Does inflammation precede tau aggregation in early Alzheimer's disease? A PET study

DOI:
10.1016/j.nbd.2018.06.004

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Neurobiology of disease

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Research Paper

Does inflammation precede tau aggregation in early Alzheimer’s disease?

A PET Study.

Peter Parbo,1* Rola Ismail,1 Michael Sommerauer,1,2 Morten G. Stokholm,1
Allan K. Hansen,1 Kim V. Hansen,1 Ali Amidi,3 Jeppe L. Schaldemose1,
Hanne Gottrup,4 Hans Brændgaard,4 Simon F. Eskildsen,5 Per Borghammer,1
Rainer Hinz,6 Joel Aanerud,1 David J. Brooks1,7

1Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
2Department of Neurology, University of Cologne, Cologne, Germany
3Department of Psychology and Behavioural Sciences & Department of Oncology,
Aarhus University & Aarhus University Hospital, Denmark
4Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
5Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
6Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
7Division of Neuroscience, Newcastle University, Newcastle, UK

*Corresponding author:
Peter Parbo, MD, PhD
Department of Nuclear Medicine and PET Centre
Aarhus University Hospital
Nørrebrogate 44, bldg. 10G,
DK-8000 Aarhus, Denmark
E-mail: peter.parbo@clin.au.dk

Running head:
Microglial activation in early Alzheimer’s disease.

Number of words in abstract: 213
Number of words in main text: 2808
Number of figures: 4
Number of tables: 1
Abstract:
Objective: Our aim was to assess with positron emission tomography (PET) the temporal and spatial inter-relationships between levels of cortical microglial activation and the aggregated amyloid-β and tau load in mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
Methods: Six clinically probable AD and 20 MCI subjects had inflammation (11C-(R)-PK11195), amyloid (11C-PiB) and tau (18F-flortaucipir) PET, magnetic resonance imaging (MRI) and a neuropsychological assessment. Parametric images of tracer binding were interrogated at a voxel level and by region of interest analyses.
Results: 55% of MCI and 83% of AD subjects had a high amyloid-β load. We have previously reported that clusters of correlated amyloid and inflammation levels are present in cortex. Here we found no correlation between levels of inflammation (11C-(R)-PK11195 BP_{ND}) and tau (18F-flortaucipir SUVR) or MMSE scores in high amyloid-β cases.
Interpretation: While correlated levels of amyloid-β and inflammation can be seen in MCI, we did not detect an association between levels of cortical tau tangles and inflammation in our series of high amyloid-β cases. High levels of inflammation could be seen in amyloid-β positive MCI cases where 18F-flortaucipir signals were low suggesting microglial activation precedes tau tangle formation. Inflammation levels were higher in high amyloid-β MCI than in early AD cases, compatible with it initially playing a protective role.

Keywords: Alzheimer’s disease; Positron emission tomography; Microglial activation; Amyloid PET; Tau PET.

Abbreviations:
Aβ = Amyloid-β; MMSE = Mini-Mental State Examination; PiB = Pittsburgh compound B; PK11195 = 11C-(R)-PK11195; flortaucipir = 18F-flortaucipir; SPM = Statistical parametric mapping; BPM = Biological parametric mapping; FWE = Family-wise error; SUVR = Standardised uptake value ratio; BP_{ND} = Binding potential nondisplaceable; ROI = Region of interest.
INTRODUCTION

In Alzheimer’s disease, the amyloid cascade hypothesis proposes that deposition of amyloid-β (Aβ) fibrils precedes neurofibrillary tau tangle formation, which in turn leads to neuronal loss and cognitive deficits.[1] Neuroinflammation in the form of microglial and astrocyte activation has been recognised to be a component of this cascade.[2,3] Microglia may express a reparative phenotype, acting to clear cellular debris and remodel synapses or, alternatively, a cidal phenotype releasing cytokines which damage neurons.[4] It remains unresolved which phenotype is preferentially expressed at different time points along the Alzheimer’s disease trajectory. Some TSPO positron emission tomography (PET) studies in humans have shown higher signals in prodromal Alzheimer’s disease which could support an initially protective role of microglia.[5,30] Soluble Aβ oligomers have been reported to activate microglial cells in cell culture via their Toll-like receptors resulting in neuronal toxicity.[6] Additionally, studies with animal models have observed that the activation of microglia can precede tau aggregation[7] and that cytokines released by microglial cells promote tau hyperphosphorylation and formation of neurofibrillary tangles.[8] Spangenberg et al. have reported that elimination of activated microglia in Alzheimer transgenic mice prevented neuronal and synaptic loss and led to improved memory function in the absence of any change in their Aβ load.[9] These findings suggest a cascade where first Aβ oligomers and fibrils activate microglial cells which in turn release cytokines promoting tau tangle formation.

