Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure

DOI:
10.1016/j.apsusc.2017.11.119

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Applied Surface Science

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Title: Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure

Article Type: Full Length Article

Keywords: copper oxide; PLD; epitaxial; oxygen pressure

Corresponding Author: Professor Xianjin Feng,
Corresponding Author's Institution: Shandong University
First Author: Xiaohui Liu
Order of Authors: Xiaohui Liu; Meng Xu; Xijian Zhang; Weiguang Wang; Xianjin Feng; Aimin Song
Dear Editor,

We would like to submit the manuscript entitled "Pulsed-laser-deposited, single-crystalline Cu$_2$O films with low resistivity achieved through manipulating the oxygen pressure" for possible publication in Applied Surface Science.

Cu$_2$O is a well-known p-type semiconductor having promising applications in the electronic and optoelectronic devices such as solar cells and thin film transistors. However, because the film crystal orientation and microstructure as well as the electrical properties could not be well controlled in most of the previously reported Cu$_2$O films, the Cu$_2$O-based functional devices have not shown good performance. In this paper, high quality pulsed-laser-deposited Cu$_2$O single crystalline films with low resistivity and high Hall mobility were realized through manipulating the oxygen pressure. The lowest resistivity of 6.67 $\Omega\cdot$cm and highest mobility of 23.75 cm2·v$^{-1}$·s$^{-1}$ were obtained for the film prepared at 0.09 Pa, which may have promising applications in solar cells and thin film transistors. This resistivity is also the lowest value reported so far for the pulsed-laser-deposited Cu$_2$O films.

This work is original, unpublished, and is not being considered for publication elsewhere. Submission of this work has been checked and approved by all the co-authors.

Thank you for your consideration.

Sincerely yours,

Xianjin Feng
• High quality single crystalline Cu$_2$O films were deposited on MgO (110)
 substrates by PLD.
• The influence of oxygen pressure on the film properties was studied.
• A low resistivity of 6.67 $\Omega\cdot$cm with a high Hall mobility of 23.75 cm2·V$^{-1}$·s$^{-1}$
 were obtained.
• The optical band gap of the films varied from 2.33 to 2.57 eV.
Dear Editor and Reviewer:

Thank you very much for giving us the opportunity to revise our manuscript entitled “Pulsed-laser-deposited, single-crystalline Cu$_2$O films with low resistivity achieved through manipulating the oxygen pressure” (Ms. Ref. No.: APSUSC-D-17-07664R2). The comments and suggestions are all valuable and helpful for revising and improving our paper. We have studied the comments carefully and have made corrections which we hope will meet with approval.

Our responses to the Reviewer’s comments are as follows:

Reviewer #1 Comment: In response to my first comments the Authors have satisfied the majority of my queries. However, one important, fundamental scientific point is still needed to be addressed:

It is impossible to say that Cu$_2$O [111]//MgO [111]. Even small strains of 1.4% will effect a distortion in-plane and, thus through Poisson's ratio also out-of-plane, in the film material. This is clear. The {111} directions in the film and substrate will be close to but not exactly parallel because of this distortion. In the response to comment 1 in the first review the authors write "As can be seen in Fig. 2, the peak positions of Cu$_2$O {111} and MgO {111} planes coincide very well, indicating an epitaxial relationship of Cu$_2$O [111]//MgO [111]". This is completely incorrect and indicates that they do not understand the measurement. The phi scan in Figure 2 is a standard method to assess epitaxy. Here the diffractometer is aligned to a reflection that has an off-axis (in this case the [111]) of both the film and substrate, a rotation about the normal of the sample is then initiated. Seeing reflections for both film and substrate in the same positions shows that the crystal lattices for both materials are aligned in-plane. In this case, this means that Cu$_2$O (100)//MgO (100) and Cu$_2$O (011)//MgO (011). However, as only one axis of the diffractometer is actioned, it is
impossible to distinguish if the out of plane component is well aligned, in fact it is probably not due to substrate imposed strain. The only way to test if the Cu$_2$O [111]/MgO [111] is to do a reciprocal space map around the (111) reflection. If there is only a single peak, then one can say that Cu$_2$O [111]/MgO [111]. Here, it would be typical to see a doublet due to substrate strain.

