Raman Spectroscopy as a Novel Method in Placental Research: Recognizing the Pattern of Placental Hypoxia

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Raman Spectroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>JRS-17-0084.R2</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Short Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Schlabritz-Loutsevitch, Natalia; Texas Tech University Health Sciences Center at the Permian Basin, Obstetrics and Gynecology
Gandhi, Kushal; Texas Tech University Health Sciences Center at the Permian Basin, Obstetrics and Gynecology
Soydemir, Fatimah; University of Manchester, Maternal and Fetal Medicine Health Research Centre
Brownbill, Paul; University of Manchester, Maternal and Fetal Health Research Centre
Sengar, Raghvendra; Methrohm USA, Spectroscopy Sales
Ventolini, Gary; Texas Tech University Health Sciences Center at the Permian Basin, Obstetrics and Gynecology
Bruillard, Paul; Pacific Northwest National Laboratory, Computational Mathematics
Gosink, Luke; Pacific Northwest National Laboratory, Computational Mathematics |
| Keywords: | Raman Spectroscopy, Placenta, hypoxia, pattern recognition |
SHORT COMMUNICATION

RAMAN SPECTROSCOPY AS A NOVEL METHOD IN PLACENTAL RESEARCH: RECOGNIZING THE PATTERN OF PLACENTAL HYPOXIA

Natalia Schlabritz-Loutsevitch1*, Kushal Gandhi1, Fatimah Soydemir2,3, Paul Brownbill2,3, Raghvendra Sengar4, Gary Ventolini1, Paul Bruillard5 and Luke Gosink5.

1Texas Tech University Health Sciences Center at the PB, Odessa, TX, USA
2Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, St. Mary’s Hospital, Oxford Road, Manchester, M13 9WL UK
3Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
4Metrohm, USA
5Pacific Northwest National Laboratory, Richland, WA, USA

*Corresponding author

Natalia Schlabritz-Lutsevich MD, PhD
Research Associate Professor (tenure-track)
Department of Obstetrics and Gynecology
Department of Pharmacology and Neuroscience
Texas Tech University HSC School of Medicine
e-mail: Natalia.schlabritz-lutsevich@ttuhsc.edu
office phone: 432-703-5169
cell phone: 210-317-0156
fax: 432-335-5140
ABSTRACT

Raman spectroscopy (RS) is a non-elastic photon scattering technique. We evaluated whether a specific RS pattern exists in fetal venous perfusates obtained at 30-60 min intervals from the \textit{ex vivo} human dual placental perfusion model under hypoxic (n=6) and normoxic (n=5) conditions. A stratified Principle Component and a linear support vector machine analyses showed that the separation between two conditions was readily feasible at 60-120 min of perfusion; after this any apparent differences were most likely the result of artifact over-fitting. This report is the first attempt to identify the RS fingerprint associated with placental hypoxia.

\textbf{Keywords:} Raman spectroscopy, placenta, hypoxia, pattern recognition.
INTRODUCTION

In the 21st century diagnostic methods expanded beyond the identification of single molecular species [1] [2]. Raman Spectroscopy (RS), a method based on inelastic light scattering when excitation photons interfere with specific molecular bonds [3], represents a unique tool currently being applied to the diagnosis of cancer, Alzheimer and cardio-vascular diseases[4] [5]. Resonance RS and Raman microspectroscopy have been applied for detection of hemo-and myo-globin oxygenation for monitoring of tissue oxygenation[6] [6-7] and for molecular fingerprints of pre-eclamptic placentas[8]. Orbital Raster Scanning (ORS) is a novel RS sampling technique based on rastering laser beam, which repetitively sweeps the sample volume providing the opportunity to represent thousands of chemical compounds simultaneously within a spectral “fingerprint”. The rastering approach allows scan the larger area, e.g. while the focused laser beam, has a diameter of 50µm, the raster spot diameter is approximately 1 mm. This gives an ORS sampling area of approximately 0.076 mm² versus an instantaneous sampling area of 0.0078 mm². [9] The application of mathematical models of pattern recognition enables an analysis between experimental study groups. Here we demonstrate, for the first time, the application of RS-ORS to detect fetal hypoxia in physiological perfusates following the adaptation of the ex vivo dual perfused human placenta to different oxygenation conditions.

