Characterisation and Performance of Fibre-Reinforced Composite Restorations

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy
in the Faculty of Medical and Human Sciences

2015

Ala’a AL-Haddad
School of Dentistry
List of Contents

List of Contents .. 2
List of Figures ... 9
List of Tables ... 15
List of Abbreviations .. 16
Abstract ... 18
Declaration ... 20
Copyright Statement .. 21
The Author .. 22
Dedication ... 24
Acknowledgment .. 25
Chapter 1: Review of the literature .. 26
 1.1 Composites: .. 27
 1.1.1 Introduction: ... 27
 1.1.2 Dental resin-composites: .. 27
 1.1.2.1 Resin matrix: ... 27
 1.1.2.2 Inorganic Fillers: .. 32
 1.1.2.3 Coupling agent: ... 33
 1.1.3 Classification of resin composites: ... 34
 1.2 Fibre-reinforced Composites (FRC): .. 36
 1.2.1 Background: .. 36
 1.2.2 Definition and classification: .. 37
 1.2.3 Rationale: ... 37
 1.2.4 Clinical applications: .. 38
 1.2.5 Mechanical performance and influencing factors: .. 39
 1.2.5.1 Reinforcing-fibre type: ... 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.5.2</td>
<td>Matrix and resin system:</td>
<td>43</td>
</tr>
<tr>
<td>1.2.5.3</td>
<td>Impregnation:</td>
<td>46</td>
</tr>
<tr>
<td>1.2.5.4</td>
<td>Interfacial adhesion:</td>
<td>47</td>
</tr>
<tr>
<td>1.2.5.5</td>
<td>Fibre orientation:</td>
<td>50</td>
</tr>
<tr>
<td>1.2.5.6</td>
<td>Volume and weight fractions:</td>
<td>54</td>
</tr>
<tr>
<td>1.2.5.7</td>
<td>The fibre geometry (placement):</td>
<td>55</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Physico-mechanical properties of fibre-reinforced composite</td>
<td>57</td>
</tr>
<tr>
<td>1.2.6.1</td>
<td>Thermal properties:</td>
<td>57</td>
</tr>
<tr>
<td>1.2.6.2</td>
<td>Bond strength:</td>
<td>59</td>
</tr>
<tr>
<td>1.2.6.3</td>
<td>Hardness:</td>
<td>63</td>
</tr>
<tr>
<td>1.2.6.4</td>
<td>Edge Strength:</td>
<td>68</td>
</tr>
<tr>
<td>1.2.6.5</td>
<td>Fatigue:</td>
<td>70</td>
</tr>
<tr>
<td>1.2.6.6</td>
<td>Wear resistance:</td>
<td>75</td>
</tr>
<tr>
<td>1.3</td>
<td>summary:</td>
<td>80</td>
</tr>
<tr>
<td>1.4</td>
<td>References:</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Chapter 2: Aims and Objectives</td>
<td>105</td>
</tr>
<tr>
<td>2.1</td>
<td>Aims of the study:</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Chapter 3: General Methodology</td>
<td>108</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>109</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials:</td>
<td>109</td>
</tr>
<tr>
<td>3.3</td>
<td>Measurement of Hardness and Irradiance (Chapter 4):</td>
<td>111</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Vickers hardness measurement:</td>
<td>111</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Rationale:</td>
<td>111</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Pilot Study:</td>
<td>112</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Materials and Methodology:</td>
<td>112</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Irradiance measurement:</td>
<td>113</td>
</tr>
<tr>
<td>3.4</td>
<td>Edge strength measurement (Chapter 5):</td>
<td>116</td>
</tr>
</tbody>
</table>
Chapter 5: Effect of Fibre-Reinforcement and Orientation on The Edge-Strength of Direct Resin Composites

5.1 Abstract: ... 154
5.2 Introduction: .. 155
5.3 Materials and Methods: ... 156
 5.3.1 Specimen preparation: ... 157
 5.3.2 Edge strength testing: ... 158
 5.3.3 Fractography: ... 158
 5.3.4 Statistical analysis: ... 158
5.4 Results: ... 159
5.5 Discussion: .. 163
5.6 Conclusions: .. 166
5.7 References: ... 167

Chapter 6: Influence of Fibre-Reinforced Composite on Shear Bond strength with Ceramic and Metal Substrates

6.1 Abstract: ... 171
6.2 Introduction: .. 172
6.3 Materials and methods: ... 173
 6.3.1 Specimen preparation .. 175
 6.3.2 Surface treatment and bonding procedure: 175
 6.3.3 Bonding procedure: .. 175
 6.3.4 Thermocycling: .. 177
 6.3.5 Shear bond testing: .. 177
 6.3.6 Statistical analysis: .. 177
6.4 Results: ... 178
8.3.4 Wear analysis: ... 219
8.3.5 Statistics: .. 220
8.4 Results: .. 223
8.5 Discussion: .. 224
8.6 Conclusions: ... 227
8.7 Acknowledgements: ... 227
8.8 References: .. 228

Chapter 9: Load-Bearing Capacity of Fibre-Reinforced Composite Crowns in Comparison with Machined Alternatives ... 231
 9.1 Abstract: .. 232
 9.2 Introduction: ... 233
 9.3 Methodology: ... 234
 9.3.1 Specimen Preparation: .. 235
 9.3.2 Crown fabrication: ... 235
 9.3.3 Dynamic fatigue: .. 238
 9.3.4 Static loading: ... 240
 9.3.5 Statistical analysis: ... 240
 9.4 Results: ... 241
 9.5 Discussion: .. 243
 9.6 Conclusion: ... 245
 9.7 References: ... 246

Chapter 10: General Discussion, Implications, Recommendations for Future Work and Conclusions ... 249
 10.1 General discussion: ... 250
 10.2 Implications: ... 255
 10.3 Recommendation for future work: 256
 10.4 Conclusions: ... 257
List of Figures

Figure 1.1: Dimethacrylate molecules mostly used in dental resin-composites........ 29

Figure 1.2: Free-radical polymerization reaction of methacrylate-based composites. A) benzoyl peroxide readily splits to form two identical free radicals which can initiate polymerisation, B) reaction of a benzoyl peroxide radical with methylmethacrylate to form a new radical species, C) structural formulas of Camphoroquinone and D) dimethylamino ethylmethacrylate, commonly-used photo-activator and accelerator, respectively...30

Figure 1.3: Structural formula of Silorane molecule... 31

Figure 1.4: Methacryloxypropyl trimethoxysilane ... 33

Figure 1.5: Classification of dental resin-composite. ... 35

Figure 1.6: Chemical structure of silane molecule connecting reinforcing-fibre with its matrix by Siloxane bridge. ..50

Figure 1.7: Reinforcing efficiency (Krenchel factor K_θ) of fibres with different fibre orientation [44]. A) Unidirectional fibre orientation resulting in anisotropic materials with $K_\theta=1$, B) Unidirectional fibre orientation resulting in anisotropic materials with $K_\theta= 0$, C) Bidirectional fibre (woven) mat resulting in an orthotropic material with $K_\theta=0.5$, D) Bidirectional fibre (45°/45° bias) resulting in an orthotropic material with $K_\theta=0.25$, E) Random fibres orientation resulting in an isotropic material with $K_\theta=0.2$, providing the fibres are longer than critical length for that fibre type.........................51

Figure 1.8: Influence of fibre misalignment on the tensile strength of continuous unidirectional FRC [44]. ...52

Figure 1.9: Schematic representation of an efficient fibre placement at the tension side of a restoration...56

Figure 2.1: General outline for the research... 107

Figure 3.1: Flowchart showing the study protocol in Chapter 4 111

Figure 3.2: FM-700 microhardness tester (A), with a representative specimen ready for testing (B)..113
Figure 3.3: Schematic diagram showing the geometry of specimens tested for microhardness and the three points of interest measured on top/bottom surfaces. 113

Figure 3.4: MARC resin calibrator used for irradiance measurement, A) its main parts, B) LED curing unit during the baseline measurement and C) the mould assembly placed on top sensor prior to irradiance measurement. 114

Figure 3.5: Schematic diagram showing the mould assembly on the top sensor of spectrometer during irradiance measurements. The same assembly was used during the baseline measurement of curing light in order to calculate the light attenuation occurred purely because of FRC and PRC. 115

Figure 3.6: Graph showing the irradiance versus time for one representative specimen for each group during the direct light curing for 20s. 115

Figure 3.7: Diagram showing the study protocol in Chapter 5. 116

Figure 3.8: Schematic diagram showing the geometry of specimens tested for edge-strength and the two reading points on top surface (0.5mm distance from each edge). 117

Figure 3.9: CK10 edge-strength machine and its main parts (A) during the testing of one representative specimen (B). 118

Figure 3.10: Flowchart showing the study protocol in Chapter 6. 119

Figure 3.11: Flowchart showing the bonding substrates, surface treatments, testing procedure, and fracture analysis followed in Chapter 6. 121

Figure 3.12: Flowchart showing the study protocol in Chapter 7. 123

Figure 3.13: Flowchart showing the methodology followed in Chapter 7. 126

Figure 3.14: Flowchart showing the study protocol in Chapter 8. 127

Figure 3.15: 3M True Definition Scanner 128

Figure 3.16: Snapshot of Geomagic Control software during wear analysis. 130

Figure 3.17: Wear analysis of a representative specimen relying on superimposition of three successive digital scans, A) 3D comparison performed, B) vertical wear measurement in the wear facet after the completion of C1 phase, and C) C2 phase. 130

Figure 3.18: Diagram showing the study protocol in Chapter 9. 131

Figure 3.19: Flowchart showing the preparation and cyclic loading of crown specimens, A) preparation of master mould, B) duplicated acrylic teeth coated with wax layer, C)
mounted teeth in epoxy resin base and the wax coating is substituted with PVS layer, D) a specimen assembly ready for crown cementation, E) surface treatment (silica coating) for acrylic teeth and crowns using Cojet repair system, F) cementation of crowns using self-adhesive cement (RelyX Unicem 2), G) one representative specimen after cementation and thermocycling, H) mounted in the chewing simulator for cyclic loading and I) following the completion of cyclic loading.

Figure 3.20: Static loading of one representative crown specimen using the steel ball indenter of Zwick Z020 machine.

Figure 3.21: The mode of fracture of three representative crown specimens, A) Lava Zirconia, B) Lava Ultimate and C) FRC-Sinfony. * indicates the origin of fracture, while † indicates crack propagation.

Figure 4.1: Light curing unit assembly on the MARC Resin Calibrator using BenchMARC controller.

Figure 4.2: Schematic diagram showing the mould assembly on the spectrometer’s top sensor during irradiance measurement.

Figure 4.3: Bar chart showing mean (SD) VHN for top and bottom surface for all groups immediately post-cure and after 48h water storage.

Figure 4.4: Graph showing the irradiance versus time for one representative specimen of each group during direct light curing (20s).

Figure 4.5: Scatter plot showing the positive correlation between the mean irradiance values and the bottom/top hardness ratio for all tested groups (R2 Cubic= 0.974). This plot explains that the bottom/top VHN ratio, as an indicator of the depth of cure, tends to increase exponentially as a consequence of increasing irradiance value transmitted to specimen bottom surface. Such correlation concurs the idea that the incorporation of FRC within PRC tends to reduce depth of cure (bottom/top VHN ratio) by reducing the irradiance level transmitted to specimen bottom surface. Even at higher levels of irradiance, the consequential increase in VHN ratio plateaus out, owing to many factors affecting the degree of conversion within the bottom surface, including material type, distribution and quantity of fillers, quantity of photoinitiator, translucency and thickness of specimen, which can hinder any further light transmittance or material polymerization.

Figure 5.1: Bar chart showing the mean (SD) edge strength for all tested groups.
Figure 5.2: Mode of failure for three representative specimens (top view where the load was perpendicularly applied), A) minimal chipping, B) edge fracture and C) edge/bulk fracture. Arrow head indicates crack propagation within specimen bulk. .. 162

Figure 5.3: Mode of failure for three representative specimens (side view of specimen edge), A) minimal chipping, B) edge fracture and C) edge/bulk fracture. Large arrow head indicates crack propagation within specimen bulk. Small arrow head indicates fracture line at edge surface. ... 162

Figure 5.4: Two representative fractured specimens made of XB with A) no reinforcement (control) and B) unidirectional FRC. .. 162

Figure 6.1: Two representative specimens. A) ceramic substrate and B) Co-Cr metal substrate. ... 176

Figure 6.2: Bar chart showing mean (SD) shear bond strength for all groups according to their substrate and surface treatment. .. 179

Figure 6.3: Examples of the failure modes observed following SBS testing, A) cohesive fracture in bidirectional FRC layer with metal, B) cohesive fracture in unidirectional FRC layer with ceramic, C) mixed adhesion/cohesion fracture at the ceramic interface with no reinforcement. ... 180

Figure 7.1: Diagrams showing A) the specimen assembly and dimensions of inlay cavities in each abutment, B) Type-I fibre framework, and C) Type-II framework. The dimensions of major connectors were 5mm height, 2.5mm width at premolar side and 3.5mm width at molar side. The clearance of the pontic base from the PMMA base was 3mm, ensured by using a custom silicon index beneath the pontic during fabrication. 195

Figure 7.2: 3D representations of a specimen during the preparation, A) silica coating for the cavities to enhance adhesion, B) bonding of the main FRC framework within the inlay retainers using bonding agent (Viso-Bond) and flowable PFC (x-tra Base), and C) full build-up for the pontic with packable bulk-fill PRC (X-tra fil). .. 196

Figure 7.3: One representative specimen mounted in CS 4.2 machine, A) during the cyclic loading with the stylus moving vertically to the central fossa and then obliquely over the buccal groove, and B) after the completion of cyclic loading. 197

Figure 7.4: Bar chart showing the mean (SD) values of static IF and FF values for all tested groups with (B) and without previous thermocycling and dynamic fatigue (A). 200
Figure 7.5: Scatter plot showing the positive linear correlation between initial fracture and final fracture in both framework types. ... 201

Figure 7.6: Scatter plot showing the Weibull modulus (m) for both framework types. 202

Figure 7.7: Scatter plot showing the characteristic strength (σθ) for both framework types. ... 203

Figure 7.8: Examples of the fracture modes observed in FRC-FPDs after static loading,
A) horizontal cracks extending from underneath the major connectors to the central fossa (loading point), B) delamination fracture with a separation of a mesio-lingual veneering PRC and C) midline (catastrophic) fracture extending vertically between both retainers. ... 204

Figure 8.1: Fabricating materials used to prepare all specimens, A) Lava Zirconia, B) Lava Ultimate and C) Stick Net & Sinfony. ... 218

Figure 8.2: Occlusal views for one representative specimen from each group showing the wear facet (*) and its morphological changes after C0, C1 and C2 phases (using Geomagic Control software). LZ had the modest morphological changes, while LU had the largest. ... 220

Figure 8.3: A snapshot from the Geomagic software after the ‘Best Fit Alignment’ function was performed (top), the area of interest ‘common area’ was selected prior to the alignment (middle), and then the 3D Comparison performed and the deviations visualised via deviation spectrum (bottom). ... 221

Figure 8.4: 3D comparisons for one representative specimen in group LU, (Top) shows the mean wear value ‘W1’ within the wear facet (0.5mm radius) after phase C1, while (bottom) shows the cumulative wear Wc at the end of phase C2. 222

Figure 8.5: Graph showing the mean cumulative wear (µm) for all the tested groups. 223

Figure 9.1: Representative specimen assembly showing a duplicated abutment in epoxy resin base (2mm below CEJ) and surrounded with PVS layer (0.2mm thickness) to simulate PDL. ... 235

Figure 9.2: 3D impressions for the master preparation using 3M True Definition Scanner, A) Buccal view showing the shoulder finish line (1mm) and buccal cusp bevel, and B) bite registration with 1.5mm interocclusal clearance. .. 236
Figure 9.3: CS 4.2 chewing simulator machine with its two compartments (top), one representative specimen mounted in one compartment (left), the same specimen after the completion of cyclic loading with a spectacular wear facet (right). 239

Figure 9.4: One representative crown specimen mounted in the Zwick machine prior to static loading.. 240

Figure 9.5: Bar chart showing the mean load bearing capacity for all tested groups... 241

Figure 9.6: Fractured representative specimens from each group. Lava Zirconia:LZ (top) Lava Ultimate: LU (mid), FRC-S (bottom) .. 242
List of Tables

Table 1.1: Mechanical properties of particulate-reinforced composites [3]. 39
Table 3.1: List of materials used to perform this research ... 110
Table 4.1: Materials used to prepare all specimens .. 138
Table 4.2: Mean (SD) values of Vickers Hardness (VHN) for all tested groups 141
Table 4.3: Mean and Maximum (SD) values of irradiance (I_R), total energy (E_T) and time required to reach plateau for all tested groups .. 143
Table 5.1: Materials used to prepare all specimens .. 157
Table 5.2: Mean (SD) edge-strength values (N) for all groups .. 159
Table 5.3: The mode of fracture for all groups ... 160
Table 5.4: The efficiency of different fibre reinforcement represented by Cohn’s d (r_M) values for every main group ... 160
Table 6.1: Materials used in this study .. 174
Table 6.2: Mean (SD) shear bond strength for all the tested groups 178
Table 6.3: Fracture mode distribution for all tested groups according to the surface treatment applied ... 180
Table 7.1: Materials used to fabricate all specimens ... 193
Table 7.2: Mean±SD values for initial fracture (IF) and final fracture (FF) loads for all tested groups .. 199
Table 7.3: The mode of fracture exhibited in all tested specimens 204
Table 8.1: Materials used to fabricate all crowns in the study ... 216
Table 8.2: Wear measurements (µm) for all specimens, using 3D analysis 223
Table 9.1: Materials used to fabricate all crowns in the study ... 234
Table 9.2: The mean (SD) load-bearing capacity (N) for all tested groups 241
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>°C</td>
<td>Centigrade</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>Bis-EMA</td>
<td>2,2-bis[4-(2methaacryloxyethoxy)phenyl]propane</td>
</tr>
<tr>
<td>Bis-GMA</td>
<td>Bisphenol-A glycidyl methacrylate</td>
</tr>
<tr>
<td>CEJ</td>
<td>Cementoenamel junction</td>
</tr>
<tr>
<td>DC</td>
<td>Degree of conversion</td>
</tr>
<tr>
<td>ET</td>
<td>Total energy</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite element analysis</td>
</tr>
<tr>
<td>FF</td>
<td>Final fracture</td>
</tr>
<tr>
<td>FMax</td>
<td>Maximum force</td>
</tr>
<tr>
<td>FPD</td>
<td>Fixed partial denture</td>
</tr>
<tr>
<td>FRC</td>
<td>Fibre-reinforced composite</td>
</tr>
<tr>
<td>FRC-S</td>
<td>Fibre-reinforced composite & Sinfony</td>
</tr>
<tr>
<td>gF</td>
<td>Gram Force</td>
</tr>
<tr>
<td>GPA</td>
<td>Gigapascal</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HVN</td>
<td>Hardness Vickers Number</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IF</td>
<td>Initial Fracture</td>
</tr>
<tr>
<td>IR</td>
<td>Irradiance</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organization</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>kθ</td>
<td>Krenchel factor</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diodes</td>
</tr>
<tr>
<td>LU</td>
<td>Lava Ultimate</td>
</tr>
<tr>
<td>LZ</td>
<td>Lava Zirconia</td>
</tr>
<tr>
<td>m</td>
<td>Weibull modulus</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>MPa</td>
<td>Megapascal</td>
</tr>
</tbody>
</table>
N Newton
n Sample Size
nm Nanometer
PMMA Poly (methyl methacrylate)
PRC Particulate-Reinforced Composite
PTFE Polytetrafluoroethylene
PVS Polyvinyl siloxane
r Pearson’s correlation coefficient
R² Simple correlation coefficient
RBC Resin-based composite
r_{\gamma\lambda} Effect-size correlation
s Second
SBS Shear Bond Strength
SD Standard Deviation
SEM Scanning Electron Microscopy
Semi-IPN Semi-Interpenetrating Polymer Network
TEGDMA triethylene glycol dimethacrylate
UDMA Urethane dimethacrylate
UHMWPE Ultra-High Molecular Weight Polyethylene
UV Ultraviolet
vol% Volume Percentage
W Watt
WC Cumulative wear
wt% Weight percentage
\alpha Significance level
\sigma\theta Characteristic strength
\Theta Diameter
Abstract

In the modern era of metal-free minimally-invasive dentistry, there is a growing tendency toward using metal-free restorative alternatives that provide not only excellent aesthetics but also enable superior durability. Fibre-reinforced composite (FRC) is one cost-effective alternative that fulfils the requirements of aesthetics and durability, and offers favourable physico-mechanical properties. Many FRC applications are well-documented in the literature, such as crowns and fixed partial dentures (FPD); however, their clinical implementation is still limited, owing to the lack of significant knowledge about their longevity, deterioration signs, optimum design and overall performance. This in-vitro research aimed to address these uncertainties by investigating the performance of FRC restorations, and the influence of fibre reinforcement on particular physico-mechanical properties, including surface hardness, edge-strength, shear bond strength, fatigue and wear resistance.

Basic testing models were used to investigate the effect of incorporating differently-oriented FRCs on the surface hardness, edge-strength and shear bond strength of particulate-reinforced composite (PRC). The results revealed that the incorporation of FRC significantly enhanced surface hardness (by 12 - 19 %) and edge-strength (by 27 - 75 %). However, this incorporation significantly reduced the shear bond strength (SBS) between PRC and other restorative materials, including lithium disilicate ceramic (10.9±3.1 MPa) and Co-Cr metal alloy (12.8±2.3 MPa), compared to the control (15.2±3.6 MPa, 15.0±3.7 MPa). The orientation of FRC was also found to affect the efficiency of reinforcement as bidirectional FRCs exhibited significantly higher hardness (76.8±1.2 VHN), edge-strength (67.7±8.2 N) and SBS (14.1±3.9 MPa) values than unidirectional FRCs (72.4±1.2 VHN, 56.8±5.9 N, 9.8±2.3 MPa).

Clinically-relevant testing models, employing accelerated aging techniques, were performed to investigate the fatigue and wear behaviours of anatomically-shaped FRC restorations in-vitro. Direct inlay-retained FRC-FPDs with two framework designs, were tested for their fatigue behaviour and load-bearing capacity. Type-I design (with an additional bidirectional FRC layer incorporated perpendicular to the loading direction) yielded significantly higher fatigue resistance (1144.0±270.9 N) and load-bearing capacity (1598.6±361.8) than Type-II design (with a woven FRC embedded around the pontic core) (716.6±72.1 N, 1125.8±278.2 N, respectively). However, Type-
II design exhibited fewer delamination failures. Both framework design and dynamic fatigue were found to have a significant influence (p<0.05) on the load-bearing capacity of FRC-FPDs.

Additionally, the *in-vitro* fatigue and wear behaviours of FRC crowns, fabricated conventionally from bidirectional FRC and indirect PRC (Sinfony), were compared with those made of two CAD/CAM alternatives, namely Lava Zirconia (LZ) and Lava Ultimate (LU). A chewing simulator was employed to induce some fatigue wear in crowns, while an intraoral 3D scanner was used to quantify the resultant morphological changes. The results showed that FRC crowns had significantly lower mean cumulative wear (233.9±100.4 µm) than LU crowns (348.2±52.0 µm), but higher than LZ crowns (16.4±1.5 µm). The mean load bearing-capacity after fatigue simulation was also the highest for LZ crowns (1997.8±260.2 N) compared with FRC (1386.5±258.4 N) and LU crowns (756.5±290.9 N).

