Influence of Solvent Composition on the Crystal Morphology and Structure of \(p \)-Aminobenzoic Acid Crystallised from Mixed Ethanol and Nitromethane Solutions

Institute of Particle Science and Engineering and Institute of Process and Research Development,
School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK

J. Loughrey
School of Chemistry, University of Leeds, LS2 9JT

G. Sadiq\#, R. J. Davey
School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK

*Communicating author: i.rosbottom@leeds.ac.uk

+Supplementary material available

#New address: The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
<table>
<thead>
<tr>
<th>Table of Contents (for review purposes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of Solvent Composition on the Crystal Morphology and Structure of p-Aminobenzoic Acid Crystallised from Mixed Ethanol and Nitromethane Solutions</td>
</tr>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. Materials and Methods</td>
</tr>
<tr>
<td>2.1 Materials</td>
</tr>
<tr>
<td>2.2 Experimental Methods</td>
</tr>
<tr>
<td>2.2.1 Solubility Determination</td>
</tr>
<tr>
<td>2.2.2 van’t Hoff Solubility Analysis</td>
</tr>
<tr>
<td>2.2.3 Crystallisation Screening</td>
</tr>
<tr>
<td>2.2.4 Crystal Morphology Characterisation</td>
</tr>
<tr>
<td>2.2.5 Structural Characterisation</td>
</tr>
<tr>
<td>2.3 Computational Methods</td>
</tr>
<tr>
<td>2.3.1 Overlaying of Molecular Structures</td>
</tr>
<tr>
<td>2.3.2 Synthon Characterisation</td>
</tr>
<tr>
<td>2.3.3 Molecular and Surface Grid-Based Searching</td>
</tr>
<tr>
<td>3. Results and Discussion</td>
</tr>
<tr>
<td>3.1 Solvent Selection Application of the Cambridge Structural Database</td>
</tr>
<tr>
<td>3.2 Solubility</td>
</tr>
<tr>
<td>3.3 Crystallisation from EtOH:NMe Mixtures</td>
</tr>
<tr>
<td>3.4 Solvate Crystal Structure and Chemistry</td>
</tr>
<tr>
<td>3.5 Crystal Morphologies from Mixed Solvents</td>
</tr>
<tr>
<td>3.6 Rationalisation of the Morphological and Structural Data through Solute/Solvent Interaction Modelling</td>
</tr>
</tbody>
</table>
Glossary

H-bond: Hydrogen bonding
vdW: van der Waals
XRD: X-ray diffraction
PXRD: Powder X-ray diffraction
Synthons: Pairwise intermolecular interactions
Slice Energy: Energy of intermolecular interactions found within one d-spacing on the (hkl) crystallographic plane
Attachment Energy: Energy of intermolecular interactions formed when a slice one d-spacing thick is added to a surface defined by (hkl) plane
d-spacing: inter-atomic plane separation

List of Symbols

ΔH_f: Enthalpy of fusion
E_{cr}: Lattice energy
E_{sl}^{hkl}: Slice energy per surface hkl
E_{att}^{hkl}: Attachment energy per surface hkl
Å: Angstroms
R: Gas constant
T: Absolute temperature
T_m: Melting temperature
ΔH_{diss}: Enthalpy of dissolution
ΔS_{diss}: Entropy of dissolution
Abstract

The crystallographic form and morphology, resulting from the re-crystallisation of α-para aminobenzoic acid (pABA) from mixed solutions of ethanol (EtOH) and nitromethane (NMe), is reported. From solutions with compositions > 60 wt % NMe the α-polymorph of pABA appears. In contrast, crystals prepared from mixed solvent with < 60 wt % NMe reveal the presence of a previously unknown NMe solvate, which crystallises concomitantly with the α-structure, whose structure and chemistry are presented here.

The NMe solvate crystal structure has similarities to α-pABA, in particular the existence of -OH…O-H-bonded dimers and NH…O H-bonds between pABA molecules, though the π-π stacking interactions between the phenyl ring groups are found to be much more offset and do not form a continuous chain through the structure, as found in α-pABA. The crystal structure is refined with a disordered NMe molecule, with the hydrogen atoms, the nitrogen atom and one of the oxygen atoms being found in two occupancies. The NMe is found to primarily interact with the NH₂ group of pABA. Intermolecular interactions within the solvate structure are generally weaker than those found in α-pABA and the lattice energy is calculated to be significantly lower than α-pABA. This suggests that the solvate structure is metastable with respect to α-pABA, and consistent with the observation that pure samples of α-pABA are crystallised from solutions with >60% NMe content, which have longer induction times and hence produce the more stable α-form.