MATERIALS AND METHODS

We analyzed 500 µL of fetal perfusate, obtained using the human ex vivo dual placental perfusion technique, which had been modified to normoxic (N; n=5) and hypoxic (H; n=6) conditions, with mean soluble oxygen tension within the intervillous space (IVS) of 5-7% and < 3%, respectively [10]. These adaptations have been proven to have specific changes in
inflammatory mediation within the perfused tissue, demonstrated as an altered biochemical release of cytokines\(^{[10\text{a}]}\). The perfusate (modified Earle' bicarbonate buffer) composition was as follows 2.4 mM CaCl\(_2\); 0.4mM MgSO\(_4\); 117 mM NaCl; 5.4mM KCl; 0.41mM NaH\(_2\)PO\(_4\); 26mM NaHCO\(_3\); 5.6mM D-glucose; 5,000 IU heparin, sodium; 0.04mM L-arginine; 0.1% (w/v) bovine serum albumin (fraction IV); 3.5% (w/v) dextran (clinical grade; 70KDa\(^{[10\text{b}]}\). Fetal venous perfusate samples were collected at 60, 120, 150, 210, 240, 300, and 330 minutes (Supplementary material, Fig. 1S). The RS of the samples were collected using Mira Cal software (Mira M-1, Metrohm, USA), which was connected to the hand-held RS device (Mira M-1, Metrohm, USA). In MIRA M1 device, exposure time is automated be the analyzer, the exposure time was 5 second with spectral resolution: 14 to 16 cm\(^{-1}\).

Insert Fig. 1 here

For the Principal component analyses the spectral analysis began by constructing a tuple of information from the twelve fingerprint regions, identified by picking maximum peak heights for peaks that were greater than the mean value of all spectra values (Fig 1). For each of these regions, a feature vector was constructed based on three peak attributes: the peak’s value (x), the derivative for the peak (x’), and the second derivative for the peak (x’’). Thus for a given time (min) and class (i.e., H vs. N), a 36 dimensional feature vector was constructed (i.e. 12 peaks times, 3 attributes per peak).

A stratified Principle Component Analysis (PCA)\(^{[11]}\) was performed independently on the feature vector data aggregated at each time point. For each time point, a set of distinct principle components were identified where each subsequent set of components describes an increasing amount of variance in the feature vector data: e.g., 50%, 60%, …, 100%. A linear support vector
machine (SVM) \cite{12} was then used to compute the accuracy of each component set. In this context, the analysis contrasts how increasing information content (as represented by different principle components) impacts classification performance.

