Online chemical characterization of food cooking organic aerosols: implications for source apportionment

Ernesto Reyes-Villegas1, *, Thomas Bannan1, Michael Le Breton1, \textdagger, Archit Mehra1, Michael Priestley1, Carl Percival1, \dagger, Hugh Coe1, James D. Allan1, 2, \forall

1School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK

2National Centre for Atmospheric Science, The University of Manchester, Manchester, M13 9PL, UK

\daggerNow at University of Gothenburg, 40530 Gothenburg, Sweden

\forallNow at Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

*Corresponding author: ernesto.reyesvillegas@manchester.ac.uk
Abstract. Food cooking organic aerosols (COA) are one of the main primary sources of submicron particulate matter in urban environments. However, there are still many questions surrounding source apportionment related to instrumentation as well as semi-volatile partitioning as COA evolve rapidly in the ambient air, making source apportionment more complex. Online measurements of emissions from cooking different types of food were performed in a laboratory in order to characterize particles and gases. Aerosol mass spectrometer (AMS) measurements showed that the relative ionization efficiency for OA was higher (1.56 - 3.06) relative to a typical value of 1.4, concluding AMS is overestimating COA and suggesting previous studies likely overestimated COA concentrations. Food cooking mass spectra were generated using AMS and gas and particle food markers were identified with FIGAERO-CIMS measurements to be used in future food cooking source apportionment studies. However, there is a considerable variability both on gas and particle markers and dilution plays an important role in the particle mass budget, showing the importance of using these markers with caution when receptor modeling. These findings can be used to better understand the chemical composition of COA and it provides useful information to be used in future source apportionment studies.

Keywords: AMS, FIGAERO-CIMS, Organic aerosols, Source apportionment, mass spectra.

1. Introduction

Atmospheric aerosols have been found to cause severe air quality problems.1-3 Food cooking emissions are one of the main indoor and outdoor sources of particles around the world.4 Cooking Organic Aerosols (COA) represent a high contribution to OA, particularly in urban environments. For instance, Huang, et al.5, in a study performed during the Olympic Games Beijing 2008, identified that COA contribute 24\% while Sun, et al.6, in a study performed during summer 2009 at Queens College in New York, identified COA to...
contribute 16%. Moreover, COA contribution to OA (24%) was found to be higher than traffic-related hydrocarbon-like OA (HOA, 16%) in a study performed in 2012 in Lanzhou China.

In 2005, the first study to identify COA from aerosol mass spectrometer (AMS) measurements was performed by Lanz, et al. 8 in Zurich, Switzerland identifying a ‘minor’ COA source. Allan, et al. 9 identified, for the first time in the UK, COA, which were found to contribute 34% to OA concentrations. Further ambient OA studies have investigated the COA seasonal trend in the UK10, 11 and other parts of the world.12-15 However, follow up studies in Barcelona, Spain did find specific markers for food activities. 16, 17 China, in particular, has performed several studies, over the last decade, towards online chemical aerosol characterization,18 recognizing cooking emissions to be one of the main primary sources of OA, with studies in urban environments such as Lanzhou,19, 20 Beijing21 and Baoji.22

While COA have been investigated in different ambient studies, their complexity still makes it challenging to fully characterize their chemical properties. Dall’Osto, et al. 23 performed an in-depth characterization of COA at a rural site, where it was stressed that the COA factor, deconvolved from AMS measurements, included other emissions than food cooking. Another important aspect that makes challenging to quantify COA is the aging occurring in ambient air, making the mass spectra of COA experience a seasonal variation, hence there being a difference in summer and winter.24

The use of other techniques to study aerosols allows a better understanding of food cooking aerosols.4, 18 Receptor modeling is a technique that has been successfully used to perform aerosol source apportionment.25-27 Multilinear engine (ME-2) is a source apportionment tool that uses information from previous studies (i.e. mass spectra) as inputs to partially constrain
solutions when identifying sources. However, this technique has ambiguities of its own; there are uncertainties related to the representativeness of the profiles used and uncertainties surrounding the effect phenomena such as semi-volatile repartitioning and chemical aging have on the mass budget and markers. This situation increases the complexity to perform COA source apportionment as they evolve rapidly in the ambient air.

Over more than 15 years, the Aerodyne aerosol mass spectrometers have proven to be a powerful tool to quantify and characterize the composition of non-refractory submicron aerosol concentrations. However, certain studies have identified an overestimation of OA concentrations measured with AMS when compared to collocated measurements. Yin, et al. found food cooking aerosols, identified with positive matrix factorization (PMF), to overestimate CMB results by a factor of two, in spite of a good correlation. Minguillón, et al. determined organic aerosols-to-organic carbon ratios to be higher than unity, stating this is explained by an underestimation of the relative ion efficiency of OA (RIE_{OA}), a parameter the instrument uses to calculate OA concentrations. Murphy presented a model approach to estimate RIE based on molecular mass. While Jimenez, et al. disagreed that the effect was as strong as suggested, however, both agree that RIE values have the potential to be higher than the typical RIE_{OA}=1.4.

There has been a wide range of controlled experiments to investigate different aspects of food cooking aerosols. However, until now there has been no laboratory study analyzing both particle and gas phase emissions using online measurements. Here, we present combined on-line measurements of the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and the filter inlet for gases and aerosols (FIGAERO) attached to the high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS). The HR-ToF-AMS quantifies high time resolution concentrations of OA. However, there is no
molecular information due to the ion fragmentation produced by the strong electron ionization. Hence, the characterization of particles collected with FIGAERO and together with the soft chemical ionization from HR-ToF-CIMS provides additional information such as molecular weight and chemical formula of species within both the gas and particle phases, which will help in bridging the gap between PMF-AMS and CMB analyses and also to assist in interpreting ambient FIGAERO-CIMS data.

This study aims to provide a better understanding of food cooking aerosol chemical characterization, focusing on three main scientific objectives: 1. To investigate potential AMS quantification issues regarding COA; 2. To provide profiles in both the AMS and CIMS to assist in the interpretation of field data; 3. To establish whether emissions from cooking are semi-volatile, and to what extent this may impact upon source apportionment techniques.

