RSBs and onlap surfaces (white and red lines) in the middle of the section. Salt is in blue and faults in black. In (b), the static-corrected base-salt (BoS$_{sc}$) and key horizons, top Albian (TA), top Cretaceous (TC) and intra-Paleocene unconformity (IP) are presented. Three RSBs are shown: The basinwardmost one is
formed above a basinward-dipping ramp but appears only at the edge of the data. The middle RSB is formed by translation above a basinward-dipping ramp (middle ramp) and its landward portion is stacked on top of the basinward portion of the third, landward RSB, which is formed above a landward-dipping ramp. These RSBs are strongly affected by synchronous diapirism, folding and faulting but still show the typical geometries of RSB systems with sigmoidal landward-dipping and expanding strata. Base-salt structural relief is shown with TWT values in dashed-lines below base-salt. In (c), uninterpreted and interpreted localized sections of RSB 5, showing a zoom of the stacked RSBs section. A total of 32 km of translation is estimated for each of the stacked RSBs. The fact that both RSBs record the same amount of translation can be used as a cross-check for this measure. For complete uninterpreted version, see supplementary material.
Figure 12: (a) Schematic 3D diagram of RSBs geometries, dimensions and relationship with diapirs and base-salt steps. (b) Summary of the 2D stratigraphic architecture showing the typical variations of strata termination of RSBs in the Santos Basin. The basal surface has terminations ranging from: i) abrupt apparent downlap at basinward edge, ii) abrupt onlap and iii) transition from thicker and
steeper section within the RSB to a thin draping interval at its landward edge. The top unconformity
has a similar pattern of terminations ranging from abrupt erosional and toplap terminations downdip,
to more transitional strata geometries updip. In (c), summary of the 2D stratigraphic architecture and
strata terminations of stacked RSBs. The lower RSB finishes landward above the top of the landward
ramp and the upper RSB finishes above the top of the basinward ramp. Stratal termination is similar
to simple RSBs, but the lower RSB top unconformity acts as the onlap surface of the upper RSB
along most of its length. A thin drape section can separate these surfaces at the upper RSB landward
edge.
Figure 13: Interpreted seismic section of RSB 5 showing typical landward-dipping sigmoidal intervals and respective thickness maps illustrating the 3D kinematics of the system with 26.9 km of translation towards SE (120 ± 15 azimuth). Oldest intervals are located further downdip of the associated base-salt ramp. Thickness maps of intervals 1 and 11 are not shown because these intervals are affected by a higher degree of salt-related folding and faulting, which hinders the generation of confident maps.
Figure 14: Conceptual 2D diagrams of the dynamics of Couette salt flow and variation of total salt-flux over a base-salt (a) basinward-dipping ramp and (b) landward-dipping ramp. In (a) the amount of salt leaving the ramp is lesser than the amount of salt arriving at the top of the ramp generating thinning of the salt layer, subsidence of the cover and generation of a depocentre immediately above the ramp. In (b), the amount of salt leaving the ramp is less than the amount of salt arriving, which results in salt thickening and uplift of the cover above the ramp. In (c), the diagram illustrates the effect of topography generated by translation above base-salt ramps by downward movement of the cover where the top-salt dips basinward and upward movement of the cover where the top-salt interval dips landward generating areas of local subsidence updip and uplift downdip.
Figure 15: Numerical model simulating planar Couette flow and salt drag with overburden translation above a salt layer with a basal basinward-dipping ramp, which results in the development of a RSB above the ramp. Sequential evolution presented from (a) to (d). Syn-kinematic sediments are represented by yellow and grey layers.
Figure 16: Final state of models simulating cover translation above a salt detachment with a base-salt ramp illustrating how variations of aggradation rate (\(\mathcal{A} \)) can produce different stratigraphic architectures and stratal termination patterns. (\(\mathcal{A} \)) in these models is non-dimensional so their variations are purely relative to translation rates (\(\mathcal{A} \)). In (a) aggradation rate is 0.1 and the RSB is characterized by well-defined boundaries and uplift above the regional datum on the downdip side of the RSB. In (b) aggradation rate is 0.3 and the RSB is less asymmetric with upper and lower boundaries defined by a transition from thin section at regional dip to thicker and steeper section within the RSB. Translation rate (\(\mathcal{A} \)) is the same in both models.
Figure 17: Numerical model simulating cover translation above a thick salt layer with 2 closely-spaced basinward-dipping ramps showing the sequential evolution of 2 stacked RSBs (a-d). The lower, landward RSB forms above the landward ramp while the upper, basinward RSB forms above the basinward ramp. Each of the RSBs finishes landward above their respective ramps. The top unconformity of the lower RSB acts as the onlap surface of the upper RSB (black dashed line). The upper and lower basal boundaries merge basinward while both top unconformities merge landward.
Figure 18: Numerical model simulating overburden translation and Couette salt flow above a landward-dipping base-salt ramp. Variations of salt flux across the step result in salt thickening over the ramp and development of a RSB basinward of it, above a base-salt flat. Sequential evolution is shown from (a) to (d).
Figure 19: Numerical model showing the sequential evolution (a) to (d) of overburden translation and Couette-type salt flow above two oppositely dipping base-salt ramps and the development of hybrid stacked RSBs.
Figure 20: restoration of Line 214 from the Lower Kwanza Basin (adapted from Peel, 2014). Salt is in blue and RSB intervals are represented by colours ranging from purple, green, orange and yellow. RSB forms by translation over the Atlantic Hinge zone, which corresponds to a major basinward-dipping base-salt step. Original salt thickness varies from 1 km above the ramp to 2 km downdip. Translation is ongoing as the system is capped landward by the sea-floor. A total of 24 km of translation has been measured in this section.
Figure 21: Uninterpreted (a) and interpreted (b) seismic sections showing a simple RSB formed above allochthonous salt (blue) with a base-salt basinward-dipping ramp in the Essaouira-Agadir Basin, Morocco. Another possible candidate of RSB appears to the East but the limited seismic resolution in the area hinders its clear identification. Approximate line location (black line) shown in map adapted from Tari et al. (2013) in (c).