Biosimilars for Psoriasis: Clinical Studies to Determine Similarity

<table>
<thead>
<tr>
<th>Journal:</th>
<th>British Journal of Dermatology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>BJD-2016-0031.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Review Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Blauvelt, Andrew; Oregon Medical Research Center Puig, Lluis; Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona Chimenti, Sergio; University of Rome Tor Vergate Vender, Ronald; Dermatrials Research Inc. & Venderm Innovations in Psoriasis Rajagopalan, Murlidhar; Department of Dermatology, Apollo Hospitals Romiti, Ricardo; Universidade de Sao Paulo Faculdade de Medicina Skov, Lone; Herlev and Gentofte Hospital, University of Copenhagen Zachariae, Claus; Herlev and Gentofte Hospital, University of Copenhagen Young, Helen; Salford Royal Hospital Manchester, UK, University of Manchester, Manchester Academic Health Science Centre, Department of Dermatology Prens, Errol; Erasmus University Medical Center, Department of Dermatology Cohen, Arnon; Siaal Research Center for Family Medicine and Primary Care, Ben-Gurion University of the Negev, Beer-Sheva and Department of Quality Measurements and Research, Chief Physician’s Office, Clalit Health Services van der Walt, Joelle; International Psoriasis Council, Wu, Jashin; Kaiser Permanente Los Angeles Medical Center, Department of Dermatology</td>
</tr>
<tr>
<td>Keywords:</td>
<td>psoriasis, biosimilars, biologics, clinical studies, biopharmaceuticals</td>
</tr>
</tbody>
</table>
Biosimilars for Psoriasis

Biosimilars for Psoriasis: Clinical Studies to Determine Similarity

A. Blauvelt¹, L. Puig², S. Chimenti³, R. Vender⁴, M. Rajagopalan⁵, R. Romiti⁶, L. Skov⁷, C. Zachariae⁷, H. Young⁸, E. Prens⁹, A. Cohen¹⁰, J. van der Walt¹¹ and J.J Wu¹²

¹Oregon Medical Research Center, Portland, Oregon; ²Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; ³University of Rome Tor Vergate; ⁴Director of Dermatrical Research Inc. & Venderm Innovations in Psoriasis; ⁵Head of Dermatology, Apollo Hospitals, Chennai, India; ⁶Department of Dermatology, University of São Paulo, Brazil ⁷Herlev and Gentofte Hospital, University of Copenhagen, Denmark; ⁸University of Manchester, Manchester Academic Health Science Centre, Department of Dermatology, Salford Royal Hospital Manchester, UK; ⁹Erasmus University Medical Center, Dept. of Dermatology; ¹⁰Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva and Department of Quality Measurements and Research, Chief Physician’s Office, Clalit Health Services, Tel Aviv, Israel; ¹¹International Psoriasis Council, St. Louis, MO, ¹²Department of Dermatology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA

Running Head: Biosimilars for Psoriasis

Keywords: psoriasis, biosimilars, biopharmaceuticals, biologics, follow-on biologics, clinical studies

Counts:

Abstract: 72 words
Manuscript: 2610 words
Biosimilars for Psoriasis

Tables/Figures: 3/1

References: 55

Corresponding Author:
Andrew Blauvelt, M.D., M.B.A., President and Investigator, Oregon Medical Research Center, 9495 SW Locust Street, Suite G, Portland, Oregon 97223; phone: 503-245-1525; fax: 503-245-0315; email: ablauvelt@oregonmedicalresearch.com

Funding: AbbVie, Amgen, Centocor-Ortho Biotech, Janssen-Cilag, and Wyeth provided corporate sponsorship to the International Psoriasis Council. These sponsors had no influence on the content and viewpoints in this manuscript.

Conflict-of-Interest Disclosures: Andrew Blauvelt has served as a scientific consultant and clinical study investigator for AbbVie, Amgen, AstraZeneca, Boehringer Ingelheim, Celgene, Dermira, Genentech, GSK, Janssen, Eli Lilly, MedImmune, Merck, Novartis, Regeneron, Sandoz, Sanofi, Sun Pharma, UCB, and Valeant, and as a speaker for Eli Lilly. Lluís Puig has served as a clinical study investigator for AbbVie, Amgen, Janssen, Lilly, Merck, Novartis, Pfizer, and Sandoz; he is a consultant for AbbVie, Amgen, Boehringer Ingelheim, Janssen, Lilly, Merck, Novartis, Pfizer, and Sandoz. Ricardo Romiti has served as scientific consultant or clinical study investigator for AbbVie, Janssen-Cilag, Lilly, Leo-Pharma, Novartis, and Pfizer. Lone Skov has served as a scientific consultant for AbbVie, Pfizer, Janssen-Cilag, Merck, Lilly, Orion, Amgen and Novartis and clinical study investigator for AbbVie, Amgen, Lilly, Merck, Takeda, Leo, Regeneron and Novartis. Claus Zachariae has served as a scientific consultant for
Biosimilars for Psoriasis