2. Methodology

2.1 Measurements. Online measurements of gases and particles, emitted from cooking different types of food, were carried out in a laboratory. A variety of food (fish and chips, English breakfast, vegetables and different types of meat) was cooked using rapeseed (canola) oil. Two types of electric cooking equipment were used; a deep fryer, using three liters of cooking oil; and an induction hob to shallow fry in a pan with a diameter of 22 cm. When shallow frying meat on a flat frying pan, two cooking styles were used; stir-fried, which involves chopping meat into small pieces and stirring meat while cooking; and chop frying. The different cooking methods were used to determine whether they would have an effect on the aerosol chemical composition. The cooking time of each food was between 4-8 minutes depending on the time needed for the food to be completely cooked. A total of 36 experiments were performed. Emissions were directed to a movable extraction cowling where the common sample inlet was located (Figure S1). The sample inlet was optionally attached
to a diluter (Dekati, DI-100), using compressed air to obtain a dilution factor of approximately 1:10. Diluted/non-diluted experiments were performed to investigate gas semi-volatile behavior and its effect on the aerosol budget.

2.2 HR-ToF-AMS and SMPS measurements. Submicron non-refractory aerosol concentrations (OA, SO_4^{2-}, NH_4^+, NO_3^-, and Cl) were measured with a HR-ToF-AMS \cite{31}, hereafter AMS. The procedure to quantify AMS mass concentrations has been previously described \cite{40, 41}. The two main parameters AMS uses to quantify aerosol concentrations are collection efficiency (CE) and relative ionization efficiency (RIE). The CE measures how well particles are transmitted and detected, depending on three terms: the transmission efficiency of the aerodynamic lenses, the transmission loss due to nonsphericity of particles and bouncing of particles when impacting the vaporizer \cite{42, 43}. Aerosols that tend to be liquid and with diameters between 60 and 600 nanometers (nm) present high CE \cite{44, 45}, thus in this study, a CE = 1.0 was used. RIE is the ratio of IE of a given analyte (defined as ions detected per available vapor molecule) relative to the IE of nitrate obtained from ammonium nitrate calibrations. The default value of RIE for OA (RIE$_{OA} =$1.4) used. \cite{35, 36} However, after comparing the AMS aerosol concentrations with Scanning Mobility Particle Sizer (SMPS) measurements, it was found AMS to overestimate aerosol concentrations. This overestimation is attributed to RIE$_{OA}$ to be higher than 1.4. Further details are provided in the Supplement S1. Elemental analysis was performed as described by Aiken, et al. \cite{46} with the “improved ambient” method proposed by Canagaratna, et al. \cite{47}.

Particle number concentration and size distribution, with mobility diameter ranging from 18 to 514 nm, were measured using an SMPS (model 3936, TSI). In order to compare SMPS with AMS measurements, a density of 0.85 g·cm$^{-3}$, average density of rapeseed oil and oleic acid \cite{48}, was used to convert SMPS volume concentration to mass concentration.
2.3 FIGAERO-HR-ToF-CIMS measurements. The HR-ToF-CIMS, hereafter CIMS, with iodide (I) as reagent ion \(^{49}\), was used to measure oxidized organic compounds in the gas phase. \(^{50}\) FIGAERO, coupled to the CIMS measured particle composition. CIMS measured gases over the time food was being cooked while particles were collected on a filter in the FIGAERO inlet. The gas phase measurements were followed by desorption of the collected particles into the CIMS, using a programmed desorption step, where 2 slpm flow of \(N_2\) was ramped from ambient temperature up to 200\(^\circ\) C over 15 minutes and passed through the filter into the inlet to be detected by the CIMS. Both gases and particles were collected using a flow of 2 slpm. Aerosols emitted when cooking English breakfast (composed of tomato, mushroom, eggs, bacon, black pudding and sausages) were collected on one filter, other experiments were also collected in one filter when cooking the same type of food, for example, stir-fried chicken and chop fried chicken. Table 1 shows the desorbed filters using this procedure. Details about FIGAERO-CIMS calibration is provided in Supplement S2.

3 Results

3.1 Aerosol concentrations overview. A wide range of aerosol concentrations was measured with AMS and SMPS. Table 1 shows the information for the performed experiments; non-diluted and diluted, using deep fried and shallow fried as cooking methods. Looking at SMPS concentrations of non-diluted experiments, higher aerosol concentrations were present on shallow fried compared to deep frying. For shallow fried experiments, aerosol average concentrations range from 9.6 \(\mu g\cdot m^{-3}\) for black pudding to 395 \(\mu g\cdot m^{-3}\) for sausages, while deep frying concentrations ranged between 4.3 – 223.5 \(\mu g\cdot m^{-3}\). Other high concentrations include tomato (226.5 \(\mu g\cdot m^{-3}\)) and bacon (247.6 \(\mu g\cdot m^{-3}\)). The fact that tomato shows high concentrations may be explained by the fact that tomato was chopped in half and there was more surface area in contact with the oil/pan. Moreover, the chopped tomato would have a high moisture content, causing more sizzling and therefore mechanical ejection.
3.2 AMS oxidation state. Elemental analysis (oxygen and hydrogen to carbon ratios, O:C and H:C) is an approach to explore the oxidation state of OA. In this study O:C and H:C mean and standard deviation ellipse (SDE) were calculated for the experiments matching with the filters collected with FIGAERO (F0-F17), to study the OA oxidation state which may have implications on source apportionment. The standard deviation ellipse (SDE) used in the graphs to denote spread was calculated following the equations detailed in Gong 51. Figure 1 shows the Van Krevelen diagram with O:C and H:C ratios. When analyzing the SDE in Figure 1.b, shallow frying (continuous lines) shows the greater variability both in O:C and H:C ratios compared to deep frying and (dotted lines). The variation in ratios when shallow frying is expected as this type of cooking involves flipping over the meat and/or stirring food while deep frying cooks food with continuous heating of three litters of oil and relatively little disturbance of the food itself. These findings suggest the effect cooking styles may have on aerosol composition.