RESULTS AND DISCUSSION

Twelve Raman peaks were detected at 415 cm\(^{-1}\), 440 cm\(^{-1}\), 541 cm\(^{-1}\), 785 cm\(^{-1}\), 851 cm\(^{-1}\), 920 cm\(^{-1}\), 1020 cm\(^{-1}\), 1086 cm\(^{-1}\), 1129 cm\(^{-1}\), 1341 cm\(^{-1}\), 1457 cm\(^{-1}\), 1632 cm\(^{-1}\) (Fig.1S). The hypoxic treatment of placenta \textit{ex vivo} in our study represents the models, mimicking pre-eclampsia (PE) \cite{10a}, interestingly, these spectra are similar to the Raman shift, reported for human normal and pre-eclamptic placentas \cite{8} and blood samples from women with pre-eclampsia \cite{13}. The Raman peak of 1129 cm\(^{-1}\) was quite close to 1127 cm\(^{-1}\) hemoglobin-derived hemoporphin shift reported in exposed to hypoxia erythrocytes and myocardium \cite{6, 14} and the same as found in placentas from women with pre-eclampsia \cite{8}. 1128 cm\(^{-1}\) Raman shift was identified for myristic acid, which has also chain vibration expansion shift of 414 cm\(^{-1}\) \cite{15} – close to detected in our study 415 cm\(^{-1}\). Band at the shift of 1341 cm\(^{-1}\) had decreased intensity in samples with hypoxia in our study and is similar to reported 1342 cm\(^{-1}\) shift with decreased intensity in serum of women with PE, which has been identified as CH bending of amino acids \cite{13}. The 1457 cm\(^{-1}\) shift is located within 1420-1500 cm\(^{-1}\) region of described deformities for δ (CH\(_2\)) and δ (CH\(_3\)) region of L-arginine \cite{15}. The peak of 440 cm\(^{-1}\) corresponds to β-D-glucose and peak at 541 cm\(^{-1}\) -to D (+) dextrose \cite{15} – components of the perfusion media. At the 60 min time point the separation between N and H (Figure 2A) is easily obtained with 100% accuracy using principle components that capture 80%
of the variability in the feature vector data. Even when using fewer features where 50% of the
variability is captured, separation is feasible with 80% accuracy.

Insert Fig. 2 here

At 120 minutes (Figure 2B), a slight degradation in accuracy is observed. Specifically, we now
need almost 88% of the variance captured by the principle components to provide 100%
accuracy in separating two conditions (as opposed to 80% seen in 60 minutes). Additionally,
classifying based on PCA that captures 50% of the variance only provides about 75% accuracy.

Beyond 120 minutes (Figure 2C and D), significant degradation of the differential signal is
observed. Though 100% classification accuracy is feasible (i.e. using principle components that
capture all variance in data), removing even a little of the information in the data (i.e. from 95%
to 100%) dramatically reduces accuracy. Such behavior strongly indicates that beyond 120
minutes of perfusion, separation between two conditions is an artifact of overfitting or could
mirror the phenomenon of slow progression of normoxia toward hypoxia in the artificial ex vivo
perfusion system \cite{10b}. To more confidently address this artifact and confirm the ability (or
inability) to separate data beyond 120 minutes, an additional number of samples is required.

Commensurate with a reduction in classification accuracy after the 120 minute time point
between normoxic and hypoxic groups, the fetal-side release profile of endogenous placental
substances appears to be strongly governed by intervillous space soluble oxygenation within this
timeframe, since the difference in this variable is highest within the first two hours and
diminishes thereafter \cite{10b}. Raman spectra are produced by the portion of photons, scattered by
electron density of specific molecular bonds \cite{5a} and depend on vibrational activity of the bonds.
Therefore, it is also possible that the intervillous space hypoxia results in the differences in
vibrational activity of the bonds, prior to the release of any active substances in the fetal
circulation and therefore could be a sensitive method of diagnosis of fetal hypoxia.

ACKNOWLEDGEMENTS

We are indebted to the Department of Obstetrics and Gynecology (Department Chair Dr. Moss
Hampton) for the continuous support.

FIGURE LEGENDS

Figure 1. Example of representative peaks used for the vector construction.

Figure 2. The accuracy of a linear support vector machine to separate hypoxia from normoxia at
60, 120, 150 and 210 min of the placental perfusion ex vivo.

SUPPLEMENTARY MATERIAL

Figure 1S. Mean Raman Spectroscopy patterns in the fetal perfusates obtained at 30-60 min
intervals in ex vivo placental perfusion: hypoxic (n=6) and normoxic (n=5) conditions [10b].

REFERENCES

Interface 2015, 12.
Obstet 2014, 290, 943-946.
[10] a) A. Jain, H. Schneider, E. Aliyev, F. Soydemir, M. Baumann, D. Surbek, M. Hediger, P. Brownbill and

