This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Heterocyclic bismuth(III) compounds with transannular N→Bi interactions as catalysts for the oxidation of thiophenol to diphenyldisulfide

Ana M. Toma,*, Ciprian I. Rață,† Octavian D. Pavel,‡ Christopher Hardacre,§ Tobias Rüffer,‡ Heinrich Lang,‡ Michael Mehring,‖ Anca Silvestru,*,‡ and Vasile I. Pârvulescu‡*

The reactions between the diorganobismuth(III) bromides [RCH2N(CH2H2)2]BiBr [R = CH3 (1), C2H5CH2 (2)] and appropriate silver salts resulted in new diorganobismuth(III) compounds of the general formula [RCH2N(CH2H2)2]BiX [R = CH3H2, X = NO3 (3), HSOCF3 (4), HSOC2H5 (CH2CH2)4 (5); R = C6H5CH2, X = NO3 (6)], based on a butterfly-like tetradynyldibenzo[1,5]azabismocine heterocyclic framework. The new species were structurally characterized in solution by 1H, 13C(H) and 19F(H) NMR and in solid state by IR spectroscopy and single-crystal X-ray diffraction. The nitrogen atom is intramolecularly coordinated to bismuth, thus resulting in hypercoordinated species of type 12-Bi-S (3 and 6) and 10-Bi-4 (4 and 5). In addition, compound 4 shows bismuth····π arene and compounds 3 and 6 bismuth····oxygen intramolecular interactions, thus leading to dimers in solid state. These compounds were investigated as catalysts for the oxidation of thiophenol to diphenyldisulfide by using air as oxidizing agent, both in cyclohexane and in ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide), at temperatures below 100 °C, affording high reaction rates (TON 34.8, with 100% conversion after 5 h) and a total selectivity into the targeted product.

Introduction

The conversion of thiols to disulfides has attracted a continuously increased interest in recent years4 due to the importance of disulfides in biology, mainly based on their antioxidant properties and their interconversion reactions in living systems,2 fine chemicals synthesis, e.g. pharmaceuticals and pesticides,3 as well as in refinery processes and rubber vulcanization.6 Various methods, including catalysis (homogeneous,5 heterogeneous6 or photo-catalysis7), or non-catalytic oxidation procedures, e.g. with sodium periodate in a transition metal containing systems,8 ammonium persulfate14 or Bu4SnOMe/FeCl315 with air, molecular oxygen16 H2O217 functionalized ionic liquids [HSO4NC6H5(OSO2H)2]11a or even nitric oxide18 is highly desired. Among these, of special interest is the air oxidation which is a sustainable, cheap, easy to handle and an environmentally friendly process.19

Generally, chlorinated solvents (dichloromethane),20 methanol, water, water–alcohol mixtures, or acetonitrile,2 as well as electrochemical techniques2 were employed (Table 1).

Constant efforts were made for the identification of appropriate systems consisting of the oxidant, solvent and catalyst, in order to increase the selectivity, i.e. to avoid the over-oxidation to by-products such as sulfoxides, thiosulfonates, thiosulfonates or sulfonic acids, but also the contamination with heavy metals or the toxicity, or to reduce the reaction time and the effective costs of the process.7,11 Thus, the replacement of halogens,12 transition metal containing systems,13 ammonium persulfate14 or Bu4SnOMe/FeCl315 with air, molecular oxygen16 H2O217 functionalized ionic liquids [HSO4NC6H5(OSO2H)2]11a or even nitric oxide18 is highly desired. Among these, of special interest is the air oxidation which is a sustainable, cheap, easy to handle and an environmentally friendly process.19

Generally, chlorinated solvents (dichloromethane),20 methanol, water, water–alcohol mixtures, or acetonitrile,2 were used as a reaction medium in homogeneous processes. Different catalysts based on transition metals (Fe, Co, Pd, Pt, Au, Mo, Ru, Rh, etc.), despite their high selectivity and short reaction times,6,21 are not always appropriate for pharmaceutical or biologically active products,22 mainly due to the toxicity of heavy metals. Therefore, heterogeneous systems using either nanoparticles of metal oxides (Fe2O3,23 NiFe2O4,24 Bi2WO625) graphite oxide,26 Fe(BTC) (BTC: 1,3,5-benzenetricarboxylate)27 or iron phthalocyanine immobilized on graphene oxide28 are preferred. Enzymes29 and biomimetic iron(III)-tetraphenylporphyrin30 were also investigated as selective catalysts in these reactions.

These state of the art examples demonstrate that there is still need for the optimization of the procedures for the
Catalysis Science & Technology

ARTICLE

Published on 26 May 2017. Downloaded by The University of Manchester Library on 01/06/2017 11:31:10.