The morphology of α-pABA crystals produced from solutions with increasing NMe content are found to decrease in aspect ratio, in comparison to needle/lathe shaped crystals produced from pure EtOH. Molecular modelling of the interactions between NMe, pABA molecules and crystal surfaces of α-pABA show that NMe has a greater propensity to interact with the NH₂ group and phenyl ring, in comparison to the same calculations for EtOH, which indicate that it prefers to interact with the COOH group. The data is consistent with NMe disrupting the π-π stacking interactions that dominate growth along the needle (b-axis) direction of α-pABA, resulting in a more isotropic morphology. The propensity of NMe to interact in this manner is also consistent with the formation of the solvate structure, since NMe interacts with the slightly less tightly bound and coordinated NH₂ and phenyl functional groups in α-pABA, in comparison to the COOH group which is more tightly bound to surrounding pABA molecules.

The correlations between the structural features of α-pABA and the solvate, the molecular and surface modelling and the experimental data provide a valuable insight into the effect of crystallisation solvent...
on solvate formation and crystal morphology. This is highly relevant to the digital design of a crystallisation process that can aid in the production of highly pure crystalline particles with tailored physical properties.

1. Introduction

The demand for active pharmaceutical ingredients (API) to be crystallised with high purity and desirable physical properties for downstream unit processes, has resulted in increased importance being attributed to the crystallisation solvent selection process. This is in order to quantify the impact of changes in solvent composition on the physical characteristics of the crystalline product, such as propensity to form solvates and variations in crystal morphology. Since a third of materials are known to produce solvates, a detailed understanding of polymorphism and solvate formation can be vital in terms of consistent production of pure and stable drug products. As a caveat to this, the avoidance of needle-like morphologies is also important in pharmaceutical and fine chemical product processing, since they can create problems in downstream processing with their propensity to block filters and pipes, along with their undesirable mechanical properties that can result in their breakage during filtration. Therefore, there is a need to correlate these material properties with molecular and crystal structural packing features, to design highly pure crystalline particles with pre-defined physical properties.

Solvent screening can be a key step to assess the crystal form and morphology of APIs produced from solution, in order to ensure the stability of a drug product and avoid product failure, resulting in the expensive process of product withdrawal and re-formulation. Experimental screening can be expensive and time-consuming, hence computational modelling can be used to guide the solvent selection process for API crystallisation. Once a stable solid form has been confirmed, the crystallisation of this form with isotropic crystal morphology can often be desirable. Though the crystallisation of more isotropic morphologies can sometimes be achieved through control of the solute concentration (supersaturation) during solution crystallisation, it can also be achieved by manipulating the solvent composition. Previous studies have demonstrated that an understanding of the individual crystal surface chemistries, solvent physical properties and solution supersaturation can result in more effective solvent or additive selection/design for tailoring the crystal growth and morphology. Therefore, the ability to design crystallisation processes via solvent selection and/or other control techniques is of significant importance to produce a stable solid form and desirable crystalline physical properties.
Crystallising from a mixture of solvents with different properties can effectively alter the physical properties (morphology, purity, crystallinity etc.) of a material34, 35, 40. Cook \textit{et al}41 observed that the mixture of a strong hydrogen bond (H-bond) donor and a strong H-bond acceptor can cause the deviation of the solution properties from regular solution theory42. Additionally, Chen \textit{et al}9 demonstrated the applicability of using a computational approach to the design of a mixed solvation environment that modified the needle-like morphology of 2,6-dihydroxy-benzoic acid. Such studies have identified that understanding a solution crystallisation environment on the molecular level can aide in rationalising the solution behaviour and physical properties of the crystals produced.

Drawing upon the above ideas, this study addresses the issue of solvent selection in the crystallisation of p-amino benzoic acid (pABA), demonstrating firstly how the Cambridge Structural Database (CSD) may be used as a tool for directing solvent choice, and secondly how state of the art synthonic engineering tools17, 43, 44 may be used to aid our understanding of how solvents control both the morphology and phase of resulting solid forms. It is now well known that the α and β polymorphs of pABA are enantiotropically related, having a transition temperature of $\sim 14^\circ$C45, 46. It has also been reported that only needle-like crystals of the high temperature stable α form appear from organic solvents (eg alcohols, ethyl acetate, acetonitrile) regardless of the temperature47, 48. The more prismatic β pABA only crystallises from water17, 47, 49, 50. The search for a new solvent was thus initially motivated by the desire to crystallise the β polymorph directly from an organic solvent. As described below, this search led to the use of nitromethane (NMe) and nitromethane/ethanol mixtures as the crystallisation media49 and ultimately to examine the solvent effect on crystalline phase and morphology. The results are rationalised using molecular modelling of the solvent interaction with both pABA molecules and crystal surfaces of α-pABA to attempt to understand, at the molecular level, the observed crystalline structural form and morphology produced from the different solvent mixtures.