Diluted experiments showed higher mean O:C ratios compared to non-diluted experiments (Fig. 1.d): English breakfast, deep fried sausages and Deep fried burgers with 0.28 (F11), 0.28 (F9) and 0.25 (F3) for diluted compared to 0.23 (F10), 0.17 (F8) and 0.19 (F8) for not diluted, respectively. This increment on O:C may result from the evaporation of more volatile molecules, leaving a relatively larger fraction of less volatile molecules with a possible higher O:C in the particle phase. Circles and dotted lines represent deep frying samples in 1.a and 1.b and non-diluted samples in 1.c and 1.d. Triangles and continuous lines represent shallow frying samples in 1.a and 1.b and diluted samples in 1.c and 1.d. OS represents the oxidation state which increases with oxidative aging.52 Blue and red dotted lines in 1.a represent f44 and f43 as used on the triangle plot proposed by Ng, et al. 53. Figures 1.b and 1.d are a zoomed version of figures 1.a and 1.c respectively. Description of filters (f0-f17) is provided in Table 1.
Mean O:C (0.15-0.32) and H:C (1.69-1.86) values observed in this study are compared to the ones seen in the literature. Kaltsonoudis, et al. 24 in a laboratory study from charbroiling meat, exposing emissions to UV illumination and oxidants, found O:C values of 0.09-0.3, with O:C ratios increasing with chemical aging. Ambient O:C ratios from COA have been found with values of (0.10- 0.22). 7, 47, 54, 55 These values are similar to other POA such as HOA with values of 0.14-0.38 47, 54, 56, 57, though HOA presents a higher H:C ratio. While high O:C ratios have been seen on secondary OA (SOA) 0.52-1.02. 47, 54, 56 This increment in O:C ratios from POA to SOA is due to the chemical aging aerosols present in the atmosphere.

While O:C and H:C ratios of this study are similar compared to the ratios from food cooking aerosols found in the literature, O:C and H:C ratios from food cooking aerosols are different from the ones of other primary OA such as HOA, which has a higher H:C or secondary OA with a higher O:C (Refer to Table S4 for more O:C ratios from literature). Diluted experiments presented an increment on O:C, showing what would be expected to happen when aerosols are emitted to the atmosphere with further dilution and aging, as we qualitatively expect the more polar compounds to have a lower vapor pressure.58 Laboratory studies aiming to determine food cooking markers should consider performing diluted experiments to better represent ambient conditions.

3.3 FIGAERO - AMS comparison

The soft chemical ionization of the CIMS provides molecular information of chemical species and, with the use of the FIGAERO inlet, it is possible to identify food cooking markers both in particle and gas phase. In this study, 128 compounds were identified in the gas phase, from which 69 were also identified in the particle phase (Table S3). The sum of the average concentration of the 69 compounds in particle phase, identified in each desorbed filter, was compared to the average OA measurements from AMS. This comparison was performed as a way to validate particle measurements obtained from the FIGAERO. Table 1 indicates the filters taken with
FIGAERO to which AMS averages were calculated. Due to a technical issue, no filter data is available for the first six filters (F0 to F5), thus the following FIGAERO-CIMS analysis will be performed from filters F6 to F17. Additionally, a comparison was performed using levoglucosan, which is a compound identified both with FIGAERO-CIMS and AMS instruments. In the AMS it is typically identified at m/z 60 \(^{59}\) while in the FIGAERO-CIMS it is identified with molecular mass 288.96 g.mol\(^{-1}\) (molecular mass of C\(_6\)H\(_{10}\)O\(_5\) + I). Figure 2 shows non-diluted deep fried sausages (F9) and English breakfast (F10) are the experiments with the highest aerosol concentrations. Both levoglucosan (Figure 2.a) and total aerosol concentrations (Figure2.b) present similar trend. A strong correlation is observed with \(r = 0.88\) for the levoglucosan comparison and \(r = 0.83\) for the total particles comparison. FIGAERO measured 22 times higher levoglucosan concentrations, which is expected as AMS concentrations are the m/z 60 related, a fragment related to levoglucosan. While in the total aerosol comparison, FIGAERO quantified 80\% of OA measured by the AMS, results consistent with previous studies, which have identified FIGAERO to quantify 25-50\% of OA concentrations. \(^{60-62}\)

3.4 FIGAERO-CIMS food cooking markers

Deep frying emitted more gases than shallow frying (Table 2), which is expected due to the larger amount of oil used during deep frying. Eight organic acids were identified as cooking markers in the gas phase: isocyanic (HNCO), formic (CH\(_2\)O\(_2\)), acrylic (C\(_3\)H\(_4\)O\(_2\)), propionic (C\(_3\)H\(_6\)O\(_2\)), hydroxypropionic (C\(_3\)H\(_6\)O\(_3\)), malonic (C\(_3\)H\(_4\)O\(_4\)), hexanoic (C\(_6\)H\(_{12}\)O\(_2\)) and adipic (C\(_6\)H\(_{10}\)O\(_4\)). These organic acids were chosen as markers as they were present in all cooking samples with high concentrations. Hydroxypropionic acid was the compound with a higher presence in gas phase both on deep frying and shallow frying. In general, HNCO concentrations were identified in the majority of the samples. HNCO has been related to biomass burning \(^{63}\) and traffic emissions. \(^{64}\) However, to our knowledge, no studies in the
literature have reported HNCO concentrations emitted from food cooking. Roberts, et al. reported HNCO concentrations to be related to coal used as a fuel to cook but not to the food itself.

Nitrogen-containing compounds have been previously found to have negative effects to human health and have been identified on cooking emissions. They may be emitted either from the food itself or also from additives. In this study, 14 different nitrogen-containing compounds were identified both in the gas and particle phase (Table S5). $C_4H_2NO_2$ and parabanic acid ($C_5H_2N_2O_3$), during deep-frying experiments, were identified only in the gas phase. The rest of the nitrogen-containing compounds were identified mainly in the particle phase: Creatinine ($C_4H_7N_3O$), nitrobenzene ($C_6H_5NO_2$), $C_6H_5NO_2$, $C_5H_7N_2O_2$, $C_5H_8NO_3$, $C_6H_{13}NO_2$, $C_5H_9N_3O_2$ and $C_{13}H_{15}NO_2$ were present only in shallow frying experiments. Nicotinamide ($C_6H_6N_2O$), nitrobenzene, $C_6H_5NO_2$ and $C_5H_8NO_3$ were mainly emitted from non-diluted deep fried sausages (filter9), diluted shallow fried pork (filter15) and diluted shallow fried lamb (filter16). While it was not possible to determine or speculate at the structure of many of the identified nitrogen-containing compounds, given the potential impacts of this compound class, it is worth reporting their presence and contribution to food cooking emissions, which were mainly found in the particle phase. Further studies should be aimed to further characterize and quantify these nitrogen-containing compounds.