Accordingly, the incorporation of FRC in resin-composite restorations is advocated since it increases surface hardness and marginal integrity, improves fatigue and wear behaviours, and enhances load-bearing capacity and overall performance.
Declaration

No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

Alaa AL-Haddad
2015
Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it (the “Copyright”) and s/he has given The University of Manchester the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual property (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations deposited in the University Library, The University Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in The University’s policy on Presentation of Theses.
The Author

I graduated from the University of Jordan in 2008, gaining a BDS with a GPA of 3.65 out of 4 (Excellent). I worked then as a teaching assistant at the same university between 2009 and 2010 in the department of Fixed Prosthodontics. I was awarded a scholarship to continue my postgraduate study abroad, and so joined the University of Manchester in 2010. I enrolled in a one year full-time MSc Fixed and Removable Prosthodontics programme, which I finished with Merit. In September 2011, I enrolled in a full-time four-year clinical PhD (Doctor of Clinical Dental Science in Fixed and Removable Prosthodontics). In 2014, I won the Paffenbargar Student Research Award (2nd prize) for research work I presented at the Academy of Dental Materials annual meeting (Bologna, Italy). I am also a journal reviewer for Dental Materials. During my PhD study, I also attended several scientific meetings:

- British Society of Prosthodontics meeting in Liverpool in April 2012.
- ADI Team Congress meeting in Manchester in May 2013.
- British Society of Prosthodontics meeting in Dundee in April 2014.
- British Society of Prosthodontics meeting in London in March 2015.

I also presented my research work at the following meetings:

- 23rd European Dental Materials Conference in Nuremberg (Germany) in August 2015. (Poster presentation titled: Influence of fibre-reinforcement on shear bond strength with ceramic/metal substrates).
In addition, another research work will be presented in the following meeting:

- Academy of Dental Materials annual meeting in Mai, Hawaii (USA) in October 2015. (Poster presentation titled: Influence of fibre-reinforced composite on micrhardness and light transmittance).

I am currently in the process of submitting my research to a variety of scientific dental journals.
Dedication

In The Name of ALLAH,

and with His Blessing,

The All-knowing, The Most-Wise.

This thesis is dedicated to my beloved wife, Alaa, for all the sacrificial care she gave me throughout my study. Without you in my life, this work would not have been possible.

I would also like to dedicate this work to my parents, Mohammad and Seham, for their support and encouragement during all stages of this work. You are the inspiration of my achievements.

This thesis is also dedicated to my dearly son, Karam, and my siblings Bahaa, Deyaa, Doaa and Baraa.
Acknowledgment

All praises are due to ALLAH for his merciful guidance throughout my life and during my stay in Manchester.

I would like to express my sincere gratitude and deepest respect to my supervisors Dr. Nick Silikas and Prof. Julian Satterthwaite for all invaluable support they offered me throughout my project. I appreciate all the time, energy and motivation you have given me to complete this work.

My genuine appreciation is to the University of Jordan, Amman, Jordan for giving the opportunity to pursue my postgraduate study at the University of Manchester.

My thanks are also due to my friends Ahmad El-Ma`aita, Muayed Zankuli, Ruwaida Alshali, Kold Al-Ahdal and Hanan Alsunbul for their support and advice throughout the years.

Sincere gratitude is due to Mr Ahmad Hjazi for all invaluable help and support he offered to me throughout the years I spent in Manchester.
Chapter 1: Review of the literature
1.1 COMPOSITES:

1.1.1 Introduction:

A composite is defined as a material composed of two or more chemically discrete constituents or phases separated by a definite interface [1, 2]. Major phases in a composite material are the reinforcement phases (discontinuous) embedded within a continuous phase, termed as a matrix [3]. The reinforcing phase is usually harder and tougher than the matrix, and thus aids in improving the overall properties. Although the discrete phases maintain their integrity within the composite, the resultant properties may not be completely related to those of their constituents [4]. This is attributed to the synergistic influence of volume fraction, geometric orientation, distribution and interactions of the constituents on the resultant properties [5]. Taking into account all such parameters, it is possible to a certain extent to tailor the properties of a composite material according to particular requirements [2, 6]. Accordingly, researchers in many fields continuously develop synthetic composites in order to address an extensive range of demands [1, 7, 8]. In dentistry, resin-composite materials are principally being developed as restorative materials with properties similar to that of the tooth structure being replaced.

1.1.2 Dental resin-composites:

In the context of dental materials science, resin composite is defined as “a highly cross-linked polymeric material reinforced by a dispersion of amorphous silica, glass, crystalline, or organic resin filler particles and/or short fibres bonded to the matrix by a coupling agent” [9]. From the definition, a dental resin composite is typically produced from three distinct components: polymer resin matrix (the continuous phase), inorganic filler particles (the dispersed phase) and coupling agents (the interfacial phase). The presence of each component at a certain percentage is fundamental to achieve a successful resin-composite restoration [5, 9].

1.1.2.1 Resin matrix:

The matrix is the chemically active component of the resin-composite material. It is composed of one or more monomer/oligomers transformed into a cross-linked hard polymer by means of chemical or photochemical polymerization [10]. In the contemporary resin-composites, the matrix is commonly formulated from methacrylate molecules [10], although other molecules with higher functionality are also employed.
Monomers originally used in resin-composites were based on mono-methacrylate monomers, such as MMA [methylmethacrylate], which tend to produce a relatively linear polymer network and offer inadequate properties in terms of strength, polymerization shrinkage and water degradation. However, dimethacrylate monomers are the most widely used nowadays due to the fact that they have higher molecular weight and form a highly cross-linked polymer network, which solves many of the drawbacks of the predecessor monomers [12].

A variety of aromatic and aliphatic dimethacrylates has been employed as a monomer system for dental resin-composites (Figure 1.1). The most commonly used monomers are bisphenol-A-glycidyl dimethacrylate (Bis-GMA), ethoxylated Bis-GMA (Bis-EMA) and urethane dimethacrylate (UDMA) [10, 13]. Co-monomers with low molecular weight and viscosity, such as triethylene glycol dimethacrylate (TEGDMA) or ethylene glycol dimethacrylate (EGDMA), are also incorporated as a diluent to lower the viscosity of resin systems [10-14]. As the viscosity of the resin matrix decreases, more reinforcing fillers may be incorporated accordingly [10]. Moreover, an improvement in cross-linking between polymer chains can occur, leading to enhanced resistance of solvent degradation and faster polymerization. Nevertheless, a high percentage of low molecular weight dimethacrylates is detrimental as it increases the polymerization shrinkage [5, 10].

Polymerization of methacrylate-based composites depends on free radical reaction (Figure 1.2) [3]. The initiator (e.g. benzoyl peroxide) is converted into free radicals by the influence of accelerator (e.g. dimethylamino ethylmethacrylate (DMAEM)) or photo-activator (e.g. camphoroquinone (CQ)) [15]. Inhibitors (e.g. butylated hydroxytoluene) and stabilizers (e.g. benzophenones) are also incorporated to prevent premature polymerization and darkening with age, respectively [9]. The polymerization results from the conversion of double bonds within the monomers by the influence of free radicals, yielding a highly cross-linked polymeric network [16]. However, such polymerisation reaction is exothermic and associated with volumetric shrinkage, which can cumulatively cause harm to tooth structure [17, 18]. Susceptibility to oxygen inhibition is another drawback of free radical reaction, which leads to premature termination of polymerization and unpolymerized monomer remains. The unpolymerized monomers may leach from resin-composite restorations, and so raise biocompatibility concerns [19].
Figure 1.1: Dimethacrylate molecules mostly used in dental resin-composites.
Figure 1.2: Free-radical polymerization reaction of methacrylate-based composites. A) benzoyl peroxide readily splits to form two identical free radicals which can initiate polymerisation, B) reaction of a benzoyl peroxide radical with methylmethacrylate to form a new radical species, C) structural formulas of Camphoroquinone and D) dimethylamino ethylmethacrylate, commonly-used photo-activator and accelerator, respectively.
Recently, several alternative resin systems have been developed to overcome the drawbacks of methacrylate-based composites. Silorane is an example of such alternatives (Figure 1.3). This molecule is a hybrid monomer developed from the reaction of siloxane and oxirane molecules. The siloxane molecule provides the hydrophobic characteristics, while the oxirane molecule represents the active site for polymerisation [20]. The polymerisation is based on a cationic ring-opening reaction, which develops a lower shrinkage polymeric network compared with that resulted from the free radical reaction [21]. Studies comparing methacrylate-based composites with silorane-based alternatives reported that the latter offer higher hydrophobicity, lower polymerization shrinkage, reduced oxygen sensitivity and better biocompatibility [19, 22-24]. Other new alternative monomers, such as dimer acid-based dimethacrylates, tricyclodecane urethane and organically-modified ceramics (ormocers) were also introduced to the market [21].

![Figure 1.3: Structural formula of Silorane molecule](image-url)
1.1.2.2 Inorganic Fillers:

The addition of inorganic fillers to dental resins was introduced in the 1950s [25-28]. Since then, it has gained wide acceptance due to its positive influence on many physico-mechanical properties [5, 11, 14, 29, 30]. Higher strength, improved stiffness, enhanced thermal diffusivity, reduced polymerization shrinkage, better rheological properties, improved wear resistance and superior aesthetics are some advantages of the incorporated fillers [5, 14, 30-40]. Nevertheless, the incorporation of too much filler may compromise the resultant properties and produce resin-composites with reduced degree of conversion (DC), increased viscosity, higher brittleness and worse handling [5, 41]. Moreover, the fillers should have a refractive index within the range of that for resin systems. A mismatch in the refractive index between fillers and resins can increase the light scattering and reduce its transmittance within the material, which result in visually opaque materials as well as curing problems [14, 42, 43].

The reinforcing fillers incorporated within resin composites can be in two forms, particles and fibres. Accordingly, resin-composites can be classified into particulate-reinforced composite (PRC) and fibre-reinforced composite (FRC) [3, 44]. PRCs are generally isotropic, meaning that they have similar mechanical and physical properties in all directions [6]. However, the specially oriented reinforcing fibres within FRCs offer anisotropy and result in different mechanical and physical properties in different directions [1, 3, 7, 45, 46]. In PRC, the most commonly used filler particles are quartz, colloidal silica, and silica glass containing barium, strontium and zirconium [47, 48]. Filler particles with various sizes are also used, ranging from 0.1nm to 100μm diameter [49]. According to such sizes, resin-composites are broadly classified into four main types. These types are macrofilled composite (1-100μm) [50], microfilled composite (~3μm) [51], hybrid (0.4-1.5μm) [52] and nanofilled composite (20-75nm) [53]. Furthermore, resin composite can be classified by the volume fraction of fillers into compact-filled (>60 vol% fillers) and midway-filled composite (<60 vol% fillers) [51, 54, 55]. In FRC, long continues and short discontinues fibres are used as reinforcing fillers. Different types of fibres are also employed, including glass, polyethylene and carbon [56-59].
1.1.2.3 Coupling agent:

To achieve optimum reinforcement and stress distribution within resin-composites, the reinforcing fillers and resin matrix have to be well-adhered [40]. In dentistry, this adhesion is typically achieved by coating the surface of the filler with a silane coupling agent [60]. The silane (organosilane) is a bifunctional molecule capable of reacting with the fillers and resin monomers by the influence of its functional groups [61]. The overall reaction of silane with the fillers and resin system determines the quality of the interfacial phase; and therefore many properties of resin-composite [60, 62, 63]. Flexural and compressive strengths, hardness, fatigue, toughness, shear strength, polymerisation shrinkage and durability are all resin-composite properties significantly improved by an appropriate silanization [64-70]. Such improvements are attributed to the enhanced filler dispersion and wetting resulted from silanization, which also reduces viscosity and protects against hydrolytic degradation [61, 71].

The most commonly used organosilane in dental resin composites is 3-methacryloxypropyl trimethoxysilane (MPS) (Figure 1.4). This molecule forms covalent bonds with the fillers and resin matrix by its alkoxy silane and methacrylate functional groups, respectively. Other molecules, such as 3-acryloxypropyltrimethoxysilane (APM), and 10-methacryloxydecyltrimethoxysilane (MDS) are also employed in dental applications [61-64, 72]. The selection of a suitable silane molecule is based on the composition of the inorganic fillers. The availability and number of hydroxyl groups on the surface of fillers determine the reactivity with saline coupling agents, and so influence the selection [61, 73].

![Figure 1.4: Methacryloxypropyl trimethoxysilane](image-url)
1.1.3 Classification of resin composites:

There are many ways that have been proposed to classify dental resin composites (Figure 1.6). Firstly, according to the mode of activation, resin-composites can be classified into chemically-activated, light-activated and dual-cured composites. Light-activated composites can also be subdivided into direct (chair-side) and indirect (laboratory) composites. Secondly, according to the form of filler, resin-composites are grouped into either particulate-reinforced composite (PRC) or fibre-reinforced composite (FRC). PRCs can be classified according to their filler size into macrofilled, microfilled, hybrid and nanofilled composites. FRCs, however, are classified according to their fibre forms into continues or discontinuous FRC. Thirdly, based on the viscosity, composites can be classified into flowable and packable composite. Other proposed ways of classification are according to the resin system (methacrylate-based, silorane-based and ormocer-based) [21], clinical applications (anterior, posterior or universal) and filling technique (incremental-fill or bulk-fill) [74].
Figure 1.5: Classification of dental resin-composite.
1.2 FIBRE-REINFORCED COMPOSITES (FRC):

1.2.1 Background:

Despite the widespread acceptance particulate-reinforced composite [PRC] material has gained through recent years of the dental practice, its composition is still subject to continuous modification. Many investigations intended to improve the clinical performance of PRC and solve its drawbacks have been conducted in the literature [11]. Some of these drawbacks, like inadequate occlusal wear resistance and colour stability over time, have been successfully resolved in the contemporary resin-composite materials. However, other limitations, including poor wear and fatigue behaviours, polymerization shrinkage, and susceptibility to chemical degradation in the oral cavity, are still evident with a negative influence on the clinical performance, especially in highly-demanding situations when a material with additional levels of strength and aesthetics is required [3]. All of that, together with the ongoing desire for finding metal-free restorative alternatives, have made the conventional PRC far from ideal, and so motivated further searches for a more durable material with higher strength and adequate aesthetics.

Several subsequent advancements in resin-composites have consequently taken place. One advancement was the introduction of widely-accepted engineering technology, so-called ‘Fibre-reinforcing Technology’, into the dental field [75]. According to this technology, particular fractions of specific continuous fibres have the ability to reinforce the overlaying material and improve its mechanical properties; providing that the fibres are precisely oriented, carefully incorporated and well-bonded with the material [6, 7, 46]. This concept has been examined with a number of polymeric dental materials, such as denture base PMMA, and promising findings have been confirmed [46, 76]. With regard to the conventional dental composite resin material, the implementation of fibre reinforcement concept, combined with the ongoing development of dental adhesive techniques, have not only improved the mechanical properties but also yielded untraditional applications, like periodontal splints, fixed orthodontic retainers and prosthetic fixed partial dentures, a more broadly acceptance [45, 77-81].

Consequently, an increasing number of fibre-reinforced composites have become commercially available. By using FRC products, the era of aesthetic, metal-free, dentistry has become more developed and clinically applicable [29, 82]. However, the
lack of robust detailed information regarding the clinical performance of these newly
developed materials is the major obstacle to their further spread.

1.2.2 Definition and classification:
Fibre-reinforced composite [FRC], as the name implies, is a composite material composed primarily of reinforcing fibres imbedded in a resin matrix [45]. The reinforcing fibres are numerous and offered in many different characteristics, including type, fraction, orientation, impregnation and architecture, which all have been claimed to remarkably influence the properties of resultant materials [6, 44].

The common classification of FRCs is according to fibre architecture (continuous or discontinuous), orientation (unidirectional, bidirectional, woven, braided or random), impregnation (pre-impregnated or dry) and type (glass, polyethylene or carbon) [44, 83].

1.2.3 Rationale:
In comparison with metal alloys, ceramics and other restorative materials used in dental practice recently, it is undeniable that conventional dental composite materials have a lot of desirable properties that enable their use in many clinical situations. Cost effectiveness, excellent aesthetics and translucency, non-corrosiveness, adequate adhesion to tooth structure, easy maintenance and minimal invasiveness are some encouraging properties [21, 84]. Conversely, brittleness, polymerisation shrinkage, hygroscopic expansion and mechanical inadequacies in terms of strength and stiffness, are examples of the negative properties that were unfortunately enough to restrict the exploitation of most high-demanding applications, like FPDs, endodontic posts and implant prostheses [85]. A desire of researchers to resolve the limitations of dental composite materials and expand their applications was the main motivation of dental FRC innovation [84, 85].

Complying with the engineering principles of material construction, a material is naturally stronger in the fibre form compared to its bulk [7]. The smaller diameter of a material in its fibre form as well as the preferential alignment of its molecular crystal structures tend to reduce the possibility of future critical defects and produce higher stiffness values [4, 7, 86]. Fibre reinforcing technology of plastics follows these principles and suggests that the reinforcement of a composite material can be possible by incorporating a fibrous reinforcing element. This fibrous reinforcing element has to
have the minimal mandatory aspect ratio (length: diameter), greater than 100, to present its full reinforcing potential [7]. Fortunately, many principles of fibre reinforcing technology of plastics have been implemented successfully in the dental field, and researchers were able to resolve many limitations of conventional dental composites and spread out their applications by relying on FRC [87].

The importance of dental FRC arises from the fact that such materials have a lot of desirable properties. Adding to the favourable properties of conventional dental composites, dental FRC also provide high values of strength and stiffness for a given weight of material, superior to those of most alloys, allowing minimally invasive techniques [78]. They also offer more desirable physical properties in terms of polymerisation shrinkage and thermal expansion as long as prostheses made of FRC are appropriately designed [88, 89]. Unlike conventional materials, the properties of FRC have the potential to be tailored according to the clinical situation [6]. This property gives FRC the potential to be employed in a variety of clinical situations, providing there is awareness of their basic structure and properties as well as appropriate understanding of the specific requirements of various clinical situations.

1.2.4 Clinical applications:

The implementation of FRC in the dental field has been slow compared with the industrial use. Early dental applications were restricted to denture bases due to the problems in aesthetics and handling [45, 75, 83]. With the recent advancement in manufacturing and polymerization methods, dental applications of FRC have been significantly expanded. Numerous FRC applications are well-documented in the literature, including crowns and fixed partial dentures (FPD) [78, 90, 91], periodontal splinting [80, 92-99], orthodontic treatments [81, 100-103], removable dentures [76, 87, 104], endodontic post applications [105-111], chair-side fillings [78, 112, 113], space maintainers [114] and implant supra-structure applications [58, 77, 115-120]. More recent applications include the utilization of FRCs as substructures for extra-oral prostheses [121-123], intermediate reinforcing layers within large resin-composite fillings [124-128], and implant fixtures [119, 129, 130].
1.2.5 Mechanical performance and influencing factors:
The chief indication of FRC is to improve the mechanical properties of resin-composite materials and strengthen their polymeric network. Rigidity, flexural strength and load-bearing capacity are considered the main mechanical properties of concern that have to be improved. This is not only because of the low values provided by conventional resin-composites (Table 1.1), but also for the dominating effect of such properties on clinical performance [2, 3, 131]. Improving such mechanical properties, however, cannot happen by simple incorporation of reinforcing fibres as there are many other factors ruling the process and affecting the performance.

Table 1.1: Mechanical properties of particulate-reinforced composites [3].

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength</td>
<td>260 -300 MPa</td>
</tr>
<tr>
<td>Yield stress</td>
<td>160 -300 MPa</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>40 -50 MPa</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>80 -150 MPa</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>6 -14 GPa</td>
</tr>
<tr>
<td>Hardness</td>
<td>30 -90 VHN</td>
</tr>
</tbody>
</table>

Derek Hull stated about composite construction that “the essence of composite materials technology is the ability to put strong stiff fibres in the right place, in the right orientation and with the right volume fraction” [1]. The first symposium on fibre-reinforced plastics in dentistry (1998) also reported that the ability of reinforcing polymers is not as simple as placing a fibre into a plastic, but there exists a number of factors having power over this reinforcement efficacy, and influencing the overall performance of resultant materials [6]. Relevant studies have identified type of constituents, fibre orientation, fibre to matrix ratio, impregnation quality of fibre impregnation and adhesion with the resin, fibre/matrix interfacial adhesion and fibre location as major factors affecting the properties of reinforcement [44, 46].

1.2.5.1 Reinforcing-fibre type:
Different types of fibres have been used as reinforcement in FRC. In dentistry, reinforcing fibres made of glass, polyethylene, aramid and carbon are the most commonly used [132]. The unique structure of each type affects the mechanical properties of resultant materials [2, 132, 133].
Glass Fibres:
Glass fibres are the most popular reinforcing-fibres in industrial and dental applications. Their popularity is attributed to their favourable mechanical properties, including high tensile strength, excellent impact and compressive strength, high modulus of elasticity and flexural strength [2]. Biocompatibility, high resistance to chemical degradation and relatively low cost have also contributed to their popularity, but the superior transparent appearance of the fibres that suits many aesthetic-demanding dental applications has much greater impact [134].

In the literature, the flexural strength of glass FRC varies between 420 and 1250 MPa depending on the composition of employed fibres and resin, as well as testing conditions [132, 135-141]. One study investigating the reinforcing effect of glass fibres has reported a consequent increase in the flexural strength of the unreinforced (control) composite by 364% after 6 days water storage [132]. Another study, however, has reported a higher reinforcing effect, up to 800%, when the specimens stored in dry conditions before flexural testing [135].

Glass fibres also have the potential to be uniformly stretched under stress to their breaking point and, interestingly, return to the original length upon stress removal without any yielding. This property, combined with the high mechanical strength, is what gives glass fibres the ability to store and release large energy levels during service [134]. All taken into account, FRC with glass fibres have been proposed to strengthen many dental restorations, prostheses and appliances prone to excessive occlusal load and/or requiring a high level of aesthetics [91, 142-144].

The microstructure of glass fibres has a three-dimensional network, composed of silicon, oxygen and other randomly aligned atoms [134]. Fractions of the raw composing materials are blended together and heated in an oven at 1600°C temperature to produce a fibre with particular chemical composition [134]. According to this chemical composition, dental glass reinforcing fibres are generally classified into two common types: E-glass and S-glass. Other less common glass fibres are also used like R-glass [56, 145].

A. E-glass Fibre:
Electrical glass fibre, so-called E-glass, is the most commonly used type. It has a calcium-alumino-borosilicate composition with 55 wt% SiO₂, 14.5 wt% Al₂O₃, 17 wt%
CaO, 4.5 wt% MgO, 8.5 wt% B₂O₃, and 0.5 wt% Na₂O. It has excellent strength and stiffness but low impact and fracture resistance [2].

B. S-glass Fibre:
High strength glass fibres, so-called S-glass, have the same density of E-glass fibres, but with a different chemical composition (64 wt% SiO₂, 26 wt% Al₂O₃ and 10 wt% MgO) [2]. It has the highest tensile strength among reinforcing-fibres and offers excellent wettability. However, due to their high processing cost, S-glass fibres are less commonly used than E-glass fibres. As a consequence, S₂-glass has been introduced with the same mechanical properties of S-glass but with lower cost [146].

II Ultrahigh molecular weight polyethylene (UHMWPE):
Polyethylene fibre is a thermoplastic polymeric material produced from long aligned chains of the monomer ‘ethylene’, and further shaped up to be in a fibre form [2]. The crystal structure of this fibre has been fashioned in many different ways to produce fibres with a different degree of branching, density, molecular weight and therefore mechanical properties. Considering the reinforcing effect, the ultra-high molecular weight polyethylene (UHMWPE) fibre was the type that gained a remarkable interest in the dental field due to its strength [124, 147].

UHMWPE fibres are chemically inert and white in colour with low density (0.94g/cm³) and excellent biocompatibility. They are made of highly-elongated and well-aligned chains, with a general molecular weight exceeding one million (mainly between 3x10⁶ – 6x10⁶) [148]. Such a structure is what intensifies the intermolecular interactions in fibres and allows effective load transfer [147, 149]. Many supporting studies comparing the mechanical properties among the different reinforcing fibres have showed that the impact strength of UHMWPE fibre in composites is 20 times greater that of glass, aramid and carbon fibres [2, 132]. Therefore, UHMWPE fibres have been listed among the toughest reinforcing-fibres in dentistry yet.

Despite the favourable properties of UHMWPE fibres, they still have some weak points. Beside their low modulus of elasticity, limited tensile strength, high creep and low melting point (about 147°C), such fibres have been shown to have low surface energy and poor adhesion which makes the bonding between fibre and matrix unsatisfactory [2, 150-152]. Although surface treatment using electrical plasma technology or corona can enhance this adhesion with the resin matrix, practical limitations and high cost made
this option relatively unfeasible [153, 154]. Many previous studies have also reported
difficulty in placing and manipulation of these fibres with enhanced levels of oral
microorganisms retained on their surfaces [155-157]. As a consequence of such
disadvantages, the applications of UHMWPE fibres tend to be relatively limited
compared with glass fibres.

