Unraveling the H2 promotional effect on the Palladium catalysed CO oxidation using a combination of temporally and spatially resolved investigations

DOI: 10.1021/acscatal.8b01509

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
ACS Catalysis

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Unraveling the H_2 promotional effect on the Palladium catalysed CO oxidation using a combination of temporally and spatially resolved investigations

Caomhán Stewart,† Emma K. Gibson,‡,∞,∗ Kevin Morgan,‡,∗ Giannantonio Cibin,† Andrew J. Dent,† Christopher Hardacre,§ Evgenii V. Kondratenko,¥ Vita A. Kondratenko,¥ Colin McManus,† Scott Rogers,∞,‡ Cristina E. Stere,§ Sarayute Chansai,§ Yi-Chi Wang,‡ Sarah J. Haigh,‡ Peter P. Wells,∞,†,π,° Alexandre Goguet†

† School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK

‡ School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK

∞ UK Catalysis Hub, Research Complex at Harwell, Oxfordshire, OX11 0FA, UK

₸ Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK

§ School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, M13 9PL, UK
ABSTRACT

The promotional effect of H$_2$ on the oxidation of CO is of topical interest and there is debate over whether this promotion is due to either thermal or chemical effects. As yet there is no definitive consensus in the literature. Combining spatially resolved mass spectrometry and X-ray absorption spectroscopy (XAS) we observe a specific environment of the active catalyst during CO oxidation, having the same specific local coordination of the Pd in both the absence and presence of H$_2$. In combination with Temporal Analysis of Products (TAP), performed under isothermal conditions, a mechanistic insight into the promotional effect of H$_2$ was found, providing clear evidence of non-thermal effects in the hydrogen promoted oxidation of carbon monoxide. We have identified that H$_2$ promotes the Langmuir Hinshelwood mechanism and we propose this is linked to the increased interaction of O with the Pd surface in the presence of H$_2$. This combination of spatially resolved MS and XAS and TAP studies has provided previously unobserved insights into the nature of this promotional effect.

KEYWORDS
CO oxidation, TAP, XAFS, spatially resolved, SPACI-FB
Introduction

To optimize heterogeneous catalytic performance a full understanding of the correlation between structure and reactivity is required. The deficiency of such knowledge has resulted in excessive loading of precious metals in order to guarantee desired performance.1,2 However, this is not an economically viable methodology. Ultimately, a better understanding of catalytic processes and indeed the correlation of catalyst structure and activity are required. This can be achieved via a combination of \textit{in situ} catalyst characterization and kinetic measurements.3

The promotion of CO oxidation in the presence of hydrogen is a reaction of interest, particularly for proton-exchange membrane fuel cells (PEMFC).4,5 PEMFC have high efficiency, operate at low temperature (80°C) and are fueled by H\textsubscript{2} produced from steam reforming, partial oxidation or autothermal reforming of natural gas and other liquid fuels.6,7 As CO, even in trace amounts (1 ppm), is a poison for PEMFC at low temperature, all CO must be removed. Large amounts of CO are initially reduced to ~1\% by the water-gas-shift reaction. To further reduce the concentration, CO oxidation over supported noble metal catalysts8 is a suitable method, showing high conversions at low temperatures. The presence of a small amount of H\textsubscript{2} in the feed shifts the light-off to a lower temperature, a phenomena which has been widely reported for platinum9-15 and gold,16 but there are only limited observations in the case of palladium.17,18 However, it is not well understood why the presence of hydrogen has a promotional effect on CO oxidation. There are currently two theories on this promotional effect:

i) H\textsubscript{2} combustion produces heat, thereby increasing the rate of reaction for CO oxidation.19

ii) H\textsubscript{2} promotes CO oxidation through a physico-chemical effect.20

There is also the possibility that both thermal and physico-chemical effects contribute in tandem to promote CO oxidation.
While thermal effects are always likely to contribute in \textit{operando} conditions, in this study the contribution of any non-thermal effects (physico-chemical) on the CO oxidation in the presence of H$_2$ over a Pd/Al$_2$O$_3$ catalyst are investigated. This study employed a combination of temporal analysis of products (TAP) measurements and a combined spatially resolved X-ray absorption spectroscopy (XAS) and spatially resolved mass spectrometry analysis.

