Reducing research waste in benign gynaecology and fertility research

JMN Duffy1,2 MBChB MRes BSc (Hons) PG HCL, S Bhattacharya3 FRCOG MD, M Herman4 MD PhD, B Mol5 MD PhD, A Vail6 BSc MSc, J Wilkinson6 BSc MSc, C Farquhar7 CNZM FRCOG FRANZCOG CREI MBChB MD MPH

on behalf of the Cochrane Gynaecology and Fertility Group.

1 Balliol College, University of Oxford, Oxford, United Kingdom.
2 Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom.
3 The Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom.
4 Department of Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, The Netherlands.
5 Robinson Research Institute, University of Adelaide, South Australia.
6 Centre for Biostatistics, University of Manchester, Manchester, United Kingdom.
7 Cochrane Gynecology and Fertility Group, University of Auckland, Auckland, New Zealand.

Corresponding author:

Prof Cindy Farquhar

Cochrane Gynecology and Fertility Group, University of Auckland, Auckland, New Zealand.

c.farquhar@auckland.ac.nz

+64 9 923 9481

Running title:
Reducing research waste

Manuscript word count (excluding figures and tables):
1,439 words.
The past three decades have seen considerable change in the understanding of clinical research methods. There has been an acceptance that randomised controlled trials are the best way of establishing treatment effectiveness and a recognition that while single studies are useful, pooling knowledge from all available randomised trials is likely to provide the best evidence to guide clinical practice. Advances in methodology have accompanied technological innovations in gynaecology and reproductive medicine, such as assisted reproduction, assessment of male fertility, ovulation induction, and laparoscopic surgery. In particular, high quality systematic reviews have become important tools enabling evidence based health care decisions and identifying gaps in evidence. The Cochrane Gynaecology and Fertility Group has recently celebrated twenty years of preparing and publishing systematic reviews with a symposium in Oxford. With nearly a thousand authors and over two hundred reviews, we are well aware of the need for making research more efficient, accessible, and influential. This could be achieved by reducing research waste and addressing outcome reporting bias by developing and implementing core outcome sets (Williamson 2012).

Outcome reporting bias has been defined as “the selection for publication of a subset of the original recorded outcome variables on the basis of the results” (Kirkham 2010). For example, unpromising pregnancy data may be excluded from reports of subfertility trials in favour of more promising fertilisation rate comparisons. In addition to omitting outcomes from reported results it is also possible to undertake an alternative data analysis method. For a continuous outcome measure such as menstrual blood loss, authors may choose between multiple analyses.
including, but not restricted to: value at final follow-up; change from baseline; percentage change from baseline; and final value adjusted for baseline value (and for other baseline clinical factors) (Herman 2016). If measured repeatedly further possibilities arise including area under curve, time to fall below an arbitrary threshold, and many more summary statistics (Matthews 1990). Similar problems arise for categorical outcome measures.

When considering an unselected cohort of new Cochrane reviews, one third of reviews published contained at least one trial at high risk of outcome reporting bias and nearly one quarter may have overestimated treatment effects by at least twenty percent (Kirkham 2010). In trials designed to establish the superiority of a new intervention, the usual effect of outcome reporting bias will be to overstate both the magnitude and statistical significance of treatment effects. Simultaneously, less favourable comparisons may be suppressed. This has been observed for adverse event outcomes and may also be suspected where the trialists’ interests lie in informally claiming equivalence (Saini 2014). Pre-specification of analyses is necessary for valid inference. Journal editors and systematic reviewers therefore need to be mindful of whether the reported outcomes and exact analyses were selected prior to data analysis (Page 2016). Regrettably, it is not uncommon for even primary outcomes to change between study planning and completion, potentially undermining the integrity of the study (Tricco 2016). Reasons for, and timing of, any changes to planned reporting should be sought from trial authors.