III Carbon/Graphite Fibres:
Carbon fibres are manufactured from carbon-rich organic fibre precursors (e.g.
polyacrylonitrile, cellulose, pitch) through the application of controlled oxidation,
carbonisation and graphitisation [2]. According to the manufacturing technique and
carbonisation temperature, the resultant fibres may obtain a varying degree of
amorphous carbon and crystalline graphite, and therefore can present with different
structural composition and mechanical properties [134].

Carbon fibres have many favourable properties, including superior stiffness and
compressive strength, high resistance to corrosion and fatigue, excellent adhesion and
good handling properties. Nevertheless, low impact strength, major surface
imperfections, high processing porosity and black colour are problems that tend to
reduce their popularity compared with other fibres, especially in aesthetically
demanding applications [2, 29, 134, 158, 159].

Carbon fibres have been used in several dental applications, including removable
dentures [87, 160], restorative composite filling [161], implant-supported prostheses
[77], interim FPDs [162], and dental implants [29]. However, due to their black colour
and difficulties in manufacturing, their clinical use is now limited to prefabricated
endodontic posts [163-165].

IV Aramid/Kevlar fibre:
Aramid fibres, commonly known as Kevlar fibres, are made of aromatic polyamide and
formed by spinning liquid chemical blends into solid fibres. The resultant fibres are
produced with a range of properties that are mainly high specific tensile strength, low
density and good impact resistance [134]. However, due to their poor compressive
strength, they are recommended to be used in a combination with other reinforcing-
fibres in order to achieve satisfactory strength [2]. Previous studies using aramid fibres
to reinforce PMMA [166-168] and resin-composite [133, 148] have confirmed a
significant improvement in flexural strength.
Aramid fibres also offer other favourable properties, including thermal and chemical stability, high glass transitional temperature and excellent hardness [2]. However, they lack the effective bonding with resin matrix and slowly degrade when exposed to ultraviolet light [87]. Their bright yellow golden colour has also a detrimental effect on appearance and can limit their use in aesthetic-demanding situations [2]. During their incorporation within acrylic materials, Aramid fibres tend to spread laterally and unevenly, causing poor polishability, mucosal irritation and patient discomfort [169].

V Other fibres:
The literature contains other types of fibres used to reinforce dental applications. Nylon fibres, which are produced from polyamide, have gained some interest, owing to their high resistance to shock and repeated stressing. However, their mechanical properties are negatively influenced by water sorption [2]. A previous study comparing the reinforcing effect of nylon with glass and aramid fibres has reported that nylon fibres can increase the fracture toughness of PMMA, but not to the level of glass or aramid fibres [170]. Polyester fibres have been also used to reinforce PMMA dentures and improve impact strength; however, no effect on flexural strength and surface hardness was reported [171] Fibres made of PMMA have been also used to strengthen dentures but no improvement in impact strength was achieved [172].

1.2.5.2 Matrix and resin system:
In respect of dental FRC, there exists a variety of resin matrices that have been proposed in the literature to impregnate the reinforcing fibres. Primarily, they are classified into linear thermoplastic matrix, cross-linked thermostet matrix or a combination of both together which forms a semi-interpenetrating polymer network (semi-IPN) [44, 137, 173, 174]. It is established that the different matrices of FRCs have different effects on mechanical properties. For example, many studies have reported that the modulus of elasticity of FRC impregnated with a cross-linked polymer matrix is higher than those impregnated by semi-IPN or a linear matrix [135, 141, 163]. However, toughness values are much greater with linear and semi-IPN matrices than cross-linked ones [175]. Moreover, the semi-IPN matrix of dental FRC presents advantages over cross-linked matrices in terms of handling properties and intraoral bonding of indirectly made restorations [175].

The viscosity of the FRC matrix is also critical for attaining optimum handling characteristics in the resultant materials [174, 176]. Reinforcing fibres impregnated with
a conventional matrix (with a low degree of viscosity) exhibit high memory, which means they tend to rebound once adapted to a curved surface. Such memory, resulting from the parallel run of continuous reinforcing fibres through the length of a FRC strip, contributes to a difficult adaptation process of FRC intraorally [83]. As a consequence, some researchers have preferred using a matrix with a high viscosity degree, produced by elimination of all diluents and other low viscosity components commonly added to the matrix system, in order to counteract such memory of fibres and ease the adaption [83, 174, 176]. Although highly viscous matrices neutralize the fibre memory, some studies have found that they adversely affect the handling and impregnation characteristics, and therefore a more sophisticated manufacturing process is required [45, 134, 177].

Methacrylate-based resin systems are the most popular matrix used to impregnate FRCs. By using such systems, the polymeric network formed around fibres can be linear with using mono-functional resin monomers (e.g. PMMA) [159, 174, 175, 178, 179] , cross-linked with using multifunctional monomer (e.g. Bis-GMA, UDMA) [83, 180] and urethane tetramethacrylate (UTMA) [139], or semi-IPN with combination monomers [46, 175, 177, 181, 182]. Other less popular, but effective, resin matrices have been also evaluated, including epoxy resin (Diglycidyl Ether of Biphenol-A (DGEBA)-based epoxy) [183], polyethylene terephthalate glycol (PETG), poly 1,4-cyclohexylene dimethylene terephthalate glycol (PCTG) [173] and polyamide [184].

I) Semi-Interpenetrating Polymer Network (semi-IPN) as dental FRCs matrix:

A. **Definition:**

Semi-interpenetrating polymer network matrix, or so-called semi-IPN, has been defined as “a polymer comprising one or more networks and one or more linear or branched polymers characterized by the penetration of at least one of the networks by at least some of the linear or branched macromolecules on the molecular scale” [181, 185]. The constituents of this matrix are not chemically dependent, and thus can be detached without breaking the chemical bond [186, 187]. Such independency has been claimed to be of remarkable significance when bonding of uncured resin material to fully-polymerised FRC is a demand [181].
B. Rationale:

Since dental FRCs are commonly used as a bonding substrate or framework, it is obligatory to have satisfactory bonding between this framework and resin materials used as either veneering PRC or resin-luting cement. The nature of impregnating matrix (either cross-linked or linear) of FRC frameworks has been reported to affect this bonding [44].

Apart from the effect of mechanical locking, the adhesion between unpolymerized resin material and polymerised FRCs substrate impregnated with cross-linked matrix can be obtained chemically by a free-radical polymerisation reaction [181, 188]. This reaction alone could be enough to achieve a durable bond if an unpolymerized surface layer, the so-called oxygen inhibited layer, was still available on the substrate surface. This layer has been proven to have some unreacted functional groups (C=C) responsible for keeping the polymerisation reaction active up to 24h after the initiation reaction [175, 181]. Obtaining such a layer in directly-made FRC substrates is easy. However, this is not the case with laboratory-made substrates that are usually delivered after 24h, and thereby, adequate bonding is not guaranteed [181]. On the other hand, when the FRC contains a linear impregnating matrix, the adhesion can be achieved by interdiffusion of the new unpolymerized resin monomers within this linear matrix, providing that the solubility parameter of the unpolymerized monomers is close enough to that of the linear matrix [175, 181, 189]. As the use of pure linear matrixes is infrequent in dental applications, the use of semi-IPN structures has been suggested instead [181].

FRC substrates impregnated with a semi-IPN structure contain both linear and cross-linked matrixes. Consequently, their adhesion with new monomers can be based on both free radical polymerisation and interdiffusion, which certainly gives a more predictable bonding [190]. The use of semi-IPN as a FRC impregnating matrix significantly enhances the dissolving depth and interdiffusion of adhesive resin monomers into FRC substrates compared with cross-linked matrix, and so promotes the bonding [189]. Additionally, semi-IPN matrix has been also proven to improve other properties such as glass transition temperature, elastic modulus and handling properties of fibres with high viscous resin [137, 181]. Many successful dental applications of semi-IPN have been reported in the literature, especially in repairing denture bases and laboratory-made fixed prostheses [44, 191].
1.2.5.3 Impregnation:

To acquire optimum reinforcement, fibres must be well impregnated with a matrix prior to their use. Effective impregnation, defined as total imbedding of the fibres with the resin, provides a successful interfacial adhesion which enables the stresses to be transferred effectively from the material to its reinforcing fibres. However, insufficient wetting can lead to void formation and premature failure [44].

I Methods of impregnation

The impregnation process itself can be done in two methods; either by hand or through a specially designed manufacturing procedure (pre-impregnation) [45]. The level of impregnation using the hand method was considered adequate until a desire for using resin systems with high viscosity (e.g. Bis-GMA) emerged [174, 176]. Such viscous resin, combined with its high volumetric polymerization shrinkage, hampers the effective impregnation, and leads to a major reduction in mechanical properties [6, 176]. Therefore, the use of fibres pre-impregnated by their manufacturers is recommended.

Different manufacturing methods have been introduced to optimize the impregnation of the fibres [45, 134, 177]. Most of them involve forming a FRC ‘prepreg’, a FRC strip combining both fibres and unpolymerized matrix, by pulling the fibre bundles through a tortuous path that forces the resin into fibre bundles [45, 192]. This procedure not only allows complete wetting of fibres with minimum void content, but also offers high fibre content with more control over the cross-sectional dimensions of the resultant prepps [45, 192]. While many fibre characteristics, including their number, wetting, distribution and orientation, are well optimized in the prepps, the flexibility remains sufficient for further shaping during their application. Once the fibres shaped, a final polymerization stabilizes the form and generates the mechanical properties [81, 192].

II Impregnating matrices and their effect:

The nature of the impregnating matrix affects not only the mechanical properties of FRC, but also water sorption, handling properties, bonding to unpolymerized resin and maintenance [44, 83, 132, 135, 193]. The degree of water sorption varies among different impregnating matrices used in dental FRC. Polymers with low water sorption potential, like bis-EMA and UDMA, are desirable to optimize the flexural properties of FRC [135, 193]. Matrices with high viscosity are also preferable since they facilitate the intraoral adaptation of FRC [83]. However, they tend to complicate the handling. To overcome this problem, pre-impregnation with porous PMMA was introduced [46].
This is based on pre-impregnating of the reinforcing fibres with a highly porous polymer during production [192]. Such porous pre-impregnated fibres still need further chair-side or laboratory wetting with an adhesive resin previous to any application [46, 181, 190]. Another technique of pre-impregnation, combining PMMA and dimethacrylate resins in a gel matrix, has been introduced to improve the handling and reduce the clinical steps [44]. Using this technique, previous studies have reported an increase (up to 70%) in the quantity of reinforcing fibres pre-impregnated in the resin matrix. Moreover, the bonding to unpolymerized resin and maintenance were also improved by enhancing interdiffusion and secondary-IPN formation [44, 190].

1.2.5.4 Interfacial adhesion:

1 Introduction:

Bonding and adhesion are two interchangeable terms that describe the state of molecular/atomic attraction between two contacting substances promoted by physical or chemical interfacial forces [194]. In dentistry, adhesion has been defined as "the process of joining two dissimilar materials by means of an adhesive agent that solidifies during the bonding process"[9]. The substance that enhances adhesion and transfers load between two attracted substances is called adhesive. The material tending to adhere is called adherent, while the ‘substrate’ is the material to which the adherent is applied [9, 194].

Regarding FRCs, the interfacial adhesion between their constituents is one of the major factors determining the longevity and overall performance. This adhesion, especially in the interfacial region between the reinforcement and the matrix, is essential for obtaining optimal mechanical properties in the resultant FRC [44].

II Importance of interfacial adhesion:

The mechanical properties of FRCs are significantly affected by the strength and durability of interfacial adhesion. The tensile strength of FRCs is affected by the efficiency of the load transfer from the matrix to the reinforcing fibre at the interface [61]. Strong interfacial adhesion enables an effective transfer of stress from the polymer matrix to the reinforcing fibres [61, 195]. However, poor adhesion adversely affects mechanical properties, increases water sorption, and limits longevity [196].

The durability of FRCs is also affected by the interfacial adhesion as well as many environmental factors, such as temperature, moisture and loading stress [44]. With poor
interfacial adhesion, water accumulates over a period of time at the exposed fibre surfaces, leading to adhesion failure and strength reduction [135, 193, 195, 197]. Under normal circumstances, the affected fibres will consequently fracture at a lower load compared with their theoretical ultimate strength. Once the fracture occurred, the constituents lose their stored elastic energy in the region around broken fibre ends, resulting in further crack propagation along the interface and critical damage [195]. Consequently, a reduction in the durability and clinical performance of FRCs is inevitable.

FRCs are usually utilised as a bonding substrate that has to be veneered and cemented with different materials. Accordingly, the interfacial region between the matrix and reinforcement surfaces is not the only place that affects the properties of FRCs constructions. The interfacial adhesion at the interfaces between different materials or structural components is also influential [131]. The compatibility between the matrices of different interfaces is essential to achieve an effective adhesion [1]. In general, the key component for achieving enhanced mechanical properties in FRC applications is the ability of the constituents (fibres, matrix and veneering materials) to be effectively adhered together [44].

III Mechanisms of interfacial adhesions:

The interaction between the constituents of FRCs happens by several mechanisms, including mechanical adhesion, chemical adhesion and interdiffusion. In mechanical adhesion, the bond is produced by the physical interlocking between the matrix and fibre surfaces. This locking is mainly dependent on the surface topography of the fibres, but is unlikely to be adequate to withstand high loading situations [153]. On the other hand, chemical adhesion is formed by covalent bonding between the constituents. The strength of this adhesion depends on the number and type of covalent bonds formed, as well as the matrix type and fibre microstructure [44, 153]. A range of fibre surface treatments can also affect the strength of chemical adhesion [66, 67, 195].

Regarding the interdiffusion mechanism, the bond between constituents happens by the diffusion of active molecules from one surface into the molecular network of the other surface. The strength of this bond depends on the amount of diffusion (molecular entanglement together) and the number of molecular chains involved [153]. The degree of interdiffusion amount will depend on the involved constituents, their molecular conformation and the simplicity of the molecular motion, which can be enhanced by the
presence of solvents or plasticising agents [1]. One prominent example of this interdiffusion mechanism is the use of the semi-IPN phenomenon [175, 181, 186].

IV Interfacial adhesion enhancement:
Many surface treatments are available for enhancing the interfacial adhesion of FRCs [66, 67, 195]. Most of these treatments are based on increasing the frequency of mechanical interaction between the constituents and/or facilitating their chemical bonding [60, 62, 153, 198, 199]. Flame treatment and etchants (e.g. KMnO₄, H₂O₂, and K₂Cr₂O₇) are examples of effective surface treatments used to enhance the adhesion of a variety of reinforcing fibres. Such techniques, however, are not effective enough to be used with UHMWPE fibres, which are chemically inert and resist interactions with most polymer resins [153].

A significant improvement in the adhesion of UHMWPE fibres can be obtained by the use of ‘gas plasma treatment’. In this technique, UHMWPE fibres are subjected to high temperature plasma treatment in the presence of gases (e.g. O₂, NH₃, N₂, Ar, CO₂), causing significant surface modifications. Four modifications enhancing the adhesion have been recognized, including oxidation of the fibre surface, cross-linked skin formation and weak boundary layer removal, enhanced surface roughness and increased wettability [153]. Although such modifications have been reported transient [151, 200], manufacturers still use gas plasma as a predominant treatment with UHMWPE fibres [147, 150, 201]. Other surface treatments, such as corona discharge, chemical grafting, high energy laser, UV and gamma irradiation, are also efficiently used with UHMWPE fibres [154].

The use of coupling agents is another treatment mode employed to improve the surface energy and wettability of reinforcing fibres [60]. Owing to their bi-functionality, coupling agents can bond chemically with both the matrix and the fibres, resulting in a continuous interfacial connection [193]. Several coatings with different structures have been used as coupling agents, including rubber emulsions and polymeric solutions (e.g. polyurethane or polystyrene). However, silane-coupling agents are the most commonly used owing to their high predictable results [62, 66, 67, 199]. Silane molecule, with the general formula “Y –Si (X)₃”, contains two types of functional groups [153, 193]. The first type is the hydrolysable alkoxy groups (X) which, upon their hydrolysis to silanol, react with silanol groups present on the fibre surfaces, forming siloxane bridges as chemical bonds (Figure 1.6). The other type is the non-hydrolysable organofunctional
groups (Y), such as amino and methacrylate, that form a link with the matrix functional groups through chemical adhesion and interdiffusion [153]. The reaction with the fibre surfaces seems to responsible for the hydrolytic damage resulting from water sorption, while the reaction with the matrix chiefly enhances the interfacial adhesion [193].

![Chemical structure of silane molecule connecting reinforcing-fibre with its matrix by Siloxane bridge.](image)

Figure 1.6: Chemical structure of silane molecule connecting reinforcing-fibre with its matrix by Siloxane bridge.

Treating reinforcing fibres with silane coupling agents generally improves the interfacial adhesion of FRCs. Silanization of glass fibres has been reported to increase the surface wettability [66, 67, 132, 197] and enhance the mechanical properties [66, 193, 199], providing there are complete wetting of the constituents and minimal void formation. However, silanization of UHMWPE fibres exhibits poor fibre wetting and unreliable interfacial adhesion [148, 196, 200]. Consequently, researchers recommended the use of silanized glass fibres instead of UHMWPE fibres in many adhesive applications [146, 151, 175].

1.2.5.5 Fibre orientation:

It is well established that the orientation of reinforcement, or the arrangement of fibres inside the matrix, influences the physic-mechanical properties of FRC [7, 44]. Many studies investigating the effect of constituent arrangement have revealed the significance of fibre orientation on FRC performance [44, 145, 202, 203]. Accordingly, understanding of this factor and its implications prior to the clinical application of FRCs is crucial for achieving desirable performance.

The reinforcing fibres of dental FRC are used in two forms, continuous (long) or discontinuous (short) [45]. According to the orientation, the continuous fibres can be categorized into unidirectional, bidirectional or randomly-oriented fibres [204]. The discontinuous fibres are either randomly oriented or aligned in one preferred direction.
The fibres with random orientation provide FRC with isotropy, which means the properties are uniform in all directions. On the other hand, the use of unidirectional and bidirectional fibres promotes anisotropic and orthotropic properties, respectively [7, 46]. Such properties are advantageous in certain applications requiring more effective reinforcement at one direction than the others [88].

The efficiency of reinforcement for FRC loaded at a given level is described by the Krenchel factor (K₀) [3, 44, 205]. FRC has K₀ = 1 (100%) when the fibres are oriented in one direction (unidirectional), giving the maximum level of reinforcement in that direction. However, due to the anisotropy produced, other directions of loading give different properties with K₀ = 0 (Figure 1.7). By using bidirectional fibres arranged perpendicular to each other (weaves), the efficiency of reinforcement is reduced by 50% (K₀ = 0.5), producing equal reinforcement in both directions of the fibres and orthotropic properties. However, for woven (45/45 bias) fibres, the efficiency of reinforcement drops to reach (K₀ = 0.25). FRCs reinforced with randomly-oriented fibres have K₀ = 0.38 when considered in flat surfaces, but the efficiency of reinforcement decreases (K₀ = 0.20) in three dimensional structures [3, 44].

![Figure 1.7: Reinforcing efficiency (Krenchel factor K₀) of fibres with different fibre orientation [44]. A) Unidirectional fibre orientation resulting in anisotropic materials with K₀=1, B) Unidirectional fibre orientation resulting in anisotropic materials with K₀= 0, C) Bidirectional fibre (woven) mat resulting in an orthotropic material with K₀= 0.5, D) Bidirectional fibre (45°/45° bias) resulting in an orthotropic material with K₀= 0.25, E) Random fibres orientation resulting in an isotropic material with K₀= 0.2, providing the fibres are longer than critical length for that fibre type.](image-url)
Many researchers have understood the implications of fibre orientation on the mechanical properties of FRC, and successfully implemented them in various applications [88, 89, 119, 145, 202, 203, 206]. Studies employing continuous unidirectional fibres have reported that such fibres provide the highest strength and stiffness values in the direction of the fibres [89, 120, 145, 164], and claimed their ultimate suitability for applications in which the direction of the highest load is known or likely to be single [6, 134]. Accordingly, the use of unidirectional fibres is emphasized in small sized dental appliances, like components (connector, retainer, pontic) of FPDs, which must be appropriately-designed to achieve satisfactory reinforcement and withstand heavy mastication. Nevertheless, a small fibre misalignment within such structures can significantly influence the resultant properties (Figure 1.8) [44].

![Figure 1.8: Influence of fibre misalignment on the tensile strength of continuous unidirectional FRC [44].](image)

Alternatively, studies utilizing continuous bidirectional fibres have revealed a major drop in mechanical properties, but with an equal reinforcement in two directions rather than one [44, 144, 207-209]. Accordingly, authors have suggested using such fibres in cases where the direction of the load is unknown or limited space is available for using unidirectional fibres, as in overdentures or areas with small dimensions [44, 76, 177]. Additionally, woven fibres have been shown to act as a crack stopper and add toughness to the material by increasing the strain prior to fracture [177, 210]. From a clinical perspective, this property is desirable in situations where extra toughness is mandatory; for example, overdentures with thin regions over precision attachments need higher
toughness values to diminish the risk of perforation, and the margins of laboratory-made composite crowns that are high susceptible to cracks during fabrication and fitting [159, 177, 211-213]. Some authors have also suggested a combination between unidirectional and bidirectional fibres that allows different mechanical properties in the same construction. For example, the pontic of FPDs can be reinforced with continuous unidirectional fibres as it needs high strength and stiffness, while the margins of the retainers can be reinforced with woven fibres as they require more toughness [44]. Regarding to FRC with randomly-oriented fibres, studies have reported reduced reinforcement but equal mechanical properties in all directions of loading. Accordingly, such fibres have been proposed as a strategy to reinforce against multi-directional or unknown loads [143, 214-216].

Conversely, predicting the mechanical behaviour of discontinuous short fibres is complex due to the fact that the efficiency of load transfer depends on fibre length. It has been found that short fibres must have a minimal length equal to the critical length (Lc) to strengthen a material to their maximum potential [7, 217]. The use of short fibres, with a length significantly shorter than Lc, leads to matrix deformation and almost no stress transfer in the resultant FRC [218]. Even if the critical length of short fibres is fulfilled, they theoretically offer little maximum reinforcement ($K_0 = 0.2$) based on their random orientation [44]. Some techniques, like injection moulding, have been developed to specifically align the short fibres in FRC, and so enhance their reinforcement [219]. However, the results show no significant improvement in mechanical properties. This is explained by the fact that even when short fibres are oriented, their relatively-weak ends should carry the most load during stress transfer between the adjacent fibres [219]. In view of that, composite materials reinforced with short discontinuous fibres are theoretically weaker than those reinforced with long continuous fibres [7]. Nevertheless, many studies have used discontinuous fibres to reinforce various dental prostheses, including provisional crowns, FPDs, acrylic removable dentures or simple restorative fillings under heavy occlusion [57, 188, 214, 216, 220-223].

Fibre orientation also affects the physical properties of FRC, including thermal behaviour and polymerization shrinkage [88, 89]. Studies comparing the thermal expansion among FRCs with differently-oriented fibres have revealed that the coefficient of thermal expansion is significantly affected by the direction of the incorporated fibres. This has been attributed to the anisotropic nature of FRC that seems
to have an influence on many thermal properties [88, 190, 224]. Likewise, a study investigating the linear polymerization shrinkage strain of differently-oriented FRCs has claimed that the anisotropy of FRC also affects the polymerization shrinkage. The shrinkage in unidirectional FRC mainly occurred transversally to the fibre direction, but not longitudinally, whereas it occurred equally in both direction when bidirectional or randomly-oriented FRC used [89].

1.2.5.6 Volume and weight fractions:

The relative proportions of the constituents, expressed as weight or volume fractions, influence the mechanical properties and overall performance of FRC. Changing fibre content or matrix fraction of FRC can cause a considerable alteration in the overall behaviour [6, 131, 204, 225].

It is empirically established that there is an intimate relationship between the mechanical properties of FRC and the properties of its constituents. Some authors have addressed this relationship and generically termed as “the rule of mixtures” [204, 225], which is simply expressed as the following:

$$E_C = E_f V_f + E_m V_m$$ \textbf{Equation 1.1}

Where E_C is the overall property of the composite, E_f is the property of the fibres, V_f is the volume fraction of the fibres, E_m is the property of the matrix and V_m is the volume fraction of the matrix.