In order to investigate the elementary steps of the reactions, a transient pulse response methodology was employed using a TAP reactor.$^{21-25}$ This technique has been proven to provide key insights into elementary steps of catalytic processes.26,27 However, despite the ability to screen varying oxidation states via multi-pulse experiments28 TAP is not typically used to determine structure-activity correlations. TAP is, however, ideally suited to determine the role of any non-thermal effects due to operation in the Knudsen diffusion regime owing to the usage of small amounts of reactive gases.29 In this regime gas-gas interactions are eliminated and experimental conditions maintained such that an isothermal catalyst zone is created30 i.e. no promotional thermal effects. The well-defined transport regime of Knudsen diffusion has allowed for the development of well-established moment based analytical methodologies31,32 which are utilized herein to determine conversions and residence times of gases.

As structural characterization is typically conducted with the aid of spectroscopic techniques,33 there is a growing trend in the development of \textit{operando} methods.$^{34-39}$ In addition, there has also been a development of spatially resolved methodologies to monitor the evolution of reactant concentrations,$^{40-43}$ as well as significant advances in the imaging of spatial heterogeneities within catalytic reactors.$^{33,44-45}$ With this in mind, the minimally invasive SPACI-FB technique$^{8,46-48}$ has been coupled with X-ray Absorption Fine Structure (XAFS) for the first time, providing spatially resolved correlations of gas phase concentrations, catalyst bed temperature and information on
the catalyst structure (via XAFS). This combination of techniques (to be known as SPACI-FB-XAFS) enables a profile of the gas phase concentrations and temperature through a fixed catalytic bed, to be correlated to the structure of the catalyst at the same axial position in the bed. Consequently, we are able to report on the contribution of both chemical and structural effects in the promotion of CO oxidation by hydrogen.

Results and Discussion

From the combined SPACI-FB-XAFS measurements we were able to correlate changes in the catalyst structure (from the coordination numbers determined from the Extended X-ray Absorption Fine Structure (EXAFS) analysis) with the reaction profile along the catalyst bed (from the MS data). These profiles are shown for both CO oxidation in the absence and presence of H₂ in Figure 1. In comparison to CO oxidation without H₂ (Figure 1a), in the presence of H₂, (Figure 1b) light-off occurs much closer to the beginning of the catalyst bed, confirming the promotional effect of H₂. As can be clearly observed from Figure 1, the structural change also occurs much earlier in the bed in the presence of H₂. It should be noted that the changes in temperature and structure (Figures 1c and d) do not follow the same trends and, therefore, are not likely to be entirely connected, indicating the likely presence of both thermal and non-thermal promotional effects. However, in both the absence and the presence of H₂, the onset of CO conversion only occurs once the Pd catalyst has reached a similar local coordination (Figure 1a and b), with coordination to O and Pd of 1.5 and 5, respectively.
Figure 1. Variation of coordination to Pd and O and the conversion of CO, O₂, and H₂ along the length of the catalyst bed for a) CO oxidation and b) CO oxidation in the presence of H₂. Coordination numbers are plotted with the temperature profile for c) CO oxidation and d) CO oxidation in the presence of H₂.

These spatially resolved measurements were performed after heating the catalyst to reaction temperature under reactant gases, and leaving to attain steady state. The EXAFS spectra collected during both reactions can be fitted to two scattering paths, an O path at 1.97 Å and a Pd path at 2.74 Å, the Pd distance being consistent with metallic Pd (highlighted in blue and green in Figures...
2 b and c). The Pd-Pd scattering path at 3 Å, characteristic of PdO, could not be fitted to this data, at any point along the catalyst bed, this feature is highlighted in yellow in Figure 2a. For CO oxidation both with and without H₂ the catalyst structure is consistent with a Pd nanoparticle (NP) with coordination to an adsorbed low Z-number element (O, CO or OH). The fitting parameters and examples of the fits are shown in Tables S1, S2, S3 and Figures S4, S5 and S6 in the supporting information.

Figure 2. Magnitude component of the \(k^3 \) weighted non phase corrected Fourier Transform of the EXAFS data at the front middle and end of the catalyst bed of the (a) fresh catalyst, (b) under CO oxidation and (c) CO oxidation with H₂. Features consistent with scattering from O, Pd (of Pd⁰) and Pd (of PdO) are highlighted in blue, green and yellow boxes, respectively.