DOI: 10.1039/C7CY00521K

Please do not adjust margins

Page 2 of 11

Catalysis Science & Technology Accepted Manuscript

oxidation of thiols to disulfides and for readily available, safe, stable and cheap catalysts. In this respect bismuth in the readily available, non-toxic and easy to handle oxidation states Bi(0) or Bi(III) has already demonstrated its capability as catalyst for a large variety of organic transformations including oxidation, reduction, C–C and C–E (E = O, N, S, halogen) bond formation.27 Aromatic and aliphatic thiols were oxidized to disulfides with Bi(NO3)3 in high yields also,28 but only few reports indicate organobismuth(III) compounds as catalysts,29 due to a supposed low stability of the C–Bi bond.26

Bulky ligands30 or organic groups bearing donor atoms capable for intramolecular coordination31 were used to stabilize main group metals, including bismuth in low oxidation states. Neutral or cationic hypercoordinated diorganobismuth(III) species based on a tetrahydrodibenzo[c,f][1,5]thiabismocine framework were reported as active species in Mannich reactions,32 or for the stereoselective synthesis of (E)-α,β-unsaturated ketones,33 while compounds based on a tetrahydrodibenzo[c,f][1,5]azabismocine framework, e.g. [BuNi(CH2CH2H2)2]Bi[B(C6F5)4] and neutral [C6H5(N(CH2CH2H2)2)2]BiL (L = BF4, OSO2CF3) were used in allylation reactions of aldehydes and Mukaiyama aldol reactions.34

A special attention was paid to the environmental impact of the solvents used in the catalytic processes35,36 and different alternatives to the organic solvents were proposed, including ionic liquids (ILs).37

Besides other advantages, ILs contribute to the stabilization and the reuse of the catalyst and allow a good separation of the organic product by distillation. Selective catalytic oxidations, including the S–S coupling of thiols to disulfides took the advantage of using ILs.38,39 They have also been used for the S–S coupling of thiols to disulfides in combination with various oxidizing agents in the following systems: [bmmim][methylselenide] with air,9 [bmmim]Br with K2S2O8,40 [bmmim][BF4] and [bpy][BF4]41 with H2O2 or WO(O2)2-Ph–H2O,42 ([Hnmim][BF4]) with H2O2,43 ([CH3]2N(=N–C6H5)2)2MoO211 and ([CH3]2N(=N–C6H5)2)2W11O41 with H2O2,44 ([C2mim]Cl/22HCl and [C2mim][Cl/ZnCl2], [CH3COOHmim][HSO4], [SO3H–C2mim][HSO4], [Hmim][HSO4] and [C2mim][HSO4] with H2O2.45

We have recently reported diorganobismuth(III) halides of the type [RC2H2N(CH2CH2H2)2]BiX (R = CH3, CH2CH3, CH2CH2X, X = halogen).46 As a continuation of our studies regarding the compounds based on a tetrahydrodibenzo[c,f][1,5]azabismocine heterocyclic framework we used the bromides R3C2H2N(CH2CH2H2)2BiBr (R = C2H5 (1), C2H5CH3 (2)) to prepare the new species R3C2H2N(CH2CH2H2)2BiX (R = C2H5, X = ONO2 (3), OSO2CF3 (4), OSO2C2H4(CH2CH2)4–4 (5); R = C2H5CH3, X = ONO2 (6)). Compounds 1 – 6 were investigated as catalysts in the oxidation with air of thiophenol to diphenyl disulfide in both cyclohexane and IL (1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide).

Table 1. Performances of catalysts reported for the oxidation of thiols.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalysts</th>
<th>Yield, %</th>
<th>TON</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Al2O3</td>
<td>99</td>
<td>0.02</td>
<td>RSC Adv., 2013, 3, 10680.</td>
</tr>
<tr>
<td>2</td>
<td>Silica</td>
<td>95</td>
<td>8.2</td>
<td>RSC Adv., 2016, 6, 95753.</td>
</tr>
<tr>
<td>4</td>
<td>Graphite oxide</td>
<td>100</td>
<td>0.3</td>
<td>Org. Biomol. Chem., 2011, 9, 7292.</td>
</tr>
<tr>
<td>5</td>
<td>Fe (III)/Nal</td>
<td>100</td>
<td>10</td>
<td>RSC Adv., 2013, 3, 21369.</td>
</tr>
<tr>
<td>6</td>
<td>Cobalt–iron magnetic composites (Co0.5%)</td>
<td>100</td>
<td>2360</td>
<td>Synthesis 1999, 1, 49.</td>
</tr>
<tr>
<td>7</td>
<td>Fe(BTC)2</td>
<td>97</td>
<td>5.7</td>
<td>RSC Adv., 2011, 45983.</td>
</tr>
<tr>
<td>8</td>
<td>Cu(BTC)2</td>
<td>27</td>
<td>1.2</td>
<td>Chem. Commun., 2010, 46, 6476.</td>
</tr>
</tbody>
</table>