Our group is focusing upon the challenge of addressing the unwarranted, unhelpful, and often confusing variation in outcome collection and reporting. The variation in outcome reporting has been characterised in a number of different areas for example, assisted reproduction (Wilkinson 2016), endometriosis (Figure 1; Hirsch 2016) and heavy menstrual bleeding (Herman 2016). The development and use of a core outcome set would help to address these issues. Core outcome sets are well-
defined, discriminatory, and feasible outcomes routinely collected and reported in randomised trials, systematic reviews, and overviews of systematic reviews (Williamson 2012). They represent a minimum data set of outcomes selected and prioritised by key stakeholders including healthcare professionals, researchers, and patients. The development and use of a core outcome set does not enforce harmony at the expense of innovation. The existence or use of a core outcome set does not imply that outcomes in a trial should be restricted (Williamson 2012). Rather, there is an expectation that the collection and reporting of core outcomes will make it easier for the results of trials to be compared, contrasted, and combined as appropriate, thus facilitating the incorporation of research findings into routine clinical practice (Williamson 2012).

Recognising that the current inconsistency in outcome reporting is a serious hindrance to progress in our specialty, eight-four editors of Women’s Health journals, including the Cochrane Gynaecology and Fertility Group, have formed a consortium to support core outcome sets (Khan 2016). The Core Outcomes in Women’s Health [CROWN] initiative [www.crown-initiative.org] will support the development, dissemination, and implementation of core outcome sets across our specialty. We aim to increase the value of each individual trial to ensure all trials report core outcomes and, therefore, routinely contribute data to important research questions.

Core outcome sets are currently being developed for endometriosis, fibroids, heavy menstrual bleeding, menopause, and subfertility. The Core Outcome Measures for Effectiveness Trials (COMET) initiative has performed a systematic review of methods for the derivation of core outcome sets across diverse disciplines and suggests three broad stages: [1] identifying potential core outcomes; [2] determining core outcomes using robust consensus methods engaging key stakeholders including patients; and [3] determining how core outcomes should be measure. However, to our knowledge, there is limited guidance for the most appropriate methods to develop core outcome
sets. For example, in the absence of a standardised approach, different researchers
have used different methods, perhaps including different categories of participants,
limiting the number of participants, or only entering primary outcomes from trial
reports into the consensus process, decisions that are rarely justified. Given the
uncertainty in core outcome set development methods, further methodological
research is urgently required. A research agenda could be designed through the
CROWN initiative to ensure that future core outcome sets developed across our
speciality are robust.

The Cochrane Fertility and Gynaecology Group brings together researchers
undertaking clinical trials and observational studies in the field of reproductive
medicine and benign gynaecology from around the world. We plan to utilise this
opportunity to build research capacity by facilitating collaboration on a global scale,
ultimately leading to robust evaluation of diagnostic and therapeutic interventions
and improvements in the care women and their families receive. Our infrastructure
will be leveraged to develop, implement, and disseminate research into the most
important clinical questions, using robust methods and core outcome sets. We aim
to foster a research environment to maximise clinical gain by ensuring that the data
from all relevant studies can be used for individual patient data meta-analysis
undertaken as a standard procedure as part of evidence synthesis. This can be
achieved by discussion at the planning stage, collaborative applications for multi-
national studies, sharing, and publishing protocols. We will expand and improve the
capacity and capability for clinical research within our specialty by delivering courses
in research methodology and by mentoring young colleagues from across the globe.

Other opportunities exist. The performance of systematic reviews within our group
provides an excellent opportunity to identify gaps in knowledge and establish
research priorities. We will disseminate this information to relevant stakeholders to
facilitate the development of a global research agenda, and provide a forum for
communication between potential trialists prior to studies commencing, thereby reducing duplication and waste. Finally, we plan to proactively link with policy makers, funders, and patient organisations in individual countries, to facilitate international collaboration and interaction. We will advocate for further global programme grants utilising methods to reduce research waste including development of core outcome sets. The results of this ambitious programme of work should contribute to advancing the usefulness of research to inform clinical practice, enhance patient care, and improve patient outcomes.