Although it has been shown that not all composites follow this relationship numerically, the rule of mixtures is still at the heart of our understanding of the relationship between the fractions of the constituents and the resultant mechanical properties [44]. Following this rule, many authors have proposed an explanatory theory about the performance of FRC, asserting that as a constituent amount increases, the performance of FRC shifts toward the behaviour of that constituent [1, 44, 131, 225]. Accordingly, the greater the fraction of reinforcing fibres, the more likely the fibrous mechanical properties [177].

Many previous studies have confirmed the effect of changing the reinforcement fraction on the mechanical properties of FRC [77, 135, 159, 177, 226, 227]. An increase in the flexural strength of FRC has been demonstrated as a result of increasing fibre content [228]. Higher stiffness has been also achieved by incorporating more fibres within composite structures [227]. A study comparing the flexural strength among FRCs with different fibre fractions (V_f: 12%, 23%, 36% or 45%) has also reported a significant
increase in flexural strength as the volume fraction increases [135]. Following a different perspective, other studies have highlighted the importance of using a controlled manufacturing process that allows more fibre incorporation ($V_f = 45\% - 65\%$) and higher flexural strength (up to 1250 MPa) [44, 139, 229], instead of using a manual incorporation method that allows only limited fibre reinforcement ($V_f = 5\% - 15\%$) and a modest increase in flexural strength [230]. A positive linear correlation has also been reported between the ultimate flexural strength and the fibre volume fraction (up to the level of 70 vol%) [44]. A recent study has also demonstrated a significant increase in the modulus of elasticity, toughness and load-bearing capacity (by 27%, 34%, 15% respectively) of E-glass FRC as a consequence of increasing the fibre volume fraction (from 51.7% to 61.7%) [231].

Several attempts have been made to manipulate the mechanical properties of FRC appliances by altering the fraction of their reinforcement. FRC-FPD is a common application benefited from the increase in the fibre framework. Previously, authors have minimally supported the idea of increasing fibre fraction during the designing of FRC-FPDs [232-234]. However, recent studies support this idea and highlight its importance. One study has reported a significant improvement in the strength and performance of interim FRC-FPDs as a consequence of increasing fibre content [235]. Another study comparing the clinical performance of FRC-FPDs made with low-volume and high-volume fibre frameworks, has reported lower survival rate (62%) and multiple signs of failure in the low-volume prostheses, in comparison with the survivability of the high-volume prostheses (95%), during the observation time (3.75±0.4 years) [86]. A recent study has also exhibited a significant increase in the loads required for initiating and propagating fractures in FRC FPDs when high fibre volume fractions used.[215].

1.2.5.7 The fibre geometry (placement):

The fibre geometry, or the exact structural position of the reinforcing fibres, is also an important factor affecting the mechanical properties of FRC. An accurate placement of fibres within a structure can significantly enhance its performance [145].

In the literature, there are many attempts to investigate the influence of fibre geometry on the mechanical properties of FRC applications. A preliminary study considering the position of reinforcing fibres inside FRC dentures has revealed that there is a relationship between the fibre geometry and the mechanical properties of FRC [236]. Later, another study has confirmed this relationship and reported a significant change in
the performance of interim FPDs as a result of altering the position of reinforcing fibres [235]. One study has emphasised the placement of reinforcing fibres at the tensile side of FRC appliances (Figure 1.9); however, it has not reported any guidelines on the exact required position or thickness [44]. A later study has provided these guidelines by investigating the effect of placing fibres at five different distances from the tensile side on flexural strength, and indicated that the placement of fibres at the tensile side (0.0mm) significantly improves flexural strength.[237]. However, once the fibres have been moved away (1.5 mm from the tensile side), the flexural strength significantly reduced. This means that the placement of fibres within a range of 1.5 mm from the tensile side enables them to arrest the initiated crack at the tension side, while the fibres positioned further away allow sufficient room for this crack to travel and cause fracture [237].

Figure 1.9: Schematic representation of an efficient fibre placement at the tension side of a restoration.

Recent studies have also emphasised the importance of tension side reinforcement on other mechanical properties and applications. [140, 145, 238]. The best load-bearing capacity of FRC-FPDs has been achieved when UHMWPE fibres were placed at the tension side of appliances [145]. An enhancement in the flexural strength of FRC-FPDs has been also exhibited as a consequence of reinforcing veneering composites at the tension side [140]. A higher flexural strength has been also exhibited in denture base polymers when reinforced at the tension side rather than the compression side [238]. Elastic modulus has been also increased as a result of locating unidirectional glass fibres at both tension and compression sides of appliances [239].

Collectively, these studies outline a critical role for fibre geometry during the performance of FRC appliances. Correctly-placed fibres at the tension side and perpendicular to the possible fracture line can act as crack stoppers and efficiently hamper crack propagation, leading to an improvement in mechanical properties and overall performance [91, 201, 202].
1.2.6 Physico-mechanical properties of fibre-reinforced composite

1.2.6.1 Thermal properties:
Dental restorative materials, including composites, are usually subjected to wide temperature fluctuations in situ. Such thermal variations, resulting from dietary habits, processing technique and an exothermic setting reaction, could be enough to reduce the mechanical properties of restorative materials and determine their future performance. Therefore, a considerable amount of attention has been given to the thermal properties of dental materials, especially thermal conductivity, diffusivity and expansion[3].

I Definition
Thermal conductivity is defined as “the rate of heat flow per unit temperature gradient”. It is a good indicator of dental materials that provide satisfactory thermal insulation and so lead to less harm to the surrounding tissues, such as the pulp [9]. However, this property is not practical enough to predict composite material behaviour as the most thermal stimuli encountered in the mouth are transitory in nature [3, 240]. Thermal diffusivity, on the other hand, which is “the thermal conductivity divided by material density and specific heat capacity”, gives a better indication about the response of resin-composite materials to transient thermal stimuli [9, 241]. It indicates that once transient thermal stimuli are applied, a certain amount of heat will be absorbed in raising the temperature of the material itself, which will effectively reduce the quantity of heat available to be transported through the material, and thereby, cause less harm to dental tissue [3]. According to this property, dental composite materials are generally considered adequate thermal insulators although their thermal diffusivity varies with their filler content. The larger the filler fraction, the higher the thermal diffusivity achieved [3, 241].

Thermal expansion is another important property for dental composites that affects their adhesion with tooth structures [9]. According to this property, a restorative material expands and contracts as a result of temperature rise and drop respectively, and so does the tooth structure [9]. The amount of expansion/contraction for each is depending on a specific value for each, termed as linear coefficient of thermal expansion (LCTE). LCTE is defined as the fractional change in the original length of a material for each degree centigrade change in temperature [3, 9], and expressed in the following equation:
Where: $LCTE$ is the linear coefficient of thermal expansion, ΔL is the change in length, L_0 is the original length and ΔT is the change in temperature.

A significant difference in LCTE values between the resin-composite restoration and the tooth structure leads to different dimensional changes which could adversely develop stresses at the tooth/restoration interface, resulting in bonding failure [9]. Small gaps might also develop subsequently at the margins, leading to microleakage, and allowing fluids containing bacteria to penetrate and cause harm to tooth structure [242, 243]. Moreover, a significant LCTE mismatch between the constituents of resin-composite material could result in increased tensile stresses at the filler/matrix interface, causing deterioration in physico-mechanical properties. Therefore, attempting to bond different materials or structures together with remarkable mismatch in their LCTE is impractical as the bond might not last [40]. Ideally, the ultimate combination of thermal properties for a resin-composite material would be a low value of diffusivity combined with a LCTE value similar to that for tooth substances in general, and close for each of the specific constituents [3].

II Thermal expansion of FRC:

It is well-established that each resin-composite material has its own specific thermal behaviour according to its unique composition. With regards to PRC, this behaviour is mainly dependent on the filler fraction as well as the chemical structure of the matrix [244, 245]. Resin-composites based on Bis-EMA exhibit the highest LCTE values, in comparison with those based on Bis-GMA, UDMA and TEGDMA. Additionally, an inverse linear relationship between LCTE and filler volume fraction has been reported, indicating a lower LCTE value with heavily-filled materials [245]. Many researchers have confirmed such inverse relationship when they studied the thermal properties of differently-filled resin-composite materials [36, 73, 246, 247]. Parameters, like thermal characteristics of the filler particles and the adhesion between filler and matrix, have been also suggested as influential factors [248]. Yet, one study has claimed that filler silanization has no effect on the LCTE of resin-composites [73].

Other parameters influencing the thermal behaviour of composite materials have been introduced as a consequence of using reinforcing fibres instead of particles.
Accordingly, a more complex thermal behaviour was observed in FRC compared to PRC [7, 249, 250]. Fibre type and orientation are the main parameters influencing the thermal behaviour of FRC. E-glass fibres have the highest LCTE value (4.9°C⁻¹), in comparison with S-glass (2.5°C⁻¹), Carbon (-1.45°C⁻¹) and Kevlar (-2°C⁻¹) fibres [2]. Fibre orientation will induce anisotropy in the thermal behaviour [88]. Unidirectional FRC has been found to have two different LCTE values in relation to the fibre direction. In the longitudinal direction, LCTE value is small owing to the mechanical restraints imposed by the length of reinforcing fibres. However, in the transverse direction, a significant increase in LCTE value exhibited as trivial mechanical restraints were forced by the thickness of reinforcing fibres [7, 249, 251]. The explanation for such behaviour is that the rigid fibres tend to limit the matrix expansion in the longitudinal direction, and thus impose it more than normal in the transverse direction [88]. From a clinical perspective, this behaviour is important to understand during the fabrication of FRC prosthesis as a variation in the thermal behaviour between FRC and PRC might aggravate their interfacial adhesion.

1.2.6.2 Bond strength:

1. Definition

Adhesion has been defined as “the process of joining two dissimilar materials by means of an adhesive agent that solidifies during the bonding process”[9]. Four different mechanisms of adhesion have been identified, including mechanical adhesion, adsorption, diffusion and electrostatic adhesion [194]. Mechanical adhesion relies on interlocking (keying) of the adhesive into the irregularities of bonding surfaces to promote adhesion. In adsorption adhesion, the substrate and adherent surfaces chemically bonded by the influence of either primary (ionic and covalent) or secondary (hydrogen bonds, van der Waals, or dipole interaction) valence forces. Diffusion bonding is based on the interdiffusion and interlocking of mobile molecules (mainly polymer) from one surface into the molecular network of the other surface. This mechanism requires sufficient mobility and mutually solubility between the molecules of substances being bonded. Electrostatic adhesion involves the formation of an electrical double layer along the interface between metal and polymer substances, which promotes the total adhesion [194]. A combination of these mechanisms might be evident in many applications of restorative dentistry, like the formation of a hybrid layer.
between resin-composite and tooth substances, and the adhesion in porcelain-fused-to-metal restorations [9].

II Measurements:
The bond strength of two materials is the measure of the load-bearing capacity of their adhesive joint [194]. The measurement usually involves the application of a load that would develop stresses at the interface between bonded substrates, and eventually lead to a failure [252]. The resultant failure modes are a mixture of cohesive, mixed and adhesive fractures [253].

Several testing setups have been used for the measurement, which can be classified based on the size of the bonding area into macro- or micro-bond strength tests [252, 253]. The followings are some of the most common testing setups used in the literature:

A. Shear bond strength (SBS) test:
This method relies on a shear load applied at the interface between bonded substrates, using a knife edge probe, and distributed axially to cause a bond failure. The shear bond strength (SBS) is a function of the applied load and bonded area, and calculated according the following equation:

\[
SBS = \frac{F_{\text{Max}}}{A}
\]

Equation 1.3

Where SBS is expressed in MPa (N/mm²), \(F_{\text{Max}}\) is the maximum failure load recorded in Newton (N) and \(A\) is the area of bonded interface (mm²).

In this in-vitro setup, the stress distribution is influenced by several factors, including the mechanical properties of bonded substances, the thickness of the adhesive layer, the design of their assembly, the load applied (i.e. cross head speed) and the storage condition (e.g. thermocycling) [253, 254]. However, this can lead to non-uniform stress distributions along the interface that may not be a true representation of shear force [255]. Recently, specific testing methods (e.g. wire loop) and jigs (e.g. SDI rig, Ultradent jig) have been developed in an attempt to standardise the testing procedure. Though, some variations in the testing parameters remain and still influence the final results that may be impossible to correlate between different studies [254]. Nevertheless, this test is considered a most popular tool for screening and comparing new adhesive materials, owing to its simplicity and feasibility [3].
B. **Tensile bond strength (TBS) test:**
This method involves the application of a tensile load perpendicularly to the adhesive surface. The tensile bond strength is calculated using the same equation of shear bond strength. However, the results are more variable, owing to the difficulty in specimen alignment [3]. Moreover, the plastic and elastic deformations occurred in a specimen as well as asymmetric stress concentrations along the interface might lead to imprecise and inconsistent measurements. The specimen height is crucial to consider during testing since it influences whether the stresses would be concentrated at the adhesive interface or not [255].

C. **Micro-shear bond strength (μSBS) test:**
This method employs relatively-small specimens, with 1mm2 cross-sectional areas, for the measurement of bond strength [254]. Using small bonded areas has many advantages, like the simplicity of specimen fabrication and the possibility of regional mapping across the surface. However, some difficulties in the measurements have been reported as the smaller specimens, in combination with a relative thick adhesive layer, may cause considerable bending and non-uniform loading at the interface [253]. Also, the accuracy of measurement may exacerbate when materials with low modulus of elasticity are tested [254, 255]. According to FEA, both SBS and μSBS have been found to provide the same non-uniform stress distribution and equivalent underestimated bond strength values [253]. However, the final results of μSBS might even be less representative than those of SBS [256].

D. **Micro-tensile bond strength (μTBS) test:**
This test follows the same principle as the TBS test; however, it employs small specimens (1mm2) with specific designs (hourglass, stick or dumbbell) for the measurement of bond strength [254]. Such test configuration has been found the best to represent clinical bond strength since it allows uniform stress distributions along the bonding interface [257]. Studies reviewing this test setup have reported that most failures occurred at the interface between the bonded substrates [257, 258]. However, it still has some disadvantages, like technique sensitivity and specimen fragility. Some surface flaws and micro-cracks might also be introduced as a consequence of specimen preparation, leading to weak bond and underestimated strength [254, 258]. Accordingly, high coefficient of variance has been reported when this technique was used [254, 258]. Comparing the micro-bond strength tests with their macro-scale counterparts, the latter
show lesser strength values that are attributable to the high probability of flaws exiting in larger specimens [257].

III Bond strength of FRC:
The applications of FRCs are mostly adhesive in nature, which require being bonded to different substrates in the oral cavity to be functional [259]. An optimum bonding of FRC with the supporting substrates and veneering layers is therefore essential to ensure superior stress distribution and excellent performance. Two interfaces appear to be necessary in FRC restorations. The first is the adhesion of the FRC to the supporting structures, like tooth substance or other restorations, and the second is the adhesion of the FRC to the overlying materials [260].

Several factors have been identified in the literature influencing the bond strength between FRC and tooth substance. Parameters like FRC type, orientation and resin impregnation are claimed to be influential [261, 262]. Glass FRCs have been reported to provide better adhesion than those based on UHMWP [175]. This is due to the fact that UHMWP fibres exhibit low surface energy and wettability during resin impregnation that might lead to weak adhesion [2, 150-152]. However, due to the hygroscopic nature of glass FRCs, it is claimed that they are more seriously affected by the adverse effects of water sorption, leading to a progressive degradation in adhesion as well as mechanical properties [197]. Studies comparing the bond strength between different FRC types have shown controversial findings. One study has reported that UHMWP FRCs had the highest SBS values when they were bonded to enamel [263]. Another study has also confirmed this finding in both enamel and dentine, and reported that UHMWP FRCs exhibit significantly better SBS than those made of glass [262]. However, a recent study has shown that glass FRCs tend to provide better SBS than other types although the difference is not significant [261]. Regarding to the effect of fibre orientation and impregnating matrix, the literature was more conclusive. Most previous studies have reported significantly better SBS values for bidirectional FRCs compared with other orientations [125, 203, 206, 261-265]. FRC pre-impregnated with highly viscous matrix exhibit more favourable interfacial adhesion than that with low viscosity, leading to better adaptation and adhesion [83, 174, 176]. Likewise, the use of FRCs with semi-IPN matrix is advocated as they tend to allow better bonding with resin-based adhesive systems during the cementation [44, 132, 181].
Another factor influencing the bond strength of FRC is the bonding technique. Studies investigating the influence of different adhesive systems used to bond FRCs have found a significant variation in SBS values [266]. However, this variation may not be significant [264, 267]. Some authors have advocated the use of flowable resin-composite as a base underneath FRCs in order to facilitate the adaptation and enhance the bond strength [267]. However, this practice has been reported to have no significant influence on SBS [265]. Likewise, the use of a silicon forming aid during the direct application of FRCs is also suggested to facilitate the adaptation of fibres and reduce the adhesive failure [264].

The nature of bonding substrate is also a significant factor that influences bond strength. Studies comparing the bond strength of FRC with tooth substances have reported significantly higher values with enamel [206, 262, 268]. This variation is mainly attributed to the hydrophilic nature of dentine and the consequent adhesive mechanism that formulates a relatively weak bonding interface [262, 265]. Although the FRC/tooth interface is still considered the weakest link in the adhesive joint, the presence of FRC within that interface is beneficial [125, 269]. An improvement in SBS has been reported as a consequence of incorporating an intermediate FRC layer at the interface. This improvement has been found significant in some studies [262-264], while others have reported the opposite [206, 261, 265, 268]. Though, most studies have agreed that a favourable alteration in stress dynamics at the interface would result from the FRC incorporation, leading to more repairable fractures [125, 206, 262-264, 266, 268, 270, 271]. The same concept can also be adapted when FRCs are bonded with other restorative materials, like dental ceramics and metal alloys [127, 128, 270, 272-274]. However, limited information is available about the factors influencing the adhesion of FRC with such bonding substrates.

1.2.6.3 Hardness:

I Definition

The hardness of a material is defined as the resistance of its surface to plastic deformation that could be a consequence of indentation, scratching, machining or abrasion[40, 218]. By definition, the hardness is considered as a surface property that results from an interaction of many other properties. Accordingly, it is used to give an indication of material behaviour in terms of polishability, abrasiveness to opposing dentition, abrasion wear and scratching resistance [3, 9]. In relation to resin-composite
materials, the hardness can be used as an indirect indicator of the degree of conversion (DC) and depth of cure (DoC) [275-279].

II Hardness measurement:
Many laboratory tests are used to measure the surface hardness of materials. Early hardness tests were exclusively designed to rank the ability of one material to scratch another relaying on a qualitative ordinal scale (Mohs scale). Recently, quantitative hardness tests have been developed which based on an indenter being forced to deform the surface of the test material [3, 40]. Several measuring methods based on surface indentation are described in the literature. Such methods can be classified according to many parameters, including the indenter’s size (micro or macro), shape (sphere, cone or pyramid,), material (steel, tungsten, carbide, or diamond), the method of application (static or dynamic) and the amount of load (nano-, micro- or macro-hardness) [40, 218]. The followings are some of the most common methods employed:

A. Brinell hardness test:
This is the oldest method used to measure the hardness. It involves the use of a small spherical steel indenter (Brinell ball), under a specific load (500 – 3000kgf), to produce a circular indentation [40, 218]. A light microscope is used to measure the indentation’s diameter which converted into the Brinell hardness number (kgf/mm²) according to the following equation:

\[
HBN = \frac{2P}{\pi D(D - \sqrt{D^2 - d^2})}
\]

Equation 1.4

Where \(HBN\) is the Brinell hardness number (kgf/mm²), \(P\) is the applied force (kgf), \(D\) (mm) is the indenter diameter (mm), and \(d\) is the diameter of indentation (mm).

However, this method has some limitations due to the indenter’s spherical shape which produces a variation in the relative geometry of the indentation with different loads [40]. One limitation is that the hardness values cannot be directly comparable when different loads or diameter balls are used. Another limitation is that it is only suitable for measuring certain materials that meet specific testing requirements (the diameter \(d\) ranges between 25% -60% of \(D\)). Accordingly, this method is limited to measure the hardness of metal alloys in dental researches [40].
B. **Rockwell hardness test:**

Rockwell hardness test relies on measuring the penetration depth of an indenter instead of the diameter of the resultant indentation. The indenter used can have different shapes (spherical or conical) and be made of different materials (steel, tungsten, carbide, or diamond) [40]. The Rockwell hardness number (RHN) is determined by comparing the depth of penetration under a large load with that caused by an initial minor preload. The main advantages of this test are the versatility and the quickness of reading (10-15s). However, fulfilling the test requirements is essential to ensure precise measurements. The specimen thickness must be at least ten times the indentation depth, whereas the inter-indentation allowance and distance from the specimen edge should equal three indentation diameters at least [40]. Both Brinell and Rockwell hardness tests are classified as macro-hardness tests.

C. **Vickers hardness test:**

The Vickers hardness test follows the same principle of testing as the Brinell test; however, it uses different intender shape to overcome the continuous variation in the Brinell indentation geometry. The Vickers indenter is a square-based pyramid diamond indenter whose opposite sides meet at the apex at an angle of 136°. This indenter is forced into a surface under a certain load, and maintained for a specific dwell time (normally 10-15s) to induce a square-shaped indentation. The surface area of the indentation is determined microscopically by measuring the average length of both diagonals (d) [40]. The Vickers hardness number (HVN) is obtained according to the following equation:

\[
HVN = \frac{2F}{d^2} \cdot \sin \left(\frac{136^\circ}{2} \right) = \frac{1.854F}{d^2}
\]

Equation 1.5

Where \(F \) is the applied force (kgf) and \(d \) is the average length of both diagonals (mm).

The main advantages of the Vickers hardness test is that the geometry of the indentation remains identical regardless of the loading applied or material tested. Accordingly, this method can investigate a large range of materials [40]. Dental resin composites are commonly tested using this method [277, 280-284].
D. **Knoop hardness test:**

This method employs similar testing procedure and measuring principle as that of the Vickers hardness test. However, it uses instead a rhombic-based pyramidal diamond indenter, with seven times longer diagonals than its width, to induce a swallow elongated indentation. The sides of this indentation tend to spring back due to elasticity, whereas the ends of the long diagonal remain measurable. Therefore, this method is applicable to investigate brittle materials in which the recovery will be across the short diagonal [40]. The Knoop hardness (H_K) is calculated according to the following equation:

$$H_K = \frac{14.23F}{d^2} \quad \text{Equation 1.6}$$

Where F is the applied force (kgf) and d is the length of the long diagonal (mm).

With all microhardness tests, it is imperative to consider during testing the boundaries of the plastically deformed zone, which extends as much as twice the diagonal size of the indentation and 10 times the depth [40]. In view of that, successive tests should be separated by more than 4 times their width to avoid measuring already deformed areas, and far enough from the edge to be fully contained. Additionally, it is important to know that the hardness values are highly correlated, yet, not interchangeable as all of indenters have a varying geometry [40]. With respect to dental resin composite materials, the hardness methods with micro/nano indenters are the most applicable to use since they are able to discriminate between the different constituents and induce the deformation in a tiny specified spot [285].

III Hardness of dental resin-composite material:

Due to the nature of resin-composite material, several factors have been identified affecting the hardness. Relating to the inorganic phase, parameters like filler fraction, size and shape have been confirmed as strong influential factors. Many studies have reported an improvement in the hardness values as a consequence of increasing filler content [33, 41, 275, 286, 287]. Other studies investigating the effect of filler size have shown that the micro-filled resin-composites tend to be harder than those reinforced with hybrid or fine particles, providing that they have similar filler volume fractions [288, 289]. On the other hand, resin composites with nano-particles tend to be more heavily filled than those with larger particles, and therefore have higher hardness [33,
In relation to filler morphology, resin-composite materials with spherical particles have been found to have higher hardness, and sometimes higher filler loading, in comparison with those with irregularly shaped fillers [33].