The fresh catalyst, is however consistent with PdO, the data fitting well to one O and two Pd scattering paths at 2.015, 3.05 and 3.44 Å, respectively. Heating the catalyst in reaction gases has resulted in removal of O from the PdO structure, as a consequence of PdO reaction with the reductant gases present in the feed (CO or CO and H₂). However, during the ramp and attainment of steady state this O could not be replenished from the gas phase and so the catalyst during both reactions is a reduced Pd NP with adsorbed surface O (or other low Z number element).
The relative changes in catalyst structure during CO oxidation with and without H$_2$ is observed in Figure 2b and c. For CO oxidation without H$_2$ the front and middle of the bed are dominated by Pd scattering, whereas during CO oxidation with H$_2$ the increase in scattering from a low Z-number element has already occurred by the middle of the bed. From the linear combination fit (LCF) of the XANES spectra we can follow the changes in the relative oxidation state of the Pd NPs during reaction, by fitting the data to contributions of Pd$^{2+}$ and Pd0 (Figure 3).

![Figure 3](image.png)

Figure 3. Relative contributions of a Pd metal standard and PdO as a function of position in the catalyst bed during a) CO oxidation and b) CO oxidation with H$_2$.
The increase in Pd2+ contribution follows the same trend as the change in O coordination observed from the EXAFS fitting (Figure 1a and 3a). As adsorbed CO has a neutral charge and adsorbed O a 2- charge, we can therefore be confident that the increase in Pd2+ contribution coincides with an increase in the concentration of adsorbed O and so the low Z-number element observed in the EXAFS analysis is coordination to adsorbed O. The fact that CO conversion only reaches 50\% under CO oxidation with and without H\textsubscript{2} after the catalyst has attained the same local coordination (O of 1.5 and Pd of 5), would imply a certain concentration of surface O is required for reaction to occur. The difference between the two reactions is how this surface O concentration is obtained.

Under CO oxidation conditions it appears that a certain temperature is required before CO oxidation occurs (see Figure 1c), starting at 165\°C (5 mm along the bed). After which, CO conversion increases slowly as surface O content increases. The maximum rate of change of structure of the Pd nanoparticles occurs as the exotherm reaches a maximum at 195\°C. We propose that an initial small amount of CO conversion results in a small localized increase in temperature thus enabling more CO to react and desorb leaving more sites available for O adsorption. This results in an autocatalytic type change to the surface coverage, as previously observed for CO oxidation using XPS49.

Under CO oxidation in the presence of H\textsubscript{2}, an initial increase in surface O content is observed very early in the catalyst bed, which coincides with H\textsubscript{2} consumption. This early change in structure is thought to occur through a promotional effect of H\textsubscript{2} or hydroxyls on the Pd surface. It could be envisioned that dissociatively adsorbed H\textsubscript{2} on the Pd surface can react with O\textsubscript{2} to produce adsorbed hydroxyl species, with which CO can more easily react than with oxygen. Although, from this combined SPACI-FB-XAFS study we have no direct evidence of the presence of OH species, the promotional effect of hydroxyls has previously been investigated using a variety of techniques.
such as XPS, Inelastic Neutron Scattering (INS), and isotopic exchange experiments. From XPS and catalytic activity studies comparing anhydrous and hydrous PdO, only the latter was found to be active and the water of hydration was found to be in the form of OH groups. These authors proposed two roles for the OH species, the oxidation of CO by OH and the formation of PdO through the formation of water from reaction of two OH groups. Direct evidence for the involvement of OH species in CO oxidation is shown in the INS study, where a decrease in the Pd-OH hydroxyl band intensity at 900 cm\(^{-1}\) was observed on reaction. Further evidence of the role of OH groups comes from an isotopically labelled O\(_2\) study, used to investigate a Pd/Al\(_2\)O\(_3\) catalyst during CO and propene oxidation. In that work, the oxidation of CO was found to be due to interaction with OH species and not from reaction with O\(_2\). The current work would suggest a Langmuir Hinshelwood mechanism, where reaction is dependent on the coverage of surface species. CO conversion reaches 50% at ~5 mm into the catalyst bed, at which point the structure has reached the same coordination as observed in CO oxidation (without H\(_2\)). However, from the LCF of the XANES data (Figure 3) it is clear that the average oxidation state at 50% CO conversion (5 mm) is different to that observed during CO oxidation (without H\(_2\)) (10 mm). The contribution of Pd\(^{2+}\) is less under CO oxidation with H\(_2\) than without H\(_2\), which could be linked to the adsorption of other types of species, potentially hydroxyls.