A majority of subjects with mild cognitive impairment (MCI) are in a transition state between normal aging and dementia and represent prodromal Alzheimer’s disease.[10,11] These cases make it possible to investigate the early temporal and spatial inter-relationships between the pathological components of Alzheimer’s disease.

The mitochondria of activated microglia express translocator protein 18 kDa (TSPO) allowing these cells to be visualised in vivo with PET ligands for this protein. The TSPO marker 11C-(R)-PK11195 PET detects increased levels of microglial activation as an early event in Alzheimer’s disease.[12,13] More recently, in vivo tau tangle imaging with PET has become available with the pyrido-indole 18F-flortaucipir (also know as AV-1451 or T807). Studies have reported increased cortical tau aggregation in vivo in MCI, Alzheimer’s disease[14,15] and occasionally in healthy elderly subjects.[16]

The aim of this current cross-sectional study was to investigate the inter-relationships between the components of early Alzheimer’s disease pathophysiology. We have scanned MCI subjects with a raised amyloid load at high risk of developing Alzheimer’s disease and cases with early
Alzheimer’s dementia. We used multiple PET tracers to examine the relationship between Aβ deposition, microglial activation and tau tangle aggregation.

METHODS

Study subjects
All cognitively impaired subjects were recruited from memory clinics or by advertisement and they were assessed as previously described.[13] Initially, our 11C-PiB (PiB) and 11C-(R)-PK11195 (PK11195) PET program was designed to investigate the temporal and spatial relationships between Aβ fibril load and levels of inflammation in MCI. During the conduct of the study 18F-flortaucipir (flortaucipir) PET became available to determine levels and distribution of tau aggregation. Twenty of our 42 MCI cases agreed to have scans with all three PET tracers within a reasonable time window of 10 weeks. We present cross-sectional data from these 20 MCI and an additional six cases with early Alzheimer's disease.

Our Alzheimer’s disease patients were recruited from the local dementia clinic, where experienced neurologists diagnosed the patients according to ICD-10 clinical criteria. MCI patients fulfilled the Petersen criteria.[10] The age of Alzheimer’s disease patients and MCI subjects ranged between 50-85 years. They had a modified Hachinski Ischemic Scale score ≤ 4, and a Geriatric Depression Scale (version with 15 questions) score ≤ 6. None had a neurological or psychiatric disorder, were taking drugs associated with cognitive impairment or had any contraindication for magnetic resonance imaging (MRI). All MCI and Alzheimer’s disease subjects were assessed with a neuropsychological test battery comprised of standardized neuropsychological tests assessing memory, language, visuospatial function, processing speed and executive function as described previously.[13]

Additional flortaucipir[17] and PK11195[18] PET scans of healthy controls were available from an in-house database which we combined with our own control data, providing a total of 22 flortaucipir, 20 PK11195, and 12 PiB healthy controls (HC). Seven of the controls had both PK11195 and PiB PET. The pooled HC subjects were recruited via advertisement, assessed with neurological and cognitive screening (Mini-Mental State Examination (MMSE) scores), and a depression scale (either the Geriatric Depression Scale or the Major Depression Index from ICD-10). All subjects were scanned using the same HRRT PET scanner and identical scanning protocols.
The Central Denmark Region Committees on Health Research Ethics approved the study in accordance with the declaration of Helsinki. All participants signed an informed written consent prior to enrolment in the study.

