What factors are associated with the prevalence of atopic symptoms amongst adolescents in Greater Manchester?

Raha Katebi, Greg Williams, Michael Bourke, Annie Harrison, Arpana Verma

Manchester Urban Collaboration on Health, Centre for Epidemiology, Institute for Population Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK

Correspondence: Dr Arpana Verma, Manchester Urban Collaboration on Health, Centre for Epidemiology, Institute for Population Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK, Tel: +44 (0)161 275 5206, e-mail: arpana.verma@manchester.ac.uk

Introduction: Atopy commonly manifests itself as atopic diseases (ADs), namely asthma, eczema and hay fever. The prevalence of AD is rising worldwide, and it is widely accepted as a major public health issue, due to the significant burden of AD on health care systems. Method: Data were obtained from the youth survey of the European Urban Health Indicator System 2 project. The study participants were students aged 14–16 years from Greater Manchester. The main outcomes measured were the prevalence of atopic symptoms and the factors associated with the development of atopy. Results: Of the sample studied, 70% reported having had an AD during their lifetime. The lifetime prevalence of ever having asthma, eczema or hay fever was 33.4%, 28.1% and 49.0%, respectively. Gender, family affluence, body mass index, diet, smoking and worrying were all significantly associated with atopic symptoms. Smoking was the only variable to be significantly associated with all three ADs. Season of birth and pollution were not shown to be associated with atopic symptoms. This study provides a baseline for future studies to further investigate the factors that are associated with AD and allow for the implementation of preventative public health policy.

Introduction

Atopy is defined as an immunological disorder determined by a complex combination of genetic and environmental factors. Atopic individuals produce specific Immunoglobulin E (IgE) in response to exposure to environmental allergens. Atopy commonly manifests itself as atopic diseases (ADs), namely asthma, eczema and hay fever. The prevalence of AD is rising worldwide, and it is widely accepted as a major public health issue, due to the significant burden AD has on health care systems. Despite a wealth of research, the aetiology of AD remains poorly understood. Epidemiological studies form the foundation of efforts to enhance knowledge of risk and protective factors as well as the changing prevalence of AD. Identifying such factors will determine future direction for research into causation, prevention and public health policy.

Significant geographical variations have been observed with respect to the prevalence of AD worldwide, with the highest prevalence rates for asthma in Western countries and the lowest in developing countries. Both eczema and hay fever have a more scattered worldwide distribution.

The UK has one of the highest prevalences of allergic disease in the world. The burden of AD in the UK is further put into perspective...
Factors associated with the prevalence of atopic symptoms

Methods

The methodology for the youth survey, including the sampling strategy, can be found in ‘Collecting standardised urban health indicator data at an individual level for school-aged children living in urban areas (UAs): methods from EURO-URHIS 2’. The main outcome measures relating to AD for this study were the prevalence of AD and the factors that are associated with the prevalence of AD. Twelve-month prevalence of atopy was measured in reference to self-reported symptoms of asthma, eczema and hay fever ‘in the last 12 months’, namely wheezing, rhinitis and an itchy rash. The lifetime prevalence was measured in reference to ‘ever’ having a diagnosis of asthma, eczema or hay fever. To determine the factors associated with the development of atopy, associations between dependent variables (symptoms of asthma, eczema and hay fever in the last 12 months) and independent variables were measured. The variables included gender, SOB, family affluence (calculated according to the Family Affluence Scale, WHO Europe—http://www.who.int/__data/assets/pdf_file/0005/53852/E91416.pdf), self-reported BMI, diet, smoking status, whether they worry a lot and exposure to pollution.

All data were analysed using SPSS version 16. Prevalence rates were calculated by dividing the number of positive responses to survey questions (numerator) by the total number of survey participants (denominator). Associations between the prevalence of AD and individual variables were established with cross tabulations using Pearson’s Chi Squared Test.

Results

The response rate to the EURO-URHIS 2 youth survey was 86.3% (n = 4017). A total of 3466 adolescents completed the EURO-URHIS 2 youth survey across the 10 UAs of GM. Out of the total sample, 46.6% were male and 53.4% were female. The ages of the sample ranged between 14 and 16 years (mean age was 14.97 years). More detailed demographics of the sample are reported in table 1.

The reported lifetime prevalence of ever having asthma, eczema or hay fever was 32.4%, 27.6% and 47.5%, respectively. Overall, 70.0% of respondents reported having one or more ADs in their lifetime. Of these, 37.1% reported only having one AD, 25.6% reported having two ADs and 7.4% reported having all three ADs in their lifetime; 18.6% reported wheezing, 31.0% reported rhinitis and 11.8% reported an itchy rash in the last 12 months. Overall, 46.6% of the sample reported suffering from at least one or more ADs in the last 12 months. Of these, 32.3% reported only having one AD, 12.0% reported having two ADs and 2.1% reported having all three ADs over the past 12 months.