AbbVie, Pfizer, Janssen-Cilag, Merck, Lilly, Takeda, and Novartis and clinical study investigator for AbbVie, Amgen, Lilly, Merck, Takeda, and Novartis. Helen Young has served as a scientific consultant or clinical study investigator roles with the following: AbbVie, Amgen, Biogen-Idec, Lilly, Galderma, Janssen-Cilag, Leo-Pharma, Novartis, Schering-Plough, Stiefel, Teva Pharmaceuticals, and Wyeth/Pfizer. Jashin Wu received research funding from AbbVie, Amgen, AstraZeneca, Coherus Biosciences, Dermira, Eli Lilly, Janssen, Merck, Novartis, Pfizer, Regeneron, Sandoz, and Sun Pharmaceutical Industries; he is a consultant for AbbVie, Amgen, Celgene, Dermira, Eli Lilly, Pfizer, and Sun Pharmaceutical Industries. Errol Prens has acted as a consultant and advisory board member for AbbVie, AMGEN, Astra-Zeneca, Baxter, Janssen-Cilag, Eli-Lilly, Novartis and Pfizer and received investigator-initiated grant support from AbbVie, Pfizer, Astra-Zeneca, NTRC and Janssen-Cilag. Ronald Vender has served as a scientific consultant or clinical study investigator roles with the following: AbbVie, Amgen, Celgene, Centocor, Dermira, GSK, Lilly, Galderma, Janssen, Leo-Pharma, Novartis, Takeda and Pfizer. Murlidhar Rajagopalan has acted as an advisory board member for Wyeth, Pfizer, Novartis and Zydus Cedilla and is also a consultant for Janssen.
Biosimilars for Psoriasis

What's already known about this topic?
- Clinical studies, in addition to preclinical data, are required for regulatory approval of biosimilars.
- Biosimilar clinical trials are designed with smaller sample sizes than those required for approval of new biologic agents, and are not required for every indication of the originator.

What does this study add?
- The International Psoriasis Council provides suggestions for biosimilar clinical trial design and describes psoriasis as the best disease model for TNF blocker biosimilar studies.

Abstract
Biosimilars are drugs that are similar, but not identical, to originator biologics. Pre-clinical analytical studies are required to show similarity on a molecular and structural level, but efficacy and safety studies in humans are essential to ultimately determine biosimilarity. In this review written by members of the International Psoriasis Council, we discuss how biosimilars are evaluated in a clinical setting, with emphasis on extrapolation of indication, interchangeability, and optimal clinical trial design.
Biosimilars for Psoriasis

Introduction

Biosimilars are drugs that are similar, but not identical, to original marketed biologic products.\(^1\) This basic definition of biosimilars urges the question of “How is similarity defined?” Different biosimilar manufacturers and drug regulating authorities are answering this question in different ways (Table 1). Although pre-clinical analytical studies represent the scientific foundation for biosimilars, efficacy and safety studies in humans remain the gold standard to confirm clinical equivalence and therefore biosimilarity.\(^2\) Here, we discuss how biosimilarity is being defined on a clinical level.

Perhaps the biggest and most significant problem related to biologic prescribing and use for psoriasis patients has been the high cost of these products.\(^3\) The signature promise of biosimilars is that they will decrease cost and increase access to biologic drugs for individuals who suffer from psoriasis, greatly improving the larger problem of under-treatment of this disease by dermatologists.\(^4\) In order to reduce clinical development costs, clinical study requirements for regulatory agency approval of biosimilars are designed to be done with smaller sample sizes than those required for approval of new biologic agents, and need not be repeated for every indication of the originator. In other words, the amount and type of clinical data generated in clinical studies involving biosimilars will inherently be less than the clinical data obtained for originator biologics. Regarding this point, another purpose of this paper is to provide suggestions for optimal clinical study design as biosimilars proceed through development and regulatory hurdles.

Extrapolation in Biosimilar Clinical Studies
Biosimilars for Psoriasis

Clinical trials are critical in gaining approval and subsequent use of biosimilars in clinical practice (Table 2). Both the U.S. Food and Drug Administration (FDA) and the European Medical Agency (EMA) have published trial design guidelines for biosimilars. Extrapolation is defined as the ability to utilize clinical study data for one disease to gain agency approval for another disease not explicitly studied in clinical trials. For example, using the principle of extrapolation, the EMA recently approved a biosimilar infliximab product (marketed as Remsima® and Inflectra®) for psoriasis, psoriatic arthritis, and inflammatory bowel diseases when this biosimilar drug had undergone clinical testing in only two disease types: rheumatoid arthritis and ankylosing spondylitis (Table 3). Of note, showing similar clinical study results for biosimilar infliximab and Remicade® in these latter two diseases does not necessarily mean that similar clinical results would be documented in other head-to-head studies with these same drugs when used in patients with psoriasis or psoriatic arthritis. As a result of this decision by the EMA, the dermatology community may find it difficult to interpret data collected from biosimilar trials done in dissimilar disease states.