It should be noted, that even at the end of the catalyst bed under both sets of reaction conditions, where all the CO (and H\(_2\)) has been consumed, the catalyst does not re-oxidize to form a bulk PdO structure. The temperatures reached in the catalyst bed are not sufficient for a complete re-oxidation of the catalyst, requiring temperatures typically over 200°C for bulk oxidation to start. TAP experiments were conducted providing further insight into the CO oxidation with and without H\(_2\) from both a mechanistic and kinetic point of view. For the latter purpose, the TAP data were
treated according to the moment based analysis and basic kinetic coefficient methods.54 From the obtained values of adsorption rate constant k_a of CO for the experiments without H\textsubscript{2} (2.36 s-1) and with H\textsubscript{2} (1.13 s-1), it is clear that CO adsorbs slower in the presence of H\textsubscript{2}, which would indicate that there is some competition for adsorption sites between CO and H\textsubscript{2}. When CO oxidation is performed over the pre-reduced or pre-oxidized catalyst, a clear increase in CO conversion for the former material is observed, i.e. 99\% over the pre-reduced catalyst compared to 71\% conversion for the pre-oxidized catalyst (Figure 4a). This would imply that the presence of Pd, most likely present in the pre-reduced catalyst, promotes activity. This is consistent with the XAFS data, which showed the catalyst was already in a reduced state prior to reaction both with and without H\textsubscript{2}. PdO appears to be less able to convert CO to CO\textsubscript{2}, i.e. provide O, and from the XAFS results we propose that a certain coverage of adsorbed oxygen species (in the case of CO oxidation) is required for conversion. This indicates the presence of a Langmuir Hinshelwood type mechanism over the Pd NPs which is promoted in the presence of H\textsubscript{2}.
Figure 4. CO conversion (a) upon pulsing 18O$_2$:CO:Ar = 1:1:2 mixture over pre-oxidized (white) and pre-reduced (red) Pd/Al$_2$O$_3$ at 200°C. (b) Product distributions of C16O$_2$, C16O18O and C18O$_2$ for CO oxidation upon pulsing 18O$_2$:CO:Ar = 1:1:2 mixture (white) and CO oxidation upon sequential pulsing of H2:Ne = 1:1 and 18O$_2$:CO:Ar = 1:1:2 mixtures with a time delay of 0.1 s (red) over the pre-oxidized catalyst.

In order to identify the kind of oxygen species participating in CO oxidation to CO$_2$, TAP experiments were conducted in the presence and absence of H$_2$. The surface of the catalyst was pre-treated with 16O$_2$, then treated to sequential pulses of C16O and 18O$_2$. 16CO$_2$ was the main carbon dioxide isotope upon CO oxidation in the absence of H$_2$ thus proving that strongly adsorbed
16O species (formed upon catalyst pre-treatment) participated in the oxidation reaction, Figure 4b. When H2 was in the reaction feed, a greater contribution of 18O containing carbon dioxide was observed. To check if H2 simply promotes an oxygen isotopic exchange between C16O2 and 18O2, these components were pulsed together over the catalyst at 200 °C following an 16O2 pre-treatment at 300 °C. No 18CO2 and only small amounts of C18O16O were detected (less than a 10% fraction (Figure S7)) in comparison to 50% C18O16O formed upon CO oxidation (Figure 4). Therefore, isotopically labelled carbon dioxide in the 18O2/C16O/H2 test originated through a reaction of C16O with short-lived 18O containing species formed from 18O2. Such species could be 18OH when considering the XAFS measurements, where the promotional effect of H2 is proposed to occur through the formation of surface OHs. An additional support for the presence of this surface species is the experimental residence time (derived from 1st moment, M1) of H2, which was 0.39 s, and indicates a significant interaction with the catalyst. This could be due to OH formation, considering the theoretical Knudsen diffusional residence time is 0.065 s (derived from the analogous argon 1st moment and the known linear dependency of Knudsen diffusion on molecular weight and temperature). In the absence of H2, where there is no formation of OHs, the oxidation of CO appears to proceed via reaction with strongly adsorbed 16O, with the majority of product being C16O2.

To summarize, the major outcomes from this reported work are:

1) The first reported instance of simultaneous, spatially resolved gas concentration, catalyst temperature and XAFS study using the SPACI-FB method, to be known as SPACI-FB-XAFS.
2) That there are non-thermal effects occurring in the hydrogen promoted oxidation of carbon monoxide, as evidenced from the structural changes from XAFS and the presence of promotional
effects under TAP conditions. It should be noted that thermal effects may also have an influence on the observed promotion of the reaction.