The organic matrix also has some parameters that influence the hardness. The chemical composition of monomers and their relative proportion affect the degree of polymerisation and many mechanical properties [291-295]. Composite materials based on UDMA resins have been reported to exhibit higher hardness than those based on Bis-GMA. This is attributable to the lower viscosity and increased flexibility of UDMA that cause a higher degree of monomer conversion compared to the rigid Bis-GMA monomers [291]. Increasing the proportion of the TEGDMA monomer, up to certain level, have also reported to improve the hardness due to the fact that it enhances the molecular mobility and degree of conversion [291]. The density of polymeric network is another influential factor. Previous studies have reported high hardness values in resin-composites with high-density polymeric networks, like ormocer-based composites [277].

The type of photoinitiator also influences the hardness of resin-composites. Studies investigating the effect of the photoinitiator type on hardness have exhibited significantly lower hardness values by using phenyl propanedione instead of camphorquinone [296-298]. Likewise, resin-composites with aliphatic amine have shown higher hardness values than those with aromatic amines [299].

The hardness of resin-composites is also affected by the storage medium and temperature [292, 300, 301]. Water sorption and its diffusion within the organic matrix can lead to several consequences, like matrix cracking, interfacial de-bonding, filler dissolution and dislodgment, which cumulatively reduce the hardness [302]. In contrast, the temperature of the oral cavity has been reported to increase the hardness as the heat increases the degree of conversion and so the overall polymerisation [295]. A previous study has reported higher hardness values for the resin-composites stored in dry condition at 37°C than those stored in wet conditions at 23°C [302]. Other factors related to the specimen preparation and testing technique have been also found affecting the hardness. Light intensity [303], curing technique [304], material thickness [305] and surface roughness [286] are among such factors that should be carefully considered during the hardness testing.
IV Hardness of FRC:

There is limited information available about the effect of FRCs on the surface hardness. One recent study comparing the hardness between one conventional resin-composite material and an experimental FRC material made of random short E-glass fibres has reported that the latter material has lower hardness and depth of cure [278]. Unfortunately, this study has not considered the effect of fibre type and orientation on the findings. Another unpublished study investigating the influence of unidirectional E-glass FRC on the hardness of indirect resin-composites has claimed a significant improvement in the hardness as a consequence of FRC incorporation [306]. However, this study has not considered the influence of other parameters, like fibre type, orientation and matrix on the hardness values. Therefore, the literature is still considered inconclusive in this area.

1.2.6.4 Edge Strength:

I Definition:

Edge-strength is a concept that indicates the ability of material fine margins to resist fracture or abrasion [307]. This concept was introduced in 1966 when it was used to investigate the strength of gold restorations [308]. Subsequently, researchers have employed it to study the performance of various materials, like amalgam, composite and ceramics, [309-311]. It is also used to reflect how a particular material is able to maintain its marginal integrity upon clinical loading [312-314].

II Rationale:

It is known that restorative materials are relatively weaker at the edge, in comparison with other places. The edge also tends to be highly-susceptible to temperature changes and frequent mechanical loading that promote its fracture [314]. In view of this, clinical precautions to avoid the materials being loaded at their margins are always advisable. Nevertheless, this is not always achievable; especially when such margins are subjected to heavy unanticipated eccentric loading which disrupts their integrity and causes fracture.

Although such a marginal fracture is often a minimal chipping and could cause no detrimental effect on the retention of a restoration, the resultant disruption in marginal integrity might have several negative consequences. Marginal microleakage, tooth sensitivity, secondary caries, staining and aesthetic problems, as well as an increasing
tendency of catastrophic marginal fractures, are all serious consequences causing patient/dentist hassle and necessitating urgent clinical intervention [313, 314]. Therefore, it is pragmatic to consider enhancing the marginal integrity of restorations, especially at the design stage, in order to improve their longevity.

III Measurement:
To date, the measurement of edge-strength has been developed through a variety of documented techniques [308-312, 315, 316]. One technique has been recently proposed, and claimed to be simple, reliable and highly-standardized [317]. In this technique, a static load is applied at certain distances from the edges of a specimen to induce fracture. A dedicated machine with built-in acoustic sensor is usually employed to detect signals released at any fracture point and determine the force. The maximum fracture-inducing force measured at 0.5mm from the edge is used to represent the edge-strength value.[314, 318].

Several studies have employed this technique to investigate the edge-strength of restorative materials, such as acrylic polymers, packable and flowable resin-composites. [314, 317, 318]. The results have showed that an excellent degree of reliability can be offered by this technique. Nevertheless, many parameters have been identified affecting the measurement, including the geometry of the applied force, its distance from the edge, the angle of application, the edge design and the fracture toughness of the tested material [309, 313, 319, 320].

IV Edge strength of FRC:
In the literature, there are many studies of materials that have gained additional strength and benefits from being fibre-reinforced [4, 84, 177, 211]. PMMA used to fabricate provisional fixed prostheses is one of such materials in which the strength has been tripled by incorporating glass reinforcing fibres[177]. The strength and durability of PRC have also been improved by being fibre-reinforced, enabling their utilization in many high-demanding situations like restoring posterior teeth and replacing missing teeth [84, 90, 321, 322]. Interestingly, most of such improvements have been confirmed in terms of flexural strength and fracture toughness but not in edge-strength. This is because that most researchers tended to follow the protocols of ISO standard (ISO-4049) that are intended to investigate relatively large surface areas and preclude edges.
Limited studies have been identified investigating the edge-strength of FRC. One study has reported a significant improvement (43%) in the edge-strength of indirect PRC as a consequence of incorporating unidirectional FRC at the margins. [313]. Another unpublished study investigating the effect of incorporating unidirectional FRC on the edge strength of three indirect PRC has also reported a significant enhancement in both dry and wet storage conditions [306]. However, no study has considered investigating the effect of other parameters, like fibre type or orientation, on edge-strength.

1.2.6.5 Fatigue:

I Definition
Fatigue is defined as “a form of failure that occurs in structures subjected to dynamic and fluctuating stresses” [218]. It also represents the reduction of material strength caused by repeatedly applied loads [3]. Although the applied loads would be far below the threshold that causes material fracture when measured individually in direct compressive, tensile or flexural tests, they are still able to cause failure over a period of time. This is due to the formation of sub-critical cracks (microcracks) that consequently concentrate at structural flaws and slowly propagate until catastrophic fracture or yielding eventually occurred [3, 218, 323]. For dental materials, the fatigue behaviour is important to understand as it helps determining the clinical performance and longevity of their application.

II Measurements:
In order to measure the fatigue behaviour of a material, a test should be designed to simulate as many as possible the conditions affecting that material during service [218]. Stress level, pattern and frequency as well as other geometrical and environmental factors have to be duplicated during testing. The following are some common techniques used to investigate the fatigue behaviour of dental materials:

A. Staircase method:
The staircase method entails a series of tests at certain stress levels for a predetermined number of cycles to induce fatigue failure [218, 324-326]. In the initial test, the stress level is usually set at two thirds of the static tensile strength of specimens. The test is then repeated at higher or lower stress levels if the specimens survived or failed respectively. The results are plotted as the peak stress versus the number of cycles on a logarithmic scale, so-called S/N plot [40]. This plot is used to compare the fatigue
behaviour between materials by determining the fatigue life which is the number of cycles to cause failure at a specified stress level. The fatigue strength can also be specified which represents “the stress level at which failure will occur for some specified number of cycles” [218]. For some materials, the fatigue limit below which fatigue failure will not occur is also determined [3, 40, 218].

Two types of fatigue behaviour can be identified from the plot. One is termed low-cycle fatigue as it is associated with high stress levels that produce elastic and some plastic strain during each cycle, leading to failure at a relatively low number of cycles. The other is called high-cycle fatigue which is associated with lower stress levels wherein deformations are purely elastic that require a large number of cycles to cause failure [40]. A concern with this method is that the cross-over behaviour, in which some materials with better high-cycle fatigue than low-cyclic fatigue, can induce large scattering within the findings and so unreliability [327, 328]. Another concern is that this method requires a large number of identical specimens to enhance reliability, which tends to be expensive and time-consuming [40].

B. **Rolling ball method:**

This method involves the use of a rolling ruby ball to apply a complex pattern of stresses, mainly compressive, on the surface of the tested material to induce surface fatigue [328]. Consequently, subsurface cracks develop and ultimately reach the surface before being observed as open fissures. Later, the fissures may be filled with water and propagate to cause fracture. The final outcome of this method is referred to as ‘the fatigue life’ which is the time taken for the surface degradation to happen [329]. Scanning electron microscope is also used to confirm that the fatigue mechanism was responsible for the failure [328, 329]. This method is considered simple, reproducible and not time-consuming as it uses a relatively small number of specimens. Therefore, it has been used frequently for comparing the surface fatigue behaviour of resin-composite materials [329, 330].

C. **Masticatory fatigue simulation method:**

The main principle of this method is to simulate the masticatory force and its cyclic loading pattern on the tested specimens in order to induce fatigue failure [331-334]. Computerized chewing simulator machines are usually used to perform not only the cyclic loading but also thermocyclic aging. The investigator determines the test parameters, like biting force, loading pattern and number of cycles, prior to
commencing the test on specimens until fracture occurred. If the specimens survived the cyclic loading, a static loading is used to cause failure [331]. The results are used to define the survival rate of tested specimens or the corresponding reduction in their fracture resistance [335]. This method is a simple and reliable technique with high clinical relevance that many researchers in dental field favour [336-338].

III Fatigue of resin-composite:
Understanding the fatigue behaviour of resin-composite materials is essential for their clinical practice as fatigue is the most common cause of clinical failure [3]. The fatigue process is characterized by three distinct steps. The first step is the crack initiation wherein a microcrack forms at a point of high stress concentration like voids or surface flaws. The second step is the crack propagation in which the microcrack grows and propagates within the matrix around the fillers with each stress cycle. The third step is the final failure which occurs once the microcrack reached a critical size and advanced rapidly to cause catastrophic fracture [218, 323, 326, 339, 340].

Several factors influence the fatigue behaviour of resin-composites, which can be classified into compositional, geometrical and environmental factors [339]. The filler content, matrix type, interfacial strength and microstructure are common compositional factors dominantly affecting the fatigue behaviour [327]. Many authors have claimed that resin-composites with high-filler content tend to have better fatigue strength than those with lower content [34, 341-343]. This can be attributed to the reduced distance between filler particles and high localised polymerisation stresses developed around them, leading to hindered crack propagation [341, 342]. However, other authors have reported that resin-composites with intermediate levels of filler content (30 – 50%) have higher contact fatigue resistance compared with those heavily-filled [328, 329, 339]. This can be explained by the brittleness developed as a consequence of high filler content, leading to a high susceptibility for crack growth [329]. Regarding to microstructure, one study has reported better fatigue resistance in nanofilled PRCs in comparison with nanohybrid and microhybrid resin-composites [344].

The matrix and its density also influence fatigue behaviour of resin-composites. Composites containing UDMA monomers tend to provide superior fatigue behaviour than those based purely on Bis-GMA/TEGDMA monomers. This is attributed to the ability of urethane linkage to form hydrogen bonds within the polymeric network and restrict the sliding of its parts in relation to each other [293, 345]. Regarding to matrix
density, composites with relatively rigid matrices exhibit better static fatigue behaviour than those with more flexible matrices [339, 346]. Likewise, homogeneous matrices with uniformly distributed particles tend to provide enhanced fatigue behaviour [327].

Furthermore, the strength of the interface between matrix and fillers affects fatigue behaviour since it regulates how cracks would propagate [339, 342]. Therefore, an enhancement in the interfacial adhesion is advocated in order to suppress the crack propagation. Studies using filler silanization to improve the interfacial adhesion within resin-composites have consequently reported a significant enhancement in fatigue behaviour [329, 339].

Surface quality and geometrical discontinuity also have an influence on fatigue behaviour. The presence of structural flaws, like voids or notches, near the surface can act as a stress raiser and initiate crack formation [218, 323]. Sharp edges, small scratches, grooves and air bubbles severely concentrate the stress and dramatically reduce the fatigue life [330]. Therefore, improving the surface finish of resin-composite restorations by polishing and avoiding sharp edges during fabrication are essential to enhance fatigue behaviour and longevity [339].

Environmental factors like the mode of applied load [330], thermal fluctuation [347] and storage medium [348, 349] also affect fatigue behaviour of resin-composite materials. Applying cyclic masticatory loading, instead of monotonic static or dynamic loadings, can significantly reduce the fatigue life [326, 330, 350]. Employing thermocycling in water baths as an artificial ageing approach also leads to a considerable reduction in overall strength [351-356]. This is because of the fluctuating thermal stresses induced from dimensional expansions and/or contractions, which led to enhanced degradation and thermal fatigue [218, 355]. Water also tends to be absorbed into the defects and voids within the surface of resin-composites, causing plasticization and hydrolytic degradation in the matrix as well as interfacial adhesion [327, 339, 352, 355, 357]. Consequently, enhanced crack propagation and reduced fatigue life have been reported in studies using water storage [326, 327, 357]. Regarding to storage time, one study has found a logarithmic relationship between water storage time and fatigue strength.[358].

IV Fatigue of FRC:
The fatigue mechanism of FRCs is relatively similar to that of PRCs, except when the cracks reach the reinforcing fibres [359, 360]. Under cyclic loading, the induced stresses
and initiated microcracks swiftly propagate through the matrix to reach the fibre interface. At that point, the stresses tend to divide and travel along the interface, causing failure in the local matrix and separation of the dispersed fibre. The stresses are then transferred to neighbouring fibres, causing their rupture [323, 327]. Once a critical density of single-fibre failures is achieved, localised damage develops within particular domains. Such damages are called "brush-like cracking", from which the final failure would advance [327, 361]. The presence of such damage changes the compliance of the material bulk and deteriorates its load-bearing capacity ahead of the occurrence of final failure [362]. Accordingly, the fatigue life of FRC might be determined by the localized damage occurred around the reinforcing fibres as well as the corresponding alteration in load-bearing capacity.

Additional factors also influence the fatigue life of FRC besides those affecting PRC. The fibre microstructure regulates the distribution of cracks along the interface rather than the direction of applied load [360]. The speed of crack propagation is also governed by microstructure as well as the stress intensity [361]. The strength gradient at the fibre/matrix interface also influences the crack propagation rate rather than the matrix alone [327]. In terms of fibre orientation, unidirectional FRC has higher fatigue life than bidirectional when tested in 3-point bending configuration [184]. However, the latter exhibits better fatigue behaviour when tested using compressive loading [207]. Moreover, the type of fibres and their position in relation to the applied force also affects fatigue behaviour. Glass FRCs exhibit higher fatigue strength than other types like UHMWP or polyaramid [184]. Lower fatigue resistance is generally exhibited when the reinforcing fibres are incorporated within the compression side rather than the tension side [145, 327, 363]. From a clinical viewpoint, all of these factors should be carefully considered during the fabrication of FRC restorations to ensure optimum fatigue behaviour.

Studies comparing the fatigue behaviour of different resin-composites have confirmed that FRCs generally exhibit better fatigue resistance than PRCs [83, 164, 184, 207, 323, 360, 364, 365]. One study has reported that plain FRCs have a significantly higher fatigue limit (1606±235N) than plain PRCs (740±45N) [207]. Combination materials made of FRC and PRC also exhibit superior fatigue limit than plain PRCs, which indicates that the incorporation of FRC within PRC tends to improve the fatigue resistance [184, 207]. This is explained by the fact that the reinforcing fibres act as a stress-bearing component “by activating crack-stopping or crack-deflecting
mechanisms” [207, 360]. Clinically, enhanced longevity and performance of resin-composite restorations have been reported as a consequence of FRC incorporation [78, 83, 86, 90, 91, 201, 229, 269, 322, 366, 367]. However, scant attention has been paid to compare the fatigue behaviour and performance of FRC restorations with other alternatives [368, 369]. Such comparison would be beneficial to enhance the understanding of FRC and improve their clinical practice.

1.2.6.6 Wear resistance:

I. Definition:
Wear is defined as “the gradual loss of substance resulting from the mechanical interaction between two contacting surfaces in a relative motion” [370]. In the oral cavity, wear is described as a continuous physiological process that affects both teeth and restorative materials at a low estimated annual rate. However, it could become pathological under certain circumstances, like parafunctional habits and high acid consumption, leading to excessive amplification of the wear rate and severe aggravation in the functionality and appearance [371].

The mechanism of wear in the oral cavity is simultaneously influenced by various tribological parameters, including the mechanical properties of articulating surfaces, their roughness and topography, the abrasive nature of food, chewing behaviour as well as other environmental factors [370, 372, 373]. Consequently, several wear mechanisms have been identified in the oral cavity, which tend to occur in a combination [374]. According to its mechanism, the wear can be classified into:

A. Attrition:
This type of wear is the result of direct sliding action between antagonistic teeth or restorations during mastication or any other occlusal movements. It is usually described as a two-body wear as long as there is no intermediate layer transmitting forces between the interlocking surfaces [372, 375]. This type is the most obvious in patients who have parafunctional habits, like clenching or grinding[376].

B. Abrasion:
This type represents a three-body wear which occurs in the presence of abrasive particles, like a bolus of food or toothpaste, as an intermediate layer between the relatively moving surfaces [370, 375, 377, 378]. Under normal circumstances, this type is considered more clinically relevant than two-body wear since the time of direct
contact between opposing structures is limited during the day compared with the time spent on food chewing and teeth brushing [377].

C. Fatigue wear:
This type occurs as a consequence of the repetitive loads of mastication, which cause intermittent stresses within the contacting surfaces [372, 379]. Such stresses provoke surface microcracks that spread to subsurface regions, inducing chipping and separation in the affected structure [376]. The degree of fatigue wear is mainly affected by the fatigue strength of contacting materials [380].

D. Corrosive wear:
This type is related to chemical reactions that soften superficial microstructures and facilitate their scrapping away with antagonistic contacts [370, 376, 381]. Accordingly, the presence of chemical or corrosive medium in the oral environment raises the wear rate dramatically [381].

II Measurement:
Investigating the tribological behaviours of dental materials in-vitro involves two consecutive processes; wear simulation and wear assessment. For wear simulation, two approaches have been used in the literature. One approach is by attempting to closely mimic all wear conditions in the mouth, like the cyclic masticatory loading and oral environment, in order to achieve clinically relevant results [382, 383]. The other approach relies on isolating certain wear mechanisms or influencing factors to investigate their effect on wear behaviour [374, 384, 385]. The latter approach is the most advocated as there is no in-vitro method which can accurately simulate the clinical wear. The lack of precision in wear measuring methods makes the comparison and correlation between different studies unattainable [374].

A multitude of testing machines has been developed to simulate wear in-vitro. These machines can be classified according to the mode of action into toothbrushing machines, two-body and three-body wear machines [385]. Toothbrushing machines rely on a toothbrush/dentifrice abrasion concept to simulate tooth cleaning and sliding wear [386, 387]. However, two-body wear machines have been developed and used in different configurations, including pin-on-disk tribometer [388], ball-and-crater [389], reciprocating sliding-wear test [390], two-body wear rotating countersample [391], oscillating friction and wear test rig [392]. Yet, three-body machines are the most
frequently used, owing to their most accurate simulation of clinical wear [385].
Alabama [393], ACTA [394], OHSU [395], Zurich [396], MTS [374] and Willytec Munich wear simulators [397] are among the most cited three-body wear machines in the dental literature. Different antagonist types (enamel, stainless steel, steatite and ceramic) [379] and shapes (cylindrical and spherical) [376], lubricants (artificial saliva, deionised water) [398], and abrasive media (rice, millet seeds, poppy seeds and PMMA beads) [399] have also been used with the intention of achieving the best clinical simulation. Recently, a chewing robot has also been developed, aiming to simulate chewing patterns and tooth-food-tooth interactions with a combination of different wear mechanisms [400].

With regard to wear assessment in-vitro, a variety of methods has been also employed. Weight loss [384], profilometrical tracings [38, 401, 402], photomicrographs [403], micro-CT [404] and 3D laser scanning [405] are among the most practiced methods. Surface matching software used to superimpose sequential 3D scans is another method that is considered the most accurate [406]. On the other hand, wear assessment in-vivo can be performed either directly or indirectly. Direct techniques are mainly tooth wear indices using predefined criteria to qualitatively assess the degree of wear [407]. Although it is not always feasible, direct quantitative findings can be also achieved relying on objective physical measurements, such as the height of cusp, depth of groove and area of facet [408, 409]. However, indirect techniques are considered simpler and more reliable to quantify clinical tooth wear. Nevertheless, such techniques depend on impressions, gypsum casts or epoxy resin dies for image acquisition, which could create many inherent errors [410-412]. Accordingly, direct intraoral scanning of affected teeth would be the potential gold standard for wear measurement since it would decrease the number of steps and enhance accuracy.

III Wear resistance of resin composite material:
It is established that the wear behaviour of resin-composite restorations is an important indicator of their clinical performance [376]. Ideally, restorations should have wear resistance similar to that of tooth substance in order to prevent any subsequent instability in the occlusion [413]. In the posterior area, the average estimated wear rate for enamel is about 20-40μm per year [414], while it is typically 0.1 to 0.2 mm more for resin-composite restorations over 10 years [9]. Such differential wear rate has clinical importance as it may affect the functionality and appearance of restored teeth [9, 414,
Loss of contour, exposure of cavity margins, increase in surface roughness and staining, leashing of monomers and inhalation of worn filler particles, are all potential problems caused by the wear of resin composite restoration [415, 416]. Therefore, most modern resin-composite products have been developed in an attempt to improve wear behaviour and address corresponding problems.

Wear behaviour of resin-composites is known to be mainly dependent on compositional features, such as filler size, shape, fraction, matrix formulation and interfacial strength [376, 401, 402]. Resin-composites with finer particles and higher content have been reported to result in reduced interparticle spacing and thereby enhanced wear resistance [284, 395, 417]. One study has found that nano-composites exhibit smoother and lesser wear facets than hybrid and micro-filled composites [418]. Another study has also confirmed that smaller particles for a fixed-volume-fraction of filler cause reduced wear [37]. However, some researchers have reported the relationship between wear and particle size to be non-linear, especially for nanocomposites [5, 380]. While some studies have exhibited significantly better wear resistance in nano-composites [283, 387], others reported lesser wear in microhybrid resin-composites [401, 419]. This is possibly due to the reduced preferential load support that nano-fillers can provide, indicating that wear behaviour of resin-composites is not purely dependent on filler size [380]. In terms of filler fraction, most studies have reported an increase in wear resistance as a consequence of increasing the filler loading [5, 32, 284, 382, 402].

The shape and hardness of filler particles also influence wear behaviour. Resin-composites with irregularly shaped particles exhibit higher wear resistance than those with spherical particles [37]. This is attributed to the higher specific area for adhesion that irregular particles can provide compared to regular particles. Accordingly, the debonding and separation of spherical particles from the resin matrix as a result of wear were more frequent [37, 420]. Resin-composites with relatively soft fillers, like barium glass, also display better wear behaviour than those with harder fillers, like quartz. This is because that the softer particles tend to partially absorb the loading stresses during their transmittance within the matrix [421]. Furthermore, the matrix viscosity also affects the wear resistance since a lesser wear rate has been reported when the viscosity of resin increased [422].

Interestingly, the resin matrix and filler particles have different wear patterns as they do not abrade at the same rate [423]. Due to the fact that the matrix is much softer than the
inorganic phase, it tends to be preferentially abraded during the mastication. As the matrix wears down, the filler particles become more exposed to the wear action, leading to their plucking form the matrix at an exponential rate \[423\]. The smaller the filler particles, the reduced plucking and surface degradation that occur during chewing, and thus the lesser degree of abrasive wear. Likewise, the stronger the adhesion between the fillers and the matrix, the higher the wear resistance achieved \[14\]. Accordingly, manufacturers of resin-composites rely on silanization to improve adhesion between the different polymeric phases \[422\].

IV Wear resistance of FRC:

Despite the high wear resistance developed in contemporary resin-composite materials, they are still considered not suitable as durable restorations in patients with active tooth wear \[371\]. Other metal-free alternatives, like dental ceramics, tend to be more favourable although they also have disadvantages \[397\]. High differential wear resistance and aggressiveness to opposing dentition are the main drawbacks of ceramics that would produce severe tooth sensitivity and occlusal imbalance \[378, 397\]. Precious metal alloys are considered the gold standard to restore worn teeth since their wear behaviour is comparable to enamel \[413, 424\]. However, their poor aesthetic is the main drawback. Accordingly, there is no ideal restorative material that can offer low differential wear resistance with enamel as well as excellent aesthetics \[413\].