Image processing

MRI and PET were acquired as previously described.[13] MRI was performed with a Skyra 3 Tesla system (Siemens, Erlangen, Germany), and PET scans were acquired with a High Resolution Research Tomograph (ECAT HRRT; CTI/Siemens, Knoxville, TN, USA). A T1 MP2RAGE (Magnetization Prepared Rapid Gradient-Echo with two gradient echo images) sequence was used for co-registration of MRI with PET, normalisation of images into standard MNI space, and generation of grey matter masks. MINC software (http://en.wikibooks.org/wiki/MINC)[19] was used for segmenting MRI volumes into grey (GM) and white (WM) matter images and cerebrospinal fluid (CSF), [20] and to spatially normalise the MRI and PET images.[21] The GM masks were convolved with a probabilistic atlas[22] to “individualise” subject regions of interest (ROIs) to their GM. A composite ROI for measuring global cortical flortaucipir SUVR was generated as a volume-weighted average of temporal, parietal and occipital regions.[23]

Average doses of 410 ± 34 MBq 11C-PiB (PiB; Pittsburgh compound B)[24] and 358 ± 35 MBq 18F-flortaucipir were administered as intravenous boluses. PiB PET was acquired for 50 minutes in list mode 40-90 minutes post injection. Flortaucipir PET was acquired for 40 minutes in list mode 80-120 minutes post injection. The spatially normalised PiB and flortaucipir images were summed from 60-90 and 80-100 minutes, respectively, and voxel signal was divided by the mean signal from the individual’s cerebellar crus GM to generate PiB and flortaucipir standardised uptake value ratio (SUVR) images.

An average dose of 406 ± 33 MBq 11C-(R)-PK11195 was injected intravenously over 10 seconds, followed by a 10 mL saline flush. Emission scans were initiated with a 30 second “background” frame before injection of PK11195. The total dynamic scan time was 60.5 minutes (list mode). Frames were re-binned as: 1x 30 seconds ‘background’, 6x 10s, 2x 30s, 2x 60s, 3x 120s, 10x 300s. PK11195 binding potential (BP$_{ND}$) maps were generated at a voxel level using the Simplified Reference Tissue Model[25] implemented in MATLAB. Supervised Cluster Analysis with 6-classes[26] was applied to the dynamic images to localise a cluster of voxels which provided a reference tissue input function representing normal grey matter uptake kinetics. However, these non-specific uptake reference clusters can contain occasional voxels with low specific signal and this can result in apparent negative binding potentials in areas of low tracer signal.
High and low Aβ load
All our MCI cases who showed visual evidence on a blinded read of cortical amyloid had a composite cortical PiB SUVR of 1.7 or higher (Fig. 1A). The composite cortical PiB ROI sampled frontal, middle/inferior temporal, lateral parietal, precuneus and posterior cingulate cortical areas. Rather than label individuals as Aβ positive or negative we prefer to use the terms high and low Aβ load given that Thal et al.[27] have reported that conventional thresholds used to detect raised 18F-flutemetamol (18F-PiB) PET can miss early (stage 1 and 2) Aβ deposition later found at post-mortem.

Statistical and Biological Parametric Mapping
Statistical Parametric Mapping (SPM8; Wellcome Trust Centre for Neuroimaging) was used to perform between-group comparisons (two-sample t-test) of tracer uptake and correlation analyses (multiple regression) between MMSE scores and tracer uptake at a voxel level. Biological Parametric Mapping (BPM) (using the BPM toolbox in SPM5)[28] was used to localise voxels where individual levels of flortaucipir SUVR and PK11195 BPND, and flortaucipir SUVR and PiB SUVR were correlated. Parametric maps of flortaucipir SUVR, PiB SUVR, and PK11195 BPND were smoothed to a total of 8 mm full width at half maximum prior to voxel level analyses. An averaged cortical GM mask (without cerebellum) was used for explicit masking within the SPM and BPM software. Voxel analysis of flortaucipir and PiB SUVR images were thresholded at P < 0.001 uncorrected. Our figures only display clusters that survived a family-wise error (FWE) cluster-level correction at P < 0.05.

Statistical analysis
STATA 13.1 (StataCorp LP, Texas, USA) and Prism 6 (GraphPad Software, La Jolla, CA, USA) were used for statistical analyses and graphical displays. Data was assessed for normality using the Shapiro-Wilk normality test, and by plotting data in histograms and Q-Q plots. Table data were compared with one-way ANOVAs and post hoc uncorrected pairwise group comparisons were used for normally distributed continuous variables, Fisher’s exact tests for nominal variables and Kruskal-Wallis test with post hoc uncorrected Wilcoxon rank-sum test for ordinal variables as appropriate. Spearman’s rank sum test was applied for ROI correlation analyses. Repeated measures two-way ANOVA model with three groups (HC, high Aβ MCI and high Aβ AD) and eight regions was used for analysis of PK111195 BPND levels. P values below 0.05 were considered
statistical significant. Neuropsychological data were transformed into z-scores using normative data from our healthy controls who were also assessed with the neuropsychological test battery. Subsequently, domain-specific z-scores were calculated as the mean of domain-relevant tests.