Our comment and action: We are sorry for our inadequate understanding of phi scan and inappropriate description of the epitaxial relationship. The inappropriate description has been corrected and the relevant text has been revised. *(See the Abstract & paragraph 1, page 8 & paragraph 1, page 10 & paragraph 2, page 16)*

Thanks a lot again for your kind help and such important comments. We tried our best to improve the manuscript and made some changes in the manuscript which were marked in red in the revised paper. Now we send the revised manuscript back to you, and hope it is OK now. Thank you for your reconsideration.

Yours sincerely,

Xianjin Feng
Pulsed-laser-deposited, single-crystalline Cu$_2$O films with low resistivity achieved through manipulating the oxygen pressure

Xiaohui Liua, Meng Xua, Xijian Zhanga, Weiguang Wanga, Xianjin Fenga,*, Aimin Songa,b

aCenter of Nanoelectronics and School of Microelectronics, Shandong University, Jinan 250100, China

bSchool of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, United Kingdom

Abstract

Low-resistivity, single-crystalline Cu$_2$O films were realized on MgO (110) substrates through manipulating the oxygen pressure (P$_{O_2}$) of pulsed-laser deposition. X-ray diffraction and high resolution transmission electron microscopy measurements revealed that the films deposited at P$_{O_2}$ of 0.06 and 0.09 Pa were single phase Cu$_2$O and the 0.09-Pa-deposited film exhibited the best crystallinity with an epitaxial relationship of Cu$_2$O (110)∥MgO (110) with Cu$_2$O (001)∥MgO (001). The pure phase Cu$_2$O films exhibited higher transmittances and larger band gaps with an optical band gap of 2.56 eV obtained for the 0.09 Pa-deposited film. Hall-effect measurements demonstrated that the Cu$_2$O film deposited at 0.09 Pa had the lowest resistivity of 6.67 Ω·cm and highest Hall mobility of 23.75 cm2·v$^{-1}$·s$^{-1}$.

Keyword: copper oxide; PLD; epitaxial; oxygen pressure

*Corresponding author: Tel.: +86 531 88363606; fax: +86 531 88564886.
E-mail addresses: xianjinfeng@sdu.edu.cn (X. Feng).
1. **Introduction**

Depending on the crystal bonding and structure between the metal cation and oxygen, metal oxides show quite different functional properties. Metal oxides could exhibit magnetic, insulating, conducting and semiconducting properties [1]. Metal oxide semiconductors were applied to fabrication of various devices such as light emitting devices, thin film transistors (TFTs) and solar cells [2]. Cuprous oxide (Cu$_2$O) is a well-known p-type semiconductor. It has a direct band gap (E$_g$=2.0-2.6 eV) [3-7] and can exhibit a hole mobility exceeding 100 cm2·v$^{-1}$·s$^{-1}$ at room temperature [8]. Cu$_2$O is also regarded as one of the promising functional materials for its abundance, nontoxicity and large optical absorption coefficient [9]. There are many reports on Cu$_2$O-based solar cells and thin film transistors [10-14]. However, the highest reported energy conversion efficiency of Cu$_2$O solar cells was only around 6.1% with the Cu$_2$O active layer formed through oxidation of Cu sheets [12] even though the maximum theoretical conversion efficiency is 20% [15]. For Cu$_2$O thin film transistors, the performance is also unsatisfactory. Yao et al. demonstrated a p-type TFT formed by sputtered Cu$_2$O, showing a field effect mobility of ~2.40 cm2·v$^{-1}$·s$^{-1}$ and an on/off current ratio of ~3.96 × 104 [13]. Using the atomic layer deposition method, Maeng’s group fabricated a p-type Cu$_x$O TFT with a field effect mobility of 5.64 cm2·v$^{-1}$·s$^{-1}$, an on/off current ratio of 1.79 × 105, and a subthreshold swing of 0.75 V/decade [14]. Because the film crystal orientation and microstructure as well as the electrical properties could not be well controlled in most of the
previously reported Cu$_2$O films, Cu$_2$O-based functional devices have not shown good performance. It is therefore necessary to obtain high quality Cu$_2$O films with good electrical properties (high Hall mobility, proper resistivity) in order to further improve the performance of Cu$_2$O-based functional devices [16].