\section*{2. Materials and Methods}

\subsection*{2.1 Materials}
Ethanol was purchased from VWR chemicals having a purity of 99.9\% (CAS: 64-17-5). Nitromethane with > 99\% purity was purchased from ACROS Organics (CAS: 75-52-5). The pABA was purchased from Sigma Aldrich with 99\% purity (CAS: 150-13-0).

\subsection*{2.2 Experimental Methods}

\subsubsection*{2.2.1 Solubility Determination
Saturated solutions of α-pABA in pure EtOH, and EtOH:NMe mixtures (NMe concentration was increased in 10 wt % steps all the way up to pure NMe) were prepared at the 10ml scale, agitated at the desired temperature for 24 hours and allowed to settle for 12 hours, when the supernatant was pipetted into a fresh sample vial and dried. The mass of solid was weighed using a 4-figure balance and the mass checked over 3 days to ensure all solvent had evaporated.

2.2.2 van’t Hoff Solubility Analysis

If a solution is assumed to be ideal, that is the solute/solute, solute/solvent and solvent/solvent interactions are all equal, then the ideal solid/liquid equilibrium can be expressed, assuming a negligible contribution from the heat capacity, as Equation (1)

$$\ln(x) = \frac{\Delta H_{fus}}{R} \left[\frac{1}{T} - \frac{1}{T_m}\right]$$

where R is the ideal gas constant, ΔH_{fus} is the enthalpy of fusion, T is the temperature and T_m is the melting temperature of α-pABA. However, since most solutions are non-ideal, the van’t Hoff equation can be used to assess the degree of non-ideality, shown in Equation (2)

$$\ln(x) = -\frac{\Delta H_{diss}}{RT} + \frac{\Delta S_{diss}}{R}$$

where ΔH_{diss} and ΔS_{diss} are the enthalpy and entropy of dissolution, respectively. Since R, T, ΔH_{diss} and ΔS_{diss} are constants, the solubility can be plotted as $\ln(x)$ vs $\frac{1}{T}$. Solubility plotted in van’t Hoff coordinates that is found to be above the ideal line implies that the solute/solvent interactions are stronger than the solvent/solvent interactions. Conversely, if the solubility is found to be below the ideal line, this then implies that the solvent/solvent interactions are stronger than the solute/solvent interactions. A more in-depth derivation and analysis of this theory can be found in a previous publication.

2.2.3 Crystallisation Screening

The crystals were obtained from cooling crystallisation in EtOH:NMe solvent mixtures of 0% (by weight) to 100% NMe content, at two supersaturations of $S = 1.1$ and $S = 1.3$. 10 g of solvent with the appropriate amount α-pABA were agitated at 50°C using a Julabo F25 circulator for an hour to ensure full dissolution of the solid. Then the agitation was halted and the solutions cooled to 10°C and left to crystallise, whereby crystallisation occurred within 5 days. Solutions were vacuum filtered to isolate the solid crystalline form from the solution.
Crystals of the pure nitromethane solvate were prepared using slow solvent evaporation. 5 ml of pure nitromethane was saturated with α-pABA at ambient temperature and pressure, this was then filtered into a clean 10 ml screw cap vial and covered using plastic paraffin film with a single hole punctured through using a clean needle. The solvent was allowed to evaporate slowly over 3 days; the resulting crystals were isolated using vacuum filtration and air dried.

2.2.4 Crystal Morphology Characterisation

The crystals obtained were imaged by high quality photography using an Olympus Style TG4 camera.

2.2.5 Structural Characterisation

Powder X-ray diffraction (PXRD) of the samples was carried out using a Bruker D8 advanced X-ray diffractometer, which used Cu Kα radiation and a germanium primary monochromator in a Bragg-Brentano reflection geometry. The step size used was 0.033° 2θ, with a step time of 180 s/step over a 2θ range of 5 - 39.8° 2θ. The detector used was a Vante-1 position sensitive detector. Samples were prepared by grinding crystallisation products in a mortar and pestle and mounting on a flat plate sample holder. Data reduction and Rietveld analysis were performed using PANalytical Highscore plus software.