4 Discussion

4.1 Relative Ion Efficiency of OA. The AMS has been widely used to measure the chemical composition of non-refractory aerosols. However, it has been found to report food cooking OA concentrations to be greater than other measurement techniques. Table S1 shows OA has higher concentrations compared to SMPS, resulting in OA/SMPS ratios to be higher than unity. OA concentrations were originally calculated with $\text{RIE}_{\text{OA}} = 1.4$, as suggested by Alfarra, et al. However, it has been previously shown that RIE_{OA} values may
vary within functional groups. An increment on RIE\textsubscript{OA} will decrease the reported OA concentration. Hence, the hypothesis here is that the overestimation of OA measurements compared to SMPS is due to RIE\textsubscript{OA} to be higher than 1.4.

This shows that RIE\textsubscript{OA_corr} values are higher than 1.4, with values between 1.56 and 3.06 (Table S2). The highest RIE\textsubscript{OA_corr} value of 3.06 was observed with diluted deep fried experiments. This value is in agreement with Murphy34 and Jimenez, et al.35, who reported oleic acid to have an RIE of 2.8-4.0 and 3.2 respectively. After heating, oleic acid is the main component of rapeseed oil 63\% - 70\%67, 68, and this hypothesis is further supported by the fact that high RIE\textsubscript{OA_corr} values were present with deep fried experiments, where much of the particulate matter likely originates from the recondensation of semivolatiles from the oil or the mechanical ejection of oil by bubbles bursting during frying. The low RIE\textsubscript{OA_corr} values for shallow fried indicate that the OA emissions from meat and vegetables have RIEs closer to the default of 1.4.

The increment on RIE\textsubscript{OA}, combined with the assumed CE of 1, found in this study explains the good correlation but quantitative disagreement between PMF-AMS and CMB reported by Yin, et al.32 and also agrees with Minguillón, et al.33 who also found RIE\textsubscript{OA} to be higher than 1.4. It is worth mentioning a possible limitation of SMPS mass concentrations obtained is that a density of 0.85 g·cm-3 is assumed, which may not be accurate. However, the deviations in RIE reported are deemed to be larger than the plausible uncertainty in density. The RIE result has significant implications for ambient measurements of COA. While COA concentrations have often been reported to be a significant contribution to primary OA aerosol concentrations, these could have been overestimated in previous studies. However, it is unlikely that the bulk OA concentrations have been systematically misreported overall, as these have frequently compared favorably with external comparisons.35 If the COA
specifically is being over-reported, then this should be accordingly corrected after it has been
isolated using factorization.

4.2 Food cooking AMS mass spectra. Source apportionment tools, like the multilinear
engine (ME-2), use inputs in the way of mass spectra or time series, to partially constrain
solutions and better deconvolve OA sources.28 Mass spectra of COA have certain
characteristics that make them different to mass spectra from other sources, for example the
signals at m/z 41, m/z 55 and m/z 57, with a higher signal at m/z 55 compared to m/z 57.9,12
23 The generation of mass spectra, from different types of food cooking and a better
understanding of their variations, will help to improve COA source apportionment. In this
study, a comparison was performed within the mass spectra obtained from the experiments
and with the mass spectra from other ambient and laboratory studies. Table S6 shows the
uncentered Pearson’s correlation coefficients (ρ_r, also known as the ‘normalized dot product’
or ‘cosine angle’) and Table S7 shows the list of external mass spectra used in the
comparison.

The correlations performed within the experiments showed high ρ_r values ranging from
0.876 when comparing two different cooking and meat types (diluted shallow fried chicken
vs non-diluted deep fried burgers) to 0.999 when comparing deep fried burgers diluted vs
non-diluted. Fish and chips and English breakfast also showed high ρ_r values when
comparing diluted and non-diluted experiments, suggesting diluting presents little effect on
mass spectra.

A decrease on correlations were observed when comparing the mass spectra of this study
with COA mass spectra from previous ambient studies, with ρ_r values from 0.734 (non-
diluted deep fried fish and chips vs COA from Lanz, et al.8) to 0.991 (diluted deep fried
sausages vs COA from Reyes-Villegas, et al.69). The low correlations obtained when
comparing mass spectra of this study with COA from Lanz, et al.8 might be expected as the
later was the first PMF-AMS study, focused more on the development of the methodology and was contained within a higher-order solution, where the authors expressed doubts as to its accuracy.

From these correlations, we can see that when cooking different types of meat/vegetables and using a variety of cooking styles (deep frying and shallow frying), mass spectra from fresh emissions do not vary significantly. However, the decrease in σ_F values when compared with mass spectra from past ambient studies from the literature, suggests aging of food cooking aerosols (through repartitioning or chemical reactions) in the atmosphere that are not capture here.

4.3 Effect of dilution on food cooking aerosols. From the desorption analysis, 69 compounds were identified in the particle phase (Table S3). From this list, Table 4 shows the 12 compounds that have been previously identified as cooking markers 4, 26, 70, 71 Levoglucosan ($C_6H_{10}O_5$), dicarboxylic acids: succinic ($C_4H_6O_4$), glutaric ($C_5H_8O_4$), pimelic ($C_7H_12O_4$), suberic ($C_8H_{14}O_4$), azelaic ($C_9H_{16}O_4$), sebacic ($C_{10}H_{18}O_4$), dodecanedioic ($C_{12}H_{22}O_4$), and carboxylic acids: palmitic ($C_{16}H_{32}O_2$), margaric ($C_{17}H_{34}O_2$), linoleic ($C_{18}H_{32}O_2$) and oleic ($C_{18}H_{34}O_2$). However, the majority of these markers have been identified from off-line measurements or from gas and particle measurements in separate studies. Here we show near real-time measurements of both gases and particles, gas-to-particle ratios (G/P) and the effect of dilution.

