How much sunlight exposure is required to safely provide adequate vitamin D?

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
How much sunlight exposure is required to safely provide adequate vitamin D?

AR Webb¹, A Kazantzidis², MD Farrar¹, R Kift¹, KD Cashman³, LE Rhodes¹

¹University of Manchester, Manchester, UK
²University of Patras, Patras, Greece
³University College Cork, Cork, Republic of Ireland

Vitamin D synthesis is initiated in human skin upon exposure to UVB radiation; wavelengths that are also responsible for DNA damage, sunburn and associated skin cancer risk. The natural source of UVB radiation is the sun, a part of our everyday environment yet highly variable with location, season and weather. In determining whether we can gain the vitamin D benefits of sunlight exposure without suffering untoward damage, we take a pragmatic approach. “Safe” exposure is defined as that which is clearly sub-erythemal i.e. for the vast majority of the population it poses no risk of even the slightest sunburn. The limit of insufficient available sunlight for vitamin D synthesis, used to define the so-called vitamin D winter, is taken as that which produces little or no change (<1.5 nmol/L) in mean monthly population vitamin D. Where there is a significant vitamin D winter, vitamin D status is observed to follow a seasonal pattern, peaking at the end of summer and with a trough at the end of winter. A validated UV radiative transfer model was used to calculate the 10-year climatological average (2003-2012) UV across Europe for all weather conditions, and hence determine the length of the vitamin D winter for locations from 35-69 degrees North latitude. Using detailed in vivo studies from Manchester (central to the European latitude band at 53°N), the safe exposure regime for year-round adequate vitamin D synthesis for the UK population was determined. In extending this safe exposure assessment to other locations with different climates, account must also be taken of the range of population skin types, and the national dietary norms, as illustrated for a range of European locations.