Promising approaches for treatment and prevention of viral respiratory illnesses

Nikolaos G. Papadopoulos, MD, PhD, Spyridon Megremis, PhD, Nikolaos A. Kitsioulis, Olympia Vangelatou, Peter West, PhD, Paraskevi Xepapadaki, MD, PhD

PII: S0091-6749(17)31113-2
DOI: 10.1016/j.jaci.2017.07.001
Reference: YMAI 12924

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 6 June 2017
Revised Date: 11 July 2017
Accepted Date: 14 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Promising approaches for treatment and prevention of viral respiratory illnesses

Nikolaos G. Papadopoulos, MD, PhD, Spyridon Megremis, PhD, Nikolaos A. Kitsioulis, Olympia Vangelatou, Peter West, PhD, Paraskevi Xepapadaki, MD, PhD.

1 Division of Infection, Immunity & Respiratory Medicine, The University of Manchester, Manchester, UK
2 Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, Athens, Greece
3 Department of Nutritional Physiology & Feeding, Agricultural University of Athens, Athens, Greece

Key words: Influenza, bronchiolitis, common cold, respiratory syncytial virus, rhinovirus, vaccine, monoclonal, antiviral, natural products, public health

List of Abbreviations:

A1AT Alpha-1 Antitrypsin
ARDS Acute Respiratory Distress Syndrome
ASOs Antisense Oligonucleotides
CD Cluster of Differentiation
CDHR3 Cadherin Related family member 3
COPD Chronic Obstructive Pulmonary Disease
COX Cyclooxygenase
DNA Deoxyribonucleic acid
EBV Epstein-Barr Virus
FDA Food and Drug Administration
HBV Hepatitis B Virus
HIV Human Immunodeficiency Virus
ICAM-1 Intercellular Adhesion Molecule 1
IFN Interferon
IFV Influenza virus
Ig Immunoglobulin
Abstract

Viral respiratory infections are the most common human ailments, leading to enormous health and economic burden. Hundreds of virus species and subtypes have been associated with these conditions, with influenza viruses (IFV), respiratory syncytial virus (RSV) and the rhinoviruses (RV) being the most frequent and with the highest burden. When considering prevention or treatment of viral respiratory infections, potential targets include the causative pathogens themselves but also the immune response, disease transmission or even just the symptoms. Strategies targeting all these aspects are concurrently developing and several novel and promising approaches are emerging. In this perspective, we overview the entire range of options and highlight some of the most promising approaches, including new antivirals, symptomatic or immunomodulatory drugs, the re-emergence of natural remedies, as well as vaccines and public health policies towards prevention. Wide scale prevention through immunisation appears to be within reach for RSV and promising for IFV, while additional effort is needed in regard to RV, as well as other respiratory viruses.
1. Introduction

The respiratory system is one of the main portals of entry for human pathogens. Although precise calculations are challenging due to methodology and inherent variability, the number of potentially infectious viruses we breathe every day can be at the range of many thousands. It is thus not surprising that viral respiratory tract infections (vRTI) are the most common human diseases, leading to enormous health and economic burden. A wide variety of conditions fall within the spectrum of vRTI. Many of these are by themselves major public health concerns: influenza, acute bronchiolitis, viral pneumonia, common colds. Together with their downstream effects, i.e. acute exacerbations of asthma and COPD, all result in vast amounts of morbidity, mortality and health costs, including primary care visits, hospitalizations, deaths, but also inappropriate use of antibiotics, loss of productivity and effects on quality of life. Respiratory viruses have been isolated and characterised during the last century, starting from influenza (IFV) in the 1930s, followed by respiratory syncytial virus (RSV), coronaviruses, adenoviruses and rhinoviruses (RVs) in the 1950-60s; nevertheless, ‘new’ viruses or subtypes, such as human metapneumovirus (MPV) or RV-C, are still being identified. Even though several of these viruses are typically associated with a clinicopathological entity (e.g. IFV with influenza, RSV with bronchiolitis, RV with the common cold) there is also extensive overlap and it’s often difficult to identify the aetiological agent based on clinical grounds alone. Consequently, when considering prevention and treatment of vRTI, potential targets include specific pathogens, the immune response, disease transmission or just the symptoms. Herein, we overview the options and highlight some of the most promising approaches on vRTI treatment, including symptomatic medication, immunomodulatory drugs, antivirals and natural products, as well as on vRTI prevention, ranging from vaccines to immunostimulators and public health policies. This is a vast field; we thus emphasize advances that may be relevant in tackling the virus-induced aspects of allergic disease, such as asthma exacerbations.