For single X-ray diffraction, crystals were immersed in inert oil and mounted on a nylon loop. These were then cooled to 100 K using an Oxford Cryosystems 700 Series Cryostream Cooler and data collected on a RigakuSuperNova diffractometer fitted with an Atlas CCD detector with monochromated Mo-Kα radiation (λ = 0.71073 Å). The dataset was collected and processed using CrysAlisPRO and corrected for absorption using an analytical numeric correction; the structure solved using SHELXS and refined by full-matrix least squares on F² using ShelXL-2014 interfaced through the programme Olex2. Molecular graphics and tables of data were produced using Olex2. All non-hydrogen atoms were located in the Fourier Map and refined anisotropically. All hydrogen atoms bound to carbon were placed in calculated positions and refined isotropically using a “riding model”.

2.3 Computational Methods

2.3.1 Overlaying of Molecular Structures

The molecular structures were overlaid using the 3-point fit module with Interchem 2013.

2.3.2 Synthon Characterisation
The strength and nature of the intermolecular interactions in the bulk crystal structure (intrinsic synthons) were characterised using HABIT98. A nest of unit cells was constructed in three dimensions, and the interactions between a molecule in the central unit cell and all of the other molecules in the surrounding unit cells was calculated. The atom-atom parameters published by Momany et al together with fractional charges calculated using the AM1 method within MOPAC were used to calculate the strength of the intermolecular interactions in this study. This method for calculating synthon strength has been widely used in the molecular modelling of organic materials.

2.3.3 Molecular and Surface Grid-Based Searching

The most favoured binding sites between the solute and solvents were identified using the systematic search program. The program operates with a stationary and mobile phase, in this case they can be single molecules or dimers so will simply be referred to as a ‘body’. The stationary body is fixed, whilst the mobile body moves around the stationary body on a grid. At each grid point, the mobile phase can also rotate about three angles. At each point and rotation, the intermolecular energy was calculated using the same potential parameters mentioned in Section 2.3.2.

In this study, the most favoured binding sites of up to 5 molecules of NMe and ethanol with a pABA dimer were identified. The binding sites were searched sequentially. For the first simulation, the pABA dimer was held rigid and the solvent molecule was moved around the grid surrounding the dimer and the most favourable interaction between a solvent molecule and the dimer was identified. The coordinates for the most favoured interaction between the pABA dimer and one solvent molecule was used as the starting point for the second simulation, where it was held rigid and a second solvent molecule was searched in the same way as the first simulation to find the most favoured binding site of a second solvent molecule. This search procedure was repeated for up to 5 molecules of the solvent.

For the surface searching, a crystal surface, represented by a slab, was generated and the slab was then treated as a fixed body during searching process. The thickness of the slab was selected to be a multiple of the d-spacing between adjacent lattice planes, whilst the surface area was a multiple of the crystal unit cell sizes. Therefore, the surface is embedded in an \(n_1 \times n_2 \times n_3 \) matrix to eliminate the edge effects on the search results. The grid cells were generated based on three orientations of the mobile body and two spherical polar angles between the two bodies, but only covering half of the space facing the crystal surface, i.e., the azimuthal angle from 0 to 180°. The search explored every grid point and calculated the interaction energy between the slab and the mobile
body (a probe molecule or cluster), and hence identify the most favourable sites for the mobile body to
dock on or interact with the slab surface.

3. Results and Discussion

3.1 Solvent Selection Application of the Cambridge Structural Database

A starting point in this study was a search of the CSD, with the objective of identifying molecular
functionalities that could preferentially interact with the acid group of \(p \text{ABA} \). Accordingly the CSD
was searched for all crystal structures containing the \(p \text{ABA} \) moiety. Excluding the 6 entries for pure
\(p \text{ABA} \) and the structures in which \(p \text{ABA} \) adopted the acid dimer, this amounted to 42 hits in which the
acid hydroxyl was bound to a non \(p \text{ABA} \) group. Of these, 29 involved H-bonds directly to a nitrogen
(as pyridine, bipyridine, imidazole) and 13 were bound to oxygen either as carbonyl (6), water (2) or
nitro (5) functionality. On this basis, it was surmised that nitromethane would be an interesting solvent
to explore since it had not previously been chosen for crystallisation experiments. To our knowledge
this is the first report of the application of the CSD in solvent selection.

3.2 Solubility

Figure 1 shows the solubility measured in pure EtOH, NMe, and in mixtures of EtOH/ NMe in steps of
10% by weight in the temperature range 10 - 30°C.
Figure 1: The solubility for the different solvent compositions plotted using the van’t Hoff relationship with the ideal solubility (equation 1) indicated by the solid black line;

The data in Figure 1(b) shows that only the solubility up to about 30% NMe content was above the ideal solubility line, consistent with the increase in solubility seen upon addition of small amounts of NMe (Figure S1(a), supplementary material). It was also observed that the solubility at lower temperatures was further above the ideal solubility than at higher temperatures, which suggests that these liquids may be able to be significantly undercooled and remain stable. The large errors observed for the van’t Hoff coordinates for pure NMe were due to the small amount of material produced from...
the solubility experiments, hence when measuring the mass of the material, any small deviation in the mass was translated into a large percentage error.