These 12 compounds are considered to be cooking markers in the particle phase as they were found mainly during the filter desorption. Even when they were identified as being present in the gas phase, the G/P ratio is still lower than unity. In contrast, for the gas phase cooking markers presented in Table 2, the G/P ratio was greater than unity. G/P ratios were calculated from average gas and particle counts·sec$^{-1}$ (Table 3). It is worth mentioning that some of these compounds are also found to be in other sources; for example, levoglucosan
has been used as a marker of biomass burning aerosols.70 Succinic, glutaric, pimelic acids and levoglucosan were found mainly in the gas phase for the diluted deep frying experiments (F7 and F8). Denoting the high variability of gas-particle partitioning and the implication of different cooking conditions in the food cooking emissions.

Higher G/P ratios were observed with diluted experiments compared to non-diluted. Deep fried sausages (F9) present higher G/P ratios with Succinic, glutaric, pimelic, levoglucosan, suberic and azealic compared with diluted deep fried sausages (F8). A similar situation was present with diluted and non-diluted deep fried burgers (F7 and F6 respectively) and English breakfast (F11 and F10 respectively). This behavior is explained in that with diluting experiments, light molecular masses will tend to be more in the gas phase than species with high molecular mass, which will tend to stay in the particle phase. This suggests that the use of these as cooking markers for CMB analysis may be problematic, as their particle-phase concentrations may diminish with dilution, although whether this creates a positive or negative artifact will depend on whether their rate of evaporation is consistent with that of the overall mass of particulate used in the mass balance model.

ASSOCIATED CONTENT

Supporting Information

The supplement material includes a figure showing the instrument arrangement (Figure S1), a list of all cooking experiments (Table S1), a table with AMS and SMPS average concentrations (Table S2), a figure with mass and number size distributions (Figure S2), a list of all the compounds identified on gas and particle (Table S3), a table with O:C and H:C ratios from the literature (Table S4), a table with nitrogen-containing markers (Table S5), a table with uncentered Pearson values for mass spectra comparison (Table S6) and a list with the references of the external cooking mass spectra used on the comparison (Table S7).
AUTHOR INFORMATION

Corresponding author.

* e-mail: ernesto.reyesvillegas@manchester.ac.uk

\(\triangleright \) e-mail: james.allan@manchester.ac.uk

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Ernesto Reyes-Villegas is supported by a studentship by the National Council of Science and Technology-Mexico (CONACYT) under registry number 217687.

REFERENCES

(16) Alier, M.; van Drooge, B. L.; Dall’Osto, M.; Querol, X.; Grimault, J. O.; Tauler, R., Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS. Atmos. Chem. Phys. 2013, 13, (20), 10353-10371.

weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass
spectrometer”. *Aerosol Science and Technology* **2016**, *50*, (9), i-xv.

Jayne, J. T.; Gaffrotch, A. A.; Li, S.-M.; Worsnop, D. R., Characterization of urban and rural organic
particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers. *Atmos

(37) Mohr, C.; Huffman, J. A.; Cubison, M. J.; Aiken, A. C.; Docherty, K. S.; Kimmel, J. R.; Ulbrich, I. M.;
Hannigan, M.; Jimenez, J. L., Characterization of Primary Organic Aerosol Emissions from Meat
Cooking, Trash Burning, and Motor Vehicles with High-Resolution Aerosol Mass Spectrometry and
43, (7), 2443-2449.

Fu, X. X.; Chen, L. G., Composition profiles of organic aerosols from Chinese residential cooking: case

impacting emission/concentration of cooking generated particulate matter. *Science of The Total

Flagan, R. C.; Zhang, X.; Smith, K. A., Ambient aerosol sampling using the aerodyne aerosol mass

for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer

(42) Huffman, J. A.; Jayne, J. T.; Drewnick, F.; Aiken, A. C.; Onasch, T.; Worsnop, D. R.; Jimenez, J. L.,
Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the

(43) Middlebrook, A. M.; Bahreini, R.; Jimenez, J. L.; Canagaratna, M. R., Evaluation of Composition-
Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data.

(44) Matthew, B. M.; Middlebrook, A. M.; Onasch, T. B., Collection Efficiencies in an Aerodyne
Aerosol Mass Spectrometer as a Function of Particle Phase for Laboratory Generated Aerosols.
Aerosol Science and Technology **2008**, 42, (11), 884-898.

(45) Hennigan, C. J.; Miracolo, M. A.; Engelhart, G. J.; May, A. A.; Presto, A. A.; Lee, T.; Sullivan, A. P.;
Schichtel, B. A.; Collett Jr, J. L.; Kreidenweis, S. M.; Robinson, A. L., Chemical and physical
transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an

(46) Aiken, A. C.; DeCarlo, P. F.; Jimenez, J. L., Elemental analysis of organic species with electron

Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; Surratt, J. D.; Donahue, N. M.; Jayne, J. T.; Worsnop,
D. R., Elemental ratio measurements of organic compounds using aerosol mass spectrometry:

(48) Noureddini, H.; Teoh, B. C.; Davis Clements, L., Densities of vegetable oils and fatty acids.

Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to
6309-6317.