FRC has been developed with the intention of improving wear behaviour of resin-composites; for example, long and short fibres have been incorporated within PRCs to enhance wear behaviour as well as other mechanical properties \[59, 207\]. Long fibres provide superior wear resistance since they can reinforce the matrix better than short fibres \[425\]. The fibre fraction, however, has non-linear relationship with the wear behaviour since a low wear resistance has been reported in FRCs with low and high fibre content. This is explained by the inadequate support provided to the matrix by the low fibre content, and the excessive fibres clustering within the matrix caused by the high fibre content \[425, 426\].

In comparison with PRC, FRC tends to have a lesser wear resistance. This is because of the enhanced plucking of fibre particles that makes the matrix more prone to further degradation and increases wear rates \[284\]. However, some recent studies have reported the opposite since FRC tends to exhibit enhanced fatigue wear and superior mechanical properties \[259, 323\]. Some authors have also suggested FRC restorations as an option
to restore heavily worn teeth, owing to their superior mechanical properties, excellent longevity and maintainability [371]. Nevertheless, the wear behaviour of FRC has not been compared with that of other well-practiced alternatives used to restore heavily worn tooth structure, leading to uncertainty about its indication in such cases.

1.3 SUMMARY:
Fibre reinforced composite has many dental applications as a restorative material, owing to its superior mechanical properties and excellent aesthetics. However, it is not as well-practiced clinically as other metal-free alternatives due to many uncertainties about its clinical performance. A lack of information about the effect of fibre reinforcement and its orientation on surface hardness, marginal integrity, bonding strength with other restorative substrates has been identified. Scarce attention has been also paid to study the corresponding effect of the wear and fatigue behaviours of FRC restorations on longevity and overall performance. Moreover, limited studies have considered comparing the performance of FRC restorations and other well-practiced alternatives in an attempt to provide a meaningful context to the findings.
1.4 REFERENCES:

103

Chapter 2: Aims and Objectives
2.1 AIMS OF THE STUDY:

The main aim of the following series of studies was to improve the understanding of fibre-reinforced composite restorations and their clinical performance by investigating selected physico-mechanical properties.

The specific objectives of this research were:

- To investigate the influence of fibre reinforcement and orientation on surface hardness and light-transmittance.
- To investigate the effect of incorporating differently-oriented FRCs on the edge-strength.
- To examine the effect of fibre-reinforcement on shear bond strength between resin-composite material and ceramic/metal substrates.
- To determine the consequence of dynamic fatigue and framework design on the ultimate load-bearing capacity of direct inlay FRC FPDs.
- To compare the wear behaviour and fracture resistance of FRC crowns and other metal free alternatives.

A systematic approach of testing has been followed to address the knowledge gap identified in this research. Six in-vitro experiments were performed as shown in Figure 2.1:
Figure 2.1: General outline for the research.
Chapter 3: General Methodology
3.1 INTRODUCTION
A variety of standard and novel methodologies were utilized to address the objectives of the current research. All the methodologies are fully described in their relevant chapters.

The standard techniques applied were:
1. Vickers hardness method to measure the surface microhardness using a microhardness tester (FM-700). (Chapter 4)
2. Edge-strength testing using a compression testing machine (CK10). (Chapter 5)
3. Shear bond strength (SBS) testing using a universal testing machine (Zwick Z020). (Chapter 6)
4. Static load-to-fracture testing to measure the load-bearing capacity of FRC restorations using a universal testing machine. (Chapter 7 and Chapter 9)

The new techniques applied were:
1. The use of a laboratory grade spectrometer (MARC Resin Calibrator) to measure the influence of fibre reinforcement on light transmittance. (Chapter 3)
2. The use of a chewing simulator machine (CS 4.2) to simulate the masticatory loading on FRC restorations and induce the corresponding wear and dynamic fatigue. (Chapter 7-9)
3. The use of an intraoral 3D scanner (3M True Definition Scanner) to quantify and compare the wear induced in FRC crowns and other CAD/CAM alternatives. (Chapter 8)

3.2 MATERIALS:
Different material categories were used to execute this research. Each category contains various types of materials that differ in their composition or structures. Table 3.1 shows all the materials used in this research classified according to their main category.
Table 3.1: List of materials used to perform this research

<table>
<thead>
<tr>
<th>Category</th>
<th>Material</th>
<th>Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre-reinforced composites</td>
<td>Everstick® C&B</td>
<td>Pre-impregnated unidirectional E-glass fibres</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td></td>
<td>EverStick® Net</td>
<td>Pre-impregnated bidirectional E-glass fibres</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td></td>
<td>Stick®</td>
<td>Non-impregnated unidirectional E-glass fibres</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td></td>
<td>Stick® Net</td>
<td>Non-impregnated bidirectional E-glass fibres</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td></td>
<td>Construct™</td>
<td>Non-impregnated woven UHMWP fibres</td>
<td>Kerr, CA, USA</td>
</tr>
<tr>
<td>Particle-reinforced composites</td>
<td>X-tra®fil</td>
<td>Posterior packable microhybrid composite (Bulk-fill)</td>
<td>Voco, Cuxhaven, Germany</td>
</tr>
<tr>
<td></td>
<td>Grandio®</td>
<td>Universal packable nanohybrid composite (Increment-fill)</td>
<td>Voco, Cuxhaven, Germany</td>
</tr>
<tr>
<td></td>
<td>Herculite Ultra®</td>
<td>Universal packable nanohybrid composite for Enamel (Increment-fill)</td>
<td>Kerr, CA, USA</td>
</tr>
<tr>
<td></td>
<td>X-tra base</td>
<td>Universal flowable nanohybrid composite (Bulk-fill)</td>
<td>Voco, Cuxhaven, Germany</td>
</tr>
<tr>
<td></td>
<td>Grandioso Flow</td>
<td>Universal flowable nanohybrid composite (Increment-fill)</td>
<td>Voco, Cuxhaven, Germany</td>
</tr>
<tr>
<td>Machined crown materials</td>
<td>Lava® Zirconia</td>
<td>Pre-sintered Zirconia-based ceramic</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td></td>
<td>Lava® Ultimate</td>
<td>Resin nano-ceramic</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td></td>
<td>IPS e.max press</td>
<td>Silicate-based ceramic</td>
<td>Ivoclar Vivadent, Schaan, Liechtenstein</td>
</tr>
<tr>
<td></td>
<td>Incise LaserPFM</td>
<td>Laser-sintered Co-Cr metal alloys</td>
<td>Renishaw plc, Gloucestershire, UK</td>
</tr>
<tr>
<td>Coupling and bonding agents</td>
<td>ESPE®Sil</td>
<td>Silane coupling agent</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td></td>
<td>Stick®Resin</td>
<td>Unfilled light-cured resin</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td></td>
<td>Visio-Bond®</td>
<td>One bottle bonding agent</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>Surface Treatments</td>
<td>Cojet® Sand</td>
<td>Silicatized airborne sand</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td></td>
<td>Porcelain Etchant</td>
<td>9.5% buffered Hydrofluoric acid gel</td>
<td>BISCO Inc, Illinois, USA</td>
</tr>
</tbody>
</table>
3.3 MEASUREMENT OF HARDNESS AND IRRADIANCE (CHAPTER 4):

The specific study protocol followed to investigate the influence of FRC and their orientation on the surface hardness and light transmittance is outlined in Figure 3.1.

Figure 3.1: Flowchart showing the study protocol in Chapter 4

3.3.1 Vickers hardness measurement:

3.3.1.1 Rationale:

The microhardness, as a property, was investigated in this study to give an indication about the effect of incorporating FRC on surface hardness, degree of conversion (DC)
and depth of cure (DoC). Among all hardness tests, the Vickers hardness test was selected due to many reasons, including popularity, simplicity, versatility and high accuracy as the geometry of its indentation remains identical regardless of the loading applied or material tested. Moreover, it is able to discriminate between the different constituents of composite materials and induce the deformation in tiny specified spot. Immediate and post-cure VHN were compared to investigate the effect of FRC on post-cure polymerization

3.3.1.2 Pilot Study:
A pilot study was executed to confirm sample size and determine specimen geometry. Prior data indicated to study 5 specimens in each group to be able to reject the null hypothesis with associated 0.8 power (1-β) and 0.05 type-I error (α). Disc-shaped specimens (8 x 3 mm) were initially considered; however, they did not yield consistent results. This was due to the difficulties of incorporating standardized volume fractions of the reinforcing fibres within the specimens, especially around the edges. Consequently, rectangular-shaped specimens (5 x 5 x 3 mm) were prepared instead to ensure adequate fibre reinforcement incorporated within the entire specimen.

3.3.1.3 Materials and Methodology:
Four FRCs and one bulk-fill PRC were selected to prepare the required specimens. The chosen FRC materials (EN, SN, P and S) were commercially available for aesthetic restorations, and different in terms of type (E-glass Vs UHMWP), orientation (unidirectional, bidirectional or woven) and impregnation (non-impregnated Vs pre-impregnated). The selected PRC (XF) was a bulk-fill composite in order to facilitate specimen placement and curing in one cycle (20s) through the whole thickness (3mm). The 3-mm thickness was used instead of up to 4mm thickness advertised by the manufacturer in order to ensure full light penetration even with the presence of FRC.

Fifty rectangular-shaped specimens made of FRC-PRC were allocated into five equal groups (n=10) according to the type of FRC used. Half of the specimens (n=5) in each group were immediately used to determine the initial top and bottom Vickers hardness number (VHN), while the remaining specimens were stored in distilled water (48h/37°C) before being tested. A microhardness tester (FM-700, Future Tech Corp., Japan) was employed to measure top and bottom VHN for each specimen (Figure 3.2).

Three readings were taken per surface; the first at the centre point (x2.5, y2.5) and the
other two readings at (x1.5, y1.5) and (x3.5, y3.5) points (Figure 3.3). Initially, the automated hardness machine was calibrated according to specific testing parameters (300gF, 10s dwell). The built-in microscopy was used to select the point of interest at the surface. The Vickers diamond indenter was applied at that point with 10s dwells in order to induce an indentation. For each indentation, both diagonals were measured using the microscope. The machine automatically calculated the corresponding hardness value and presented it as VHN.

Figure 3.2: FM-700 microhardness tester (A), with a representative specimen ready for testing (B).

Figure 3.3: Schematic diagram showing the geometry of specimens tested for microhardness and the three points of interest measured on top/bottom surfaces.

3.3.2 Irradiance measurement:

In order to study the effect of fibre reinforcement and its orientation on light transmittance, a laboratory grade NIST-referenced USB-4000 spectrometer (*MARC Resin Calibrator v.3, Blue-Light Analytics Inc., Halifax, NS, Canada*) was employed (Figure 3.4.A). The top sensor (4mm diameter) was used to measure irradiance (I_R) and
total energy (E_T) delivered to the bottom surface of specimen during curing. These values indicated the amount of light attenuation that occurred as a consequence of incorporating FRC within PRC, in comparison with the control (without FRC). New specimens with the same geometry used in hardness experiment were fabricated from each group using the same technique. This was to help find any correlation between hardness and irradiance delivered to bottom surface.

![Diagram of MARC resin calibrator](image)

Figure 3.4: MARC resin calibrator used for irradiance measurement, A) its main parts, B) LED curing unit during the baseline measurement and C) the mould assembly placed on top sensor prior to irradiance measurement.

Initially, an LED curing unit (*Elipar℠ S10, 3M-ESPE, USA*) was assessed for its spectrum type (single-peak), wavelength range (420–480 nm), and mean output I_R (1764 mW/cm2) (Appendix I), when its tip was in a direct contact with the top sensor (Figure 3.4.B). Taking into account the separation between the light tip and sensor, the thickness of empty mould (3mm), base glass slide (1mm) and top glass cover (0.1mm) during curing, a baseline measurement of I_R was further assessed (1032 mW/cm2) (Figure 3.4.C and Figure 3.5). Later, the irradiance curve for three specimens in each group was monitored during light curing for 20s (Figure 3.6). Mean/maximum I_R
(mW/cm²) and E_T (J/cm²) values were measured for each specimen. Additionally, the curing-time required to reach the plateau in I_R spectrums was also recorded. This indicated the time required to achieve initial polymerization at bottom surface for each group. Statistical analysis using 1-way ANOVA (Tukey’s Post hoc) was performed to detect any significant difference between groups.

Figure 3.5: Schematic diagram showing the mould assembly on the top sensor of spectrometer during irradiance measurements. The same assembly was used during the baseline measurement of curing light in order to calculate the light attenuation occurred purely because of FRC and PRC.

Figure 3.6: Graph showing the irradiance versus time for one representative specimen for each group during the direct light curing for 20s
3.4 EDGE STRENGTH MEASUREMENT (CHAPTER 5):

The influence of FRC and their orientation on the edge strength was investigated using the protocol below (Figure 3.7):

![Diagram showing the study protocol in Chapter 5.](image)

3.4.1.1 Rationale:

Edge strength, as a surface property, was investigated in this study to give an indication about the influence of FRC on marginal integrity and deterioration resistance. Using a dedicated machine (CK10), edge strength test was performed due to its simplicity and popularity, and so to facilitate comparison of the results with previous studies.

3.4.1.2 Pilot Study

A pilot study was conducted to determine sample size, specimen geometry and testing parameters. For 0.8 power probability and 0.05 type-I error, the required sample size capable of detecting a true difference between groups was calculated to be 3 specimens for each subgroup. Both disc-shaped (12 x 2 mm) and rectangular-shaped (12.5 x 4 x 2 mm) specimens were attempted in the pilot study. The results of the latter, however, were more consistent as the fraction of reinforcing fibres incorporated at the edges was better standardized, especially with the unidirectional FRCs. Different testing parameters, including cross head speed (0.5 and 1 mm/min), location of applied force...
(0.5mm distance from the margins or corners) and number of readings per edge (1 - 3 readings), were also attempted. The most consistent preliminary data were achieved with 1 mm/min cross head speed and two readings per specimen (one at 0.5mm distance from each edge) (Figure 3.8). Accordingly, forty five rectangular-shaped specimens were allocated into three equal groups (n=15) and subgroups (n=5), and then tested using the latter testing parameters.

![Figure 3.8: Schematic diagram showing the geometry of specimens tested for edge-strength and the two reading points on top surface (0.5mm distance from each edge).](image)

3.4.1.3 Materials and Methodology:

The specimens were prepared form three PRCs and two FRCs using a sectional stainless steel mould. The PRCs were chosen to represent three different categories: a universal increment-fill packable resin-composite (Grandio, Voco), an Enamel-replacing increment-fill packable resin-composite (Herculite Ultra, Kerr), and a universal bulk-fill flowable resin-composite (X-tra Base, Voco). The FRCs were chosen with two different orientations: unidirectional FRC (Everstick C&B, Stick Tech Ltd) and bidirectional FRC (Everstick Net, Stick Tech Ltd).

The designated FRC was incorporated within PRC as an intermediate layer at 1.5mm depth in each specimen, and extended to include the margins. A specialised edge-strength testing machine (CK10, Engineering Systems, Nottingham, UK) was used to measure the edge-strength values for all specimens (Figure 3.9). At first, the machine was calibrated for the required testing parameters (1 mm/min cross head speed). A specimen was located within the designated holder on the X-Y table, and the built-in microscope was used to determine the point of interest for the measurement. A Vickers diamond indenter was used to apply static vertical compressive load at 0.5mm distance from the centre of each edge until fracture occurred. The edge strength value, represented by the maximum fracture-inducing force (N), was recorded for both edges in every specimen. The average value per specimen was used in the statistical analysis.
Figure 3.9: CK10 edge-strength machine and its main parts (A) during the testing of one representative specimen (B).
3.5 SHEAR BOND STRENGTH MEASUREMENT (CHAPTER 6):
The effect of incorporating an intermediate FRC layer on shear bond strength (SBS) between resin-composite and ceramic/metal substrates was investigated following the study protocol below (Figure 3.10):

![Flowchart showing the study protocol in Chapter 6](image-url)

Figure 3.10: Flowchart showing the study protocol in Chapter 6
3.5.1.1 Rationale:

Shear bond strength was investigated to give an indication about how FRC will influence the adhesion when it is employed as intermediate layer to reinforce veneering PRC. Such effect was previously investigated when the bonding substrate was tooth substance (Enamel and Dentine). However, this effect has not been tested when the bonding substrate is another restorative material, such as ceramic or metal. Accordingly, two restorative materials, as a representative of their main categories, were chosen as bonding substrates. Among different tests investigating bond strength, a shear bond strength test was selected due to its simplicity and feasibility as screening tool for comparing new materials.

3.5.1.2 Materials and Methodology:

The ceramic (IPS e.max press, Ivoclar Vivadent) and metal (Incise LaserPFM, Renishaw plc) substrates (n=30 each) were prepared using CAD/CAM technology as disc-shaped specimens (16 x 2 mm). The dimensions of specimens were chosen to fit the metal housing used to hold specimen during shear bond testing.

Different surface treatments were applied on each side of a specimen, followed with bonding agent application. Ceramic specimens (Group A) were treated with silica-coating on one side and hydrofluoric acid (HF) etching on the other, while metal specimens (Group B) were treated with silica-coating and air-abrasion (Figure 3.11). All surfaces were treated with saline before being bonded to enhance surface wetting and adhesion.
Figure 3.11: Flowchart showing the bonding substrates, surface treatments, testing procedure, and fracture analysis followed in Chapter 6.
The bonding procedure started with the application of a resin bonding agent to the bonding surface and then light-cured for 10s. A layer of flowable resin composite was applied as a base prior to the application of the designated FRC layer in order to facilitate FRC adaptation, and then both light cured together (20s). One increment of bulk-fill PRC was then applied, covered with a glass slide and light cured (20s). Thermocycling (1000 cycles, 5-55°C, 10s dwell) was performed later for all specimens using a dedicated thermocycling machine to simulate oral environment and induce artificial aging. The Zwick/Roell Z020 universal testing machine (Zwick GmbH, Ulm, Germany) with a single-sided chisel indenter was employed to apply shear loading (0.5 mm/min crosshead speed) along the adhesive interface between resin composite and metal/ceramic materials in every specimen in an attempt to standardize stress distribution along the interface. The shear bond strength (MPa) was then calculated according the following equation:

\[SBS = \frac{F_{\text{Max}}}{A} \]

Equation 3.1

Where \(F_{\text{Max}} \) is the ultimate load-to failure (N) and \(A \) is the bonded area (mm²).

The debonded surfaces were examined under light microscopy with high magnification (x30) in order to assess the failure mode. The mode of failure was reported for each specimen and classified as adhesive failure within the substrate interface, adhesive within PRC interface, cohesive failure within FRC and mixed adhesive/cohesive failure. A series of two-way ANOVA (Tukey’s Post hoc) was used to investigate the influence of material substrate, surface treatment and FRC orientation on SBS.
3.6 LOAD-BEARING CAPACITY OF FRC-FPDS (CHAPTER 7):
Twenty inlay-retained FRC-FPDs with two different framework designs were prepared and tested following the protocol below (Figure 3.12):

3.6.1.1 Rationale:
Specimens in this research were fabricated in anatomical form rather than using simple bar specimens. This was with intention to simulate all the loading stresses affecting the performance of FRC-FPDs in the oral cavity. Three different FPD designs could be fabricated using FRC. The first design is the conventional design which relies on the full preparation of abutments and uses two full crowns as retainers. This design is the strongest, yet, the most destructive. The second design is the prep-less design which
relies purely on the adhesion of retainers to the buccal and lingual surfaces of abutments. This design is the most conservative, yet, the weakest as its retainers can be subjected to highly destructive shear loading beyond the tolerance of the bond strength with tooth structures. The third design is the inlay-retained FPD which is the most documented and practiced as it relies on one inlay retainer at both abutments for support and retention. This design is minimally-invasive and allows adequate support and retention from the adjacent abutments. Accordingly, it was chosen to fabricate the FRC-FPDs specimens in this research.

3.6.1.2 Materials and Methodology:
At first, two artificial teeth (mandibular 2nd premolar and 2nd molar) were prepared as master abutments for a 3-unit inlay-retained FPD on an artificial mandible (Figure 3.13, a). A vacuum-formed matrix was formed beforehand to standardize the morphology of all fabricated FPDs (Figure 3.13, b). Both master abutments were duplicated using a silicone duplicating material (Gemini, Bracon, East Sussex, UK) (Figure 3.13, c-d). Following the duplication, twenty identically-prepared acrylic premolars and molars were harvested. The duplicated teeth were pre-coated with 0.2 mm-thickness wax prior to their mounting within an epoxy-resin base (B&K Resins Ltd, Bromley, UK) in order to simulate PDL space. A standardised position of abutment teeth simulating the average space of missing lower 1st molar, with 11mm pontic space and 2mm base support below CEJ, was ensured through the mounting process using the vacuum-formed index. Once the base has been set, the wax coatings were replaced by light-bodied impression material (Aquasil LV, Dentsply, USA) to reproduce PDL elasticity. Twenty identical assemblies were fabricated and used to support FRC-FPDs (Figure 3.13, e).

Twenty FRC-FPDs (n=20) were directly-fabricated over the mounted teeth, utilizing two bundles of woven ultrahigh molecular weight (UHMW) polyethylene fibres (Construct, Kerr) as the main supporting framework (Figure 3.13, g-h). Prior to the fibre adaptation, the inlay cavities were pre-treated with silica coating and silanization (Cojet™ system, 3M-ESPE) according to the manufacturer’s instruction (Figure 3.13, f) in order to enhance the adhesion of acrylic teeth, followed by the application of a bonding agent (Viso-Bond, 3M-ESPE). Later, resin-composite (X-tra fill, Voco) was adapted between the fibres to build the pontic core and then cured for 20s (Figure 3.14, i).
Two types of pontics with different additional reinforcing fibres were subsequently fabricated. Type-I (n=10) had a bidirectional E-glass fibre sheet (6 X 5 mm) (*Everstick Net, Stick Tech Ltd*) perpendicularly-adhered to the core with the intention of implementing further support for the occlusal veneering PRC and suppress crack propagation. Type-II had an additional 10mm fibre bundle of the polyethylene fibres (*Construct, Kerr*) wrapped around the core in an inverted U-shape fashion with the intention of increasing the support for the buccal, occlusal, and lingual veneering PRC and reduce delamination fracture.

The final specimen shape was reproduced in a standardised way. The veneering PRC (*X-tra fill, Voco*) was applied and cured through the clear vacuum matrix for 20s from each surface. (Figure 3.14, j). Finishing and polishing using coarse/medium finishing discs (*OptiDisc, Kerr, Switzerland*) were performed for all specimens, which were then stored in water (37 °C, 48 hours) prior to further testing to simulate the oral environment..

Half of the specimens were cyclicly loaded using a chewing simulator machine (*CS-4.2, SD Mechatronic, Germany*) to simulate the effect of clinical mastication and dynamic fatigue *in-vitro* (Figure 3.14, k-m), while the remaining specimens were control. Later, all the specimens were statically loaded to fracture in a universal testing machine (*Zwick Z020, Zwick/Roell GmbH, Germany*) with a steel ball indenter at the central fossa (Figure 3.14, n-o). Initial failure (IF) and final failure (FF) loads were recorded for each specimen, and then used in the statistical analysis. Initial failure was identified from the stress vs strain curve during the static loading at the point of initial drop in stress. Final failure was identified from the same curve at the point of abrupt drop in stress.
Figure 3.13: Flowchart showing the methodology followed in Chapter 7
3.7 WEAR MEASUREMENT (CHAPTER 8):

Fifteen single posterior crowns were subjected to dynamic fatigue in a chewing simulator machine to induce a degree of wear following a standardized protocol (Figure 3.14). The resultant morphological changes were monitored and compared using a 3D scanner marketed for intraoral use (3M True Definition Scanner, 3M-ESPE, Germany) (Figure 3.15).