3) CO oxidation is observed both in the presence and absence of H₂ once the same local coordination of the Pd NPs (coordination to O and Pd of 1.5 and 5, respectively) has been reached.

4) There is a competitive adsorption between hydrogen and carbon monoxide, as evidenced in TAP results by the slowing of the rate of adsorption of carbon monoxide in the presence of hydrogen.

5) There is a significant interaction of hydrogen with the catalyst surface (TAP 1st moment data).

6) That the presence of hydrogen has in fact promoted the Langmuir-Hinshelwood mechanism.

Conclusions

From this combination of TAP reactor studies and spatially resolved SPACI-FB-XAFS measurements, we conclude that the H₂ promotion on CO oxidation over Pd/Al₂O₃ proceeds through a physico-chemical effect. During both CO oxidation in the absence and presence of H₂ the catalyst structure is consistent with a Pd nanoparticle with adsorbed surface O, with a specific surface concentration of O (or OHs) which appears to be required before light-off is observed. In the presence of hydrogen the activation of the catalyst occurs closer to the front end of the bed, most likely via the reaction of H₂ and gas phase O₂ forming adsorbed OHs which from previous studies have been shown to more readily react with CO than surface O. TAP reactor studies, confirm the presence of a non-thermal effect, and through O-isotopic experiments, confirm the increased interaction of gas-phase O₂ on CO oxidation with H₂ compared to CO oxidation in the
absence of H$_2$. We propose this is due to the formation of surface hydroxyls in the presence of H$_2$, which then preferentially react with CO over adsorbed O.

The ability to show that the activation of the catalyst shifts in the catalyst bed and to correlate with the gas phase products and so catalyst conversion, demonstrates the strength of this combination of techniques. Our results show that the structure evidently changes through the bed and, crucially, during the actual reaction. This allows for a clearer picture of the overall catalyst performance via SPACI-FB-XAFS, information which, to our knowledge, has not been reported previously.

Experimental Methods

Catalyst Preparation: The 1 wt.% Pd/Al$_2$O$_3$ catalyst used in this work was prepared by wetness impregnation of γ-Al$_2$O$_3$ (Alfa Aesar, SA=232 m2/g). The Al$_2$O$_3$ support was ground to a particle size of < 150 μm and mixed with an aqueous solution containing Pd(NO$_3$)$_2$. The mixture was vigorously stirred and heated up to 60 °C for 4 h until excess amount of water was removed and the mixture became slurry. The catalyst was then dried at 110 °C overnight, after which the catalyst was calcined at 550 °C for 4-6 h. The fresh catalyst was characterized by powder X-ray diffraction and TEM. These results are shown in Figures S1 to S3 of the Supporting Information.

SPACI-FB-XAFS Experiments: Figure 5 is a schematic of the SPACI-FB system while Figure 6 is a photograph of the experimental setup in place on B18 at the Diamond Light Source, UK. Further experimental setup details of the SPACI-FB-XAFS system are reported elsewhere. Critically, precise alignment of the X-ray beam, the thermocouple and holes in wall of the sampling capillary is required in order to ensure that coincident measurements are examining the same part of the catalyst bed. This was achieved through laser alignment and μm precision stages. A quartz reactor was used to hold the catalyst which the X-rays passed through to measure the Pd K edge.
transmission XAFS data. A catalyst bed length of 12 mm was utilized and the data points (gas composition and XAFS) were collected over 15 min every 1 mm of the reactor to obtain sufficient signal to noise and spatial resolution. The XAFS experimental details are provided in the Supporting Information. The SPACI-FB experimental method is similar to the method outlined in previous publications. The ratio of O\textsubscript{2}: CO was 3:1, 3%O\textsubscript{2}, 1% CO, 10% Ar, with and without 0.6% H\textsubscript{2}, total flow 100mL min-1, He as a balance gas. Steady state conditions were ensured by allowing the system to equilibrate for 1 h prior to any measurements, and the comparison of measurements at the same axial position at different time points. XAFS data processing was performed using IFEFFIT with the Horae package (Athena and Artemis). The fitting parameters are shown in the Supporting Information (Tables S1-S3).

Figure 5. Schematic of the SPACI-FB equipment.
Figure 6. SPACI-FB equipment on beamline B18 at the Diamond Light Source.