3.3 Crystallisation from EtOH:NMe Mixtures

Cooling crystallisation experiments yielded crystalline particles from all the solutions except pure nitromethane, where after 5 days no crystalline material could be obtained. The comparison of the PXRD spectra of the crystals produced at 10°C from the solutions containing 10%, 30%, 50% and 80% NMe are shown in Figure 2.

![Figure 2: Comparison of the PXRD spectra of the crystals produced from the solution containing 10% NMe (red); 30% NMe (green); 50% NMe (blue) and 80% NMe (black). New peaks labelled are peaks not consistent with α-pABA structure](image)

The crystals produced from the 90:10 EtOH:NMe sample displayed peaks that were consistent with the α-pABA pattern, along with some prominent peaks not present in the α-pABA pattern (labelled ‘new diffraction peaks’ in Figure 2). These previously unseen peaks, consistent with the crystallisation of a
mixture of phases, were also observed in the 30:70 and 50:50 diffraction patterns, albeit at much lower intensities than in the 90:10 pattern. However, the 20:80 pattern showed no evidence of these previously unseen peaks.

A single crystal formed from cooling crystallisation of a highly supersaturated solution of pure NMe was isolated and subject to single crystal XRD. This revealed (see section 3.4) that a pABA:NMe solvate structure had been formed. The calculated PXRD pattern based on this solvate was consistent with, and hence explained, the previously unseen peaks found in some of the PXRD patterns from the mixed solutions (Figure 2). Figure 3 shows the comparison of calculated PXRD patterns of the NMe solvate and α-pABA structures, with the PXRD patterns from the crystals produced from solutions containing 10%, 20%, 30% and 50% NMe content.

Figure 3: Overlay of experimental diffraction patterns for the 10, 20, 30 and 50% NMe samples, which contained peaks related to the solvate phase, with a comparison to the simulated diffraction patterns of the NMe solvate and α-pABA structure files
Figure 3 shows that the ‘new peaks’ from Figure 2 can be attributed to the 010, 01-2 and 01-3 peaks of the solvate crystal structure. The quantity of the solvate in each sample was calculated by full pattern Rietveld analysis, with pattern fitting to both the α-pABA and the solvate structure files.

Table 1: Weight percentage values of the solvate in the samples containing solvate peaks, together with the goodness of fit of the Rietveld refinement. *Solution did not crystallise over 5 days using the method described in section 2.2.3, hence the production of the pure NMe solid was achieved using slow solvent evaporation in pure NMe.

<table>
<thead>
<tr>
<th>Sample</th>
<th>100% NMe</th>
<th>90% NMe</th>
<th>80% NMe</th>
<th>70% NMe</th>
<th>60% NMe</th>
<th>50% NMe</th>
<th>40% NMe</th>
<th>30% NMe</th>
<th>20% NMe</th>
<th>10% NMe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvate Weight%</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.0</td>
<td>0</td>
<td>3.6</td>
<td>27.7</td>
<td>80.1</td>
</tr>
<tr>
<td>RWP of Refined structures</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>27.8</td>
<td>N/A</td>
<td>27.8</td>
<td>41.6</td>
<td>41.6</td>
<td>41.6</td>
</tr>
</tbody>
</table>

Table 1 shows that in general, the amount of solvate present in the samples is reduced with increasing NMe content, with a maximum 80.1% of the solvate in the 10% NMe sample. It was observed that the samples with 40% and 70-90% NMe content contained no evidence of the solvate structure. It was also observed that the time taken to crystallise the solid increased with increasing NMe content in the solution. Therefore this suggests that the decrease in the amount of solvate structure with increasing NMe content could be consistent with a meta-stability of the solvate structure, i.e. with increased induction time to crystallisation resulting in the more stable α-pABA structure. If the solvate phase was the more stable phase, it would be expected that the increase of NMe content would enhance the crystallisation of the solvate phase, however the fact that the solvent composition would impact on the transition temperature between the two phases must also be considered. From the data collected it seems likely that the α-phase is more stable than the solvate phase, and that nitromethane impacts on the relative crystallisation rates of the two forms.