Health Canada, the drug regulating authority in Canada, has recently reached a somewhat different conclusion than the EMA regarding Remsima®/Inflectra®. These drugs were approved for use in inflammatory diseases of the skin (e.g., psoriasis) and joints (e.g., rheumatoid arthritis and psoriatic arthritis), but not for inflammatory bowel diseases. Health Canada argued that extrapolation of data from rheumatoid arthritis/ankylosing spondylitis to psoriasis/psoriatic arthritis could be done, but not from the former diseases to Crohn’s disease/ulcerative colitis. They stated that differences in the results of an assay for antibody-dependent cell-mediated cytotoxicity, a function of TNF blockers believed to be critical for
Biosimilars for Psoriasis

efficacy in inflammatory bowel diseases, might have implications in regard to the efficacy in Crohn’s disease/ulcerative colitis that prevented extrapolation to this indication (in the absence of a specific clinical trial) of the biosimilar infliximab product that underwent review. This case highlights that disease extrapolation can be controversial and that different regulatory authorities may take different stances as they review applications for biosimilars.

In order to keep costs down, regulatory agencies have firmly endorsed the concept of extrapolation for biosimilar approvals. Thus, utilizing biosimilars in practice for diseases where little or no clinical data exist is a reality that clinicians must learn to accept. Moving forward, biosimilar companies will continue to choose the most appropriate disease(s) to perform clinical trials designed to acquire data for agency approvals. The FDA recommends that a sponsor should choose a disease condition to study that would be sensitive enough to identify any clinically meaningful differences between the originator product and the biosimilar product.

For TNF blockers, we suggest that future biosimilar trials be performed in psoriasis. First, the treatment effect size is large in psoriasis clinical trials, that is the difference between active drug response rates and placebo response rates (often very low) are greater for psoriasis than in all other inflammatory diseases treated with TNF blockers. For example, in the EXPRESS trial, 80% of patients treated with infliximab achieved PASI 75 at week 10 versus 3% of the placebo group. Second, psoriasis trials can be performed without the confounding presence of other immunosuppressive drugs, such as prednisone and methotrexate, which are often concomitantly used by patients with other inflammatory diseases; these drugs could interfere with both efficacy and immunogenicity results during a clinical trial. Third, psoriasis is a common
Biosimilars for Psoriasis

disease and thus recruitment of study subjects and execution of the biosimilar TNF inhibitor trials can be quickly and readily accomplished.

Interchangeability in Biosimilar Clinical Studies

Interchangeability is the concept that a biosimilar drug and its parent biologic compound are so similar that a patient could be switched from one originator drug to another biosimilar drug and back during chronic therapeutic use, perhaps an indefinite number of times, without any untoward clinical side effects occurring due to this interchange of products.\(^\text{17} \quad \text{18}\)

The FDA defines interchangeability when a biosimilar “can be expected to produce the same clinical result as the reference product in any given patient; and for a product administered more than once, the safety and reduced efficacy risks of alternating or switching are not greater than with repeated use of the reference product.”\(^\text{5}\) The EMA defines interchangeability as the medical practice of changing one medicine for another that is expected to achieve the same clinical effect in a given clinical setting in any one patient, on the initiative, or with the agreement of the prescriber,\(^\text{19} \quad \text{20}\) whereas automatic substitution, occurs when a prescribed medicine is substituted with another product by a pharmacist in the absence of physician notification.\(^\text{20} \quad \text{21}\) Furthermore, each individual U.S. state will have laws regarding interchangeability. Pharmaceutical companies will likely wait until after the initial biosimilar approval occurs before determining whether or not to pursue clinical studies addressing interchangeability for their products. Until this occurs, payers may authorize the substitution of biosimilars for original biologics. Thus, dermatologists may lose control over what drug is actually chosen (e.g., parent drug vs. biosimilar #1 vs. biosimilar #2, etc.) after a prescription is written.
Biosimilars for Psoriasis

The EMA does not have legal authority on whether a biosimilar should be used interchangeably with its reference medicine; interchangeability and substitution are regulated by individual member states. Likewise, Health Canada does not recommend substitution of a biosimilar with its reference biologic. Some European countries prohibit automatic switching by the pharmacist (Austria, Ireland, Czech Republic, Luxembourg, Belgium, Denmark, Finland, Hungary, Norway, Portugal, Germany, Greece, Italy, Slovenia, Spain, Sweden, Switzerland and the United Kingdom). In France, automatic substitution (by community pharmacists) of a biologic with another belonging to the same biosimilar group is allowed to initiate or allow continuation of treatment, provided this possibility has not been ruled out by the prescriber. In the Netherlands automatic switching is allowed with patient’s informed consent.