During the past years, in order to obtain high quality Cu$_2$O films, many methods such as sputtering [5], thermal oxidation [10], evaporation [17], molecular beam epitaxy [18], and electrodeposition [19] have been used. Due to the high kinetic energy of the ionized and ejected species in the laser produced plasma, pulsed-laser deposition (PLD) technique could deposit highly oriented crystalline films at low substrate temperatures [20, 21]. Furthermore, PLD is very suited to stoichiometric growth due to its operating far away from equilibrium [22]. However, until now, there are only a few reports on Cu$_2$O films prepared by PLD and the influence of oxygen pressure (P_{O_2}) during the deposition on the film properties was especially rarely studied [23, 24]. Moreover, the reported pulsed-laser deposited Cu$_2$O films usually had high electrical resistivities in the range of 10^2–10^5 Ω·cm [24-26], which are not suitable to be used in both solar cells and thin film transistors. It is well-known that the optimum resistivity for the absorber layer in a solar cell is around 0.1–1 Ω·cm [27]. While for high performance thin film transistors, the typical carrier concentration of the channel layer is usually in the range of 10^{16}–10^{17} cm$^{-3}$ [28, 29] with a Hall mobility higher than 10 cm2·v$^{-1}$·s$^{-1}$ (normally the higher the better), leading to a resistivity value lower than 10^2 Ω·cm.

In this work, copper oxide films were prepared on MgO (110) substrates by PLD
and the structural, optical and electrical properties of the films as a function of P_{O_2} were investigated in detail. MgO (110) was chosen as substrate because the lattice mismatch between MgO and Cu$_2$O is very small (~1.4%), and the Cu$_2$O (110) plane has relatively lower surface free energies than other planes making it easier to be epitaxially grown [30]. High quality single-crystalline Cu$_2$O film with a low electrical resistivity of 6.67 Ω·cm and a high Hall mobility of 23.75 cm2·V$^{-1}$·s$^{-1}$ was obtained through manipulating the oxygen pressure, which may have promising applications in solar cells and thin film transistors.

2. Experimental

High vacuum PLD system with a KrF excimer laser (wavelength: 248 nm, pulse duration: 20 ns, pulse frequency: 20 Hz) and a ceramic Cu$_2$O target (4N purity) was used to deposit the copper oxide thin films. MgO (110) single crystals substrates were mounted 8 cm away from target in the PLD chamber with a base pressure under 10^{-4} Pa. The laser energy density was ~6 J/cm2 at the target surface. Growth condition was varied in the range of P_{O_2}=0.02–0.12 Pa at a fixed substrate temperature of 600$^\circ$C, where Cu$_2$O is the stable phase in a phase equilibrium diagram [31].

The out-of-plane θ-2θ and in-plane Φ and 2$\theta$$\chi$-scans were measured using respectively the Rigaku and Philips X’Pert PRO X-ray diffractometers (XRD) to determine the crystalline quality and epitaxial relationship. A FEI Nova NanoSEM 450 field emission scanning electron microscope (SEM) was used to observe the surface morphology. The atomic arrangements across the substrate-film interface were
observed using high resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED) with a Tecnai F30 transmission electron microscope operated at 300 kV. The chemical composition was measured by the X-ray photoelectron spectroscopy (XPS) using an ESCALAB MK II multi-technique electron spectrometer. A TU-1901 double-beam UV-vis-NIR spectrophotometer was used to measure the optical transmittance. The electrical properties were measured by Van der Pauw method.