Results and discussion

Preparation and spectroscopic characterization

Diorganobismuth(III) compounds of the general formula [RCH2N(CH2CH2H2)2]BiX (R = C2H5, CH3CH2CH3, X = ONO2, OSO2CF3, OSO2C2H4(CH2CH2)4–4) based on a butterfly-like tetrahydrodibenzo[c,f][1,5]azabismocine heterocyclic framework were prepared by ligand exchange reactions between the diorganobismuth(III) bromides 1 and 2 and the appropriate silver salt in a 1:1 molar ratio, as depicted in Scheme 1.

The bismuth(III) compounds 3 – 6 are microcrystalline solids, soluble in common organic solvents. Their 1H, 13C{H} and 19F{H} NMR spectra are consistent with the presence of only one species in solution. The non-equivalent CH3NCH2 protons in the heterocyclic skeleton appear as an AB spin system in the
1H NMR spectra, similarly with the situation found for the starting diorganobismuth(III) bromides 1 and 2.47

The IR spectra of the compounds 3 and 6 show strong, broad bands around 1445 cm-1, characteristic for the ν\textsubscript{as}(NO\textsubscript{2}) stretching vibration,48 thus suggesting an unisobidentate coordination of the anionic NO\textsubscript{3}- ligand, while the spectra of the compounds 4 and 5 show strong bands in the ranges 1240–1295, 1160–1170 and 1010–1020 cm-1, which were assigned to the ν\textsubscript{as}(SO\textsubscript{2}), ν\textsubscript{s}(SO\textsubscript{2}) and ν(SO) vibrations, respectively.49

Single-crystal X-ray diffraction studies

Compounds 3 – 6 have similar molecular structures, with respect to the diorganobismuth(III) fragment, excepting that the crystal of 3 contains two independent molecules (3a and 3b) in the asymmetric unit. Several differences appear in the coordination behavior of the oxo-ligands and in the types of intermolecular associations evidenced in the crystal structures. Thermal ellipsoids representations of the molecular structures of [3], [4], 5 and [6] are depicted in Fig. 1 – 4. Relevant interatomic distances and bond angles for the new compounds 3 – 6, as well as for the starting bromides 1 and 247 are given in the supporting information (see ESI, Table S1).

Strong transannular N\textrightarrow Bi interactions (range 2.402(3) - 2.479(5) \textAA, are found in compounds 3 – 6 and they are of a similar magnitude with those observed in the related [RN(CH\textsubscript{2}C\textsubscript{6}H\textsubscript{4}H\textsubscript{2})\textsubscript{2}BiX (R = Ph, Cy; X = Cl, OC(O)CH\textsubscript{3}, BF\textsubscript{4})],50,51 1BuN(CH\textsubscript{2}C\textsubscript{6}H\textsubscript{4}H\textsubscript{2})\textsubscript{2}BiX (X = halogen)34b or the starting diorganobismuth(III) bromides (2.531(4) \textAA in [C\textsubscript{6}H\textsubscript{5}CH\textsubscript{2}N(CH\textsubscript{2}C\textsubscript{6}H\textsubscript{4}H\textsubscript{2})\textsubscript{2}BiBr (1) and 2.532(13) \textAA in [C\textsubscript{6}H\textsubscript{5}CH\textsubscript{2}N(CH\textsubscript{2}C\textsubscript{6}H\textsubscript{4}H\textsubscript{2})\textsubscript{2}BiBr (2)],47) thus resulting in the formation of two five-membered NC\textsubscript{4}Bi rings in each case, respectively Bi1C1C6N1C7Bi2 (3a) and 4 – 6 and Bi2C22C27C28N3 (1) and Bi2C35C30C29N3 (2) in 3b. These rings are not planar, but folded along the imaginary Bi1\textrightarrow C7 and Bi1\textrightarrow C8 axes in 3a and 4 – 6 and about the imaginary Bi2\textrightarrow C28 and Bi2\textrightarrow C29 axes in 3b.

Due to the planar chirality52 induced by the N\textrightarrow Bi intramolecular coordination, the compounds crystallize as 1:1 mixtures of R1,R2 and S1,S2 isomers (the superscript indices “1” and “2” refer to the two five-membered rings, as designated above).