![Flowchart showing the study protocol in Chapter 8](image)

Figure 3.14: Flowchart showing the study protocol in Chapter 8

3.7.1.1 Rationale:

The ability of FRC to enhance many mechanical properties of PRC has been proven in the literature. However, no study has investigated the influence of incorporating FRC on wear behavior and resistance. New PRCs were introduced to the market claiming the best wear resistance. However, they have not been compared with PRC further reinforced with FRC. Accordingly, this experiment attempted to compare the wear behavior of FRC-PRC combination, as a system, with different metal-free restorative materials with best document wear resistance.
Digital scanners have been used to monitor and measure wear indirectly relying on impressions, casts and epoxy dies. However, in this study, a scanner intended for intraoral use was employed to monitor morphological changes directly on the teeth without the need for intermediate steps that induce many inherent errors.

3.7.1.2 **Pilot study:**

A pilot study was conducted to check the validity of using the intraoral scanner as a direct wear monitoring device. A baseline 3D scan was taken for one monolithic zirconia crown without any alteration. A minimal degree of wear was then induced at the central fossa using a high speed air turbine with a coarse grit diamond bur. Another scan was then taken and compared with the baseline, using surface matching software. Deviations in the order of 10µm were able to be detected using this technique. Accordingly, a full scale study was then executed.

![3M True Definition Scanner](image)

Figure 3.15: 3M True Definition Scanner

3.7.1.3 **Materials and Methodology:**

Fifteen mandibular first molar crowns (n=15) with the same occlusal morphology and dimensions were fabricated from three different metal-free materials. In Group A (n=5), CAD/CAM monolithic all-ceramic crowns were manufactured from Lava™ Zirconia (3M-ESPE), whereas in Group B (n=5) Lava™ Ultimate (3M-ESPE) was used instead.
Both materials were chosen as a representative of their main categories (Lava Zircoina (LZ): Ceramic, Lava Ultimate (LU): PRC), and have been claimed to have high wear resistance by their manufacturers. Group C (n=5) included the experimental crowns that were made conventionally from laboratory PRC (Sinfony, 3M-ESPE) and bidirectional FRC sheet (Stick Net, Stick Tech Ltd). All crowns were adhesively cemented (RelyX Unicem 2, 3M-ESPE) on identical assemblies representing a prepared lower first molar tooth and its supporting structure.

Thermocycling aging (3500 cycles, 5-55°C, 10s dwell) was performed to simulate the oral environment, and a baseline scan (C₀) was taken for each specimen. Wear was then induced using a chewing simulator (CS 4.2) in two consecutive phases (240K cycles each). Two scans (C₁, C₂) were taken after the completion of each phase to calculate the resultant wear corresponding to each phase. Geomagic Control 2014 software (Geomagic, 3D System Corporation, USA) was used to superimpose the digital scans and quantify the degree of wear for all specimens (Figure 3.16). Three wear values (W₁, W₂ and Wₐ) were recorded per specimen; W₁ represents the resultant wear of phase C₁, W₂ represents the resultant wear of phase C₂, and Wₐ is the cumulative wear (Figure 3.17). All such values were used in the statistical analysis.
Figure 3.16: Snapshot of Geomagic Control software during wear analysis.

Figure 3.17: Wear analysis of a representative specimen relying on superimposition of three successive digital scans, A) 3D comparison performed, B) vertical wear measurement in the wear facet after the completion of C1 phase, and C) C2 phase
3.8 LOAD BEARING CAPACITY OF METAL-FREE CROWNS (CHAPTER 9):

Thirty posterior single crowns made of three metal-free materials were prepared and tested following the protocol below (Figure 3.18):

![Diagram showing the study protocol in Chapter 9.](image)

Figure 3.18: Diagram showing the study protocol in Chapter 9.

3.8.1.1 Rationale:

This study was performed as a continuation of the previous study to compare the fatigue behaviour and load-bearing capacity between the three metal-free crown fabricating systems. The fatigue behaviour of FRC crowns is not well-documented in the literature, and so this study was intended to investigate the fatigue behaviour of FRC using the masticatory fatigue simulation method. This method is a simple and reliable technique with high clinical relevance that many researchers in dental field favour.

3.8.1.2 Materials and Methodology:

Crowns were cemented adhesively on thirty identical assemblies simulating the clinical environment. Half of the specimens were dynamically fatigued by thermocycling and chewing simulator machines (Figure 3.19). Later, all the specimens were statically loaded to fracture in a universal testing machine (Zwick Z020, Zwick/Roell GmbH,
Germany) with a steel ball indenter (Figure 3.20), and the mode of fracture was observed (Figure 3.21). The maximum load-to-fracture was recorded for each specimen and used in the statistical analysis.

Figure 3.19: Flowchart showing the preparation and cyclic loading of crown specimens, A) preparation of master mould, B) duplicated acrylic teeth coated with wax layer, C) mounted teeth in epoxy resin base and the wax coating is substituted with PVS layer, D) a specimen assembly ready for crown cementation, E) surface treatment (silica coating) for acrylic teeth and crowns using Cojet repair system, F) cementation of crowns using self-adhesive cement (RelyX Unicem 2), G) one representative specimen after cementation and thermocycling, H) mounted in the chewing simulator for cyclic loading and I) following the completion of cyclic loading.
Figure 3.20: Static loading of one representative crown specimen using the steel ball indenter of Zwick Z020 machine.

Figure 3.21: The mode of fracture of three representative crown specimens, A) Lava Zirconia, B) Lava Ultimate and C) FRC-Sinfony. * indicates the origin of fracture, while † indicates crack propagation.
Chapter 4: Influence of Fibre-Reinforced Composite on Microhardness and Light Transmittance.
4.1 ABSTRACT:

Objectives: To i) measure and compare the top and bottom initial and 48h post-cure Vickers microhardness (VHN) for one bulk-fill resin-composite after incorporating different fibre-reinforced composite (FRC), and ii) investigate the effect of fibre reinforcement on microhardness and light transmittance.

Methods: Fifty rectangular-shaped specimens (5 x 5 X 3 mm) made from a bulk-fill resin-composite (X-tra fill, Voco) were divided into five groups (n=10). No reinforcing-fibres was used to reinforce Group C (control), while pre-impregnated (EverStick Net, StickTech Ltd) and non-impregnated bidirectional E-glass fibres (Stick Net, Stick Tech Ltd), plasma-treated woven polyethylene fibres (Construct, Kerr) and unidirectional E-glass fibres (Stick, Stick Tech Ltd) were incorporated at 1.5mm depth to reinforce groups (EN, SN, P, S), respectively. An LED light (Elipar™S10, 3M-ESPE) was utilized to cure all specimens (20s) from the top surface only. Vickers microhardness (VHN) for top and bottom surfaces was measured immediately post-cure for half of specimens, while the remaining was tested after water storage (48h/37°C). A spectrometer (MARC Resin Calibrator, Blue-Light Analytics) was employed to measure mean irradiance (I_R) and total energy (E_T) delivered to specimen bottom surface during light-curing. One-way ANOVA (Tukey’s Post-hoc) and independent t-test were used to detect any significant difference among the groups (α=0.05).

Results: Group C had the lowest initial (64.4±2.0 VHN) and post-cure (75.2±1.4 VHN) microhardness but the highest bottom/top ratio (98.5%), I_R(207±4.5 mW/cm²) and E_T (4.2±0.1 J/cm²). For fibre-reinforced groups, SN had the highest initial microhardness (76.8±1.6 VHN), bottom/top ratio (97.2%), I_R (190±8.6 mW/cm²) and E_T (3.9±0.2 J/cm²) while S had the lowest values (72.4±1.2 VHN, 93.5%, 183±7.4 mW/cm², 3.7±0.2 J/cm²). Fibre-reinforcement significantly improved top-bottom VHN but reduced bottom/top ratio, I_R and E_T values. Storage condition significantly enhanced microhardness for all groups.

Conclusion: The use of FRC can improve the microhardness of bulk-fill resin-composite without affecting post-cure polymerisation. However, it tends to attenuate light transmittance to bottom surfaces that might require longer irradiation-time to compensate.
4.2 INTRODUCTION:
Since their first introduction to dentistry in the late 1970s, visible light-cured resin-based composites (RBCs) have been in constant evaluation [1, 2]. Many efforts to improve their physico-mechanical properties are based on increasing the extent of polymerisation, or the so-called ‘degree of conversion’ (DC) [3-6]. Superior mechanical properties [7], improved adhesion to tooth structure [8] and enhanced biocompatibility with a reduced level of residual monomers and free radicals [9] can be achievable if the DC is adequate through the entire bulk of RBCs. Material thickness and light intensity influence the DC [1, 10]. A light that transmits through RBC can only reach a certain depth due to scattering and absorption, leading to reduced DC and unsatisfactory properties at deep layers [9-14]. Therefore, it is crucial to enhance light transmittance in depth to achieve adequate DC and desirable properties.

Light transmittance in RBC is influenced by several factors, including filler size and distribution [6, 15-17], resin type and photoinitiators [2, 4, 13], shade and translucency [13, 18, 19], light intensity and irradiation time [15, 20-23]. Studies addressing these factors have developed effective irradiation methods (e.g. LED and plasma curing units) and new RBCs that facilitates photoactivation and enhances light transmittance [2, 5, 14, 15, 22-25]. One latest development is a resin-composite material intended for posterior ‘bulk-fill’. This material can be applied in increments up to 4mm thickness owing to its unique composition that allows excellent light penetration [26, 27] and skipping of the time-consuming layering technique [21, 28]. It also reduces polymerization shrinkage [29, 30], cusp deflection [31] and microleakage [32], and improves marginal integrity [33] as well as other mechanical properties [25, 34], in comparison with conventional RBC. Accordingly, bulk-fill RBCs have been used in many high-demanding applications [35].

One potential application of bulk-fill RBC is to accompany fibre-reinforced composite (FRC) in order to replace posterior missing teeth. This combination of materials is believed to provide superior mechanical properties without impairing aesthetics, providing that translucent reinforcing fibres, like glass and polyethylene, are used [36]. However, the presence of reinforcing-fibres in the path of the curing light can attenuate light penetration, and probably reduces DC. Few studies have confirmed the negative effect of FRC on light transmittance but no study reported the influence of fibre orientation [37, 38]. Surface hardness can be used as an indirect indicator to investigate
the influence on light transmittance [34, 39-41]. Ideally, the ratio between top and bottom hardness for RBC should be 1 with optimal light transmittance. However, the light attenuation resulted from the reinforcing-fillers reduces DC and leads to a drop in the bottom/top ratio. The minimal acceptable bottom/top ratio equals 0.8, indicating the least acceptable DC in RBCs [39, 40, 42].

The main aim of this study was to investigate the influence of incorporating different FRCs within bulk-fill RBC on microhardness and light transmittance. The influence of ‘FRC type’, ‘post-irradiation storage’ on top and bottom microhardness was also examined. Four null hypotheses were formulated: i) the incorporation of FRC within bulk-fill material has no significant effect on its initial and post-irradiation microhardness, ii) there is no significant difference in the bottom/top hardness ratio as a consequent of FRC incorporation, iii) the mean irradiance and total energy received by the bottom surface of bulk-fill RBC would not be significantly influenced by the FRC orientation and iv) there exists no correlation between the bottom/top hardness ratio and degree of irradiance.

4.3 MATERIALS AND METHODS:

4.3.1 Materials:

Four commercial FRCs with different types, orientation and impregnation and one bulk-fill PRC were investigated by assessing the variation in Vickers microhardness and irradiance delivered to the bottom surface. Top and bottom Vickers hardness number (VHN) were measured immediately post-cure and after 48h water storage for all specimens, while all I_R values were taken during the light curing process. The materials used to prepare all specimens, their descriptions, compositions and manufacturers are listed in Table 4.1.
Table 4.1: Materials used to prepare all specimens

<table>
<thead>
<tr>
<th>Materials</th>
<th>Description</th>
<th>Composition</th>
<th>Lot No.</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stick® Net (SN)</td>
<td>Non-impregnated bidirectional fibres</td>
<td>Non-silanated mesh E-glass fibres, porous PMMA</td>
<td>20140920</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td>EverStick® Net (EN)</td>
<td>Pre-impregnated bidirectional fibres</td>
<td>Silanated mesh E-glass fibres, PMMA, Bis-GMA</td>
<td>120424</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td>Construct™ (P)</td>
<td>Non-impregnated woven fibres</td>
<td>Cold gas plasma-treated pre-silanated with unfilled resin polyethylene fibres</td>
<td>2960366</td>
<td>Kerr, CA, USA</td>
</tr>
<tr>
<td>Stick® (S)</td>
<td>Non-impregnated unidirectional fibres</td>
<td>Silanated longitudinal E-glass fibres, porous PMMA</td>
<td>120523</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td>X-tra® fil (C)</td>
<td>Packable bulk-fill posterior micro-hybrid composite</td>
<td>86 wt% filler (barium-boron-alumina-silicate glass), Bis-GMA, UDMA, TEGDMA</td>
<td>1209351/ universal shade</td>
<td>VOCO GmbH, Cuxhaven, Germany</td>
</tr>
<tr>
<td>Stick® Resin</td>
<td>Unfilled light-cured resin</td>
<td>Bis-GMA, TEGDMA</td>
<td>1203211</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
</tbody>
</table>

PMMA: poly methyl methacrylate, Bis-GMA: bisphenol A dimethacrylate, TEGDMA: triethylene glycol dimethacrylate.

4.3.2 Microhardness assessment:

Fifty rectangular bar-shaped specimens (5 x 5 x 3 mm) made of a bulk-fill RBC (X-tra fill, Voco) and reinforced by FRC were prepared using standardized polytetrafluoroethylene (PTFE) mould. Five equal groups (n=10) were allocated according to the type of FRC used. For Groups EN and SN, pre-impregnated (EverStick Net, Stick Tech Ltd) and non-impregnated bidirectional E-glass FRCs (Stick Net, Stick Tech Ltd) were used respectively. Specimens in Groups S and P were reinforced by incorporating non-impregnated unidirectional E-glass (Stick, Stick Tech Ltd) and woven polyethylene (Construct, Kerr) FRC respectively, whereas Group C specimens had no incorporated FRC layer incorporated (control). All the non-impregnated FRCs were impregnated by a resin (Stick Resin, Stick Tech) for 5min prior to their implementation.

After applying a separating medium (petroleum jelly) to the mould, an initial increment of RBC (1.5mm thickness) was packed into the mould against a glass slide on a non-reflective background surface. The designated intermediate FRC layer was then incorporated as an intermediate layer and spread to the entire area to ensure appropriate adaptation prior to the application of final RBC increment. The mould was then slightly
overfilled with RBC and the excess was removed by firmly adapting another glass slide on the top. Each specimen was then light-cured for 20s from the top surface using a LED light curing unit (Elipar®S10, 3M-ESPE, USA) under a standard curing mode. The light curing unit had a 10mm-tip placed centrally over specimens with a direct contact. Immediately after the curing, the specimen was gently pushed out from the mould, and any excess flash was removed using 1000-grit silicon polishing sandpaper. A permanent marker was used (at the sides) to identify the top surface.

Half of the specimens in each group (n=5) were immediately used to determine the initial top and bottom Vickers hardness number (VHN), while the remaining specimens were stored in distilled water (37°C, 48h) before being dried up (23°C, 1h) and measured for their top and bottom VHN. A microhardness instrument (FM-700, Future Tech Corp., Japan) with a Vickers diamond indenter was used. Three sequential measurements were taken for each surface with 300gf fixed load applied for 10s (dwell time). Bottom/top surface hardness ratios were then calculated for each specimen.

4.3.3 Irradiance measurements:

In order to assess the variation in light transmittance, the irradiance (I_R) and total energy (E_T) received by the bottom surface during light-curing (20s) were measured for all five groups. A laboratory grade NIST-referenced USB-4000 spectrometer (MARC Resin Calibrator v.3, Blue-Light Analytics Inc., Halifax, NS, Canada) was employed for all the measurements (Figure 4.1). The same light-curing unit was used to deliver the required curing energy; the unit was mounted on a specific bench-top curing light controller (BenchMARC™, Blue-Light Analytics Inc., Halifax, NS, Canada) in order to standardise the position and curing distance.

At first, the light curing unit was assessed for its spectrum type (single-peak), wavelength range (420–480 nm), and mean output I_R (1764 mW/cm²) when its tip was in a direct contact with the spectrometer top sensor (4mm ø). Taking into account the separation between the light tip and sensor, the thickness of empty mould (3mm), base glass slide (1mm) and top glass cover (0.1mm) during curing, a baseline measurement of I_R was further assessed (Figure 4.2). For the measurements of each group, three fresh specimens were directly light-cured (20s) over the sensor, and the real-time irradiance spectrums were monitored. Mean/maximum I_R (mW/cm²) and E_T (J/cm²) values were recorded for each specimen. Additionally, the curing-time required to reach the plateau in irradiance spectrums was also recorded.
4.3.4 Statistical analysis:
The data for all groups were collected and analysed statistically using SPSS 22.0 (IBM SPSS Statistics, SPSS Inc., Chicago, IL, USA). Paired and independent t-tests were used to compare top and bottom VHN, initial and 48h post-cure VHN for each group, respectively. Two-way analysis of variance (ANOVA) was used to assess the significance of ‘FRC type’, ‘post-cure storage’ on VHN. One-way ANOVA (Tukey’s post hoc) was performed to detect any significant difference in initial VHN, 48h post-cure VHN, bottom/top ratio, mean I_R and E_T for each group. Scatter plot and Pearson correlation analysis were performed to test the relationship between bottom/top ratio and mean I_R values. The level of significance for all tests was set at $\alpha=0.05$.

![Figure 4.1](image1.png)

Figure 4.1: Light curing unit assembly on the MARC Resin Calibrator using BenchMARC controller.

![Figure 4.2](image2.png)

Figure 4.2: Schematic diagram showing the mould assembly on the spectrometer’s top sensor during irradiance measurement.
4.4 RESULTS:

Mean (SD) VHN for all tested groups are shown in Table 4.2, and presented graphically in Figure 4.3. Group SN had the highest initial top and bottom values (76.8-74.7) while Group EN had the highest post-cure values (85.6-80.1). Group S had the lowest bottom/top microhardness ratio (92.7-93.5 %) whereas Group C had the highest (97.2-98.3%). All groups exhibited significantly higher top and bottom VHN after 48h of water storage compared to their initial VHN (p<0.001). All FRC groups had significantly better initial and post-cure VHN than the control group (p<0.05). Bottom VHN values were significantly lower than top initial VHN for all FRC groups (p<0.001), while there was no significant difference for the control group (p=0.104). Both FRC type and post-cure storage had a significant influence on VHN (p<0.001). With regards to the bottom/top ratio, the differences between the groups was significant (p<0.001), and Group C had the highest ratio (98.5%).

<table>
<thead>
<tr>
<th>Group</th>
<th>Initial (VHN)</th>
<th>48h post-cure (VHN)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Bottom</td>
<td>B/T (%)</td>
</tr>
<tr>
<td>C: Control</td>
<td>64.4±2.0<sup>a</sup><sup>1</sup></td>
<td>63.3±1.9<sup>a</sup><sup>1</sup></td>
<td>98.3<sup>a</sup></td>
</tr>
<tr>
<td>SN: StickNet</td>
<td>76.8±1.2<sup>b</sup><sup>1</sup></td>
<td>74.7±1.6<sup>b</sup><sup>2</sup></td>
<td>97.2<sup>b</sup></td>
</tr>
<tr>
<td>EN: Everstick Net</td>
<td>72.9±1.1<sup>c</sup><sup>1</sup></td>
<td>69.7±0.9<sup>c</sup><sup>2</sup></td>
<td>95.6<sup>b</sup></td>
</tr>
<tr>
<td>P: Construct</td>
<td>73.2±0.9<sup>d</sup><sup>1</sup></td>
<td>69.1±0.9<sup>d</sup><sup>2</sup></td>
<td>94.4<sup>c</sup></td>
</tr>
<tr>
<td>S: Stick</td>
<td>72.4±1.2<sup>e</sup><sup>1</sup></td>
<td>67.7±1.4<sup>e</sup><sup>2</sup></td>
<td>93.5<sup>d</sup></td>
</tr>
</tbody>
</table>

^{*Different superscript letters and numbers indicate a significant difference within the same column and row, respectively.}
Figure 4.3: Bar chart showing mean (SD) VHN for top and bottom surface for all groups immediately post-cure and after 48h water storage.
Table 4.3: Mean and Maximum (SD) values of irradiance (I_R), total energy (E_T) and time required to reach plateau for all tested groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean I_R (mW/cm2)</th>
<th>Max I_R (mW/cm2)</th>
<th>E_T (J/cm2)</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C: Control</td>
<td>207.0±4.5a</td>
<td>231.0±8.5a</td>
<td>4.2±0.1a</td>
<td>12</td>
</tr>
<tr>
<td>SN: Stick Net</td>
<td>190.0±8.6ab</td>
<td>217.0±7.6a</td>
<td>3.9±0.2ab</td>
<td>14</td>
</tr>
<tr>
<td>EN: Everstick Net</td>
<td>186.0±5.1b</td>
<td>217.0±3.6a</td>
<td>3.8±0.1b</td>
<td>15</td>
</tr>
<tr>
<td>P: Construct</td>
<td>183.0±6.6b</td>
<td>211.0±5.2a</td>
<td>3.7±0.2b</td>
<td>16</td>
</tr>
<tr>
<td>S: Stick</td>
<td>183.0±7.4b</td>
<td>215.0±9.2a</td>
<td>3.7±0.2b</td>
<td>16</td>
</tr>
</tbody>
</table>

*Different superscript letters indicate a significant difference within same column.

Baseline mean/max I_R with empty mould: 1032/1065 mW/cm2, $E_T = 21.1$ J/cm2.

Figure 4.4: Graph showing the irradiance versus time for one representative specimen of each group during direct light curing (20s).
Figure 4.5: Scatter plot showing the positive correlation between the mean irradiance values and the bottom/top hardness ratio for all tested groups (R^2 Cubic = 0.974). This plot explains that the bottom/top VHN ratio, as an indicator of the depth of cure, tends to increase exponentially as a consequence of increasing irradiance value transmitted to specimen bottom surface. Such correlation concurs the idea that the incorporation of FRC within PRC tends to reduce depth of cure (bottom/top VHN ratio) by reducing the irradiance level transmitted to specimen bottom surface. Even at higher levels of irradiance, the consequential increase in VHN ratio plateaus out, owing to many factors affecting the degree of conversion within the bottom surface, including material type, distribution and quantity of fillers, quantity of photoinitiator, translucency and thickness of specimen, which can hinder any further light transmittance or material polymerization.
4.5 DISCUSSION:
This study was designed to demonstrate the consequence of incorporating FRC within bulk-fill material on microhardness and light transmittance. The first null hypothesis was rejected as FRC groups were found to have a significant influence on initial and post-cure VHN. All specimens incorporated with FRC also exhibited significantly improved top and bottom VHN compared with the control, which can be attributed to the effect of additional filler content.

As confirmed in the literature, increasing filler content in conventional RBCs enhances mechanical properties, such as flexural strength, fracture toughness and microhardness [6, 17, 43, 44]. However, this increase could be detrimental for light transmittance and thus depth of cure [1, 16, 23]. Bulk-fill resin-composite materials, which follow the same principle, have been reported to provide superior mechanical properties with the high-filled versions, though low depth of cure compared with the low-filled versions [24, 28, 34]. Accordingly, in the present study, one bulk-fill material was chosen, which had the highest filler content (86 wt%) on the market, to prepare all specimens and investigate the influence of adding further fillers in fibre form. The results reported for the unreinforced (control) group in this study (63.3-75.2 VHN) were comparable to those reported in a previous study investigating the same material (70 VHN) [28]. A significant improvement in VHN was also reported as a consequence of FRC incorporation. Top and bottom VHN significantly increased with the presence of additional reinforcing FRC layer, which is attributed to the resultant increase in filler content. This finding agrees with a previous study investigating the mechanical properties of FRC-RBC material and explaining that the improvement in strength is a result of the increase in filler fraction [45].

The current study also showed that 48h water storage significantly increased VHN for all groups regardless of the FRC used (p<0.001). This finding is consistent with many previous studies reporting an improvement in the VHN over a period of 1h up to one week of post-cure storage at 37°C [34, 42, 46]. Such improvement in VHN is attributed to post-irradiation polymerization which tends to increase the cross-linking reaction and degree of conversion within the resin matrix [3, 34, 42, 47]. The choice of water as a storage medium is also influential since it causes sorption and hygroscopic expansion, which can cumulatively increase deterioration rate and reduce strength [39, 47, 48]. However, the current study reported no harm for such short term water storage on VHN,
which seems to be neutralised by post-irradiation polymerization. Moreover, the presence of FRC seems to have no influence on post-cure polymerization as the mean increase percentages in post-cure microhardness were comparable for both reinforced (15\%) and control groups (16 \%).