3. Results and discussion
The crystallinity of the as-grown copper oxide films was investigated by XRD. Fig. 1(a) shows typical patterns of θ-2θ scan for the copper oxide films deposited under representative oxygen pressures. Besides the substrate diffraction peak of MgO (220) located at 62.4° (JCPDS No.65-0476), five other peaks located respectively at 29.5°, 42.1°, 43.6°, 60.8° and 73.5° can be seen at 0.02 Pa, which are identified as Cu$_2$O (110), Cu$_2$O (200), Cu (111), Cu$_2$O (220) and Cu$_2$O (311) (JCPDS No.65-3288 for Cu$_2$O, No.04-0836 for Cu), indicating the presence of a mixed phase of Cu$_2$O and Cu. With the increase of P_{O_2} to 0.06 Pa, the Cu (111) peak disappears, indicating the existence of single phase Cu$_2$O. For the sample fabricated under P_{O_2} of 0.09 Pa, only the Cu$_2$O (110) and (220) peaks can be observed in addition to the substrate peak, indicating that a single orientation along the Cu$_2$O (110) direction is obtained. With
the further increase of P_{O_2} to 0.12 Pa, the CuO (020) and (310) peaks (JCPDS No.48-1548) as well as the Cu$_2$O (200) peaks are visible, indicating a mixed phase of Cu$_2$O and CuO and the degradation of film crystalline quality. It should be noticed that, due to the close 2θ values of CuO (221) and Cu$_2$O (311) reflections, the peak at around 73.5° is hard to distinguish for the 0.12 Pa-deposited sample and therefore it may be considered as a combined peak of these two reflections. While for the 0.02 and 0.06 Pa-deposited samples, considering the pure Cu$_2$O phase of the film grown at 0.09 Pa, it is reasonable to assign this peak to Cu$_2$O (311) rather than CuO (221) for the films prepared at such lower oxygen pressures.

It is well-known that the Cu-O phase is strongly influence by the thermodynamic conditions (substrate temperature and oxygen pressure). However, for the non-equilibrium physical vapor deposition process PLD, the increase of total chamber pressure i.e. the oxygen pressure in our study can also alter the plasma dynamics by changing the target-to-substrate transport from the ballistic to the diffuse regime, which in turn can result in the formation of different Cu-O phases [32]. Therefore, the Cu-O phase transition in our study could be attributed to the combination of pressure related kinetic and thermodynamic effects. The results of XRD measurement reveal that the film structure and crystallinity are strongly influenced by oxygen pressure and the 0.09 Pa-deposited film has the best crystalline quality.

Fig. 1(b), (c), (d) and (e) show the plan view SEM images of copper oxide films deposited under P_{O_2} of 0.02, 0.06, 0.09 and 0.12 Pa, respectively. In Fig. 1(b), submicron particles can be observed on the surface of the 0.02 Pa-deposited film, for
which metallic Cu that mainly exists at the surface of the particles is assumed to act as a catalyst of their growth [32]. Fig. 1(c) exhibits irregular grains and disordered grain edges due to the polycrystalline structure of this sample. In Fig. 1(d), a compact surface with regularly-shaped islands and well-defined boundaries could be observed, which corresponds to the best crystallization of the sample prepared at 0.09 Pa. A surface with ill-defined grain formation is observed for the film deposited under 0.12 Pa as shown in Fig. 1(e), due to the mixed phase of this sample as revealed by the XRD analyses. As mentioned above, the plasma dynamics and therefore the growth mode of the films in our study can be influenced by the different oxygen pressures. The variation of growth mode together with the Cu-O phase transition will result in the different observed film surface morphologies. The SEM analyses illustrate obviously that the oxygen pressure has a strong influence on the film morphology and crystallinity, which are consistent with the XRD results.
Fig. 2. In-plane XRD patterns of (a) and (b) Φ-scan as well as (c) $2\theta\chi$-scan for the sample grown under P_{O_2} of 0.09 Pa.