Figure 1 compares the lifetime prevalence of AD and the 12-month prevalence of atopic symptoms. There was a significant difference between the number of adolescents reporting wheezing, an itchy rash and rhinitis in the last 12 months compared with adolescents reporting asthma (χ², P < 0.001), eczema (χ², P < 0.001) and hay fever (χ², P < 0.001) in their lifetime.

Asthma

No statistically significant associations were seen between wheezing in the last 12 months and self-reported BMI, SOB, worrying and pollution.

There were significant associations between adolescents reporting asthmatic symptoms in the last 12 months and gender, family affluence, school performance, diet and smoking status. Table 2 outlines the significant associations.

Eczema

No statistically significant associations were seen between symptoms of eczema and the following in the previous 12 months: SOB; family...
There were significant associations between adolescents reporting symptoms of eczema and the following in the previous 12 months: gender; self-reported BMI; smoking status and worrying. Table 2 outlines the significant associations.

Hay fever

No statistically significant associations were seen between adolescents reporting symptoms of hay fever and the following in the previous 12 months: gender; SOB; self-reported BMI and pollution.

There were significant associations between adolescents reporting symptoms of hay fever and the following in the previous 12 months: school performance; diet (specifically eating fruit and chips regularly); family affluence; smoking status and worrying. Table 2 outlines the significant associations.

Discussion

Seventy percent of adolescents in GM had suffered from an AD during their lifetime and 46.6% had suffered from atopic symptoms in the last 12 months. The variables that were significantly associated with ADs are summarized in table 3 ($P < 0.05$).

The lifetime co-prevalence of asthma, eczema and hay fever in the study was 7.4%, and the 12-month co-prevalence of all three was 2.1%. This illustrates the significant co-morbidity of asthma, eczema and hay fever.
Table 2 Significant associations between variables and adolescents reporting asthmatic, eczema and hay fever symptoms in the last 12 months

<table>
<thead>
<tr>
<th>Variable</th>
<th>Asthma</th>
<th>Eczema</th>
<th>Hay fever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>P < 0.001</td>
<td>P < 0.001</td>
<td>P = 0.106</td>
</tr>
<tr>
<td>Male</td>
<td>16.4%</td>
<td>9.8%</td>
<td>30.1%</td>
</tr>
<tr>
<td>Female</td>
<td>21.3%</td>
<td>14.1%</td>
<td>32.7%</td>
</tr>
<tr>
<td>Family affluence</td>
<td>P = 0.002</td>
<td>P = 0.217</td>
<td>P = 0.007</td>
</tr>
<tr>
<td>Low</td>
<td>25.0%</td>
<td>15.0%</td>
<td>33.5%</td>
</tr>
<tr>
<td>Intermediate</td>
<td>20.8%</td>
<td>11.2%</td>
<td>32.4%</td>
</tr>
<tr>
<td>High</td>
<td>17.2%</td>
<td>14.3%</td>
<td>31.0%</td>
</tr>
<tr>
<td>School performance</td>
<td>P < 0.001</td>
<td>P = 0.526</td>
<td>P = 0.006</td>
</tr>
<tr>
<td>Bad performance</td>
<td>23.8%</td>
<td>12.9%</td>
<td>35.4%</td>
</tr>
<tr>
<td>Good performance</td>
<td>17.4%</td>
<td>12.0%</td>
<td>30.3%</td>
</tr>
<tr>
<td>Diet—Fruit</td>
<td>P < 0.001</td>
<td>P = 0.168</td>
<td>P = 0.001</td>
</tr>
<tr>
<td>Eat fruit regularly</td>
<td>17.1%</td>
<td>11.5%</td>
<td>29.6%</td>
</tr>
<tr>
<td>Don’t eat fruit regularly</td>
<td>22.7%</td>
<td>13.2%</td>
<td>36.1%</td>
</tr>
<tr>
<td>Diet—Chips</td>
<td>P = 0.001</td>
<td>P = 0.289</td>
<td>P = 0.006</td>
</tr>
<tr>
<td>Eat chips regularly</td>
<td>20.4%</td>
<td>11.9%</td>
<td>33.5%</td>
</tr>
<tr>
<td>Don’t eat chips regularly</td>
<td>16.4%</td>
<td>12.9%</td>
<td>29.0%</td>
</tr>
<tr>
<td>Smoking</td>
<td>P < 0.001</td>
<td>P < 0.001</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Ever smoked</td>
<td>24.9%</td>
<td>14.7%</td>
<td>37.7%</td>
</tr>
<tr>
<td>Never smoked</td>
<td>15.2%</td>
<td>10.4%</td>
<td>27.7%</td>
</tr>
<tr>
<td>Self-reported BMI</td>
<td>P = 0.731</td>
<td>P = 0.007</td>
<td>P = 0.892</td>
</tr>
<tr>
<td>Worried</td>
<td>P = 0.154</td>
<td>P = 0.001</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Worried a lot</td>
<td>19.8%</td>
<td>14.1%</td>
<td>51.8%</td>
</tr>
<tr>
<td>Worried rarely</td>
<td>17.7%</td>
<td>7.9%</td>
<td>26.4%</td>
</tr>
<tr>
<td>Pollution</td>
<td>P = 0.67</td>
<td>P = 0.234</td>
<td>P = 0.369</td>
</tr>
<tr>
<td>Near</td>
<td>19.2%</td>
<td>12.5%</td>
<td>32.1%</td>
</tr>
<tr>
<td>Far</td>
<td>18.5%</td>
<td>11.0%</td>
<td>30.5%</td>
</tr>
<tr>
<td>SOB</td>
<td>P = 0.96</td>
<td>P = 0.802</td>
<td>P = 0.639</td>
</tr>
<tr>
<td>Winter</td>
<td>18.5%</td>
<td>11.5%</td>
<td>29.8%</td>
</tr>
<tr>
<td>Spring</td>
<td>19.0%</td>
<td>12.4%</td>
<td>32.6%</td>
</tr>
<tr>
<td>Summer</td>
<td>19.0%</td>
<td>11.5%</td>
<td>31.8%</td>
</tr>
<tr>
<td>Autumn</td>
<td>19.6%</td>
<td>12.7%</td>
<td>32.0%</td>
</tr>
</tbody>
</table>