However, it should be highlighted that the 100% NMe sample included in Table 1 was produced from a slow solvent evaporation experiment in pure NMe, which yielded a solid of the pure NMe solvate and a separate solid which was a mixture of α-pABA and the NMe solvate. This therefore suggests that it takes extremely careful control over the crystallisation conditions to produce a sample of the pure NMe solvate structure.

It should also be mentioned that for the solubility measurements given in Figure 1, the solid phase that was harvested from the supernatant was assumed to be α-pABA. However, considering that it has now been shown in Figures 2 and 3, along with Table 1, that a mixture of the α-pABA and NMe solvate...
phases can be obtained from the cooling crystallisation experiments in the EtOH:NMe solvent mixtures. Therefore, it must be stated that the solubility measurements quoted here could be influenced by the conversion of any of the material to the NMe solvate, and that currently the solubility of this form is currently unknown. Hence, a future study that further examines the crystalline phase obtained from the gravimetric analysis solubility measurements, along with identifying the solubility of the solvate phase, could be of interest.

3.4 Solvate Crystal Structure and Chemistry

The unit cell and packing of the solvate crystal structure is shown in Figure 4.
Figure 4: (a) asymmetric unit of occupancy 1 (54%); (b) asymmetric unit of occupancy 2 (46%); (c) packing of the NMe solvate structure in the yz plane, black line identifying the tetramer common to the α-pABA structure and solvate structure; (d) packing of the α-pABA structure in the xz plane, black line identifying the tetramer common to the α-pABA structure and solvate structure.

Figure 4(a) shows that the solvent molecule with 54% occupancy was found to have both oxygens less than 3 Å away from H11A on the amino group of pABA, whilst the NMe molecule was found to be rotated in the 46% occupancy with O23B being found to be 4.8 Å away from H11A.

It was observed in the PXRD patterns of the crystals produced from the different solvent mixtures that some peaks were found to shift non-systematically in 2θ from sample to sample. This was attributed to the disorder of the NMe in the structure, whereby the NMe could occupy the different atomic positions identified from the single crystal structure, or even a mixture of the two (full details in supplementary material).

The black lines in Figure 4 (c) and (d) highlight the existence of essentially identical H-bonded tetramers, (two acid dimers linked by an NH…O hydrogen bond), which exist in both the solvate and α-pABA structure. This would suggest that, analogous to the α-structure, that the OH…O H-bonding dimers play a significant role in stabilising the crystal structure of the solvate. The orientations of the two carboxylic acid H-bonding dimers within the two crystal structures are compared in Figure 5.
Figure 5(a) shows how the two independent acid dimers pack with the ring structures approximately pointing in the same direction, allowing for efficient close stacking of the dimers through their ring structures along the b-axis17, 49. Comparing (c) and (d), it was found that the stacking of the pABA dimers in the solvate structure ((d)) were far more offset from each other than in the pure α-pABA structure ((c)), and the measured distance between two adjacent carbonyl carbons was found to be approximately 1 Å greater in the solvate structure. It can also be observed that the stacking interactions in the α-structure form in a continuous and unbroken chain, approximately in the direction of the b-axis. In comparison, the stacking in the NMe solvate structure was found to be isolated interactions, rather than a chain of π-π stacking.

The b-axis of the solvate structure was found to lengthen in comparison to the α-pABA structure. Figure 4(d) shows that the NMe molecule is situated between the rings of two pABA molecules, hence...
forcing the extension along the b-axis. In the α-pABA structure, both dimers are approximately in the same plane (Figure 5(a)) and the hydrogen bonds are directed approximately in the A and C directions, hence they are approximately the same in length. In the solvate structure, the twisting of the dimers to accommodate the NMe molecule has resulted in the dimers no longer being in the same plane running along the a-axis, hence the a-axis has reduced (Figure 4(c) and (d)).

The calculated strength of the intermolecular interactions (synthons) found within the NMe solvate is shown in Table 2, along with visualisation of the pairwise interactions.
Table 2: Strongest synthons calculated from the bulk structure of the NMe solvate structure and compared to the strongest synthons from the \(\alpha \)-pABA structure. Synthons visualised either side of the table for each structure.