The off-specular Φ-scan of Cu$_2$O {111} planes (Ψ=35.26°) for the 0.09 Pa-deposited film is shown in Fig. 2(a). Two diffraction peaks separated by 180° of the Cu$_2$O {111} planes indicate a good in-plane alignment inside the film. The {111} plane of Cu$_2$O is two-fold symmetrical along Cu$_2$O [110], which is consistent with Fig. 2(a), indicating a complete single-crystalline structure without any domains in the obtained film. Fig. 2(b) shows the off-specular Φ-scan of MgO {111} planes (Ψ=35.26°) for the substrate, from which two diffraction peaks separated by 180° with the same Φ-angles as the Cu$_2$O {111} planes could be seen, indicating that the crystal lattices for both materials are aligned in-plane with an epitaxial relationship of Cu$_2$O (110)//MgO (110) and Cu$_2$O (001)//MgO (001). To further confirm that the peaks in Fig. 2(a) are really from the film and not the tail end of the substrate peaks, we have performed the in-plane $2\theta\chi$-scan of the sample at the fixed Φ and Ψ angles, as shown in Fig. 2(c). Only two distinct peaks of Cu$_2$O (111) and MgO (111) can be seen
obviously, confirming the (111) reflections from the substrate and film are distinguishable. These results reveal that the Cu$_2$O film deposited under the P$_{O_2}$ of 0.09 Pa is epitaxial single crystal with no twins and the epitaxial relationship is Cu$_2$O (110)∥MgO (110) with Cu$_2$O (001)∥MgO (001).

Fig. 3. (a) Low magnification TEM and (b) HRTEM images of the film-substrate interface and (c) SAED micrographs of the film portion for the 0.09 Pa-deposited sample.
The cross-sectional TEM measurements were performed to further study the atomic arrangements and microstructure of the sample deposited under P_{O_2} of 0.09 Pa. From the low magnification TEM image as shown in Fig. 3(a), a compact film without any columnar structures inside as well as a clean and sharp interface between the film and the substrate are observed. The HRTEM image of the interface between the Cu_2O film and MgO substrate and the SAED pattern of the Cu_2O film are shown respectively in Fig. 3(b) and (c). The incident electron beam was parallel to the $[\bar{1}10]$ direction of the MgO substrate. Uniform and ordered crystal lattice arrays of both the Cu_2O film and MgO substrate can be seen clearly in Fig. 3(b). The spacings of the as-marked lattice planes in the Cu_2O film area are about 0.152 nm and 0.213 nm, corresponding respectively to the Cu_2O (220) and (002) planes with a standard angular separation of 90° inbetween. For the MgO substrate, the as-marked interplane spacings are 0.150 and 0.210 nm, which are consistent respectively with the MgO (220) and (002) planes. In the SAED pattern of the Cu_2O film shown in Fig. 3(c), the Cu_2O (110), (200) and (111) diffraction spots are clearly observed. The distinct and regular diffraction spot array implies good single crystallinity of this film. From the HRTEM analyses, the epitaxial relationship between Cu_2O film and MgO substrate can be obtained as Cu_2O (110)$//MgO$ (110) with Cu_2O (001)$//MgO$ (001), which is consistent with the XRD analyses, indicating the single crystalline structure of this film.
The chemical states of different elements of the Cu$_2$O film prepared at P$_{O_2}$ of 0.09 Pa were investigated by XPS. As shown in Fig. 4(a), photoelectron peaks of O 1s, O KLL Auger, Cu LMM Auger, Cu 2p, Cu 2s, Cu 3p, Cu 3s and C 1s can be observed in the survey spectrum. The C1s peak is due to the adventitious hydrocarbon contamination on the film surface. The XPS spectra of Cu 2p and O 1s core levels were numerically fitted with four and three Lorentzian-Gaussian (Lorentzian: 20%) features, corresponding to Fig. 4(b) and (d), respectively. The fitted Cu 2p core levels...
displayed in Fig. 4(b), which show two main peaks at 932.8 and 952.8 eV corresponding respectively to the 2p$_{3/2}$ and 2p$_{1/2}$ levels of Cu$^{1+}$ state (Cu$_2$O) [16]. The shoulder peaks at 935.1 and 955.2 eV together with the shake-up satellite peaks in the 940-945 and 960-965 eV regions can also be observed, indicating the presence of Cu$^{2+}$ state (CuO) on the film surface [33], which is normally formed by exposure in humid air after the deposition of Cu$_2$O. Since the main peaks of Cu 2p at the same positions can also be assigned to metallic Cu, the Cu LMM Auger transition was investigated as well. As can be seen from Fig. 4(c), the Cu LMM Auger spectrum with Lorentzian peak fit has only one feature with a kinetic energy of 916.45 eV. It has been reported that the Cu0 (metallic Cu) Auger spectrum has a distinct satellite feature at kinetic energy of ~2.5 eV higher than the main peak [16], the absence of which rules out the existence of metallic Cu. The fitted O 1s spectrum shown in Fig. 4(d) has three distinct peak contributions. The peak at lower binding energy (around 530.5 eV) denoted as O$_{\text{lat}}$ represents the lattice oxygen of Cu$_2$O and/or CuO and the peaks at higher binding energy (531.6- 532.0 eV) denoted as O$_{\text{ads}}$ belongs most likely to the adsorbed oxygen and/or hydroxyl group [34].
Fig. 5. Transmittance spectra of the copper oxide films prepared under typical oxygen pressures with the plots of $(\alpha h\nu)^2$ versus $h\nu$ shown in the inset.