2. Treatment

2.1 Symptomatic medication

Most mild viral respiratory illnesses are managed symptomatically with over-the-counter (OTC) medications such as nasal decongestants, antipyretics/analgesics, antitussives or expectorants, on which no major improvements are foreseen. Although generally well
 tolerated for short-term relief, some agents may have adverse effects especially in young children. Therefore, the FDA has issued a warning against the use of OTC cough and cold products in children younger than 4 years of age. Furthermore, the use of decongestants should be minimized, especially in children, while codeine has been restricted in children by the European Medical Agency since 2015. Selective cyclooxygenase (COX) inhibitors, such as celecoxib and mesalazine, have been widely used in clinics for their antipyretic, analgesic, and anti-inflammatory properties in airway diseases, while their combination with neuraminidase inhibitors has significantly improved the survival of IFV infected mice.

Recent studies have revealed a new genus of specialized pro-resolving lipid mediators (SPM) including lipoxins, resolvins, protectins and maresins, enhancing anti-inflammatory, antiviral and pro-resolving mechanisms. Medications interfering with prostanoid and lipoxygenase biosynthesis and signaling, thus affecting resolution and SPM switching, such as aspirin and NSAIDs have been suggested as potential agents modulating antiviral immunity, while several SPM resolution agonists are in clinical development programs.

Symptomatic relief can also be sought in severe cases. Non-invasive ventilation may reduce respiratory distress in acute viral bronchiolitis. Very recently, new devices delivering totally conditioned gas (37 °C, 100% relative humidity) through very high flow nasal cannula (up to 60 l/min) have been indicated for bronchiolitis mainly as rescue therapy to reduce the need for admission to the intensive care unit.

2.2 Immune and antiviral pathway modulators

While vRTI are most often short-lived events, impaired antiviral clearance and/or activation of inflammatory pathways leads to important downstream complications such as exacerbations of asthma or COPD. The immune and antiviral mechanisms leading from infection to exacerbation have been scrutinized and medications targeting these pathways are being evaluated as promising candidates to reduce disease burden. Impaired interferon (IFN) production has been observed in various obstructive respiratory diseases, potentially contributing to enhanced susceptibility and/or severity of viral induced acute airway exacerbations. Although inhaled IFN-β supplementation has failed to show a clear effect in preventing virus-induced symptom worsening in mild asthmatics, sub-analysis in severe asthmatics showed a protective effect. Interestingly, in an experimental model, exogenous administration of IFN-λ1 has induced a strong and more prolonged antiviral state than IFN-β. Moreover, experimental studies in an allergic asthma model showed that IFN-
lamba (λ) supplementation enhanced Th1 immunity, by inducing IFN-γ and suppressing Th2 and Th17 responses through modulation of lung CD11c(+) dendritic cell (DC) function 24.

Novel antibody-based drugs with anti-RV and immunomodulatory effects, act through IFN-β induction and suppression of Th2 responses in experimental models 26. The prototype synthetic TLR4 antagonist (Eritoran_E5564) and anti-TLR4 IgG therapy have been shown to block IFV lethality in mice, by suppressing lung pathology, clinical symptoms and viral titers 27,28. Other innate immune receptors, such as TLR2, also have potential for host-targeted therapeutic approaches 21.

Interestingly, omalizumab, an anti-IgE monoclonal antibody, prevents asthma exacerbations either by decreasing the duration and shedding of RV infection or by blocking the synergistic effect of RV infection on allergy 29,30. As high affinity IgE receptors’ (FcεRI) cross-linking on plasmacytoid DCs reduces IFN-α responses following viral infections, it is plausible that omalizumab enhances virus-induced IFN-α production in asthmatic patients, thus limiting virus spreading and infection severity 31.

“Severe cytokine storm” an entity associated with markedly higher levels of proinflammatory cytokines, has been associated with severe influenza infections; immunomodulatory agents have been proposed as potential therapeutic strategies 32. Peroxisome proliferator-activated receptor (PPAR)-gamma agonists (e.g., rosiglitazone and pioglitazone) are critical regulators of inflammation, and have been promising in improving the clinical outcome of severe influenza infections 33, however their development has slowed down from 200-2005 due to possible cardiovascular side-effects; however in 2015 the FDA lifted restrictions based on new safety data 34. Moreover, sphingosine-1-phosphate receptor 1 agonists (S1P)1, which are located mainly on pulmonary endothelial cells, exhibit cytokine-storm-blunting activity by suppressing both innate cellular and cytokine/chemokine responses, particularly when combined with antivirals 35.

There is increasing interest in the use of macrolides to treat or prevent virus-induced asthma exacerbations, although microbial resistance remains a major hurdle, therefore they are not currently indicated. Early in-vivo evidence suggested that azithromycin has anti-inflammatory and anti-viral effects through induction of interferon stimulated gene mRNA expression and reduced virus replication and release in patients with asthma and chronic obstructive lung disease 36,37. In a randomized clinical trial including wheezing preschool-aged children, early azithromycin administration significantly reduced the likelihood of a
severe lower respiratory infection 38. Novel macrolides (Mac5) with anti-inflammatory, antibacterial and, more importantly, IFN augmenting activity in airway epithelium have been identified 39. Finally, in vitro models have demonstrated that alpha-1 antitrypsin (A1AT) exerts anti-inflammatory effects in RV-infected COPD airway epithelial cells, potentially through inhibition on caspase-1 activity, suggesting A1AT as potential anti-inflammatory agent 40.