<table>
<thead>
<tr>
<th>Synthon strengths (kcal/mol)</th>
<th>NMe Solvate</th>
<th>(\alpha)-pABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A solv: -4.35</td>
<td>Aα: -5.67</td>
<td></td>
</tr>
<tr>
<td>B solv: -2.09</td>
<td>Bα: -2.68</td>
<td></td>
</tr>
<tr>
<td>C solv: -2.07</td>
<td>Cα: -2.27</td>
<td></td>
</tr>
<tr>
<td>D solv: -1.77</td>
<td>Dα: -1.21</td>
<td></td>
</tr>
<tr>
<td>E solv: -1.63</td>
<td>Eα: -0.95</td>
<td></td>
</tr>
<tr>
<td>F solv: -1.53</td>
<td>Fα: -1.13</td>
<td></td>
</tr>
</tbody>
</table>

The lattice energy calculated for the solvate structure was found to be almost 7 kcal/mol less than the lattice energy calculated for \(\alpha \)-pABA. Synthons A, B and C were found to be structurally similar to the strongest synthons found in a study of the \(\alpha \)-pABA crystal structure\(^\text{17}\), however they were in general calculated to be weaker in the NMe solvate structure when compared to their counterparts in the \(\alpha \)-pABA structure\(^\text{17}\). The significantly reduced calculated lattice energy, weaker synthons and decrease in packing density (Table S2) is consistent with a metastable structure, which correlates to the
crystallisation data in Section 3.3 Some extra hydrogen bonding interactions were also identified, an
NH…O H-bond between the pABA and NMe molecules and an NH…N H-bond between the pABA
molecules, which was not found to be present in the α-pABA structure. The presence of the extra
hydrogen bonds probably somewhat compensates for the general weaker intermolecular synthonic
structure, hence stabilising the crystal structure.

3.5 Crystal Morphologies from Mixed Solvents

Figure 6 shows images of the crystals produced from the cooling crystallisation experiments.

Figure 6: Images of pABA crystallised at S = 1.1 at 10°C from pure EtOH up to 90:10
NMe:EtOH ratio

Figure 6 shows that the crystals produced from solutions with increasing NMe content were found to
decrease in aspect ratio and become more opaque. Table 1 indicated that the crystals produced from
solutions with above 60% NMe content were pure α-pABA, therefore suggesting that the increasing
NMe content reduces the aspect ratio of pure α-pABA crystals. Figure 6 also showed that the crystals
became more facetted and have smoother surfaces with increasing NMe content. Previous studies
suggested that the capping faces which terminate the b-axis of α-pABA grow by a rough interfacial
growth mechanism from ethanol and that they are often not well formed upon solution
crystallisation49. Therefore, addition of NMe to the solutions appears to stabilise the interface and encourage slower, stable growth of the \(\alpha\)-\(\rho\)ABA capping faces.

3.6 Rationalisation of the Morphological and Structural Data through Solute/Solvent Interaction Modelling

The acid dimer is present in both the \(\alpha\)-\(\rho\)ABA structure and the solvate structure; therefore the binding of NMe and EtOH was compared using the systematic search shown in Figure 7.
Figure 7: (a) Comparison of the sequential systematic searching of 6 molecules of ethanol (left) and nitromethane (right); (b) energetic contributions to the sequential molecular binding calculated by the systematic search for ethanol (left) and nitromethane (right) (c) most favoured orientation for a probe molecule of ethanol (left) and nitromethane (right) at the (0 1 -1) surface of the α-form of pABA.
Figure 7 (a) shows that the EtOH molecules were found to prefer to bind to the COOH and NH$_2$ groups, whilst the NMe molecules were found to prefer to bind to the NH$_2$ group and the phenyl ring. This correlates to the orientation of the NMe molecule found within the solvate structure (Figure 4). This observation may be related to the maximum observed in the solubility dependence of pABA on NMe content. This would imply that at a level of 10% NMe in EtOH both the phenyl ring and the carboxylic acid group of pABA experience their maximum solvation.

Figure 7 (b) revealed that the vdW interactions had a relatively small contribution to the binding energy for the EtOH molecule. However, after the addition of a fifth NMe molecule, the vdW contribution to the energy started to increase strongly, consistent with the NMe molecule having a stronger interaction with the phenyl ring. This is supported by Figure 7(c), which shows that the systematic search suggested that, in its most favourable position, the NMe molecule prefers to lie across the phenyl ring at the capping face of α-pABA, whilst EtOH adopts a more orthogonal orientation in order to bind most strongly to the COOH group.

It is interesting to comment that, as well as nitromethane, solvate structures have been produced from acetone and dioxane. In contrast, though there have been extensive studies of the crystallisation of pABA from polar protic solvents, such as water and ethanol, no solvate structures have been found and α-pABA often crystallises. This observation could correlate with the fact that EtOH, which is a polar and protic solvent, was found to prefer to strongly interact with the COOH group of pABA. The COOH group forms several strong interactions with other pABA molecules in the α-pABA structure, implying that there is probably not much space around this group. In contrast, the NH$_2$ and phenyl ring groups probably have a greater amount of space around them in the structure, and the NMe molecule is found to have a greater propensity to interact with those groups. Indeed, the NMe molecule is found to be interacting primarily with the NH$_2$ group in the solvate structure. Hence, this implies that the space around functional groups, along with the solvent/solute interactions with respect to these functional groups, has a strong influence on the propensity of a particular solvent to produce a solvated crystalline form.