RESULTS

Five (83%) of the six clinically probable Alzheimer's disease subjects were categorised as having a high Aβ load, while our 20 MCI cases were divided into 11 (55%) with high Aβ and nine (45%) with low Aβ loads (Fig. 1A; see table 1 for an overview on characterisation of HC and low/high Aβ MCI/AD). Additionally, figure 1A reveals two HC's (17%) with visual and quantitative high Aβ load and one AD subject with visual and quantitative low Aβ load. The combined group of 16 high Aβ MCI/AD cases showed significantly higher levels of composite flortaucipir SUVR compared to HC (mean 1.53 ± 0.39 vs. mean 1.19 ± 0.09; P = 0.0005) (Fig. 1B). We found no PET evidence that our MCI subjects with low PiB had a tauopathy.

Figure 2 presents surface SPMs of the high Aβ MCI/AD group which showed raised flortaucipir signal with a posterior emphasis when compared to HC and low Aβ MCI/AD. This posterior pattern targeted parietal, precuneus, posterior cingulate, lateral and medial temporal cortices, in line with the distribution reported by Johnson et al.[29] except that our high Aβ MCI/AD sample displayed less tau in their occipital cortex. The high Aβ MCI/AD group had significantly reduced processing speed, visuospatial function, global memory, and executive performance compared to controls and low Aβ MCI/AD subjects (table 1).

A group effect was found when assessing the levels of PK11195 binding in subgroups of HC, high Aβ MCI and AD subjects (F(2,33) = 3.57; P = 0.039) (Fig. 3). Post hoc group comparisons (uncorrected) revealed higher levels of PK11195 BP_{ND} in the high Aβ MCI group compared to HC subjects in all cortical regions bar the lateral parietal area. Compared to the AD subjects the high Aβ MCI group showed raised PK11195 BP_{ND} in the posterior cingulate (P = 0.015) and lateral temporal (P = 0.036) regions. There were no significant differences in inflammation levels across regions between HC and AD subjects but there were only 5 AD cases providing low power.

Correlations between levels of activated microglia, Aβ and tau

We previously reported clusters of correlated amyloid load and inflammation in the cortex of high Aβ MCI cases.[13] In the present group of 16 high Aβ MCI/AD subjects the BPM of PiB SUVR
and PK11195 BP_{ND} also detected clusters of correlated amyloid load and inflammation in parietal, lateral temporal and frontal areas, but at a lower threshold (p<0.05 with an extent threshold of 100 voxels). BPM interrogation of flortaucipir SUVR and PK11195 BP_{ND} at a voxel level did not reveal any significant clusters of positive correlations between tau and inflammation levels. In support of this, correlation analysis within frontal, hippocampal, parahippocampal, lateral and posterior temporal, precuneus, posterior cingulate and lateral parietal ROIs also did not reveal any correlations between levels of flortaucipir SUVR and PK11195 BP_{ND}. Figure 4 displays PET images of one high Aβ case with relatively increased levels of PK11195 binding but low levels of flortaucipir SUVR, and one high Aβ case with low PK11195 binding and high flortaucipir SUVR. We found no significant correlation between levels of inflammation (PK11195 BP_{ND}) and MMSE scores, using ROI (P-values between 0.31 and 0.93) or voxel-level analyses.