In 3 and 6 the NO\textsubscript{3}- ligand is unisobidentate coordinated to bismuth, thus resulting in hypercoordinated 12-Bi-5 species.53

In both compounds the molecules are associated in dimers by bridging NO\textsubscript{3}- ligands which behave as bimetallic tricconncetive moieties in 3 (Fig. 1) and bimetallic tetracconncetive moieties in 6 (Fig. 4).
Catalytic behavior

In the absence of the catalyst some air oxidation of thiophenol to diphenyl disulfide (Scheme 2) occurred albeit with a low conversion (below 6% after 5 h), as can be seen from Fig. 5, irrespective of the solvent nature (cyclohexane or IL). This is in agreement with previous reports mentioning that in neutral media in which there are no radical initiators slow air oxidation occurs.\(^\text{55}\)

Scheme 2. Oxidative coupling of thiophenol to diphenyl disulfide.

Simple addition of NaOH led to an increase in the conversion to 16% after 5h, which might be explained by the fact that the autooxidation of thiols to disulfides, proceeding via the thyl radical ([RS]) and \("O\cdot-O\cdot"\) species, is enhanced in the presence of an excess of base.\(^\text{55}\)

In the presence of the diorganobismuth(III) bromides \([\text{RCH}_2\text{N(CH}_\text{2})_2\text{C}_6\text{H}_4]_2\text{BiBr}\) a further increase of the catalytic activity was observed, thus reaching a conversion of 21% for \(R = \text{C}_6\text{H}_5\) (1) and more than double (51%) for \(R = \text{C}_6\text{H}_5\text{CH}_2\) (2), corresponding to TON values of 7.3 and 17.8, respectively. These different behaviors might be explained by the observation that in solid state the bismuth atom in 1 is involved in weak Bi\(\cdot\cdot\cdot\)Br (4.227 Å) and Bi\(\cdot\cdot\cdot\)π arene (4.097 Å) intermolecular interactions (see ESI, Fig. S2), whilst in 2 the Bi is not involved in any intra- or intermolecular interactions, except the transannular N\(\rightarrow\)Bi one (see ESI, Fig. S3). The latter is present in both 1 and 2 and of a similar magnitude (2.531(4) Å in 1 and 2.532(13) Å in 2).\(^\text{47}\)

Therefore, it is likely to be a significant difference in the accessibility of the active site for the organic substrates to bind. Furthermore, the activity of the diorganobismuth(III) compounds 3 - 6 resulted in high conversions and TON.
The oxidative coupling of several thiols to disulfides using compound 4.

Table 2. The oxidative coupling of several thiols to disulfides using compound 4.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Thiols</th>
<th>Conv. (%)</th>
<th>Sel. (%)</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thiophenol</td>
<td>94.8</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>4-Methylbenzenethiol</td>
<td>100</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>1-Butanethiol</td>
<td>100</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>1-Octanethiol</td>
<td>66.4</td>
<td>100</td>
<td>23</td>
</tr>
</tbody>
</table>

The relative activity of these molecular catalysts should be associated to the polarizability of bismuth in the presence of different X⁻ ligands and with the Lewis acidity (Bi) / basicity (N) of the catalytic species.

DFT calculations revealed the variation of the positive charge on bismuth (q-Bi, Table 3) in the order 5 > 4 > 3 >> 1, while the negative charge on nitrogen varies in the order 4 > 5 > 3 >> 1 (q-N, Table 3). The latter sequence is correlated with the experimentally determined N→Bi distances (4 < 5 < 3 < 1).

Anyway, the N→Bi interatomic distances in compounds 3 – 6 are of a similar magnitude, but shorter than in the bromides 1 and 2. This behaviour correlates well with the variation of the charge calculated for nitrogen and with the variation of the Hammett’s constant for the substituents attached to bismuth, which is a measure of the electronic effects and the polarizability of the Bi–ligand bond (Table 3).

As a consequence, the increased catalytic activity of the complexes with oxygenated ligands in comparison with the diorganobismuth bromides is explained by the lower polar character of the Bi–Br bonds in comparison with the Bi–O bonds. In addition, the differences in the catalytic behavior of the complexes 3 – 6 might be determined by the secondary interactions in the coordination sphere of bismuth and their influence on both the polarizability of the metal–ligand bond and the accessibility of the organic substrate.

Table 3. N→Bi transannular interactions (Å), Hammett’s constants* and calculated charge on Bi and N in compounds 1 and 3 – 5.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>N→Bi</td>
<td>2.531(4)</td>
<td>2.473(8)</td>
<td>2.402(3)</td>
<td>2.454(4)</td>
</tr>
<tr>
<td>q-Bi</td>
<td>0.790</td>
<td>0.915</td>
<td>0.925</td>
<td>0.929</td>
</tr>
<tr>
<td>q-N</td>
<td>-0.240</td>
<td>-0.239</td>
<td>-0.232</td>
<td>-0.237</td>
</tr>
</tbody>
</table>

* Hammett’s constants for compounds 1, 3 and 4 are given as previously reported in ref. 56a for Br, DNO₂ and CF₃SO₃⁻.