We also suggest that the solute/solvent interactions in the crystal structure and calculated from the molecular and surface systematic searches have implications with respect to the changes in crystal morphology observed in Section 3.5. It has been observed that at the capping surface of α-pABA, the pABA molecules integrate into the surface by forming π-π stacking interactions between the phenyl ring structures. Therefore the observation that the NMe molecule has a greater propensity to interact
with the phenyl ring, in comparison with ethanol, could imply that the presence of NMe results in the observed reduction of the aspect ratio of crystals produced from solutions of increasing NMe concentration. The surface search results shown in Figure 7(c) suggest that, at the capping face, the binding of the NMe could potentially hinder the formation of the chain of \(\pi-\pi \) stacking interactions that are thought to strongly influence the needle-like morphology of \(\alpha-pABA \)\(^{16-18, 49} \). This is supported by the observation that such chains of close stacking phenyl rings in the \(pABA \) molecules, observed in the \(\alpha-pABA \) structure, were found to be absent in the solvate.

4. Conclusions

This study has demonstrated for the first time how a combined use of the CSD, crystal structure analysis and molecular and crystal surface modelling of the solute-solvent interactions, can provide an insight into the crystalline form and morphology produced from the different solvent mixtures. The calculated propensity of NMe to interact more strongly with the \(\text{NH}_2 \) and phenyl ring groups, in comparison to a polar protic solvent like EtOH which was calculated to prefer to interact with the \(\text{COOH} \) group, probably resulted in the formation of the solvate structure, as there was space around the \(\text{NH}_2 \) group for the NMe molecule to be accommodated.

The observed disorder of the NMe molecules in the solvate crystal structure accounted for the shifting of the peaks in the PXRD, suggesting that the solvate structure could occupy different occupancies when crystallised from solution. This correlated well to the calculated weaker synthonic interactions in the solvate structure, in comparison to the \(\alpha \)-structure, along with the observation that \(\alpha-pABA \) dominated the crystallisation from solutions with >60% NMe content, due to the increased crystallisation time.

The greater propensity of the NMe molecule to interact strongly with the phenyl ring group of \(pABA \), along with the observed disruption in the \(\pi-\pi \) stacking interactions in the solvate structure, has been correlated to the decrease in aspect ratio of crystals produced from solutions with increasing NMe content. Since the \(\pi-\pi \) stacking interactions dominate the growth along the long axis of the needle, the presence of NMe indicates its disruption to these interactions, hence slowing down the growth along the long axis of the needle, producing the observed isotropic morphologies.

This work demonstrates how molecular and crystallographic modelling tools can be combined with in-depth particle analysis to explain the changes in physical properties of a crystalline material. This work can assist in the on-going efforts to improve the digital design of crystallisation from solution, in
relation to assisting the cleaner and more efficient manufacture of pharmaceutical and fine chemical particulate products.

Acknowledgements

We are grateful to the EPSRC for the support of crystallisation research at Leeds and Manchester through the award of a Critical Mass grant ‘Molecules, Clusters and Crystals’ (EP/I014446/1), which supported the PhD studies of two of us (I.R and T.D.T). We also gratefully acknowledge the support of the Advanced Manufacturing Supply Chain Initiative through the funding of the ‘Advanced Design of Pharmaceutical Therapeutics’ (Grant No. 14060) project in terms of supporting pharmaceutical crystallisation and modelling research at Leeds. We would also like to thank Dr Christopher Pask (School of Chemistry, University of Leeds) for helpful discussions on the nature of disorder in the NMe solvate structure.

References

(17) Rosbottom, I.; Roberts, K. J.; Docherty, R., The solid state, surface and morphological properties of p-aminobenzoic acid in terms of the strength and directionality of its intermolecular synthons. CrystEngComm 2015, 17, (30), 5768-5788.
III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of

- Sheldrick, G. M., Crystal structure reﬁnement with SHELXL. *Acta Crystallographica Section C: Structural ... 2015.

(72) Hammond, R. B.; Hashim, R. S.; Ma, C.; Roberts, K. J., Grid-based molecular modeling for pharmaceutical salt screening: Case example of 3,4,6,7,8,9-hexahydro-2H-pyrimido (1,2-a) pyrimidinium acetate. Journal of Pharmaceutical Sciences 2006, 95, (11), 2361-2372.