2.3 Antivirals

vRTIs are usually characterized by an acute, self-limiting course which means that the peak of virus replication usually precedes or parallels the appearance of clinical symptoms. As a result, the time window from verification and/or typing of the pathogen, allowing a specific therapeutic intervention, is extremely narrow. Additional challenges need to be overcome, such as the structural variation of virus proteins, multiple genotypes and high mutation rates. Accordingly, only a very limited number of specific antiviral drugs are currently licensed, while promising approaches mostly aim to control severe complications, reduce disease burden or transmission. Antiviral strategies aim to block particular stages of the virus lytic cycle, including attachment and entry to the host cell, replication, transcription and translation (Figure 1) 41.

In principle, preventing a viral pathogen from entering the host cell represents the ideal antiviral strategy since the virus is not allowed to ‘hack’ the host; IFV neuraminidase (NA) inhibitors (NAIs) have been successfully used to competitively bind the sialic acid-binding pocket of NA and are good examples of this approach; Oseltamivir and zanamivir have been used as anti-flu therapies 42, whereas laninamivir and peramivir show antiviral activity against wild type but also against oseltamivir-resistant and NAI-resistant strains, respectively 43,44. The non-enveloped RVs use viral capsid structures to bind their receptors (ICAM-1, LDLR, CDHR3) 45. Even though more than 50% of RV strains use ICAM-1 for cell entry, an ICAM-1 competitor, tremacamra, did not make it into the clinic despite initially promising results 46 and no anti-ICAM-1 drugs are currently available. Another strategy is to prevent capsid uncoating and further assembly of new virions. This strategy has been successfully used against IFV and severe acute respiratory syndrome coronavirus (SARS-CoV) which use a class I fusion mechanism 47. DAS181 (Fludase) is a fusion construct that cleaves the sialic acid receptors on host cells and its antiviral spectrum includes IFV and parainfluenza viruses (PIV) 48. Non-enveloped viruses, such as RV, release their genomes...
through a conformational shift of the capsid protein(s) accompanied by an expansion of the viral shell along with the opening of symmetry-related channels (pores) from which the genome is released (virus uncoating) \(^{49,50}\). Various capsid-binding compounds against RVs have been tested (R and WIN series) without ultimate success \(^51\). Pleconaril, BTA798 (vapendavir) and pocapavir (V-073) are still under clinical evaluation \(^52\). Of note, a major drawback of capsid binders is the rapid emergence of resistance \(^52\). Several fusion inhibitors are being developed for the treatment of RSV and have been reviewed elsewhere \(^3,53\).

Due to their limited coding capacity, viruses rely on the production of polyproteins which need to be cleaved into functional subunits by viral proteases. The enterovirus polyprotein is cleaved by a family of cysteine proteases, which are highly conserved among different subtypes but lack homology with human proteases. Unfortunately, after failed attempts with ruprinrivir (AG7088) and AG7404, which showed antiviral activity in vitro but not in vivo, no similar agents are currently pursued \(^52\). The use of HIV protease inhibitors such as lopinavir and ritonavir in SARS patients have not been associated with any proven benefit, although retrospective studies reported that severe outcomes (ARDS or death) occurred less often in those receiving a combination of lopinavir/ritonavir and ribavirin with corticosteroids \(^54\).

Polymerase inhibitors (nucleoside/nucleotide analogs) act by leading to termination of the polynucleotide chain elongation. Ribavirin has been used for the treatment of severe RSV disease in high-risk infants and in combination with protease inhibitors in SARS patients, but its use has been limited due to cost and unconfirmed efficacy towards severe outcomes.

ALS-008176 is a promising orally bioavailable prodrug of the novel RSV replication inhibitor ALS-008112 (a cytidine nucleoside analogue) which inhibits RSV replication \(^55\). Other promising polymerase inhibitors include amiloride (competitive inhibitor of coxsackie virus B3 RNA polymerase) and GPC-N114 (multiple genera in Picornaviridae) but are still in early stages \(^52\). Favipiravir (T-705) is an antiviral drug that selectively inhibits the RNA-dependent RNA polymerase of IFV, as well as several other viruses \(^56\).

Umifenovir has been shown to inhibit various human respiratory RNA viruses including several strains of IFV-A and B, RSV, PIV3 and RV-B14. It also demonstrates inhibitory activity against other viruses, enveloped or not, responsible for emerging or globally prevalent infectious diseases \(^57\).
Finally, a most promising but also challenging antiviral approach is through antisense oligonucleotides (ASOs). ASOs are single-stranded deoxyribonucleotide oligomers with a sequence complementary to a target mRNA transcript. Thus, viral genomic RNA, or viral mRNA can be directly targeted. Antisense technology and RNA interference have been experimentally explored in targeting measles virus, SARS-CoV, coxsackievirus, enteroviruses and RV, PIV, human metapneumovirus, IFV and RSV genomes. The RNA inhibition-based therapeutic that is furthest advanced in clinical development at this time is against RSV. ALN-RSV01 is an unmodified naked small interfering (si)RNA designed to inhibit the replication of RSV by interrupting the synthesis of the viral N protein. The sequence of the target is well conserved throughout naturally occurring RSV A and B genotypes.