<table>
<thead>
<tr>
<th>Food</th>
<th>Exp. #</th>
<th>Diluted</th>
<th>OA (µg.m(^{-3}))</th>
<th>SMPS (µg.m(^{-3}))</th>
<th>Diameter (nm)</th>
<th>Peak dM/DlogDp</th>
<th>Filter #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep fried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish&chips</td>
<td>E1</td>
<td>N</td>
<td>23.8</td>
<td>16.1</td>
<td>346</td>
<td>37</td>
<td>F0</td>
</tr>
<tr>
<td>Fish&chips</td>
<td>E2</td>
<td>N</td>
<td>54.7</td>
<td>21.9</td>
<td>429</td>
<td>18</td>
<td>F1</td>
</tr>
<tr>
<td>Fish&chips</td>
<td>E3</td>
<td>Y</td>
<td>5.3</td>
<td>4.3</td>
<td>385</td>
<td>10</td>
<td>F2</td>
</tr>
<tr>
<td>Fish&chips</td>
<td>E4</td>
<td>Y</td>
<td>5.8</td>
<td>4.3</td>
<td>334</td>
<td>11</td>
<td>F5</td>
</tr>
<tr>
<td>Burgers</td>
<td>E5</td>
<td>Y</td>
<td>10.8</td>
<td>13.2</td>
<td>98</td>
<td>28</td>
<td>F3</td>
</tr>
<tr>
<td>Burgers</td>
<td>E6</td>
<td>N</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>F4</td>
</tr>
<tr>
<td>Burgers</td>
<td>E7</td>
<td>N</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>F5</td>
</tr>
<tr>
<td>Burgers</td>
<td>E8</td>
<td>N</td>
<td>87.9</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>F6</td>
</tr>
<tr>
<td>Burgers</td>
<td>E9</td>
<td>N</td>
<td>93.7</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>F7</td>
</tr>
<tr>
<td>Burgers</td>
<td>E10</td>
<td>Y</td>
<td>7.6</td>
<td>11.1</td>
<td>136</td>
<td>17</td>
<td>F8</td>
</tr>
<tr>
<td>Burgers</td>
<td>E11</td>
<td>Y</td>
<td>9.1</td>
<td>21.5</td>
<td>131</td>
<td>47</td>
<td>F9</td>
</tr>
<tr>
<td>Sausages</td>
<td>E12</td>
<td>Y</td>
<td>9.7</td>
<td>12.3</td>
<td>105</td>
<td>18</td>
<td>F10</td>
</tr>
<tr>
<td>Sausages</td>
<td>E13</td>
<td>N</td>
<td>183.0</td>
<td>223.5</td>
<td>151</td>
<td>452</td>
<td>F11</td>
</tr>
<tr>
<td>Shallow Fried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomato</td>
<td>E14</td>
<td>N</td>
<td>240.1</td>
<td>226.5</td>
<td>346</td>
<td>286</td>
<td>F12</td>
</tr>
<tr>
<td>Mushroom</td>
<td>E15</td>
<td>N</td>
<td>112.7</td>
<td>117.9</td>
<td>334</td>
<td>204</td>
<td>F13</td>
</tr>
<tr>
<td>Eggs</td>
<td>E16</td>
<td>N</td>
<td>28.0</td>
<td>47.0</td>
<td>102</td>
<td>65</td>
<td>F14</td>
</tr>
<tr>
<td>Bacon</td>
<td>E17</td>
<td>N</td>
<td>219.7</td>
<td>247.6</td>
<td>157</td>
<td>392</td>
<td>F15</td>
</tr>
<tr>
<td>Black pudding</td>
<td>E18</td>
<td>N</td>
<td>19.0</td>
<td>9.6</td>
<td>146</td>
<td>12</td>
<td>F16</td>
</tr>
<tr>
<td>Sausages</td>
<td>E19</td>
<td>N</td>
<td>424.1</td>
<td>395.0</td>
<td>260</td>
<td>540</td>
<td>F17</td>
</tr>
<tr>
<td>Tomato</td>
<td>E20</td>
<td>Y</td>
<td>15.3</td>
<td>17.7</td>
<td>209</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Mushroom</td>
<td>E21</td>
<td>Y</td>
<td>10.8</td>
<td>7.5</td>
<td>241</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>E22</td>
<td>Y</td>
<td>1.8</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Bacon</td>
<td>E23</td>
<td>Y</td>
<td>4.6</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Sausages</td>
<td>E24</td>
<td>Y</td>
<td>16.8</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Black pudding</td>
<td>E25</td>
<td>Y</td>
<td>4.0</td>
<td>3.5</td>
<td>109</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bacon</td>
<td>E26</td>
<td>Y</td>
<td>2.9</td>
<td>2.8</td>
<td>64</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Salmon</td>
<td>E27</td>
<td>Y</td>
<td>20.8</td>
<td>18.2</td>
<td>131</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Salmon_SF</td>
<td>E28</td>
<td>Y</td>
<td>16.9</td>
<td>16.1</td>
<td>131</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Burgers</td>
<td>E29</td>
<td>Y</td>
<td>30.9</td>
<td>23.2</td>
<td>131</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Vegetables_SF</td>
<td>E30</td>
<td>Y</td>
<td>61.1</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Vegetables_SF</td>
<td>E31</td>
<td>Y</td>
<td>96.1</td>
<td>45.3</td>
<td>399</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Pork</td>
<td>E32</td>
<td>Y</td>
<td>21.3</td>
<td>22.3</td>
<td>122</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Lamb</td>
<td>E33</td>
<td>Y</td>
<td>49.0</td>
<td>51.8</td>
<td>175</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Lamb_SF</td>
<td>E34</td>
<td>Y</td>
<td>8.3</td>
<td>8.3</td>
<td>269</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td>E35</td>
<td>Y</td>
<td>26.8</td>
<td>33.3</td>
<td>118</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Chicken_SF</td>
<td>E36</td>
<td>Y</td>
<td>8.0</td>
<td>8.7</td>
<td>98</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

E= Experiment, N=No Y=Yes, SF = steer-fried, ** samples were lost. , F=Filter.
Figure 1. Van Krevelen diagram with mean (markers) and SDE (lines) of O:C and H:C.