In case of compounds 3 and 6 it seems that the length of the aliphatic chain in the organic group attached to nitrogen does not influence the catalytic behaviour by itself, but it is responsible for the structural differences in the two compounds in solid state.

Changing the molecular solvent from cyclohexane to 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonylelimide) lead to an increase of the catalytic activity (Fig. 6).

It can be observed that complete conversion was reached for catalyst 6 in approx. 1h. It is noteworthy that this change in solvent did not affect the final selectivity to diphenyl disulfide. This increase in activity is thought to be due to the increased solubility of the molecular oxygen in the ionic liquid compared with the cyclohexane, as well as to the complete ionization of the catalyst in solution.

These experiments clearly demonstrate the positive influence of the IL as solvent. Moreover, the use of IL allowed a good recycling of the catalysts with only a small decrease in conversion from 92.9 to 85.8% for catalyst 4 over two consecutive reactions. This is in good agreement with previous reports on the stabilizing capacity of ILs in various catalytic reactions.
Literature reported several mechanisms for this reaction. Based on EPR measurements Corma et al. concluded that on oxide heterogeneous catalysts the reaction is controlled by a radical pathway implying a homolytic S–H scission from the original thiol.\(^5\) The same conclusion has been drawn by Garcia et al for MOF-type catalysts.\(^6\) A radical mechanism has also been proposed using inorganic complexes.\(^6,6^2\)

Taking into account the experimental data collected in this study, a reaction pathway based on a two steps addition of PhSH to bismuth might be proposed (Fig. 7). In the first step it is formed a pentacoordinated Bi(III) species, with a trigonal bipyramidal coordination geometry, while the addition of the second PhSH molecule resulted in an octahedral Bi(III) species. We assume that the ONO\(_2\) ligand acts as a monodentate moiety in the phenylthiolato bismuth(III) intermediates. In order to bring evidences for the proposed mechanism we performed a NMR tube scale reaction and we studied the in situ solution behavior of a mixture of compound 6 and thiophenol (1 : 2 molar ratio, in toluene-d\(_6\)) by a combination of \(^1\)H NMR and MS experiments.

![Possible reaction pathway for the oxidation of thiophenol to diphenyl disulfide.](image)

Fig. 7. Possible reaction pathway for the oxidation of thiophenol to diphenyl disulfide.

![\(^1\)H NMR spectra (toluene-d\(_6\)) of a reaction mixture of PhSH and compound 6 (**.*) showing the formation of PhS\(_2\): (a) during the first 2 hours, at 20 °C.; (b) the solution behaviour at 80 °C; (c) a mixture of pure PhS\(_2\); and 6.](image)

Fig. 8. \(^1\)H NMR spectra (toluene-d\(_6\)) of a reaction mixture of PhSH and compound 6 (**.*)

At room temperature the \(^1\)H NMR spectrum suggested that only about 10% of the catalyst 6 has been solubilized (Fig. 8). During the first 2 h, it showed no change of the mixture (Figure 9, and ESI, Fig. S4), when only characteristic resonances for the pure PhSH and 6 were found in the spectrum. However, the solution turned to slightly yellow, thus indicating the formation of some bismuth organothiolates.\(^5\) Also, after 2h, the ESI+ mass spectrum of the solution has shown a peak of very low intensity (1%) at m/z 618.17, thus suggesting the formation of the species \(\text{[(C}_6\text{H}_5\text{CH}_2\text{CH}_2\text{N(CH}_3\text{)}_2\text{BiSPh}]}\)\(_{\text{Br}}\). The base peak at m/z 508.15 corresponds to the cation \(\text{[(C}_6\text{H}_5\text{CH}_2\text{CH}_2\text{N(CH}_3\text{)}_2\text{Bi}]}\)\(_+\) (see ESI, Fig. S7). After 24h the intensity of the peak at m/z 618.17 increased to about 20%, while the \(^1\)H NMR spectrum has shown the decrease in intensity of the resonance corresponding to the PhSH proton in the aliphatic region and the formation of PhS\(_2\) (see ESI, Figs. S4 – S6).