TAP Experiments: An ultra-high vacuum (UHV) TAP-2 system was utilized for this study.21-25, 58 In this setup, pulse valves are at atmospheric pressure with the outlet of the quartz micro-reactor (ID = 6 mm, length = 40 mm) in direct contact with the UHV analysis chamber, where the exit flow is analyzed by a quadrupole mass spectrometer (Hiden HAL RC 301). The Pd/Al\textsubscript{2}O\textsubscript{3} catalyst (20 mg) was packed between two layers of quartz (sieve fraction of 250-355 μm) within the isothermal zone of a quartz tube microreactor. Before transient experiments the catalyst was pretreated at 300 °C in a flow of 16 mL min-1 N\textsubscript{2} with 4 mL min-1 O\textsubscript{2} (oxidized) or H\textsubscript{2} (reduced) for 0.5 h. Hereafter, the reactor was exposed to vacuum (10^{-5} Pa) with a simultaneous decrease of temperature to 200 °C unless otherwise stated. CO:Ar = 1:1, 18O\textsubscript{2}:CO:Ar = 1:1:2, H\textsubscript{2}:Ne = 1:1, CO\textsubscript{2}:Ar = 1:1 and 18O\textsubscript{2}:Ne = 1:1 mixtures were used in these experiments. The reaction mixtures were prepared using O\textsubscript{2} (Air Liquide 5.5), 18O\textsubscript{2} (CAMPRO scientific, 97\% 18O), CO (Linde, 3.7), CO\textsubscript{2} (Linde, 4.5), H\textsubscript{2} (Air Liquide, 5.0), Ar (5.0) and Ne (Linde, 5.0) without additional purification. The following atomic mass units were used for mass spectrometric identification of different compounds: 48 (18O\textsubscript{2}), 46 (18O\textsubscript{16}O), 44 (16CO\textsubscript{2}), 36 (18O\textsubscript{2}), 34 (18O\textsubscript{16}O), 32 (16O\textsubscript{2}), 30 (18O, 18O\textsubscript{16}O), 28 (C\textsubscript{16}O, C\textsubscript{16}O\textsubscript{2}), 18 (H\textsubscript{2}O), 2 (H\textsubscript{2}), 20 (Ne), and 40 (Ar). Operation within the
Knudsen diffusion regime (and by extension isothermal conditions), which is essential for TAP moment based analysis54,55, was also confirmed via comparison of inert gas (argon) experimental pulse response with theoretical Knudsen diffusion pulse response for argon. The data was analyzed using the well-established moment based approach54 and reported results are derived from the averages of three experimental data sets, each one consisting of 200 pulses.

Author Information

Corresponding Authors

* E. K. Gibson and K. Morgan: emma.gibson@glasgow.ac.uk and kmorgan08@qub.ac.uk

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ORCIDID

- Emma K. Gibson: 0000-0002-7839-3786
- Kevin Morgan: 0000-0002-6648-2546
- Giannantonio Ciben: 0000-0001-5761-6760
- Andrew J. Dent: 0000-0001-6268-3239
- Christopher Hardacre: 0000-0001-7256-6765
- Evgenii V. Kondratenko: 0000-0003-0431-6937
- Scott Rogers: 0000-0002-8288-6081
- Cristina E. Stere: 0000-0001-8604-0211
- Peter P. Wells: 0000-0002-0859-9172
Sarayute Chansai: 0000-0003-2154-7227
Sarah J. Haigh: 0000-0001-5509-6706
Yi-Chi Wang: 0000-0003-3612-4091

Notes
The authors declare no competing financial interest.

Supporting Information
The EXAFS analysis, results of the linear combination fit of the XANES and equations relating to the TAP analysis are given as supporting information. This material is available free of charge via the Internet at http://pubs.acs.org.

ACKNOWLEDGMENTS
CS would like to thank the RSC for assistance via a Researcher Mobility Grant and DEL (NI) for funding of the studentship. The UK Catalysis Hub is thanked for funding (EPSRC UK grant EP/K014714/1). The Diamond Light Source are thanked for awarding the beamtime (Experiment number SP11747-1). Arunabhiram Chutia is thanked for his help with the TOC image. The Analytical Services Environmental Projects (ASEP) team at QUB are acknowledged. Colin Colligan (QUB) and Phil Robbins (beamline B18 Diamond Light Source) are thanked for support with the technical modifications to the reactor setup. Y-CW and SJH acknowledge funding from the Chinese Scholarship Council (CSC) and European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-2016-STG-EvoluTEM-715502) and EPSRC grant EP/P009050/1.
REFERENCES

(39) Brant, W. R.; Li, D.; Gu, Q.; Schmid, S. Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials, *J. Power Sources* 2016, **302**, 126-134.