Figure 2. FIGAERO-AMS comparison for levoglucosan (a) and OA (b) concentrations. Red lines show linear regression. Description of filter numbers (F0-F17) is provided in Table 1.
Table 2. Cooking markers in the gas phase.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Name</th>
<th>G</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
<th>F11</th>
<th>F12</th>
<th>F13</th>
<th>F14</th>
<th>F15</th>
<th>F16</th>
<th>F17</th>
<th>Mass + I</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNO</td>
<td>Isocyanic acid</td>
<td>G</td>
<td>7.84</td>
<td>17.02</td>
<td>13.11</td>
<td>3.94</td>
<td>9.16</td>
<td>1.58</td>
<td>3.34</td>
<td>2.20</td>
<td>1.12</td>
<td>2.48</td>
<td></td>
<td>169.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>C₂H₄O₃</td>
<td>Formic acid</td>
<td>G</td>
<td>16558.40</td>
<td>13439.20</td>
<td>8726.79</td>
<td>14167.10</td>
<td>5146.27</td>
<td>762.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>172.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>1.12</td>
<td>2.48</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>65.54</td>
<td>40.40</td>
<td>83.42</td>
<td></td>
</tr>
<tr>
<td>C₃H₄O₃</td>
<td>Acrylic acid</td>
<td>G</td>
<td>5167.44</td>
<td>1351.57</td>
<td>623.29</td>
<td>2737.11</td>
<td>55.43</td>
<td>3.34</td>
<td>2.14</td>
<td>1.32</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
<td>198.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>1404.82</td>
<td>766.57</td>
<td>467.14</td>
<td>143.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₃H₆O₂</td>
<td>Propionic acid</td>
<td>G</td>
<td>17.59</td>
<td>9.24</td>
<td>4.57</td>
<td>8.63</td>
<td>4.02</td>
<td>3.66</td>
<td>1.54</td>
<td>5.62</td>
<td>6.17</td>
<td>0.89</td>
<td>1.94</td>
<td>1.42</td>
<td>200.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>9.31</td>
<td></td>
<td>4.55</td>
</tr>
<tr>
<td>C₃H₆O₃</td>
<td>Hydroxypropionic acid</td>
<td>G</td>
<td>109170.00</td>
<td>79445.60</td>
<td>5885.04</td>
<td>148357.00</td>
<td>3672.54</td>
<td>7397.47</td>
<td>5885.04</td>
<td>12605.70</td>
<td>11146.40</td>
<td>4858.39</td>
<td></td>
<td>216.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>31.60</td>
<td>37.53</td>
<td>42.43</td>
<td>83.59</td>
<td>11.40</td>
<td>0.93</td>
<td>4.43</td>
<td>7.40</td>
<td>1.59</td>
<td>23.32</td>
<td>3.22</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>17.20</td>
<td>11.55</td>
<td>20.58</td>
<td>16.68</td>
<td>1.07</td>
<td>7.88</td>
<td>7.94</td>
<td>7.58</td>
<td>15.16</td>
<td>9.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₄H₆O₂</td>
<td>Malonic acid</td>
<td>G</td>
<td>215.00</td>
<td>184.02</td>
<td>149.88</td>
<td>198.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.25</td>
<td>0.15</td>
<td>0.20</td>
<td>0.76</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>4.26</td>
<td>6.37</td>
<td>8.39</td>
<td>3.37</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₁₀O₂</td>
<td>Hexanoic acid</td>
<td>G</td>
<td>109.34</td>
<td>145.24</td>
<td>109.86</td>
<td>72.43</td>
<td>20.83</td>
<td>7.58</td>
<td>4.52</td>
<td>7.87</td>
<td>12.44</td>
<td></td>
<td></td>
<td></td>
<td>240.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.11</td>
<td>0.04</td>
<td>0.05</td>
<td>0.46</td>
<td>0.19</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>4.83</td>
<td>19.22</td>
<td>17.52</td>
<td>2.01</td>
<td>0.56</td>
<td>1.16</td>
<td>0.70</td>
<td>8.89</td>
<td>16.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₁₀O₄</td>
<td>Adipic acid</td>
<td>G</td>
<td>99.32</td>
<td>105.15</td>
<td>95.84</td>
<td>144.49</td>
<td>15.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>272.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td>2.27</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td>0.82</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* G= Gas [formic equiv. ppt], P = Particle [formic equiv. µg·m⁻³], R= G/P Ratio [calculated using raw signal]. Mass+I = Molecular mass of compound + I. Description of filters (f0-f17) is provided in Table 1.
Table 3. Cooking markers in the particle phase.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Name</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
<th>F11</th>
<th>F12</th>
<th>F13</th>
<th>F14</th>
<th>F15</th>
<th>F16</th>
<th>F17</th>
<th>Mass + I</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂H₄O₂</td>
<td>Succinic acid</td>
<td>G</td>
<td>431.33</td>
<td>500.52</td>
<td>275.54</td>
<td>855.15</td>
<td>79.22</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>244.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>24.65</td>
<td>0.03</td>
<td>2.00</td>
<td>53.19</td>
<td>6.61</td>
<td>0.08</td>
<td>0.15</td>
<td>0.38</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.15</td>
<td>2.92</td>
<td>1.54</td>
<td>0.21</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₃H₇O₂</td>
<td>Saturated</td>
<td>G</td>
<td>174.82</td>
<td>226.38</td>
<td>246.82</td>
<td>255.09</td>
<td>83.62</td>
<td>113.96</td>
<td>50.31</td>
<td>49.86</td>
<td>70.40</td>
<td>44.02</td>
<td></td>
<td>258.94</td>
</tr>
<tr>
<td></td>
<td>acid</td>
<td>F</td>
<td>4.12</td>
<td>0.51</td>
<td>1.13</td>
<td>28.63</td>
<td>10.83</td>
<td>0.33</td>
<td>0.45</td>
<td>1.01</td>
<td>2.37</td>
<td>0.89</td>
<td>0.11</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.21</td>
<td>2.43</td>
<td>2.46</td>
<td>0.11</td>
<td>0.03</td>
<td>0.43</td>
<td>0.53</td>
<td>0.57</td>
<td>0.16</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₄H₈O₂</td>
<td>Pimelic acid</td>
<td>G</td>
<td>51.16</td>