We suggest that biosimilars and originator biologics should not be randomly interchanged, since it would be impossible to accurately assess loss of efficacy and adjudicate adverse effects in the setting where drug switching is occurring haphazardly. Rigorous clinical evidence is needed to assess the safety and efficacy of switching from an originator to a biosimilar product. In an extension study of PLANETRA, rheumatoid arthritis patients switched from infliximab to CT-P13 (Remsima) did not demonstrate loss of efficacy or increase in immunogenicity over two years compared to the group of patients that were started and maintained on CT-P13. Similar findings were reported in the extension study (PLANETAS) in ankylosing spondylitis patients. However, it is important to note that these studies were not designed to test equivalency or non-inferiority. Data from an Italian observational cohort study of inflammatory bowel disease patients demonstrated no differences in safety between patients switched from reference
Biosimilars for Psoriasis

infliximab to patients starting on Remsima. However, a five-fold increase of loss of response was observed in the switch group (12.2%) compared to the patients starting on Remsima (2.3%; combined biologic treatment naïve patients and previous biologic treatment group) and a trend for poorer outcomes (loss of response and primary failure) in the ulcerative colitis group versus the Crohn’s disease response group. By contrast, other observational studies, also presented at the 11th Congress of the European Crohn’s and Colitis Organisation, demonstrated evidence on the comparable outcomes of inflammatory bowel patients treated with the biosimilar Remsima. The findings described above should be interpreted with caution due to the small sample sizes and short length of follow-up time.

Currently, in the NOR-SWITCH study, approximately 500 patients are being enrolled to assess the safety and efficacy of switching Remicade (originator) to Remsima (biosimilar) in patients with rheumatoid arthritis, plaque psoriasis, psoriatic arthritis, spondyloarthritis, ulcerative colitis, and Crohn’s Disease. The primary outcome measure is worsening of disease over 52 weeks. By definition, this clinical design is assessing substitution or transitioning (single switch) of the originator with the biosimilar, and not directly assessing the interchangeability with multiple switches.

Optimal Clinical Study Design for Biosimilars

A biosimilar trial that aims to show both biosimilarity and interchangeability must address additional regulations and design specifications. There are two conditions that are equally possible for a patient to encounter as outlined by Anderson and Hauck: 1) the patient may have no prior exposure to both the reference product (R) and biosimilar (B) or 2) the patient may have
Biosimilars for Psoriasis

had prior exposure to either and switching back and forth may occur, perhaps for economic reasons. *We suggest that a consideration for a biosimilar/interchangeable clinical trial would be to include both elements of crossover and parallel design.* The minimum number of periods that would allow for switching back and forth is three, and so the possible sequences of exposure are: RRR, BBB, RBR, BRB, RRB, RBB, BRR, and BBR (Figure 1). This is the ideal, 8-sequence, 3-period (8 x 3) clinical trial design that would incorporate all potential situations a patient may encounter, but it may be less feasible than a RR, BB, RB, BR design.

Such a clinical trial design would also greatly aid in determining causality for an adverse event when drug switching is occurring.° Determining causality for an adverse event is potentially variable upon the half-life of the products, and any design chosen should allow for comparison to a cohort that does not switch. Since in the 8x3 design there are three cases in which a crossover occurs in the same direction, but at varying times, for both the reference product and the biosimilar group, how close an adverse event occurs to a switch could indicate whether accumulation of the initial product is the cause for the adverse event or not.

We suggest that a biosimilar trial should also be at least as long as the primary endpoint in the reference product’s pivotal trials, and be based on the same safety measures collected during these original trials. For example, TNF blocker biosimilar trials should include safety outcomes such as deaths, malignancies, opportunistic infections, reactivation of tuberculosis and hepatitis B virus, major adverse cardiac events, and injection site reactions.

EMA and FDA Guidelines on Biosimilar Clinical Studies
Biosimilars for Psoriasis

The EMA stated they made the decision on biosimilar infliximab (CT-P13), and will continue to make approval and extrapolation decisions on future biosimilars, based on the totality of evidence presented by biosimilar companies. In other words, the biosimilar product should not show any meaningful differences from the reference medicine in terms of its quality, safety, and efficacy. Biosimilar applications must include extensive pre-clinical analytical data on the structure and function of the drugs, pharmacokinetics/pharmacodynamics information, and clinical studies on efficacy and safety (benefits/risks ratio, risk of immune reactions, immunogenicity) equivalence. Additionally, in terms of efficacy, it is necessary to demonstrate clinical equivalence on efficacy and safety of the biosimilar and the reference biologic in adequately powered, randomized, parallel group, preferably double-blinded, comparative clinical trials. The European Commission recently approved a second TNF-α infliximab biosimilar (Flixabi) for all indications in the 28 European Union member states and also the European Economic Area member countries of Norway, Liechtenstein, and Iceland. Although the EMA has demonstrated their support for indication extrapolation in the case of TNF blockers, the concern is that similar efficacy or safety between biosimilar and originator biologic may not be demonstrated in diseases that are not directly studied.