Table 3 Variables significantly associated with asthma, eczema and hay fever

<table>
<thead>
<tr>
<th>Asthma</th>
<th>Eczema</th>
<th>Hay fever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Gender</td>
<td>Diet</td>
</tr>
<tr>
<td>Family affluence</td>
<td>Self-reported BMI</td>
<td>Smoking</td>
</tr>
<tr>
<td>Diet</td>
<td>Smoking</td>
<td>Worried</td>
</tr>
<tr>
<td>Smoking</td>
<td>Worried</td>
<td>School performance</td>
</tr>
<tr>
<td>School performance</td>
<td></td>
<td>Family affluence</td>
</tr>
</tbody>
</table>

Factors associated with the prevalence of atopic symptoms

and hay fever and highlights the burden of AD on adolescent populations. The EURO-URHIS 2 study found a significant difference between the lifetime prevalence and the 12-month prevalence of AD, as fewer atopic symptoms were reported in the last 12 months. This may be due to the fact that adolescents whose AD was well controlled by medication were unlikely to report symptoms.

This study shows a significant association between gender and symptoms of asthma and eczema, with more girls reporting symptoms than boys. No association was found between gender and hay fever. Previous studies have suggested that atopy is more common in boys until puberty when this pattern reverses and AD becomes more common in girls.24–26 Certain studies have suggested that gender differences in the prevalence of atopy may be a result of socio-cultural differences in symptom perception between males and females.27 A study on gender differences and symptom perception stated that women were 50% more likely to report physical symptoms.28

The SOB hypothesis suggests that the month a child is born in can affect their future development of atopy. The EURO-URHIS 2 study showed no association between SOB and the development of AD. Studies undertaken around the world have all suggested a significant link between SOB and AD.11,21,30,31 However, the sample sizes in these studies were all small. Austin et al.27 found no association between month of birth and atopic symptoms. Furthermore, a review article on the association between birth month and AD concluded that literature was inconsistent.24

Family affluence was significantly associated with symptoms of asthma. Adolescents from low family affluence reported more symptoms of wheezing. Results in the literature were inconsistent with regards to socioeconomic status and asthma. Some studies showed no relationship,32,33 others showed a positive relationship10 and others a negative one.34 Children from a lower socio-economic background were more likely to be exposed to pollution, which may result in them developing more asthmatic symptoms.35