We noticed that the \(\text{C}_6\text{H}_5\)-ortho protons in PhS\(_2\) are strongly shifted at lower field in comparison with those in PhSH. The increase of the temperature up to 80 °C has been accompanied by several changes in the spectrum of the bismuth(III) complex, but in the range 20 – 80 °C the resonance associated to the \(\text{CH}_3\text{CH}_2\text{NCH}_3\) protons appears as an AB spin system, thus suggesting that nitrogen remains coordinated to bismuth. However, PhS\(_2\) has been detected only with a low intensity in the ESI+ mass spectrum, due to the poor ionization. To improve the ionization capacity of this species, we changed to APCl+\(^+\), when a peak corresponding to \([\text{PhS}_2]^{-}\) appeared at m/z 218.02 (43%), along with the cation at m/z 508.15 (see ESI, Fig. S8). At this point, the \(^1\)H NMR spectrum of the final solution suggests the existence of at least two bismuth containing species, but unambiguously could be identified only the starting compound 6. To identify the nature of the insoluble species we added 5 mL of toluene and we heated the mixture at reflux (110 °C) for 15 min., with stirring, when the solution became clear. Then, decreasing again the temperature to 20 °C, the colourless precipitate was formed again and it has been identified by \(^1\)H NMR as the starting catalyst 6. The APCl+ MS spectrum of the final solution shows a
peak at m/z 427.14 (52%), corresponding to the cation [(PhS)\(_2\)Bi]\(^+\) (Fig. S9), which might suggest the formation of an intermediate containing two phenylthiolato groups attached to the bismuth complex, thus confirming the pathway described in Fig. 7. This is also in line with the previous reports considering a radical mechanism.\(^{39-61}\)

Up to 70°C no NMR resonance characteristic for water formation has been observed. We attribute this fact to its physical adsorption on the remained solid catalyst, which only at higher temperature is desorbed (see ESI, Fig. S6).

The IR spectra of the pure compounds 4 and 6 show no significant differences of the bands assigned to the Bi complex in comparison with the solid separated after the oxidation of thiophenol in cyclohexane. We could only notice the formation of Ph\(_2\)S\(_2\) and water (see ESI, Fig. S10).

Experimental

General

Organic solvents were dried and distilled prior to use. The ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, was prepared following standard procedures.\(^6\) Initial, 1-butyl-1-methylpyrrolidinium bromide [Bmpyr][Br] was synthesized by mixing 1-methylpyrrolidine (200 mmol) in acetone (75 mL) with equal molar amounts of 1-bromobutane in a round-bottomed flask. The reaction flask was immediately covered with aluminum foil. The mixture was stirred for 2 days until a white semi-solid was formed. The obtained solid was washed with cold acetone and separated by filtration. The anion exchange was performed further by using lithium bis(trifluoromethanesulfonylimide) [LiN(CF\(_3\))\(_2\)]\(\text{SO}_2\)]. An aqueous solution of [LiN(CF\(_3\))\(_2\)]\(\text{SO}_2\)] was extracted from the aqueous phase three times with dichloromethane. The solvent was removed using a rotary evaporator at 60 °C and the ionic liquid was dried for 24 h under vacuum.

Experiments involving air sensitive compounds were carried out under argon atmosphere. Elemental analyses were performed on a Flash EA 1112 analyzer. Melting points were measured on an Electrothermal 9200 apparatus and are not corrected.\(^6\) \(^1\)H, \(^{15}\)C(H) and \(^{19}\)F(H) NMR spectra for compounds 3 – 6 were recorded in CDCl\(_3\) on a Bruker 500 equipment, while the NMR spectra of the reaction mixture of PhSH and 6 were recorded at room temperature on a Bruker 600 and at higher temperature on a Bruker 400 equipment. The NMR spectra were processed with the MestReNova software.\(^65\) The chemical shifts are reported in \(\delta\) units (ppm) relative to TMS (\(^1\)H and \(^{13}\)C) and CFCl\(_3\) (\(^{19}\)F). The \(^1\)H and \(^{13}\)C chemical shifts were assigned based on 2D NMR experiments and they are given according to the numbering in Scheme 3. ES\(_1\) and APCI\(_1\) mass spectra were recorded in CH\(_2\)CN on a LTQ Orbitrap - XL instrument. The IR spectra were recorded in the range 4000 – 400 cm\(^{-1}\) on a Jasco spectrometer. Starting materials were commercially available or were prepared according to literature procedures, \(\{\text{C}_6\text{H}_5\text{CH}_2\text{N}(\text{CH}_2\text{CH}_3)\}_2\text{BiBr}\) (1) and \(\{\text{C}_6\text{H}_5\text{CH}_2\text{CH}_2\text{N}(\text{CH}_2\text{CH}_3)\}_2\text{BiBr}\) (2).\(^47\) The synthesis of silver 4-vinylbenzenesulfonate is given in the electronic supporting information.

Scheme 3.