The Patient Protection and Affordable Care Act provided U.S. guidelines for biosimilar approvals. Clinical data needed for FDA approval of biosimilar drugs require less extensive studies than for the originator drugs. Either a phase I or phase III trial in patients with a disease for which the originator product is licensed is needed to establish biosimilarity. A pharmaceutical company producing a biosimilar stated at an investigator meeting that they intended to have one phase I trial for pharmacokinetics and a single pivotal phase 3 trial
Biosimilars for Psoriasis

involving 400-500 patients in order to obtain FDA approval. This is in contrast to branded etanercept and adalimumab that each underwent more than one phase 3 trial with approximately 1,000 psoriasis patients; by even greater contrast, multiple 5-year psoriasis trials involving 2000-3000 study subjects are required for new originator biologics that block function of IL-17 or IL-23. The explanation resides in the fact that for any given type I and II statistical errors, sample sizes required to demonstrate clinical equivalence (or non-inferiority and non-superiority) of a biosimilar to its originator are smaller than those required to demonstrate superiority of a biologic to placebo or a comparator.

Recently, one biosimilar infliximab application, Inflectra (Celltrion, Inc.), has been approved by the FDA for multiple indications including psoriasis and psoriatic arthritis. Several phase 3 biosimilar etanercept and biosimilar adalimumab clinical trials are currently underway for psoriasis and rheumatoid arthritis. Rheumatologists may soon need to extrapolate data, being faced with drugs approved for psoriatic arthritis that were only studied in psoriasis. The primary endpoints of equivalence trials must not be the same that were used in clinical trials of the originator biologics. The FDA requires biosimilars to show similar efficacy to originator biologics, namely that the proposed product has neither decreased nor increased activity compared to the reference product.

Summary

Biosimilars can potentially reduce medical costs compared to originator biologics, but there are many clinical issues that have to be closely watched. Regulatory agencies will have to decide whether clinical trials of a biosimilar in one condition should be extrapolated to other conditions.
Biosimilars for Psoriasis

We take the stance that psoriasis is the best disease model that should be used for TNF blocker biosimilar clinical trials, and extrapolation can then be extended to other inflammatory conditions where the originator biologic is indicated. We are hopeful that approval agencies will more specifically define interchangeability. For the sake of accurate safety monitoring and tracking of loss of efficacy, we argue that the substitution of interchangeable biosimilars for original biologics should not be done without the knowledge of the prescribing physician.
Acknowledgments
Sergio Chimenti passed away prematurely at the end of February 2016. He spent his successful
career as a clinician, teacher, and researcher with a special focus on dermato-oncology and
psoriasis. Dr. Chimenti was Chairman and Professor in Dermatology at the University of Rome
“Tor Vergata”, Italy as well as a long-time member of the International Psoriasis Council.
Sergio was also a marvelous team leader, being able to motivate and to promote excellence
among his colleagues and trainees. One of his final achievements was his successful bid to host
the next World Congress of Dermatology in Italy in 2019. Sergio Chimenti will never be
forgotten.

Figure Legends

Figure 1. Biosimilar interchangeable clinical trial design including both elements of
crossover and parallel design
The study design is comprised of 8 parallel sequences with 3 switch periods. Each period will
run according to the length of time scheduled for the primary endpoint of the reference product’s
pivotal trial. Example: 12 weeks for etanercept (primary endpoint PASI 75).
Biosimilars for Psoriasis

References

Biosimilars for Psoriasis

Biosimilars for Psoriasis

Biosimilars for Psoriasis

20. European Commission. Consensus Information Paper 2013. What you need to know about Biosimilar Medicinal Products. Available at:

25. Yoo DH. Efficacy and safety of CT-P13 (Infliximab biosimilar) over two years in patients with rheumatoid arthritis: 20. comparison between continued CT-P13 and switching from Infliximab to CT-P13 (abstract no L1). ACR annual meeting; San Diego, CA, USA. 2013
Biosimilars for Psoriasis

30. Kolar Mea. Switching of patients with inflammatory bowel disease from original infliximab (Remicade®) to biosimilar infliximab (Remsima™) is effective and safe. 11th Congress of the European Crohn’s and Colitis Organisation. Amsterdam, the Netherlands, 2016.
Biosimilars for Psoriasis

Biosimilars for Psoriasis

37. Kozlowski S. Biosimilars—an update focused on quality considerations.

Biosimilars for Psoriasis

Biosimilars for Psoriasis

Biosimilars for Psoriasis

Table 1 – Biosimilars that are approved or are in the process of approval for chronic inflammatory disorders