DISCUSSION

This PET study assessed the *in vivo* inter-relationships between levels and extent of microglial activation, cortical Aβ plaque and tau tangle load in the prodromal/early phases of Alzheimer’s disease. While we previously reported that clusters of correlated levels of microglial activation and Aβ deposition in cortical association areas were present in MCI with raised Aβ, we did not detect any significant association between tau load and inflammation levels in this series. This may simply be a sensitivity problem reflecting a lower density of tangles compared to Aβ plaques and the low specific binding signal provided by PK11195 PET. However, as PET can clearly detect the presence of both tau and inflammation in the posterior cortical areas of MCI/early Alzheimer’s disease cases with raised Aβ, the lack of correlation of their levels may reflect a true situation – microglial activation and tau aggregation occurring via independent mechanisms with different trajectories. Inflammation may well be an earlier phenomenon linked to Aβ deposition at the onset of disease, the activated microglial cells trying to restore brain function by engulfing and clearing Aβ oligomers/fibrils. While initially raised inflammation acts as a protective mechanism to try and clear Aβ, this fails and activated microglia decline. Around this time tau phosphorylation and aggregation begins.[30] Our finding of increased inflammation levels in high amyloid MCI (Fig. 3) is in line with Hamelin et al.[5] A study from Carter and colleagues has reported higher cortical 11C-DED binding from astrocytes in PiB+ MCI compared to both controls and AD subjects
suggesting that astrocytes may also be activated in early AD, levels later falling.[31] Given the differing temporal trajectories of amyloid plaque formation, inflammation, and tau aggregation, it is perhaps not surprising to find no regional correlation between PK11195 and flortaucipir uptake across our 16 high Aβ MCI/AD subjects.

We did not find significant correlations at a voxel level between MMSE scores and PK11195 BP\textsubscript{ND} in our 16 high Aβ MCI/AD subjects. The exact trajectory of microglial activation in AD is still not clear but PK11195 signal can range from high to near normal in early MCI. As AD progresses and tau rises there may then be a second wave of cidal inflammation. This biphasic time course could explain a failure to find regional correlations between levels of cognition and PK11195 signal.

As our study is cross-sectional and comprised mainly MCI cases, we cannot delineate the trajectory of Alzheimer’s disease from these data. Although the current study is based on a small sample size of participants, the findings show microglial activation in high Aβ MCI cases who have not, but are likely to, develop cortical tau aggregations. A limitation of this study is that our control subjects were not scanned with all three PET tracers; this was due to dosimetry regulations when administering radioactive materials to healthy control subjects.

Compared to newer TSPO tracers now available, PK11195 has a relatively low signal-to-noise ratio and this could reduce our power to identify correlations with inflammation. On the other hand, PK11195 binding is not significantly influenced by the TSPO polymorphism simplifying the interpretation of findings.[33] Specific PK11195 uptake is modelled using a tissue reference cluster of voxels representing the kinetics of normal cortical grey matter. However, the non-specific uptake reference cluster identified by discriminant analysis can contain occasional voxels with some specific signal and produces apparent negative binding potentials in some regions where tracer brain uptake is low in MCI.

One of our clinically diagnosed Alzheimer’s disease cases was categorised by PET as having low Aβ. This could possibly be due to a limited sensitivity of PiB PET for detecting amyloid but is more likely to reflect an incorrect diagnosis and implicate other pathologies, such as small vessel disease, as a cause of the cognitive impairment.[34]

In summary, we have investigated the inter-relationship between levels of microglial activation and the aggregation load of Aβ and tau protein in a group of prodromal and early Alzheimer’s disease cases. While we previously reported clusters of correlated Aβ and inflammation levels in association cortical areas of our prodromal AD cases, we failed to find a correlation between tau and inflammation levels in this series. As amyloid and inflammation can be present in the absence
of tau tangles in MCI, it seems likely that microglia activation precedes tau tangle formation in the cascade of AD pathology.

Acknowledgements

This study was financially supported by grants from the Danish Council of Independent Research [grant no. DFF-1331-00184], AUFF Neurodin (Aarhus University) and the Lundbeck Foundation [grant no. R140-2013-13245]. We thank Avid Radiopharmaceuticals, Inc., for providing precursor for the 18F-flortaucipir tracer synthesis.

Financial disclosures

Dr. Brooks reports grants from Danish Council of Independent Research and the Lundbeck Foundation in support of this study and from the EU FP7 programme; lecturing fees and non-financial support from GE Healthcare and Isotopia outside the submitted work; Dr. Hinz reports grants from European Commission, during the conduct of the study; all other authors have nothing to disclose.
REFERENCES

FIGURE LEGENDS

Figure 1. Dotplots of composite 11C-PiB and 18F-flortaucipir SUVR. A: Composite PiB SUVR in HC, MCI and AD subjects. Dashed red squares marks the 16 high Aβ MCI/AD subjects used in subsequent analyses; Group means are marked by +++ and horizontal dashed black lines marks ± 1 SD. B: Composite flortaucipir SUVR in HC, low Aβ MCI/AD and high Aβ MCI/AD.