In all, new antivirals are continuously explored, particularly for life-threatening viruses such as IFN and RSV. RVs, even though simple in terms of genome organization and protein coding have proven extremely difficult to target, mostly due to its high diversity, immune evading strategies, but also to some extent to the underestimation of RV infection clinical consequences.

2.4 Natural products

Within the past few years, scientific communities all over the world have shown renewed interest in the search for novel immune stimulating or antiviral agents, for either treatment or prevention, from plant origin, often using ethnomedicinal approaches. Natural compounds are widely recognized as privileged structures, trimmed by evolutionary processes to interact with macromolecular targets. Plants use a diverse set of biochemical pathways to generate several secondary metabolites representing ecosystemic adaptations, to help plants to survive various environmental stresses and protect them from infections and infestations. The antiviral potential of plant extracts or compounds varies among viruses. Natural compounds occupy an equally large and complex chemical space as synthetic compounds. In the case of antiviral agents, 80% of 46 entities registered in the last 30 years (1981–2010), can be classified as natural product-botanicals, synthetic but natural product mimics, natural product pharmacophores, or a combination of the latter two. Oseltamivir, a success story in IFV drug synthesis, has its roots in nature: the abundant plant constituents, quinic acid and shikimic acid, are used as its starting materials. A screening strategy was applied to investigate crude extracts from 260 plant species on their inhibiting potential towards NAI of Clostridium perfringens. Moreover 14 bioactive
compounds from Cleistocalix operculatus buds, were discovered by using an anti-IFV
screening approach 65. The Chinese Academy of Medical Sciences tested more than 10,000
plants. Among them, a pronounced NA inhibiting effect was observed for the herb extract of
Elsholtzia rugulos. Some extracts from Agrimonia pilosa 66, Echinacea purpurea 67 and
Prunus mume 68, or multi-component mixtures polyphenol fractions from Punica granatum
69, and secoiridoid glucosides from Ligustrum lucidum 70, have shown a significant reduction
of virus-induced cytopathic effects and in general anti-viral or anti-influenza activity.

A 10\%-20\% risk reduction of common cold incidence with the use of Echinacea supplements
has been shown 71. Moreover, a recent meta-analysis demonstrated benefit upon long-term
(2-4 months) prevention with Echinacea on recurrent RTIs 72. Another promising compound
is BNO 1016, a fixed combination of 5 herbal substances, which significantly reduced
symptoms and led to faster recovery in acute viral rhinosinusitis 73. Reported antiviral effects from natural products, regardless if obtained from clinical trials or
empirical knowledge, can only give clues for further research. It appears however that we
are entering a new ‘Golden Age’ of natural products drug discovery.

3. Prevention
Prevention of viral respiratory illness is attempted by either avoiding exposure or by
strengthening immune defences, either non-specifically with immunostimulators or
specifically with vaccines. Often, but not always, interventions are targeted towards high-
risk groups for a particular infection (e.g. RSV in infants and elderly, IFN in patients with
asthma etc).

3.1 Immunostimulators
A variety of compounds (of microbial, herbal or synthetic origin) have been used and are still
being developed as non-specific immunostimulatory agents to enhance or modulate the
immune response against respiratory pathogens, in a preventive or sometimes also in a
therapeutic context. The effectiveness of these agents is usually moderate and therefore
they are only used as secondary, supportive measures. As such, however, their potential
should not be underestimated.

Among several agents based on bacterial components (OM-85 BV, LW 50020, PMBL, D53,
RU 41740), OM-85 BV, a lyophilisate of water-soluble fractions of bacteria commonly
detected in RTIs, has been extensively studied and a role in the prevention of both acute
and recurrent RTIs has been shown \(^{74,75}\). Mechanistic studies have confirmed pleiotropic immunomodulating effects on both the innate and adaptive immunity \(^{76,77}\).

Pidotimod, a synthetic dipeptide molecule, induces a variety of immunomodulatory effects \(^{78,79}\) and has shown some efficacy in preventing RTIs, although this was not always confirmed \(^{80,81}\).

Probiotic supplementation has been shown to reduce the incidence, duration and severity of upper respiratory infections, through immune modulation \(^{82}\) and in particular RV infection through altering nasal innate inflammatory responses \(^{83}\).

Vitamin D (25-hydroxyvitamin D) has a modulatory role in host defence, inflammation, immunity, and epithelial repair following respiratory infections \(^{84}\). A recent meta-analysis has confirmed that Vitamin D supplementation reduces the overall risk of acute respiratory infections \(^{85}\). Data from in vitro RV infected human primary bronchial epithelial cells showed that exogenous vitamin D can reduce RV replication via increasing IFN and cathelicidin gene expression \(^{86}\). A significant amount of research is still dedicated to the efficacy of Vitamin D supplementation, not without controversy. Hopefully, specific indications will be consolidated soon.