<table>
<thead>
<tr>
<th>Biosimilar</th>
<th>Indication</th>
<th>Clinical studies conducted for approval</th>
<th>Company</th>
<th>Approval Year</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP201546</td>
<td>PsO, PsA, PsO, AS</td>
<td>PsO</td>
<td>Sandoz</td>
<td>Anticipated</td>
<td>FDA accepted the BLA submission in Oct 2015; EMA accepted submission</td>
<td>http://www.gabionline.net/layout/set/print/Biosimilars/News/FDA-accepts-application-for-etanercept-biosimilar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2016 USA</td>
<td>Dec 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brenzys (SB4)47</td>
<td>RA, PsA, PsO, AS</td>
<td>RA</td>
<td>Merck and Samsung Bioepsis</td>
<td>2015 South Korea</td>
<td>Brenzys approved in South Korea September 2015. Approved by EMA 2016 for approval in Europe</td>
<td>http://www.gabionline.net/Biosimilars/General/Biosimilars-approved-in-South-Korea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davictrel (HD203)47</td>
<td>RA, PsA, PsO, AS</td>
<td>RA</td>
<td>Hanwha Chemical, South Korea / Merck</td>
<td>2014 South Korea</td>
<td>Approved by South Korea</td>
<td>http://www.gabionline.net/Biosimilars/General/Biosimilars-approved-</td>
</tr>
</tbody>
</table>
Biosimilars for Psoriasis

<table>
<thead>
<tr>
<th>Product</th>
<th>Indications</th>
<th>Company</th>
<th>Launch Country</th>
<th>Approval Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qiangke</td>
<td>RA, JIA, AS, PsO, PsA</td>
<td>NA</td>
<td>Shanghai Celgen Biopharmaceuticals</td>
<td>2014 China</td>
<td>No peer-reviewed publications</td>
</tr>
<tr>
<td>Adalimumab</td>
<td>RA, JIA, PsA, AS, adult UC, adult and pediatric CD</td>
<td>Cadila Healthcare Ltd. Zyus Cadila (India)</td>
<td>India 2014</td>
<td>Clinical trial published after launch</td>
<td>Jani et al. 2015</td>
</tr>
<tr>
<td>Exemptia</td>
<td>RA, JIA, PsA, AS, adult UC, adult and pediatric CD</td>
<td>Cadila Healthcare Ltd. Zyus Cadila (India)</td>
<td>India 2014</td>
<td>Clinical trial published after launch</td>
<td>Jani et al. 2015</td>
</tr>
<tr>
<td>Infliximab</td>
<td>RA, PsO, PsA, AS, adult and juvenile UC and adult and juvenile CD</td>
<td>Celltrion</td>
<td>South Korea 2012 70 countries; extrapolation differences according to country; approved in the US February 2016</td>
<td>Health Canada did not allow extrapolation to ulcerative colitis or Crohn’s disease; JPMDA of Japan did allow extrapolation to AS, PsA or PsO</td>
<td>Dorner and Kay 2015</td>
</tr>
<tr>
<td>CT-P13 Remsima/Inflectra/Flammegis</td>
<td>RA, PsO, PsA, AS, adult and juvenile UC and adult and juvenile CD</td>
<td>Celltrion</td>
<td>South Korea 2012 70 countries; extrapolation differences according to country; approved in the US February 2016</td>
<td>Health Canada did not allow extrapolation to ulcerative colitis or Crohn’s disease; JPMDA of Japan did allow extrapolation to AS, PsA or PsO</td>
<td>Dorner and Kay 2015</td>
</tr>
</tbody>
</table>
Biosimilars for Psoriasis

- AS = ankylosing spondylitis, CD = Crohn’s disease, JIA = juvenile idiopathic arthritis, PsA = psoriatic arthritis, PsO = psoriasis, RA = rheumatoid arthritis, UC = ulcerative colitis
- NA = not available
Table 2 – Published clinical studies in biosimilars