Despite escalation in research activity and an exponential rise in published papers, many of the fundamental questions in subfertility and gynaecology remain. One of the key reasons for this is inherent waste due to fragmented research activity and inconsistency in the collection and reporting of outcomes (Ioannidis 2014). A global effort is urgently needed to link evidence synthesis with primary evaluative research in a concerted initiative which will deliver research which is methodologically robust, clinically meaningful, and capable of improving the quality of care. Such an initiative requires skill, confidence, leadership and above all, prioritisation of the needs of patients and society over narrow considerations of maximising research output at all costs. We are drowning in research which is singularly lacking in impact. We need fewer but better studies.

Acknowledgements

We would like to thank the thousand authors, from over 45 countries, who have contributed to two hundred reviews, and who are committed to reducing research waste; and the delegates who attended the Cochrane Gynaecology and Fertility 2016: advancing women’s health through evidence meeting held at the University of Oxford, United Kingdom (1st - 3rd April 2016).
Declaration of interest

Dr. Duffy is a British Journal of Obstetrics and Gynaecology trainee scientific editor and Cochrane Gynaecology and Fertility group editor, founding member of the Core Outcomes in Women’s and Newborn Health (CROWN) initiative, and has established several consortiums developing and implementing core outcome sets. Prof. Bhattacharya reports support from pharmaceutical companies associated with fertility treatment for departmental seminars and for colleagues' attendance at conferences, outside the submitted work. Prof. Vail reports non-financial support from Cochrane Gynaecology and Fertility Group, grants from National Institute for Health Research, outside the submitted work; and is a Statistical Editor for Cochrane Gynaecology and Fertility Group (no remuneration). Mr. Wilkinson reports grants from National Institute for Health Research and is a statistical editor for Cochrane Gynaecology and Fertility Group. Publishing in peer-reviewed journals is beneficial to his career. Prof. Farquhar reports that she is the co-ordinating editor of the Cochrane Gynaecology and Fertility Group. The remaining authors report no competing interests. The ICMJE disclosure forms are available as online supporting information.

Contribution to authorship

Commentary concept and design: JMD, CB, SB, MH, BM, AV, JW, and CF. Drafting of the manuscript: JMD, CB, SB, MH, BM, AV, JW, and CF. Critical revision of the manuscript for important intellectual content: JMD, CB, SB, MH, BM, AV, JW, and CF.

Funding

The commentary was not funded.

References

Khan KS. The CROWN initiative: journal editors invite researchers to develop core outcomes in women’s health. *BJOG* 2014; **121**:1181-1182.

Figure 1. Outcome reporting in endometriosis trials. Largest 25 studies listed by study size reporting pain and fertility outcomes (Hirsch 2016).

<table>
<thead>
<tr>
<th>Study</th>
<th>Study size (n)</th>
<th>Pain triad</th>
<th>Pain outcomes</th>
<th>Fertility outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dysmenorrhea</td>
<td>Dyspareunia</td>
<td>Overall pain</td>
</tr>
<tr>
<td>Alkatout 2013</td>
<td>450</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Marcoux 1997</td>
<td>348</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Zhao 2013</td>
<td>320</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Vercellini 1999</td>
<td>269</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Vercellini 2003A</td>
<td>180</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Healey 2010</td>
<td>178</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Zhao 2013B</td>
<td>176</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Matorras 2002</td>
<td>172</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Zhu 2014</td>
<td>156</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Moini 2012</td>
<td>146</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Alborzi 2010</td>
<td>144</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Cosson 2002</td>
<td>142</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Zullo 2003</td>
<td>141</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Abu Hashim 2012</td>
<td>136</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Nowrooz 1987</td>
<td>123</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Creus 2008</td>
<td>104</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Parazzini 1999</td>
<td>101</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Alborzi 2004</td>
<td>100</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Vercellini 2002</td>
<td>90</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Seiler 1986</td>
<td>90</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Busacca 2001</td>
<td>89</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Alborzi 2007</td>
<td>88</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Soysal 2004</td>
<td>80</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Bianchi 1999</td>
<td>77</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Parazzini 1994</td>
<td>75</td>
<td>✫</td>
<td>✫</td>
<td>✫</td>
</tr>
<tr>
<td>Other trials (29)</td>
<td>1452</td>
<td>5</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

- Outcome reported in trial report