Despite widespread use and a multitude of studies, the role of vitamins C or zinc supplements is still inconclusive in relation to their action against the common cold \(^{87}\).

Interestingly, meditation and exercise may significantly contribute in the reduction of RTI burden \(^{88}\), suggesting that the immunostimulatory capacity of non-pharmacological measures should also be considered.

3.2 Public Health measures

The high transmission rate and epidemic nature of respiratory viruses indicate that effective public health measures to reduce transmission may have a substantial role in the overall prevention of these infections. A plethora of studies and meta-analyses delineated the important contribution of health policies in reducing transmission of epidemic respiratory viruses. In an elegant randomized control trial, an automated web-based intervention that maximised handwashing intention was associated with fewer episodes of influenza-like illness, shorter duration of symptoms and fewer antibiotic prescriptions in the intervention group \(^{89}\). Although similar results regarding handwashing have been confirmed in a Cochrane meta-analysis \(^{90}\), hand hygiene interventions in educational settings were not as
unequivocally effective 91,92. Low adherence to hand hygiene recommendations was correlated with higher incidence of IFV infection among health-care workers during the 2009 pandemic 93. The use of face masks has been shown to be highly effective in the interruption of respiratory viral spread 90. This has been further demonstrated in a cluster randomized trial in which a reduced odds ratio of influenza infection secondary attack was observed in the intervention group 94. Face masks are now regularly worn in some communities, especially in Asia, but much less so in western societies. Taken together, it seems that public health measures may provide a valuable ally in lowering the burden of respiratory infections in the community.

3.3 Vaccines and monoclonal antibodies

Both vaccines and monoclonal antibodies (passive immunisation) are relevant interventions. Vaccines for IFV, RV and RSV were initially developed as long ago as the 1940-1960s but with mixed success, mostly due to rapid virus evolution. Improved understanding of vaccine immunology and technological developments place us now closer than ever to developing highly effective vaccines against the major respiratory viruses. Monoclonal antibody (mAb) therapies to viral infections like EBV (Rituximab) or RSV (Palivizumab) provide passive immunisation and are licensed, while similar agents targeting influenza and other viruses are in preclinical development 95. Neutralising antibodies can bind and inactivate viruses, inhibit viral cell entry (blocking receptor binding or conformational changes), prevent the release of virions from the cell or modulate immune effector functions 96,97. Engineering and production strategies to produce antibody fragments, higher affinity binding and longer half-life are contributing to a lower overall cost for therapy 96 although vaccines are still considered preferable in most cases. It is notable that effective neutralising mAb epitopes can also inform the rational design of vaccines 98. Different vaccine types to respiratory viruses exist and these are shown in Figure 2. Traditionally, either live attenuated or inactivated viruses are used. More recently, subunit vaccines, made of detergent disrupted whole viruses or purified viral proteins, are also common. Furthermore, promising approaches utilise micro/nanoparticle, material and recombinant technologies to produce broadly immunogenic, often self-adjuvanting, reproducible and safe vaccine responses 99. These delivery systems include synthetic
polymers, virosomes, virus-like particles (VLP), liposomes, lipid nanoparticles, proteins, emulsions and immune stimulating complexes.

Currently, naturally occurring particles are favoured due to safety concerns, even though synthetic polymers such as PLGA are in use and gold nanoparticles have shown promising results. Self-assembling protein nanoparticles, such as ferritin cages and vaults, have also shown promising pre-clinical data. Layer-by-layer peptide fabricated vaccine containing alternately charged poly-L-Glutamic acid and poly-L-lysine layers with RSV peptides added have been efficacious in animals.

A virosomal adjuvanted vaccine composed of reconstituted IFV envelope effectively removing the core proteins and RNA, has been available for years with excellent tolerability and efficacy. Several VLP vaccines based on HBV surface antigen have been approved for viral infections such as human papilloma virus and other microbes (e.g. malaria), although an IFV candidate has not progressed. Nevertheless these and other VLPs offer promise due to their valency, similar immune presentation to pathogens and antigenic preservation.

Adjuvants form a vital part of many vaccines, however, only alum and oil in water emulsions are currently approved. A number of novel adjuvants like microcrystalline tyrosine, Matrix M™, PAMPs and chitosan are in pre-clinical development.

DNA and RNA vaccines induce an immune response to the nucleic acid encoded antigen. Impressive results have been reported in animals for a single low dose intradermal, non-replicating DNA vaccine for RSV, however whether this will translate effectively to humans is not yet known. To enhance immunogenicity, RNA vaccines have been encapsulated in nanoparticles, achieving sterilising immunity for Zika virus in mice as well as being incorporated into virus based self-replicating constructs known as replicons.