<table>
<thead>
<tr>
<th>Disease - Innovator</th>
<th>Product</th>
<th>Company name, country</th>
<th>Phase</th>
<th>Trial design</th>
<th>Status</th>
<th>No. of subjects</th>
<th>Start/end dates</th>
<th>Primary outcome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psoriasis - Etanercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-000444-14</td>
<td>CHS-0214</td>
<td>Coherus Biosciences, USA</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Ongoing</td>
<td>424</td>
<td>Jan 2015/-</td>
<td>PASI % improvement, PASI75</td>
</tr>
<tr>
<td>NCT02134210</td>
<td>CHS-0214</td>
<td>Coherus Biosciences, USA</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Ongoing</td>
<td>496</td>
<td>Jun 2014/ May 2016</td>
<td>PASI75</td>
</tr>
<tr>
<td>NCT02486939</td>
<td>CHS-0214</td>
<td>Coherus Biosciences, USA</td>
<td>III</td>
<td>1-arm (extension study)</td>
<td>Recruiting</td>
<td>400</td>
<td>Jul 2015/ Apr 2017</td>
<td>AE, Labs, Vital signs, Physical examinations, Immunogenicity</td>
</tr>
<tr>
<td>2012-002011-26</td>
<td>GP2015</td>
<td>Sandoz, Switzerland</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Completed</td>
<td>546</td>
<td>May 2013/ Mar 2015</td>
<td>PASI75</td>
</tr>
<tr>
<td>NCT01891864</td>
<td>GP2015</td>
<td>Sandoz, Switzerland</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Completed</td>
<td>531</td>
<td>Jun 2013/ Mar 2015</td>
<td>PASI75</td>
</tr>
<tr>
<td>Psoriasis - Adalimumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01970488</td>
<td>ABP 501</td>
<td>Amgen, USA</td>
<td>III</td>
<td>2-arm parallel</td>
<td>Completed</td>
<td>350</td>
<td>Oct 2013/ Mar 2015</td>
<td>PASI % improvement</td>
</tr>
<tr>
<td>2013-000537-12</td>
<td>ABP 501</td>
<td>Amgen, USA</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Completed</td>
<td>340</td>
<td>Sep 2013/-March 2015</td>
<td>PASI % improvement</td>
</tr>
<tr>
<td>NCT02581345</td>
<td>M923</td>
<td>Baxalta/Momenta</td>
<td>III</td>
<td>3-arm parallel</td>
<td>Recruiting</td>
<td>516</td>
<td>Sep 2015/Sep 2016</td>
<td>PASI75</td>
</tr>
<tr>
<td>NCT02016105</td>
<td>GP2017</td>
<td>Sandoz, Switzerland</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Ongoing</td>
<td>448</td>
<td>Dec 2013/ Apr 2016</td>
<td>PASI75</td>
</tr>
<tr>
<td>Rheumatoid arthritis - Etanercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02115750/2014-000443-33</td>
<td>CHS-0214</td>
<td>Coherus Biosciences, USA</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Ongoing</td>
<td>620</td>
<td>May 2014/ May 2016</td>
<td>ACR20</td>
</tr>
<tr>
<td>NCT02486939</td>
<td>CHS-0214</td>
<td>Coherus Biosciences, USA</td>
<td>III</td>
<td>1-arm (extension study)</td>
<td>Recruiting</td>
<td>400</td>
<td>Jul 2015/ Apr 2017</td>
<td>AE, Labs, Vital signs, Physical examinations, Immunogenicity</td>
</tr>
<tr>
<td>NCT01270997</td>
<td>HD203</td>
<td>Hanwha Chemical,</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Completed</td>
<td>294</td>
<td>Dec 2010/ May 2012</td>
<td>ACR20</td>
</tr>
</tbody>
</table>
Biosimilars for Psoriasis

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Brand Name</th>
<th>Country</th>
<th>Phase</th>
<th>Study Type</th>
<th>Status</th>
<th>Duration</th>
<th>Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-005026-30</td>
<td>SB4</td>
<td>Samsung Bioepis, South Korea</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Ongoing</td>
<td>498 Aug 2013 / -</td>
<td>ACR20</td>
</tr>
<tr>
<td>Rheumatoid arthritis - Adalimumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01970475 ABP 501</td>
<td>Amgen, USA</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Completed</td>
<td>526 Oct 2013/ Nov 2014</td>
<td>ACR20</td>
<td></td>
</tr>
<tr>
<td>2013-004654-13</td>
<td>ABP 501</td>
<td>Amgen, USA III</td>
<td>1-arm (extension study)</td>
<td>Ongoing</td>
<td>425 Feb 2014/-</td>
<td>AEs, SAEs, AE, Labs, Immunogenicity</td>
<td></td>
</tr>
<tr>
<td>NCT02137226 ABP 501</td>
<td>Boehringer Ingelheim, Germany</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Ongoing</td>
<td>650 Jan 2015/ Dec 2016</td>
<td>ACR20</td>
<td></td>
</tr>
<tr>
<td>2014-000352-29</td>
<td>PF-064102 93</td>
<td>Pfizer, USA III</td>
<td>2-arm, parallel</td>
<td>Ongoing</td>
<td>560 Oct 2014/-</td>
<td>ACR20</td>
<td></td>
</tr>
<tr>
<td>NCT02167139 SB5</td>
<td>Samsung Bioepis, South Korea</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Ongoing</td>
<td>490 May 2014/May 2015</td>
<td>ACR20</td>
<td></td>
</tr>
<tr>
<td>Crohn’s disease - Infliximab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02096861 CT-P13</td>
<td>Celltrion/Hospira, South Korea/USA</td>
<td>III</td>
<td>4-arm, parallel: 2 continuou s, 2 cross-over</td>
<td>Recruiting</td>
<td>214 Jul 2014/Mar 2017</td>
<td>CDAI-70</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid arthritis-Infliximab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01217086 CT-P13</td>
<td>Celltrion/Hospira, South</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Completed</td>
<td>617 Oct 2010/ Jul 2012</td>
<td>PK equivalence</td>
<td></td>
</tr>
</tbody>
</table>
Biosimilars for Psoriasis