Figure 2. Statistical parametric surface maps of significantly raised flortaucipir SUVR in high Aβ MCI/AD subjects (n = 16) compared to HC (n = 22), and compared to low Aβ MCI/AD (n = 10). No clusters of raised flortaucipir SUVR were seen when comparing low Aβ MCI/AD vs. HC subjects. T-maps are thresholded at $P < 0.001$ uncorrected and FWE cluster-level corrected at $P < 0.05$.

Figure 3. Regional levels of PK11195 BP$_{ND}$ in HC, high Aβ MCI and high Aβ AD subjects. Height of bars and error bars mark means with 95% CI.

Figure 4. PET images of two high Aβ MCI subjects. Individual PiB SUVR, PK11195 BP$_{ND}$ and flortaucipir SUVR PET images of two high Aβ MCI subjects. The first case shows raised inflammation but low tau while the second case shows little inflammation but raised tau.
TABLES

Table 1. Participant characterisation

<table>
<thead>
<tr>
<th></th>
<th>HC (n=12)</th>
<th>MCI/AD (n=36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11C-PiB</td>
<td>[59-77]</td>
<td>[58-80]</td>
</tr>
<tr>
<td>11C-PK11195</td>
<td>[53-84]</td>
<td></td>
</tr>
<tr>
<td>18F-flortaucipir</td>
<td>[59-81]</td>
<td></td>
</tr>
<tr>
<td>Age, mean [range], y</td>
<td>69 [59-77]</td>
<td>67 [58-80]</td>
</tr>
<tr>
<td>Female, No. (%)</td>
<td>7 (58%)</td>
<td>8 (40%)</td>
</tr>
<tr>
<td>Education, mean ± SD, years</td>
<td>13 ± 2.5</td>
<td>14 ± 2.5</td>
</tr>
<tr>
<td>Diagnosis of AD, No. (%)</td>
<td>1 (10%)</td>
<td>5 (31%)</td>
</tr>
<tr>
<td>NSAID use, No. (%)</td>
<td>1 (8%)</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>Cholinesterase inhibitor use, No. (%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>CDR sum-of-boxes, mean ± SD</td>
<td>1.3 ± 1.1</td>
<td>2.7 ± 2.1</td>
</tr>
<tr>
<td>MMSE score, mean ± SD</td>
<td>29 ± 1.2</td>
<td>29 ± 1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain z-scores from neuropsychological test battery</th>
<th>Low Aβ (n=10)</th>
<th>High Aβ (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing speed z-score, mean ± SD</td>
<td>-0.36 ± 0.9</td>
<td>-2.0 ± 1.0b</td>
</tr>
<tr>
<td>Visuospatial function z-score, mean ± SD</td>
<td>-0.04 ± 1.9</td>
<td>-2.1 ± 2.6b</td>
</tr>
<tr>
<td>Global memory z-score, mean ± SD</td>
<td>-0.7 ± 1.4</td>
<td>-2.1 ± 1.1b</td>
</tr>
<tr>
<td>Language z-score, mean ± SD</td>
<td>-0.6 ± 1.3</td>
<td>-1.5 ± 1.4</td>
</tr>
<tr>
<td>Executive function z-score, mean ± SD</td>
<td>-0.3 ± 1.0</td>
<td>-2.1 ± 1.1b</td>
</tr>
<tr>
<td>Global composite score z-score, mean ± SD</td>
<td>-0.4 ± 1.1</td>
<td>-1.9 ± 1.0b</td>
</tr>
</tbody>
</table>

Abbreviations: HC = Healthy controls; MCI = Mild cognitive impairment; AD = Alzheimer’s disease; Aβ = amyloid-β; NSAID = Non-steroidal anti-inflammatory drug; CDR = Clinical Dementia Rating. Significant differences are marked with: *P < 0.05 versus HC; †P < 0.05 versus Low Aβ. Group differences are tested (using parametric and non-parametric testing where appropriate). Whenever possible, the three controls samples are summarised for statistical comparisons.
Figure 2

Distribution of increased 18F-flortaucipir SUVR

High Aβ MCI/AD > Controls

High Aβ MCI/AD > Low Aβ MCI/AD

0 2 5 7

T-value
High Aβ MCI
Female, 72 y
MMSE 28

High Aβ MCI
Male, 76 y
MMSE 25

11C-PiB

18F-flortaucipir

11C-(R)-PK11195