The transmittance spectra of copper oxide films prepared under typical oxygen pressures are displayed in Fig. 5(a). It can be seen that under the P_{O_2} of 0.02 Pa, as a result of the existence of opaque metallic copper phase, the film presents feeble transmittance. For the samples deposited under 0.06 and 0.09 Pa, on the one hand, the films are pure phase Cu$_2$O with large band gap, without any narrow-band-gap materials that can absorb long wavelength light existent. On the other hand, the Cu$_2$O film crystallinity is improved with fewer structural defects present, which will subsequently decrease the light scattering and the defect level related light absorption. Both factors mentioned above may lead to the high transmittance of these two films. As the P_{O_2} increases further to 0.12 Pa, resulting from the presence of CuO ($E_g = 1.2$-2.0 eV) [35] and degraded crystallinity, the transmittance of film decreases obviously. In addition, much sharper absorption edges are observed for the pure Cu$_2$O films than the films having impurity phases. Fig. 5(b) shows the Tauc plots of the
copper oxide films. The band gaps of copper oxide films are estimated with Tauc’s equation for direct transition gaps in semiconductors given by [36]

\[(ahv)^2 = A(hv - E_g)\], \hspace{2em} (1)

where \(\alpha\) is the absorption coefficient, \(A\) is a material dependent constant, \(h\) is the Planck constant, \(\nu\) is the frequency and \(E_g\) is the optical energy band gap. The absorption coefficient \(\alpha\) can be calculated from the thickness \((d)\) and transmittance\((T)\) of the film by using the well-known equation of [37]

\[\alpha = \frac{1}{d} \ln \left(\frac{1}{T}\right)\]. \hspace{2em} (2)