<table>
<thead>
<tr>
<th>ID</th>
<th>Brand</th>
<th>Country</th>
<th>Phase</th>
<th>Study Design</th>
<th>Status</th>
<th>Completion Date</th>
<th>Outcome Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01571219</td>
<td>CT-P13</td>
<td>Celltrion/Hospira, South Korea/USA</td>
<td>III</td>
<td>1-arm (extension study)</td>
<td>Completed</td>
<td>302 Mar 2012/Jul 2013</td>
<td>Long-term efficacy ACR</td>
</tr>
<tr>
<td>NCT01927263</td>
<td>NI-071</td>
<td>Nichi-Iko, Japan</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Unknown*</td>
<td>230 Jul 2013/Mar 2015</td>
<td>DAS28-ESR</td>
</tr>
<tr>
<td>NCT02222493</td>
<td>PF-064381-79</td>
<td>Pfizer, USA</td>
<td>III</td>
<td>2-arm, parallel</td>
<td>Recruiting</td>
<td>614 Aug 2014/Sep 2017</td>
<td>ACR20</td>
</tr>
<tr>
<td>NCT01936181</td>
<td>SB2</td>
<td>Samsung Bioepsis, South Korea</td>
<td>III</td>
<td>4-arm, parallel, cross-over</td>
<td>Active, not recruiting</td>
<td>584 Aug 2013/Aug 2014</td>
<td>ACR20</td>
</tr>
</tbody>
</table>

Other study - Infliximab

<table>
<thead>
<tr>
<th>ID</th>
<th>Brand</th>
<th>Country</th>
<th>Phase</th>
<th>Study Design</th>
<th>Status</th>
<th>Completion Date</th>
<th>Outcome Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02148640</td>
<td>CT-P13</td>
<td>Norway Health Authority</td>
<td>IV</td>
<td>2-arm, parallel (switch)</td>
<td>Recruiting</td>
<td>500 Oct 2014/Apr 2016</td>
<td>Occurrence of disease worsening PsA, AS, RA, PsO, UC, CD</td>
</tr>
</tbody>
</table>

AE: adverse event; **ACR20**: 20% improvement in ACR (American College of Rheumatology) core set measurements; **CDAI-70**: Crohn's disease activity index -70 response; **DAS28-ESR**: Disease Activity Score for 28 joints - erythrocyte sedimentation rate; **PK**: pharmacokinetic. **PASI**: Psoriasis Area and Severity Index; **PASI75**: 75% or greater improvement in PASI score; **SAE**: serious adverse event.

*Last verified August 2013

All data taken from following websites:

http://gabionline.net/layout/set/print/Reports/Pivotal-clinical-trials-for-etanercept-biosimilars
http://www.gabionline.net/Reports/Pivotal-clinical-trials-for-adalimumab-biosimilars
http://gabionline.net/Reports/Pivotal-clinical-trials-for-infliximab-biosimilars

Data was verified on clinicaltrials.gov and clinicaltrialsregister.eu (accessed on Nov. 18, 2015)
Table 3 – Extrapolation for the use of Remsima® and Inflectra® as infliximab biosimilar by health authorities

<table>
<thead>
<tr>
<th>Diseases in which infliximab biosimilar has been studied in clinical trials</th>
<th>Examples for extrapolation by European Medical Agency (EMA)</th>
<th>Examples for extrapolation by Health Canada *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid arthritis</td>
<td>Psoriasis</td>
<td>Psoriasis</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>Psoriatic arthritis</td>
<td>Psoriatic arthritis</td>
</tr>
<tr>
<td></td>
<td>Crohn’s disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pediatric Crohn’s disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulcerative colitis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pediatric Ulcerative colitis</td>
<td></td>
</tr>
</tbody>
</table>

*EMA authorization: pivotal efficacy and safety trial in patients with active rheumatoid arthritis; Health Canada authorization: efficacy and safety trials conducted in patients with rheumatoid arthritis and ankylosing spondylitis.\(^{53,54}\)

*EMA pivotal pharmacokinetic study in patients with ankylosing spondylitis; Health Canada pharmacokinetic study in patients with ankylosing spondylitis.

*Health Canada did not approve for the extrapolation to inflammatory bowel diseases as antibody-dependent cell-mediated cytotoxicity had not been adequately demonstrated for the biosimilar infliximab according to Health Canada opinion.\(^{55}\)
Biosimilars for Psoriasis
Biosimilars for Psoriasis

Figure 1. Biosimilar interchangeable clinical trial design including both elements of crossover and parallel design

The study design is comprised of 8 parallel sequences with 3 switch periods. Each period will run according to the length of time Scheduled for the primary endpoint of the reference product’s pivotal trial. Example: 12 weeks for etanercept (primary endpoint PASI 75).