Eczema was the only AD significantly associated with self-reported BMI, with overweight adolescents reported more symptoms of eczema. Results from EURO-URHIS 2 were in keeping with another study,36 which showed eczema, but not hay fever, to be associated with high BMI. However, results from EURO-URHIS 2 contradict the well-established relationship regarding asthma and BMI.18,36 This could be because the EURO-URHIS 2 study analysis was based on self-reported measurements. Around 35% of EURO-URHIS 2 respondents did not answer the questions regarding their weight and height, which indicates that the results may not be representative. However, the relationship with BMI and asthma has been challenged by several studies which show no association.37,38

A significant association between eating chips and fruit was seen for both asthma and hay fever. Adolescents who ate fruit regularly reported fewer symptoms of asthma and hay fever while those who ate chips regularly reported more symptoms. Fruit’s protective effect is thought to be because of anti-oxidant content and the effects on intestinal microflora.39 The consumption of trans fatty acids increases the risk of AD.10 The change in diets over the last century and the increased availability of fatty foods emphasizes the importance of understanding the role that diet has in the development of AD.

Results from the EURO-URHIS 2 study found that adolescents who have smoked reported more symptoms of AD. These findings were in keeping with current literature’s consensus that people who smoke had higher levels of IgE in their blood and therefore were more likely to develop atopic symptoms. Studies support EURO-URHIS 2 findings.40,41

A significant association exists between worrying and symptoms of hay fever and eczema, with adolescents who worry more reporting more symptoms. It is believed that stress can disrupt physiological pathways and this leads to an increased risk of AD.42 However results from the EURO-URHIS 2 study found no association between worrying and asthma.1 The terms ‘stress’ and ‘worry’ can be interpreted differently. The EURO-URHIS 2 survey did not focus directly on stress and instead used the notion of worrying as a proxy measure for stress. This may have limited the results.

No association was found between atopic symptoms and distance from the nearest main road. It is speculated that increased exposure to traffic-related air pollution may be a factor which has caused a rise in AD.3

Study strengths

The major strength of this study lay with the large sample size covering a range of adolescents from different socio-economic backgrounds. The relevance of the EURO-URHIS 2 study was enhanced by the fact that respondents had answered survey questions themselves. Therefore, the obtained results were a direct indication of prevalence and the associated factors of AD.

This study also collected information on exposure to risk factors, which may affect the development of atopic symptoms in the last 12 months. The use of 12-month prevalence of symptoms was a more accurate measurement of disease compared with diagnostic labelling, which was used in many other studies of this nature and was subject
to recall bias. However, it was acknowledged that the analysis may be limited by not including adolescents whose symptoms have been well controlled in the past year.

Study limitations

The cross-sectional survey design of the EURO-URHIS 2 study limited the results, as they only represent a snapshot in time. Population characteristics are changing continuously; therefore, the EURO-URHIS 2 results may not be representative of the current situation. The nature of this study design means that at most the study has only identified associations rather than the direction of cause and effect. Not all factors that have been acknowledged in literature to be related to the development of AD could be analysed in this study due to the limitations of the questions included in the EURO-URHIS 2 survey.

The results from this study were not objective measurements and this may be a source of bias. Nevertheless the questions from the EURO-URHIS 2 youth survey were based on validated research instruments.

The methodology stated at least 400 adolescents should be sampled in each UA; however, because of problems with gathering data, only 4 out of 10 of the UAs that make up GM met this goal and this could be a cause of bias.

Conclusion

It can be concluded that the prevalence of AD amongst adolescents was high when compared with worldwide figures. Findings from the ISAAC study revealed worldwide prevalence rates of asthma ranging from 3 to 34% (UK’s prevalence at 34%), hay fever ranging from 4 to 40% (UK’s prevalence at 16%) and eczema ranging from 1 to 18% (UK’s prevalence at 16%). The estimated direct healthcare costs for the UK are over £1 billion per year, with treatments accounting for 11% of prescribing costs. This demonstrates the potential burden of AD on healthcare in GM and other UAs.

Gender, family affluence, school performance, self-reported BMI, diet, smoking and worrying have been shown to be associated with AD. These results provide a baseline for future studies to further investigate these factors, so that better knowledge will allow the implementation of targeted public health policy against AD.

Acknowledgments

This project was co-funded by EU Commission, under the 7th Framework Programme (FP7/2007-2013) as part of the EURO-URHIS 2 project (grant agreement no. 223711) and the project beneficiaries. We are grateful for the help provided by the EURO-URHIS and EURO-URHIS 2 project teams in each of the beneficiaries’ institutions. (Full details of all project partners can be found on http://urhis.eu/eurpub-article-abstract/28/3/576/2907875

Conflicts of Interest: None declared.

Key points

- The prevalence of atopic disease (AD) amongst adolescents in Greater Manchester is high when compared with worldwide figures.

References

Factors associated with the prevalence of atopic symptoms