Synthesis of \([\text{C}_6\text{H}_5\text{CH}_2\text{N}(\text{CH}_2\text{CH}_3)\]_2\text{BiOSO}_2\text{CF}_3\) (4)

From \([\text{C}_6\text{H}_5\text{CH}_2\text{N}(\text{CH}_2\text{CH}_3)\]_2\text{BiBr}\) (0.188 g, 0.327 mmol) and AgOTf (0.089 g, 0.34 mmol) in acetone (20 mL), as a colorless solid. Yield: 0.210 g (94%). M.p. 155 °C (dec.). Anal. Calcd. for C\(_{40}\)H\(_{35}\)BiNO\(_3\)S: C 51.35, H 3.43, N 3.09%, Found: C 51.33, H 3.52, N 3.15%.

\(^{1}\)H NMR (CDCl\(_3\), 500 MHz): \(\delta\) 4.43 (s, 2H, H\(_4\)), 4.49 (AB spin system with \(\delta\) \(_6\) 4.26 and \(\delta\) \(_5\) 4.47, 4H, H\(_3\), \(^3\)J\(_{HH}\) 14.4 Hz), 7.30-7.32 (m, 2H, C\(_6\)H\(_5\)-orth), 7.35 (dt, 2H, C\(_6\)H\(_5\)-ipso-, \(^3\)J\(_{HH}\) 7.3, \(^3\)J\(_{HH}\) 1.3 Hz), 7.42-7.45 (m, 3H C\(_6\)H\(_5\)-meta+para), 7.53 (d, 2H C\(_6\)H\(_5\)-ipso, \(^3\)J\(_{HH}\) 7.3 Hz), 8.22 (d, 2H, C\(_6\)H\(_5\)-ipso, \(^3\)J\(_{HH}\) 7.1 Hz).

\(^{13}\)C NMR (CDCl\(_3\), 125.72 MHz): \(\delta\) 60.45 (C\(_8\)), 63.84 (C\(_3\)), 128.67 (C\(_7\)), 128.92 (C\(_6\)), 129.44 (C\(_5\)-meta), 129.75 (C\(_5\)-para), 131.16 (C\(_6\)-orth), 131.66 (C\(_5\)), 133.11 (C\(_6\)-ipso), 138.39 (C\(_4\)), 148.97 (C\(_1\)), 180.3 (C\(_2\)). IR (v, cm\(^{-1}\)): 1453, 1436.

Compounds 4 – 6 were prepared similarly.
Hz, 3-H (10.8 Hz), 7.26 – 7.29 (m, 2H, C6-H-ortho), 7.30 (t, 2H C5-H-ortho), 7.34 (d, 2H C4-H-meta, 3-H (7.5 Hz), 7.38 – 7.42 (m, 2H C4-H-meta + 1H C4-H-para), 7.45 (d, 2H C4-H-meta, 3-H (7.1 Hz), 7.48 – 7.52 (m, 2H, C6-H-meta, 2H, C6-H-meta), 7.93 (d, 2H C5-H-ortho, 3-H (7.5 Hz), 8.37 (d, 2H C6-H-meta, 3-H (7.7 Hz)).13C{H} NMR (CDCl3), 60.16 (Cα), 63.87 (Cβ), 115.83 (CH=C), 126.33 (C6-H-meta), 126.80 (C6-H-ortho, 128.54 (Cα), 128.70 (C5-H-meta), 129.35 (Cβ), 129.62 (C4-H-para), 131.18 (C2-H-meta), 131.63 (C3), 131.93 (C4-H-C, C=C), 136.11 (CH=C), 138.60 (Cα), 139.85 (C5-H-ipsos), 142.62 (C6-H-C –SO2), 149.22 (Cβ), 180.51 (Cγ). IR (ν, cm−1): 1246, 1197, 1020.

X-ray structure determination

Single-crystals of compounds 3 – 6 were obtained from a mixture of CH2Cl2 and n-hexane (1/5 v/v) at room temperature. The data were collected on an Oxford Gemini S (3 and 4, at 110 K) or a Smart Apex CCDCCD (5 and 6, at room temperature) diffractometer using Mo Kα radiation (λ = 0.71073 Å). The calculations were performed using the SHELXS-2013, SHELXL-2016-46 or the SHELXTL program.67 The structures were solved by direct methods and refined by full-matrix least-squares procedures on F2. All non-hydrogen atoms were refined anisotropically and a riding model was employed in the refinement of the hydrogen atom positions. Crystal and structural refinement data for the crystal structures of compounds 3 – 6 are given in ESI, Table S2. Intermolecular interactions were identified with PLATON.68 The drawings were created with the Diamond software package.69