Active IFV vaccination already forms the core of the global strategy against severe seasonal and pandemic influenza. Trivalent vaccines and more recent quadrivalent vaccines are largely efficacious in healthy adults, provided an adequate match between circulating and vaccine strains. Higher dose (60 µg) and MF59 adjuvanted vaccines are available for elderly patients. Similarly, pandemic vaccines may offer greater cross-clade protection, due to the presence of improved (AS03 or MF59) adjuvants.

The current frontier of IFV vaccine development is ‘universal’ vaccines (Table). Ideally these would protect not only from circulating and pandemic strains, but also from novel epitopes...
that may evolve in the future. Many such vaccines are currently in pre-clinical and early clinical stages.

Hetero-subtypic cross reactive antibodies to IFV-A against the HA stalk124, have been isolated from immune individuals125, leading to mAbs now in phase 298,126. Similar multi-lineage HA-stalk antibodies to IFV-B have also been reported127. Other conserved proteins have also been targeted and an anti-M2e antibody is in development128. Passive immunisation or post infection treatment may therefore soon become another tool to combat IFV129,130, reviewed in131.

HA stalk and chimeric head/stalk based vaccines have also shown encouraging pre-clinical results103,132-134. A further vaccine strategy based on conserved epitopes in proteins such as M1, NP and PB1 involves the induction of CD4+ and CD8+ T-cell immunity135, leading to the development of a promising MVA viral vector vaccine. Other vaccines use multi-epitope peptides to induce IFV specific T-cell responses reducing viral shedding in humans136,137. Self-replicating RNA nanoparticles also encoding multiple proteins, and HBV based VLPs expressing M2e and HA epitopes also appear promising138.

There are currently no licensed vaccines and only one Mab (palivizumab) approved for the prevention of RSV infection. However, there are numerous candidates in clinical trials, recently reviewed3.

Suptavumab, an anti-F mAb139 has reached phase III trials in pre-term infants. MEDI8897, offers 9-fold greater potency than palivizumab and has extended half-life in primates, suggesting a once per season dosing140.

Candidate vaccines are based on live-attenuated strains, subunit, vector and nanoparticle technologies with a range of adjuvants. Chimeric and combination vaccines using expression vectors in VLPs show much promise141. Recent preclinical results exhibit effective neutralisation of RSV142-146. The most advanced of these is the Novavax F-protein VLP nanoparticle vaccine with alum adjuvant which is in phase III for maternal vaccination147,148. Transplacental transmission of neutralising antibodies has been demonstrated in preclinical studies although this has not conferred significant protection from RSV149.

Recombinant DNA vaccines are also promising due to their apparent ability to induce a balanced Th1/Th2 response, with a broad IgG/IgA profile mimicking live RSV challenge150. Intranasal and oral vaccine formulations are now in the early stages of clinical studies151.
Initial vaccination attempts and more recent pre-clinical experiments show that inactivated RV vaccines are type specific and not cross neutralising. However, whilst in animals RV antibody responses may be weakly cross neutralising, data from humans suggest that responses are mainly misdirected to internal epitopes. Understanding the full extent of RV diversity would probably be required to develop a pan-species vaccine.

4. Conclusion

Multiple strategies are being developed to reduce the burden of viral respiratory illnesses. It is likely that many of these strategies will find a relevant indication: i.e. antiviral strategies will most probably make sense in severe, life-threatening situations, or when a window of opportunity is clearly present, e.g. in specific virus seasons and susceptible populations. Ideally, prevention at a wide scale through immunisation will be able to reduce the overall burden of respiratory infections with huge impact. This appears to be within reach for RSV and IFV, while additional effort is needed towards RV. In the meantime, symptomatic and immunostimulatory measures provide relief, while they hold promise in relation to post-viral reactive airway disease. Public health measures should be expanded as they can be critical in reducing the impact and contain potential epidemics.
References

77. Lu Y, Li Y, Xu L, Xia M, Cao L. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children. Pharmacology 2015; 95: 139-44.

Legends to the Figures

Figure 1: Virus infection cycle and antiviral medication targets
New antiviral agents are being designed to target most aspects of the virus life cycle, including receptor binding, fusion, uncoating, translation and replication. Examples of agents under development are listed alongside each function.

