A technique for more precise distinction between catagen and telogen human hair follicles ex-vivo

DOI:
10.1016/j.jaad.2018.02.009

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Journal of the American Academy of Dermatology

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
A technique for more precise distinction between catagen and telogen human hair follicles ex-vivo

I. Hernandez, PhD, M. Alam, PhD, C. Platt, PhD, J. Hardman, PhD, E. Smart, MSc, E. Poblet, MD, M. Bertolini, PhD, R. Paus, MD, F. Jimenez, MD

PII: S0190-9622(18)30186-5
DOI: 10.1016/j.jaad.2018.02.009
Reference: YMJD 12315

To appear in: Journal of the American Academy of Dermatology

Received Date: 26 November 2017
Revised Date: 31 January 2018
Accepted Date: 6 February 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Type of article: Research Letter

Title: A technique for more precise distinction between catagen and telogen human hair follicles ex-vivo

Hernandez I, PhD, Alam M, PhD, Platt C, PhD, Hardman J, PhD, Smart E, MSc, Poblet E, MD, Bertolini M, PhD, Paus R, MD, Jimenez F, MD

1 Mediteknia Clinic & Hair Laboratory, Las Palmas de Gran Canaria, Spain
2 Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
3 Monasterium Laboratory, Münster, Germany
4 Centre for Dermatology Research, University of Manchester, UK
5 Department of Pathology, University General Hospital and Murcia University, Spain
6 Department of Dermatology, University of Münster, Münster, Germany
7 Department of Dermatology, Miller School of Medicine, University of Miami. Miami, FL
8 Medical Pathology Group, IUIBS, Universidad de Las Palmas Gran Canaria, Spain
contributed equally

Corresponding author: Dr. Francisco Jimenez, email: fJimenez@mediteknia.com
Phone: 34-928232278

Funding sources: This work was supported in part by a basic translational research grant from Unilever, Colworth, UK to R.P., by Monasterium Laboratory, Münster, Germany, and by the National Institute of Health Research (NIHR) Manchester Biomedical Research Centre (“Inflammatory Hair Diseases” Programme).

Conflicts of interest: The authors have no conflict of interest to declare

Reprint requests: Francisco Jimenez, MD, Mediteknia Clinic, Av. Alcalde Ramirez Bethencourt
20, Las Palmas de Gran Canaria, 35004, Canary Islands, Spain

Manuscript word count: 500
Figures: 1

Keywords: Methylene blue, hair follicle, hair cycle, telogen, catagen, anagen, follicular unit
Identifying human anagen hair follicles (HFs) *ex vivo* is readily accomplished by stereomicroscopic analysis. However, to reliably distinguish other hair cycle stages, namely late catagen and telogen, by stereomicroscopic analysis alone is difficult, and the “gold-standard” remains histological analysis, which obviously precludes their use for *ex vivo* culture (1,2). In this study, we sought to determine whether methylene blue (MB), a vital stain than can be applied to living cells (3), helps to distinguish late catagen from telogen HFs *intravitaly* for subsequent organ culture, thus greatly expanding translational preclinical research into these as yet poorly investigated, but clinically important, human hair cycle stages.

Taking advantage of follicular unit (FU) hair transplantation methodology, when FUs are grouped based on the number of HFs they contain (4), we recorded the number of anagen, catagen and telogen follicles found in 800 FUs from 8 Caucasian male patients (100 FUs per patient) undergoing a standardized FUE hair transplant procedure, with informed patient consent. Since anagen VI follicles are easily identifiable (1), only those FUs that contained catagen and/or telogen HFs were further microdissected, photographed, and immersed in 0.02% MB solution dissolved in saline (~5 minutes), followed by fixation and subsequent evaluation.

As shown in Fig. 1, intravital MB staining greatly enhanced anatomical HF structures that could be visualized by light microscopy alone and permitted correct hair cycle stage classification using accepted, well-defined morphological criteria (2) such as the identification of a prominent epithelial strand (Fig. 1a), a key feature of late catagen HFs, which is absent in telogen HFs. Correct hair cycle stage classification by this method was confirmed by Ki67/TUNEL immunofluorescence microscopy (Fig. 1d).

Importantly, MB staining enabled correct identification of the hair stage in 95.63% of cases, compared to 72.02% in non-MB stained HFs. Thus, this simple, economical, and fast technique constitutes a significant methodological advance in human hair research, since it greatly
facilitates ex vivo research on human catagen and telogen HFs without having to resort to histology.

Our analyses revealed a higher percentage of catagen than telogen HFs in all patients (89% anagen, 6.7% catagen, and 3.6% telogen). This supports the previous proposal that the percentage of scalp telogen HFs has been overestimated (2), and questions the accepted ‘standard’ percentages of 80-89% anagen, 10-20% telogen and 1-5% catagen in the literature based on transversal histologic sections (5) and/or (photo-trichograms), neither of which can definitively distinguish between late catagen and telogen HFs. Although in our study the HFs were from patients with androgenetic alopecia (AGA) and the ratio of anagen:catagen:telogen may differ in comparison to non-AGA individuals, we believe that our data are unlikely to reflect sampling bias, as HFs were harvested from occipital scalp, generally unaffected by AGA. We propose that hair stage distribution in healthy human scalp needs a more systematic re-evaluation, including comparative studies with histological sections. This is important when assessing candidate hair growth-modulatory agents, since minor shifts in the percentage of telogen or catagen HFs can result in major changes in the degree of visible effluvium.

REFERENCES

FIGURE LEGENDS

Figure 1. Macroscopic analysis of hair follicles isolated from follicular units (FU) is more definitive after Methylene Blue staining. (a) HF in the late catagen stage with the epithelial strand (arrow) clearly visible after MB (0.02%) staining. (b) A HF which cannot be clearly identified under the stereomicroscope as either catagen or telogen, followed by MB staining (c) which highlights the small remaining epithelial strand (dotted line) which allows us to identify it as catagen. (d) Ki67/TUNEL confirms this is a catagen HF, with the presence of several apoptotic, TUNEL positive cells (arrowheads).