<td>62.47</td>
<td>81.97</td>
<td>86.46</td>
<td>43.75</td>
<td>21.60</td>
<td>0.67</td>
<td>9.52</td>
<td></td>
<td></td>
<td></td>
<td>286.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.99</td>
<td>0.20</td>
<td>0.38</td>
<td>4.70</td>
<td>1.37</td>
<td>0.05</td>
<td>0.15</td>
<td>0.36</td>
<td>0.36</td>
<td>0.02</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.26</td>
<td>1.73</td>
<td>2.44</td>
<td>0.24</td>
<td>0.11</td>
<td>0.95</td>
<td>0.09</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₅H₁₀O₂</td>
<td>Levoglucosan</td>
<td>G</td>
<td>679.57</td>
<td>762.16</td>
<td>925.19</td>
<td>1351.75</td>
<td>427.93</td>
<td>261.77</td>
<td>76.61</td>
<td>117.53</td>
<td>521.84</td>
<td>165.73</td>
<td></td>
<td>288.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>16.83</td>
<td>2.09</td>
<td>4.16</td>
<td>71.14</td>
<td>25.00</td>
<td>1.18</td>
<td>1.28</td>
<td>3.19</td>
<td>9.37</td>
<td>2.77</td>
<td>0.28</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.20</td>
<td>1.98</td>
<td>2.48</td>
<td>0.24</td>
<td>0.06</td>
<td>0.10</td>
<td>0.28</td>
<td>0.44</td>
<td>0.25</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₁₀O₄</td>
<td>Suberic acid</td>
<td>G</td>
<td>3.28</td>
<td>8.86</td>
<td>9.40</td>
<td>5.50</td>
<td>6.59</td>
<td>7.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.20</td>
<td>0.06</td>
<td>0.12</td>
<td>1.06</td>
<td>0.95</td>
<td>0.05</td>
<td>0.16</td>
<td>0.20</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.06</td>
<td>0.83</td>
<td>0.85</td>
<td>0.07</td>
<td>0.02</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₇H₁₂O₄</td>
<td>Azelaic acid</td>
<td>G</td>
<td>2.93</td>
<td>1.25</td>
<td></td>
<td></td>
<td>4.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>315.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.37</td>
<td>0.07</td>
<td>0.16</td>
<td>1.24</td>
<td>0.70</td>
<td>0.04</td>
<td>0.10</td>
<td>0.20</td>
<td>0.12</td>
<td>0.07</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.21</td>
<td>0.09</td>
<td></td>
<td></td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.34</td>
<td>0.02</td>
</tr>
<tr>
<td>C₈H₁₀O₄</td>
<td>Sebamic acid</td>
<td>G</td>
<td>12.71</td>
<td>4.97</td>
<td>7.34</td>
<td>9.44</td>
<td>0.53</td>
<td>41.15</td>
<td>23.63</td>
<td></td>
<td></td>
<td></td>
<td>329.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.08</td>
<td>0.04</td>
<td>0.09</td>
<td>0.32</td>
<td>0.34</td>
<td>0.02</td>
<td>0.06</td>
<td>0.14</td>
<td>0.06</td>
<td>0.03</td>
<td>0.18</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.67</td>
<td>0.37</td>
<td>0.62</td>
<td>0.78</td>
<td>0.25</td>
<td>1.02</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₀H₁₄O₆</td>
<td>Dodecanedioic</td>
<td>G</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>357.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acid</td>
<td>F</td>
<td>0.07</td>
<td>0.18</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.33</td>
<td>0.17</td>
<td>0.24</td>
<td>0.44</td>
<td>0.34</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₁H₁₄O₆</td>
<td>Palmitic acid</td>
<td>G</td>
<td>36.36</td>
<td>19.15</td>
<td>23.18</td>
<td>19.12</td>
<td>12.95</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>383.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.79</td>
<td>0.43</td>
<td>0.76</td>
<td>1.73</td>
<td>0.84</td>
<td>0.14</td>
<td>0.54</td>
<td>0.11</td>
<td>2.03</td>
<td>0.49</td>
<td>0.31</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td>0.33</td>
<td>0.17</td>
<td>0.24</td>
<td>0.44</td>
<td>0.34</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₂H₁₄O₆</td>
<td>Margaric acid</td>
<td>G</td>
<td>1.40</td>
<td>0.53</td>
<td>1.06</td>
<td>0.83</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>397.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.06</td>
<td>0.03</td>
<td>0.07</td>
<td>0.13</td>
<td>0.09</td>
<td>0.02</td>
<td>0.04</td>
<td>0.17</td>
<td>0.04</td>
<td>0.01</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.12</td>
<td>0.06</td>
<td>0.10</td>
<td>0.13</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.34</td>
<td>0.00</td>
</tr>
<tr>
<td>C₁₃H₁₆O₆</td>
<td>Linoleic acid</td>
<td>G</td>
<td>6.94</td>
<td>3.80</td>
<td></td>
<td>40.76</td>
<td>29.16</td>
<td>32.13</td>
<td>28.49</td>
<td>25.28</td>
<td>5.68</td>
<td>4.72</td>
<td></td>
<td>407.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>1.44</td>
<td>0.59</td>
<td>0.91</td>
<td>2.82</td>
<td>1.96</td>
<td>0.28</td>
<td>0.60</td>
<td>1.27</td>
<td>0.50</td>
<td>0.92</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
<td>0.18</td>
<td>0.21</td>
<td>0.29</td>
<td>0.90</td>
<td>0.35</td>
<td>0.15</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₄H₁₈O₆</td>
<td>Oleic acid</td>
<td>G</td>
<td>9.90</td>
<td>2.47</td>
<td></td>
<td>77.77</td>
<td>66.31</td>
<td>65.88</td>
<td>61.71</td>
<td>55.90</td>
<td>9.54</td>
<td>8.88</td>
<td></td>
<td>409.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>4.37</td>
<td>1.88</td>
<td>2.93</td>
<td>8.58</td>
<td>3.94</td>
<td>0.61</td>
<td>1.49</td>
<td>3.85</td>
<td>1.36</td>
<td>2.12</td>
<td>0.93</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>0.03</td>
<td>0.01</td>
<td>0.16</td>
<td>0.18</td>
<td>0.20</td>
<td>0.24</td>
<td>0.33</td>
<td>0.05</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* G = Gas [formic equiv. ppt], P = Particle [formic equiv. µg·m⁻³], R = G/P Ratio (of raw signals). Mass + I = Molecular mass of compound + I. Description of filters (F0-f17) is provided in Table 1.