Figure 2: Vaccine Types
Live attenuated vaccines are grown in culture to make them less virulent but can have problem of reversion (A). Inactivated vaccines are treated with UV or formaldehyde to crosslink proteins and make them non-viable (B). Proteins can be purified or extracted or dissolved using detergents (C). Naked nucleic acids are also used as vaccines (D). Nanoparticle vaccines encompass natural and synthetic materials. Membranes can be used to make liposomes to contain and deliver an antigen to a target cell (E). Viruses can have nucleic acid and core protein removed to form virosomes (F). Viral proteins such as hemagglutinin stalk or antigens can be engineered onto immunogenic core proteins (e.g. ferritin or valuts). This example is HA on ferritin adapted from PBD codes 3BVE and 5C0S. Viruses such as vaccinia virus Ankara with coat proteins and genetic material removed can be engineered to express other antigens such as influenza M2 ion channel protein (H). Virus-like particles can be engineered to express antigens, naturally glycosylated proteins and have adjuvants incorporated into the coat (I). Synthetic nanoparticles made from polymers (polystyrene or PGLA), gold, or carbon nanotubes can have peptides adsorbed, admixed or encapsulated (J).
Table: IFV and RSV vaccines and monoclonal antibodies currently in clinical trials.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Type</th>
<th>Registration #</th>
<th>Study Sponsor</th>
<th>Refs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical Imiquimod in immunocompromised patients</td>
<td>Phase 2 Pilot</td>
<td>ID & IM vaccination (Intanza/Mutagrip)</td>
<td>NCT02960815</td>
<td></td>
<td>TLR7 adjuvant</td>
</tr>
<tr>
<td>H7N9 with AS03 adjuvant</td>
<td>Phase 1</td>
<td></td>
<td>NCT02957656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7N9 with MF59</td>
<td>Phase 1</td>
<td></td>
<td>NCT02251288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5N8 with AS03 or M59</td>
<td>Phase 1</td>
<td>Inactivated vaccine</td>
<td>NCT03014310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVACFLU-A/H5N1</td>
<td>Phase 2/3</td>
<td>Inactivated vaccine</td>
<td>NCT02612909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC3110B</td>
<td>Phase 3</td>
<td>Multidose quadrivalent vaccine</td>
<td>NCT02915809</td>
<td></td>
<td>Institute of Vaccines and Medical Biologicals, Vietnam Green Cross Corporation</td>
</tr>
<tr>
<td>V118_18</td>
<td>Phase 3</td>
<td>Quadrivalent MF59 adjuvanted</td>
<td>[EudraCT: 2015-000728-27]</td>
<td></td>
<td>Sequiris</td>
</tr>
<tr>
<td>Heterotypic Vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLU-v004</td>
<td>Phase2b</td>
<td>Broad Spectrum synthetic epitope mixture. M1, NP, M2</td>
<td>[EudraCT: 2016-002134-74]</td>
<td></td>
<td>H1N1 challenge model</td>
</tr>
<tr>
<td>MVA-NP+M1</td>
<td>Phase 2a</td>
<td>MVA viral vector vaccine</td>
<td>[EudraCT: 2009-010334-21] [NCT00942071 (Phase I study)]</td>
<td></td>
<td>University of Oxford /Wellcome Trust</td>
</tr>
<tr>
<td>Study Code</td>
<td>Phase</td>
<td>Description</td>
<td>EudraCT</td>
<td>Sponsor</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>M-001</td>
<td>Phase 2b</td>
<td>Recombinant multimeric protein – 9 conserved epitopes from HA stem, M1, NP</td>
<td>EudraCT: 2015-001979-46</td>
<td>BiondVax Pharmaceuticals ltd</td>
<td></td>
</tr>
<tr>
<td>Multimeric M-001 followed by H7N9 with M59</td>
<td>Phase 2</td>
<td></td>
<td>NCT03058692</td>
<td>National Institute of Allergy and Infectious Diseases (NIAID)</td>
<td></td>
</tr>
</tbody>
</table>

Passive Immunization

<table>
<thead>
<tr>
<th>Study Code</th>
<th>Phase</th>
<th>Description</th>
<th>EudraCT</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDI8852</td>
<td>Phase 2a</td>
<td></td>
<td>NCT03028909</td>
<td>MedImmune</td>
</tr>
<tr>
<td>VIS410</td>
<td>Phase 2a</td>
<td></td>
<td>NCT03040141</td>
<td>Visterra [10]</td>
</tr>
<tr>
<td>CR6261</td>
<td>Phase 2</td>
<td></td>
<td>NCT02371668</td>
<td>National Institute of Allergy and Infectious Diseases (NIAID) [11]</td>
</tr>
<tr>
<td>MHAA4549A</td>
<td>Phase 2</td>
<td></td>
<td>NCT02623322, NCT02293863, EudraCT:2016-000425-40</td>
<td>Genentech [12]</td>
</tr>
<tr>
<td>CTP27</td>
<td>Phase 2</td>
<td></td>
<td>NCT02071914, EudraCT: 2013-004544-32, KCT0002211</td>
<td>Celltrion</td>
</tr>
</tbody>
</table>