Therefore, the \(E_g\) values can be derived through plotting \((ahv)^2\) vs. \(h\nu\) followed by extrapolating the straight-line portion of this plot to the energy axis as exhibited in the Fig. 5(b). The \(E_g\) values of 2.37, 2.57, 2.56 and 2.33 eV are obtained for the films deposited under oxygen pressures of 0.02, 0.06, 0.09 and 0.12 Pa, respectively. The \(E_g\) values and variation tendency in our study are similar to the results of previously reported works [7, 38].
Fig. 6 shows the dependence of Hall mobility, carrier concentration and electrical resistivity on the oxygen pressure for the copper oxide thin films. The p-type conductivity was confirmed for all the samples shown in Fig.6 during the measurement. The film deposited at 0.02 Pa possesses insulating property probably due to the existence of metallic Cu and the consequent compensation of holes. With the increase of P_{O_2} to 0.06 Pa, the deposited film becomes single phase Cu$_2$O and the resistivity decreases. As the P_{O_2} increases further to 0.09 Pa, both of the Hall mobility and carrier concentration increase mainly due to the improvement of crystallinity and increased number of Cu vacancies, respectively, resulting in the decrease of resistivity. The Cu$_2$O film deposited under P_{O_2} of 0.09 Pa possesses the lowest electrical resistivity of 6.67 $\Omega\cdot$cm with the highest carrier concentration of 3.94×10^{16} cm$^{-3}$ and highest mobility of 23.75 cm$^2\cdot$V$^{-1}\cdot$s$^{-1}$ among all the copper oxide thin films deposited in this work. To the best our knowledge, the resistivity of 6.67 $\Omega\cdot$cm obtained in our study is also the lowest value reported thus far for the Cu$_2$O films deposited by PLD [24-26]. Good electrical properties of low resistivity, high Hall mobility and proper carrier concentration are essential for fabricating high performance Cu$_2$O-based functional devices like solar cells and thin film transistors. As the P_{O_2} increases further to 0.12 Pa, the carrier concentration decreases due to the formation of CuO phase and therefore the decrease of Cu vacancies. In the meantime, the obvious degradation of
film crystallinity leads to the decline of Hall mobility. Consequently, an increase of electrical resistivity is observed for the 0.12 Pa-deposited film.

4. Conclusions

Copper oxide thin films were deposited on MgO (110) substrates by the PLD technique and the influence of oxygen pressure on the film properties was systematically investigated. The structure, crystallinity and morphology of the films were strongly affected by the oxygen pressure. The variation of oxygen pressure in our study could not only change the thermodynamic conditions but also alter the plasma dynamics and therefore the film growth mode, which in turn could result in the formation of different Cu-O phases and film surface morphologies. The 0.09-Pa-deposited film was pure single-crystalline Cu$_2$O with an epitaxial relationship of Cu$_2$O (110) \parallel MgO (110) with Cu$_2$O (001) \parallel MgO (001). An obvious influence of oxygen pressure on the transmittance of the films was also observed and a variation of the optical band gap from 2.33 to 2.57 eV was obtained. The lowest resistivity of 6.67 $\Omega\cdot$cm with the highest carrier concentration of 3.94×10^{16} cm$^{-3}$ and highest Hall mobility of 23.75 cm$^2\cdot$V$^{-1}\cdot$s$^{-1}$ were obtained for the film deposited under the oxygen pressure of 0.09 Pa. High quality Cu$_2$O single-crystalline films with good electrical properties may pave the way for realizing high performance Cu$_2$O-based functional devices such as thin film transistors and solar cells.

Acknowledgements

This work was supported by the National Natural Science Foundation of China
(Grant No. 51602180), Key Research and Development Program of Shandong Province, China (Grant Nos. 2016GGX104013 and 2017GGX201007), and China Postdoctoral Science Foundation (Grant No. 2016M602140).

References

Figure Captions:

Fig. 1. (a) XRD patterns of copper oxide films grown on MgO (110) substrates under typical oxygen pressures. Plan view SEM micrographs of the copper oxide films grown under the oxygen pressures of (b) 0.02, (c) 0.06, (d) 0.09 and (e) 0.12 Pa.

Fig. 2. In-plane XRD patterns of (a) and (b) Φ-scan as well as (c) 2θχ-scan for the sample grown under P_{O_2} of 0.09 Pa.

Fig. 3. (a) Low magnification TEM and (b) HRTEM images of the film-substrate interface and (c) SAED micrographs of the film portion for the 0.09 Pa-deposited sample.

Fig. 4. XPS spectra of the Cu$_2$O film grown under P_{O_2} of 0.09 Pa: (a) survey, (b) Cu 2p core levels, (c) Cu LMM Auger spectrum and (d) O 1s core level.

Fig. 5. Transmittance spectra of the copper oxide films prepared under typical oxygen pressures with the plots of $(\alpha h\nu)^2$ versus $h\nu$ shown in the inset.

Fig. 6. Hall mobility, carrier concentration and resistivity of the copper oxide films as a function of the oxygen pressure.