Conclusions

The oxidation of thiophenol to diphenyl disulfide was performed in a glass batch reactor equipped with a condenser system. Thiophenol (0.001 moles) dissolved in either 10 mL cyclohexane or 4 mL 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide was stirred at 600 rpm in a silicon bath at 100 °C under reflux. The catalyst in a loading of 5% wt. Bi (2.8 mol%) from the reaction mixture was added after the stabilization of the temperature. In order to check the progress of the reaction, samples of 5 μL were periodically removed from the reactor, analyzed by GC using a K072320 Termo-Quest chromatograph equipped with a FID detector and a capillary column of 30 m length and 0.32 mm in diameter and a DB-5 stationary phase. Highly pure N2 (99.999%) was used as carrier gas. The reaction product was identified also by GC-MS, using a GC/MS/MS VARIAN SATURN 2100 T spectrometer equipped with a CP-SIL 8 CB Low Bleed/MS column of 30 m length and 0.25 mm diameter.

Electronic Supplementary Information

CCDC 1520802 (3), 1520801 (4) 1520800 (5) and 1520799 (6) contain the supplementary crystallographic data for the investigated compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The supplementary material also contains the crystal and structural refinement data for the crystal structures of 3 – 6, interatomic distances and bond angles in compounds 1 – 6, Figures representing the coordination sphere of Bi in the crystals of 1 – 3, Figures representing selected 1H NMR and MS spectra, as well as cartesian coordinates of the calculated molecular structures 1 and 3 – 5 are given in ESI, Tables S3 – S6.

Theoretical Calculations

The geometry optimizations and frequency calculations on compounds 1 and 3 – 5 were performed with Gaussian 09.70 The dispersion corrections were accounted using D3 version of Grimme’s dispersion with Becke-Johnson damping.73 Cartesian coordinates of the calculated molecular structures 1 and 3 – 5 are given in ESI, Table S2. Intermolecular interactions were identified with PLATON.68 The drawings were created with the Diamond software package.69

Electronic Supplementary Information

CCDC 1520802 (3), 1520801 (4) 1520800 (5) and 1520799 (6) contain the supplementary crystallographic data for the investigated compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The supplementary material also contains the crystal and structural refinement data for the crystal structures of 3 – 6, interatomic distances and bond angles in compounds 1 – 6, Figures representing the coordination sphere of Bi in the crystals of 1 – 3, Figures representing selected 1H NMR and MS spectra, as well as cartesian coordinates of the calculated molecular structures 1 and 3 – 5 are given in ESI, Tables S3 – S6.

Conclusions

Diorganobismuth(III) compounds of type [C6H5CH2CH3N(CH2CH3)2]BiX [X = Br, ONO2, SO2CF3, SO2C6H4 (CH3CH2)-4], based on a butterfly-like tetrahydroindenzo[2,1,5]azabismocine heterocyclic framework, with anionic ligands with different electron-withdrawing ability proved to be efficient catalysts for the oxidation of thiophenol to diphenyl disulfide under mild conditions with high conversions and chemoselectivity. The catalytic activity in cyclohexane was observed to increase going from the starting diorganobismuth(III) bromides to the derivatives with oxygenated ligands, as a consequence of the stronger electron-withdrawing character of the latter systems. This behaviour was also correlated with a decrease of the N–Bi distance by changing Br (about 2.531 Å) with oxygenated ligands [range 2.402(3) – 2.479(5) Å]. It is clear that the overall catalytic activity is strongly influenced by a combination of factors including the acid/base character of the diorganobismuth(III) complex, the polarizability of the Bi-X (X = O, Br) bond and the accessibility to the metal centre.
Catalytic experiments carried out in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide showed a positive influence of the ionic liquid leading to higher reaction rates with the same selectivity to diphenyl disulfide. This effect is explained by the higher solubility of oxygen in the ionic liquid than in cyclohexane, as well as by the ionization of the catalytic species promoted by the IL.

Taking into account the calculated charge on bismuth (0.790 for Br and over 0.9 for the oxygenated ligands), as well as the experimental catalytic results, it might be concluded that the increased polarity of the Bi–O bond compared to the Bi–Br one, make the complexes with oxygenated ligands more suitable for catalysis, either in cyclohexane or in ionic liquid.

The 1H NMR and ESI+ MS experiments carried out for a 1:2 (molar ratio) mixture in toluene-d$_8$ showed a positive influence of the ionic liquid leading to dispersion interactions in molecular chemistry.
Aerial oxidation of thiophenol to diphenyl disulfide proceeds with high reaction rates, total conversion and selectivity in ionic liquids by using diorganobismuth(III) catalysts based on a tetrahydro-dibenzo[c,f][1,5]azabismocine heterocyclic framework.