Notes

- Monoclonal IgG1 kappa against type A influenza – targets conserved HA stalk group 1&2
- Anti-HA monoclonal for type A influenza group 1&2
- Targets helical region in the stem. Group 1 only
- Monoclonal IgG1 against type A influenza – targets conserved HA stalk group 1&2
- Mixed antibodies to group 1 and group 2.
<table>
<thead>
<tr>
<th>RSV Vaccines</th>
<th>Phase</th>
<th>Description</th>
<th>NCT ID</th>
<th>Sponsor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV vaccine GSK3389245A</td>
<td>Phase 2</td>
<td>RSV Viral proteins in Chimpanzee-derived Adenovector</td>
<td>NCT02927873</td>
<td>GSK</td>
<td>Phase 2 started recruiting in Jan 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EudraCT: 2016-000117-76</td>
<td></td>
<td>IM in infants 12-17 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vaccination of Pregnant women started recruitment in Jan 2017</td>
</tr>
<tr>
<td>GSK3003891A</td>
<td>Phase 2</td>
<td>Viral fusion protein</td>
<td>NCT02956837</td>
<td>GSK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EudraCT: 2015-005742-58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV cps2 vaccine</td>
<td>Phase 1</td>
<td>Live attenuated vaccine</td>
<td>NCT01968083</td>
<td>National Institute of Allergy and Infectious Diseases (NIAID)</td>
<td>Nasal delivery to infants</td>
</tr>
<tr>
<td>RSV Vaccines (multiple formulations)</td>
<td>Phase 1</td>
<td>Recombinant live attenuated vaccine</td>
<td>NCT02237209</td>
<td>National Institute of Allergy and Infectious Diseases (NIAID)</td>
<td>Expected results this year.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT02601612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPX-RSV(A)</td>
<td>Phase 1</td>
<td>RSV SH antigen with DepoVax adjuvant</td>
<td>NCT02472548</td>
<td>Dalhousie University with ImmunoVaccine Technologies, Inc MedImmune</td>
<td>Liposome in oil delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDI7510</td>
<td>Phase 2b</td>
<td>RSV sF antigen with GLA adjuvant</td>
<td>NCT02508194</td>
<td>MedImmune</td>
<td>Study terminated early</td>
</tr>
<tr>
<td>MEDI-534</td>
<td>Phase 2a</td>
<td>RSV/PIV3 live attenuated vaccine</td>
<td>NCT00686075</td>
<td>MedImmune</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV-F Particle Vaccine</td>
<td>Phase 3</td>
<td>RSV F protein nanoparticle vaccine with Alum</td>
<td>NCT02624947</td>
<td>Novavax</td>
<td>Maternal vaccination strategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td>Phase</td>
<td>Description</td>
<td>Sponsor</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>RSV001</td>
<td>Phase 1</td>
<td>Adjuvant</td>
<td>NCT01805921</td>
<td>ReiThera Srl</td>
<td></td>
</tr>
<tr>
<td>VXA-RSV-f</td>
<td>Phase 1</td>
<td>Adenoviral-Vector Based Respiratory Syncytial Virus (RSV) F Protein Vaccine</td>
<td>NCT02830932</td>
<td>Vaxart</td>
<td></td>
</tr>
<tr>
<td>MVA-BN RSV</td>
<td>Phase 2b</td>
<td>Recombinant Vaccine expressing 5 epitopes from F & G proteins</td>
<td>NCT02873286</td>
<td>Bavarian Nordic</td>
<td></td>
</tr>
<tr>
<td>SynGem</td>
<td>Phase 1</td>
<td>F protein VLP - lactococcus</td>
<td>NCT02958540</td>
<td>Mucosis</td>
<td></td>
</tr>
<tr>
<td>Passive Immunization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDI8897</td>
<td>Phase 2b</td>
<td></td>
<td>NCT02878330</td>
<td>MedImmune [19] RSV monoclonal</td>
<td></td>
</tr>
<tr>
<td>MEDI-524 (Motavizumab)</td>
<td>Phase 3</td>
<td></td>
<td>NCT00121108</td>
<td>MedImmune [20, 21] RSV monoclonal, positive results Inhaled anti-RSV Nanobody</td>
<td></td>
</tr>
<tr>
<td>ALX-0171</td>
<td>Phase 2b</td>
<td>Trivalent RSV F-protein binder</td>
<td>NCT02979431</td>
<td>Ablynx [22] Human anti-RSV F protein mAb</td>
<td></td>
</tr>
<tr>
<td>REGN-2222 (Suptavumab)</td>
<td>Phase 3</td>
<td></td>
<td>NCT02325791</td>
<td>Regeneron Pharmaceuticals</td>
<td></td>
</tr>
<tr>
<td>RSV-IVIG</td>
<td>Phase 3 – Primary endpoint met</td>
<td></td>
<td>NCT01814800</td>
<td>ADMA biologics [23, 24] Pooled plasma with high neutralising RSV Ig. Primary immunodeficiency disease.</td>
<td></td>
</tr>
</tbody>
</table>

[6] van Doorn, E. et al.: Evaluating the immunogenicity and safety of a BiondVax-developed universal influenza vaccine (Multimeric-001) either as a standalone vaccine or as a primer to H5N1 influenza vaccine. Medicine (Baltimore)., 96 (11), 2017, p. e6339.

Figure 2

Nanoparticle Vaccines

A: Live Attenuated
B: Inactivated
C: Subunit
D: DNA/RNA
E: Liposome
F: Virosome
G: Nanoparticle Protein Assembly
H: Viral Vector
I: Virus Like Particle
J: Synthetic Nanoparticle