Consistent with many previous studies investigating the microhardness and depth of cure for bulk-fill RBCs [24, 27, 28, 34, 39], the present study showed that the VHN for the top surface was higher than that for the bottom surface at 3mm thickness, with the bottom/top hardness ratio exceeding 90\% for all specimens. In comparison with the minimal acceptable ratio (80\%) suggested in the literature for light-cured RBCs [39, 40, 42], the high ratio reported herein indicates adequate light transmittance in all tested groups. It can also be inferred that the incorporated FRC layer generally has no significant influence on the depth of cure of bulk-fill composites. This finding is in good agreement with a recent study investigating the curing behaviour of commercial bulk-fill FRC and reporting an effective depth of cure up to 6mm with 20s light-curing cured [49]. Another previous study investigating the microhardness and depth of cure of experimental FRC, have also demonstrated comparable values to those of control RBC when a longer curing time (40s) was performed [38]. The statistical analysis comparing the initial top and bottom surface VHN in the present study showed a significant difference for all FRC groups (p<0.001), while the difference in control group was found non-significant (p=0.104). This indicates that FRCs can slightly attenuate light transmittance through the bulk of specimen irrespective of their orientation or type. Analysis of the bottom/top VHN ratio among the groups was also supportive for this finding as the control group exhibited a significantly higher ratio than FRC groups; hence the second null hypothesis rejected.

The results of the irradiance test show that all groups had a significant difference in the mean I_R and E_T values, which supports the rejection of the third null hypothesis. Lower I_R and E_T values were detected for the reinforced specimens in relation to the control, indicating that the incorporation of FRC has a negative influence on light transmittance. Similar results have been previously reported in the literature with the incorporation of short random reinforcing-fibres that enhanced light scattering and reduced depth of cure [38, 49]. The depth of cure of RBC light-cured through a layer of unidirectional FRC has also reduced in a previous study [37], and a longer irradiation time to compensate for the light attenuation has been suggested. All such findings can be explained by understanding the physics of light transmittance.
According to the Beer-Lambert Law [11, 12], some scattering and absorption occurs when a beam of light is transmitted through a material, such as RBC. This was evident in the current study by the substantial difference (80%) in the light intensity between the baseline (1032 mW/cm²) and during specimen curing (207 mW/cm²). Additional scattering and absorption happen due to the presence of FRC layer that tends to introduce a barrier with a mismatching reflective index along the path of light, leading to less irradiance delivered to the bottom surface in a given time [11-13, 37]. This reduction in irradiance means that there would be less energy available at the bottom surface to initiate polymerization, in comparison with the top surface, which also explains the significant difference between top and bottom VHN in FRC groups.

Analysis of the irradiance (Figure 4.4) for different groups also explains these findings. The spectrums of FRC groups had a tendency to follow a similar path and reach a lower level of maximum irradiance compared with that of the control group. The ‘plateau’ status of irradiance was also reached later in all FRC curves, suggesting that more irradiation time is needed to compensate for light attenuation and reach the same level of polymerisation as the control. It can be also noted that the use of 20s light-curing time is sufficient to reach an effective polymerisation for the whole depth of specimens even with FRC incorporation.

The fourth null hypothesis was also rejected as a strong correlation (Pearson correlation coefficient \(r = 0.876, p=0.052 \)) was found between the \(I_R \) values and corresponding bottom/top VH ratio for all groups. A tendency toward higher microhardness ratio with higher \(I_R \) value was also seen in the positive cubic relationship detected (\(R^2 = 0.767 \)). In the control group, bottom surfaces tend to receive \(I_R \) and \(E_T \) comparable to those received by top surfaces; hence the highest bottom/top VHN ratio. In contrast, the incorporated unidirectional FRC in Group S tends to reduce light transmittance and energy delivered to bottom surfaces, leading to reduced DC and bottom/top VHN ratio.

The orientation of FRC was also found to have an influence on light transmittance. Comparing the VHN ratio and \(I_R \) values among FRC groups, the bidirectional FRCs used in SN and EN groups seem to enable deeper light transmittance than woven (Group P) and unidirectional FRC (Group S) despite the non-significant difference. The relatively high \(I_R \) values for the bidirectional FRC groups indicate that the light is less attenuated, in comparison with the other FRC groups, with a higher amount of energy delivered to the bottom surface and higher bottom/top VHN ratios. The densely
compacted microstructure observed for unidirectional and woven FRCs [50], in addition to the large thickness in relation bidirectional FRC, are potential explanations for the degree of light attenuation. In terms of the influence of FRC orientation on microhardness, the findings were inconclusive. Group SN with bidirectional FRC was found to have a significantly higher initial top VHN than other groups. However, no significant difference in post-cure VHN was detected among FRC groups.

This study followed a unique protocol to investigate the correlation between surface hardness and irradiance. However, it has some limitations. Ideally, the same specimen should be prepared and tested for its irradiance, initial VHN and post-cure VHN successively. Nevertheless, different specimens were used herein in order to standardize the time between light curing and immediate VHN measurement, and to avoid measuring already deformed areas in the successive tests following 48h water storage.

Overall, the incorporation of fibre within the bulk-fill RBC increased filler fraction and so improved the initial and post-cure VHN. Nevertheless, the degree of improvement in post-cure VHN was not dependent on the incorporated FRC since a comparable improvement was observed in the control group after storage. Light transmittance was also significantly influenced by FRC as reduced bottom/top VH ratios, mean I_R and E_T values were detected in FRC groups. From a clinical perspective, the incorporation of FRC within bulk-fill RBC might be a potential option to further improve mechanical properties without affecting aesthetics and DC. Though, longer curing time is required to compensate for the light attenuation and energy lost. Using FRC with bidirectional orientation is advocated as it tends to increase microhardness and allow better light transmittance.
4.6 CONCLUSIONS:

Within the limitations of this study, the following can be concluded:

1- FRC incorporation and post-cure storage significantly improve the top and bottom VHN for bulk-fill RBC.

2- The extent of improvement in post-cure VHN is not influenced by the incorporated FRC.

3- FRC incorporation significantly reduces irradiance and energy levels delivered to the bottom surface of RBC, and so a longer irradiation time is needed to achieve adequate polymerisation.

4- A strong relationship exists between bottom/top VHN ratio and irradiance delivered to the bottom surface of bulk-fill RBC.
4.7 REFERENCES:

Chapter 5: Effect of Fibre-Reinforcement and Orientation on the Edge-Strength of Direct Resin Composites
5.1 ABSTRACT:

Objectives: To evaluate the effect of incorporating differently-oriented fibre-reinforced composites (FRCs) on the edge-strength of direct particulate-reinforced composites (PRCs).

Methods: Forty-five rectangular-shaped specimens (12.5 x 4 x 2 mm) made of different FRC-PRC combinations were allocated into three equal groups (n=15): GD (Grandio, Voco), HT (Herculite Ultra, Kerr) and XB (X-tra base, Voco). Each group was subdivided into three subgroups (n=5) according to the incorporated FRC. Subgroups X and B were reinforced with unidirectional (Everstick C&B, Stick Tech Ltd) and bidirectional (Everstick Net, Stick Tech Ltd) E-glass FRCs respectively, while subgroup C had no fibre reinforcement (control). Specimens were tested with an edge-strength machine (CK10, Engineering Systems) by applying compressive load (1 mm/min crosshead speed) at 0.5mm from the margin. The force-to-failure (N) was recorded and two readings were obtained per specimens. Two-way ANOVA and Tukey’s post hoc tests were used to detect any significant difference among groups (a=0.05).

Results: The edge strength value (N) significantly improved after the incorporation of FRC in all groups (p<0.05). XB_B had the highest edge strength value (420.2±47.5 N), while GD_C had the lowest (38.7±3.9 N). A significant difference (p<0.05) in the edge strength values was found among the groups irrespective of the incorporated FRC. FRC orientation had a significant influence on the edge-strength (p<0.001).

Conclusions: Incorporating FRC improves the edge strength for all PRCs. The degree of this improvement is dependent on PRC type and FRC orientation. Bidirectional FRC tends to improve the edge strength better than unidirectional FRC.
5.2 INTRODUCTION:
In the modern era of metal-free dentistry, there is a growing tendency toward using metal-free restorative alternatives that provide not only excellent aesthetics but also enable superior durability. Fibre-reinforced composite (FRC) is one of such alternatives that allows favourable reinforcement of several materials without compromising their aesthetics [1-7].

FRC is a polymeric composite material composed primarily of fillers embedded in a resin matrix. In contrast to the widely used particulate-reinforced composite (PRC), the fillers in FRC are in form of fibres, long or short, rather than traditional particles [6, 8, 9]. This modification in filler form is intended to improve the physico–mechanical properties of PRCs and expand their clinical applications, especially under high-demanding oral conditions [10-12]. Previous studies have confirmed some enhancements in strength and durability of PRC once reinforced with FRC [12-22]. However, most of these enhancements have been proven in-vitro using the ISO-4049 standards, which are designed to examine the strength of relatively large surface areas and preclude edges. From a clinical perspective, this is not always relevant as the strength of restoration edge, or the so-called marginal integrity, can be crucial for restoration longevity, especially when minimal material thickness is employed [23, 24].

Restorative materials are relatively weaker at the edge, in comparison with other places [8]. The edge also tends to be highly-susceptible to temperature changes and frequent mechanical loadings that promote fracture [25]. In view of this, clinical precautions to avoid materials being loaded at their margins are always advisable. Nevertheless, this is not always achievable, especially when margins are subjected to heavy unanticipated eccentric loading that would disrupt the integrity and cause fracture [26]. Although marginal fracture is often a minimal chipping and could cause no detrimental effect on restoration retention, the resulted disruption in marginal integrity alone might have several negative consequences. Marginal microleakage, tooth sensitivity, secondary caries, staining and aesthetic problems, as well as increasing the tendency of catastrophic marginal fracture, are all complications that would necessitate clinical intervention [26, 27]. Therefore, it is essential to use a restorative material that offers not only excellent bulk strength but also allows superior marginal integrity.

The marginal integrity of restorative materials can be investigated in-vitro by using the concept of edge-strength. This concept indicates the ability of material fine margins to
resist fracture [26-29], and predicts how marginal integrity would be maintained upon loading *in-vivo* [29, 30]. It is mainly influenced by material strength as well as other experimental factors. [25-28, 31-34].

As FRC has the ability to improve the strength of PRCs [35], it can be hypothesized that it would also enhance the edge strength. To date, one study has investigated this assumption on indirect PRCs, and reported an enhancement in the edge strength [27]. Therefore, the aims of this study were i) to measure and compare the edge-strength of three commercial direct PRCs reinforced with differently-oriented FRCs, and ii) to investigate the effect of ‘FRC orientation’ and ‘PRC type’. Two null hypotheses were formulated: i) FRC and its orientation have no significant effect on the edge-strength, and ii) material type reinforced has no significant influence on edge strength or reinforcement efficiency effectiveness of reinforcement.

5.3 MATERIALS AND METHODS:

Three commercial direct PRCs, representative of three different categories, were reinforced with two differently-oriented FRCs and assessed for their edge-strength. Descriptions of all the materials used, their composition and manufacturer are listed in Table 5.1.
Table 5.1: Materials used to prepare all specimens.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Description</th>
<th>Composition</th>
<th>Lot No./ Shade</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandio® (GD)</td>
<td>Packable nanohybrid composite (increment-fill)</td>
<td>87 wt% fillers: SiO2 (20–50nm), glass-ceramic particles (1µm) Bis-GMA, TEGDMA.</td>
<td>630878A2</td>
<td>Voco, Cuxhaven, Germany</td>
</tr>
<tr>
<td>Herculite Ultra® (HT)</td>
<td>Packable nanohybrid composite for Enamel replacement (Increment-fill)</td>
<td>78 wt% fillers: SiO2 (20–50nm), barium silicate glass (0.4µm), prepolymerized aggregate (30–50µm), Bis-GMA, TEGDMA, Bis-EMA</td>
<td>327858A2 Enamel</td>
<td>Kerr, CA, USA</td>
</tr>
<tr>
<td>X-tra Base® (XB)</td>
<td>Flowable nanohybrid composite. (Bulk-fill)</td>
<td>75 wt% fillers. UDMA, Bis-EMA</td>
<td>1208392U</td>
<td>Voco, Cuxhaven, Germany</td>
</tr>
<tr>
<td>EverStick® C&B (U)</td>
<td>Unidirectional FRC</td>
<td>Pre-impregnated unidirectional E-glass fibres, PMMA, Bis-GMA</td>
<td>120507V</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td>EverStick® Net (B)</td>
<td>Bidirectional FRC</td>
<td>Pre-impregnated bidirectional E-glass fibres, PMMA, Bis-GMA</td>
<td>120424</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
</tbody>
</table>

Bis-GMA: bisphenol A diglycidyl dimethacrylate, TEGDMA: triethylene glycol dimethacrylate, UDMA: urethane dimethacrylate, Bis-EMA: ethoxylated bisphenol A dimethacrylate, PMMA: poly methyl methacrylate.

5.3.1 Specimen preparation:

Forty five bar specimens (12.5 x 4 x 2 mm) were fabricated from FRC and PRC using a sectional stainless steel (SS) mould. All specimens were allocated into three equal groups (n=15) according to the used PRC. In Group GD, Grandio (Voco) and Herculite Ultra (Kerr) were respectively used to prepare specimens, while Herculite Ultra (Kerr) was used to prepare specimens in Group HT. In Group XB, X-tra base (Voco) was used to prepare the specimens. Each group was further divided into three subgroups according to the incorporated FRC. Specimens in subgroup C (Control) were made purely of PRC with no fibre reinforcement, while pre-impregnated unidirectional (Everstick C&B, Stick Tech Ltd) and bidirectional (Everstick Net, Stick Tech Ltd) E-glass FRCs were used to reinforce specimens in Subgroup U and B, respectively.

All the tested specimens were prepared using a standardised layering technique. After the application of a separating medium (petroleum jelly) to the mould, an initial increment of PRC (0.5mm thickness) was packed into the base. The designated intermediate FRC layer was then incorporated and spread to the entire area to ensure
appropriate adaptation prior to light curing (40s). The final PRC increment was subsequently adapted using glass slide and pressure on the top of the mould before being light-cured for another 40 seconds. All specimens were cured using the same handheld curing device (Optilux-501, Optilux, Demetron, USA) with an irradiance output of 540 mW/cm². After curing, all specimens were abraded with 800 grit silicon carbide sandpaper to remove any excess flash and then stored in distilled water (37 °C) for one week prior to testing.

5.3.2 Edge strength testing:
Specimens were dried for 1h at room temperature (22±1°C) prior to testing. The measurement of edge-strength was executed using CK10 instrument (Engineering Systems, Nottingham, UK). A customized specimen locator made of epoxy resin was employed to ensure standardized positioning among specimens. A Vickers diamond indenter was used to apply vertical compressive load (1 mm/min crosshead speed) to the top surface of each specimen at 0.5mm distance from each edge, and the force-to-failure (N) was recorded. Two measurements per specimen were taken and the mean value was calculated.

5.3.3 Fractography:
The mode of failure for each specimen was microscopically examined under magnification (x40) using an optical microscope (Meiji EMZ-TR, Meiji Techno Co. Ltd, Tokyo, Japan). Three patterns of fracture were observed and classified accordingly into: i) minimal chipping, ii) edge fracture and iii) edge fracture with bulk cracking (Figure5.2, Figure 5.3 and Figure 5.4).

5.3.4 Statistical analysis:
All data were collected and analysed statistically using SPSS software (SPSS 19.0, SPSS Statistics, SPSS Inc., Chicago, IL, USA). A series of one-way and two-way ANOVA followed by Tukey’s post hoc were used to detect the significance of experimental factors on the edge-strength (α=0.05). Size effect calculations were performed to assess effectiveness of fibre reinforcement, and the effect-size correlation (rY,α) and Cohen’s d were reported for each reinforced subgroup.
5.4 RESULTS:
The mean force-to-failure (N) and standard deviation for each tested group is shown in Table 5.2, and presented graphically in Figure 5.1. The mode of failure for each tested specimen is reported in Table 5.3. Three representative fractured specimens demonstrating the different failure modes are shown in Figure 5.2 and Figure 5.3.

Table 5.2: Mean (SD) edge-strength values (N) for all groups.

<table>
<thead>
<tr>
<th>PRC</th>
<th>FRC orientation</th>
<th>Control (C)</th>
<th>Unidirectional (U)</th>
<th>Bidirectional (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD: Grandio</td>
<td></td>
<td>38.7±3.9a,1</td>
<td>56.8±5.9a,2</td>
<td>67.7±8.2a,3</td>
</tr>
<tr>
<td>HT: Herculite</td>
<td></td>
<td>82.3±6.4b,1</td>
<td>89.8±10.6b,1,2</td>
<td>105.4±17.0b,2</td>
</tr>
<tr>
<td>XB: X-tra Base</td>
<td></td>
<td>255.7±39.5c,1</td>
<td>186.7±28.3c,2</td>
<td>420.2±47.5c,3</td>
</tr>
</tbody>
</table>

* Different superscripts letters and numbers indicate statistical significance (p<0.05) within the same column and raw, respectively.
Table 5.3: The mode of fracture for all groups.

<table>
<thead>
<tr>
<th>Fracture mode</th>
<th>Grandio</th>
<th>Herculite</th>
<th>X-tra Base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GD_C</td>
<td>GD_U</td>
<td>GD_B</td>
</tr>
<tr>
<td>Minimal chipping</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Edge fracture</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Edge and bulk fracture</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

XB had the highest edge strength values with ‘edge/bulk fracture’ as the main mode of failure, while GD had the lowest values with ‘minimal chipping’ as the main fracture mode. Subgroup B exhibited the highest edge strength values in all three groups. Both experimental factors (FRC orientation and PRC type) had a significant influence on the edge strength ($p<0.001$).

The effect size parameters for both FRC types in each main group are reported in Table 5.4. Both FRCs exhibited a large effect on the edge strength but bidirectional FRC had the most effect. For the same FRC, different size effect values were found between the main groups. Bidirectional FRC had the highest effect when combined with GD. Unidirectional FRC exhibited a positive effect when combined with GD and HT, whereas it showed a negative effect with XB.

Table 5.4: The efficiency of different fibre reinforcement represented by Cohn’s d (d_{xy}) values for every main group.

<table>
<thead>
<tr>
<th>FRC orientation</th>
<th>Grandio</th>
<th>Herculite</th>
<th>X-tra Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidirectional</td>
<td>3.62(0.875)</td>
<td>0.86(0.393)</td>
<td>-2.00(-0.708)</td>
</tr>
<tr>
<td>Bidirectional</td>
<td>4.50(0.913)</td>
<td>1.80(0.668)</td>
<td>3.77(0.883)</td>
</tr>
</tbody>
</table>
Figure 5.1: Bar chart showing the mean (SD) edge strength for all tested groups.
Figure 5.2: Mode of failure for three representative specimens (top view where the load was perpendicularly applied), A) minimal chipping, B) edge fracture and C) edge/bulk fracture. Arrow head ➤ indicates crack propagation within specimen bulk.

Figure 5.3: Mode of failure for three representative specimens (side view of specimen edge), A) minimal chipping, B) edge fracture and C) edge/bulk fracture. Large arrow head ➤ indicates crack propagation within specimen bulk. Small arrow head ➤ indicates fracture line at edge surface.

Figure 5.4: Two representative fractured specimens made of XB with A) no reinforcement (control) and B) unidirectional FRC.
5.5 DISCUSSION:

The reinforcement of resin-composites by using an intermediate FRC layer has been advocated in the literature to enhance mechanical properties [7, 12]. Many authors have confirmed this positive enhancement in terms of flexural strength, modulus of elasticity and fracture toughness [2, 6, 15-20]. However, the effect of such reinforcement on marginal integrity has not been investigated. Accordingly, this study aimed to examine the influence of fibre reinforcement on the edge-strength of resin composite materials.

The first null hypothesis was rejected since the results showed a statistically significant difference (p<0.05) between the reinforced and unreinforced subgroups. All groups exhibited an improvement in edge-strength as a consequence of incorporating FRC, which means that fibre reinforcement has a positive influence on the edge strength irrespective of PRC type. This improvement can be explained by the fact that the presence of reinforcing-fibres within a resin-composite material enhances the overall strength by altering stress dynamics and increasing filler size and fraction [8, 21, 24, 36, 37]. Owing to their small diameter and preferential microstructure alignment, reinforcing-fibres can reduce crack propagation and enhance stress distribution when tested under a three-point bending configuration [2, 8, 21]. The same principle can be applied to the edge-strength testing as the compressive load seems to be partially absorbed by the incorporated FRC layer, which acts as a stress breaker to reduce crack propagation. An increased filler fraction also results from the incorporation of FRC, leading to an improvement in material toughness and edge strength [3, 27, 33]. This is also consistent with previous studies confirming the dependency of marginal integrity on material toughness, filler size and content [25], and reporting a lesser degree of marginal deterioration with the coarser and more heavily-filled composite materials [26, 28, 30, 33, 38].

The present study also found that FRC orientation has a significant influence on edge strength. A significant difference was detected between the reinforced subgroups in GD (p=0.043) and XB (p<0.001) but not in HT (p=0.147). Subgroup B had higher edge strength and effect size values than subgroup U in all main groups, which indicates that bidirectional FRC tends to reinforce material margins better than unidirectional FRC. Such a variation in values can be explained by the dissimilar levels of anisotropy induced as a consequence of different fibre orientation [8]. Unidirectional reinforcing-fibres induce anisotropic properties within polymeric materials [24], which means that
mechanical properties are altered according to the direction of loading, and the reinforcement is mainly in one plane. In contrast, bidirectional reinforcing-fibres induce orthotropic properties and the resultant reinforcement tend to be similar in two planes [22]. Previous studies have confirmed the superiority of unidirectional FRC under three- and four-point bending tests, and so advocated their use in applications where the direction of the highest load is known or likely to be single, like fixed partial dentures [11, 21, 22, 37, 39]. However, bidirectional FRCs have been reported to enable better toughness by acting as a crack stopper [15, 24, 35], and suggested in situations where extra toughness is mandatory, such as the margins of composite restorations [14, 40], which concurs with the findings of this study.

The second null hypothesis was also rejected as edge strength values were significantly different between the main groups (p<0.001), which indicates the dependency of edge strength on PRC type. This finding coincides with previous studies which have reported dissimilarity in edge strength values corresponding to the compositional variations in fillers (size, morphology and fraction) and polymeric network [26, 28, 30, 33]. Comparing the conventional PRCs, HT exhibited better edge-strength values than GD although their filler fractions indicate the contrary (78 wt% and 87 wt% respectively). This can be explained by the variation in filler size and morphology which are more influential on edge strength than filler content [26]. GD is formulated from irregular inorganic particles and heterogenous fillers, while HT is composed of homogenous spherical particles with large aggregates [41, 42]. Irregular fillers concentrate mechanical stresses on their angles and protuberances, whereas spherical-shaped particles and large aggregates are better in stress distribution [42, 43]. Likewise, XB exhibited the highest edge-strength values between the tested PRCs although its filler fraction is the lowest. This can be attributed to the differences in other parameters such as particle size, filler density and polymeric network, which cumulatively tend to alter fracture dynamics [44]. Monomer type and content also differ in XB, which can influence the edge strength [28, 45]. Interestingly, the efficiency of fibre reinforcement was also influenced by PRC type since different size effect values were demonstrated between the main groups. FRCs exhibited the best effectiveness in GD specimens, while the least effectiveness was demonstrated in HT specimens. This variation could also be attributable to the compositional difference between PRCs as well as the variation in fracture dynamics at margins [33, 46].
Minimal chipping was the most observed fracture mode in subgroups GDc and HTc, while edge/bulk fracture was the most frequent failure in subgroup XBc. However, after FRC incorporation, the main mode of fracture had changed. Edge fracture became more evident in groups GD and HT, while the frequency of edge/bulk fracture in XB had increased. These observations support the idea that the reinforcing fibres are capable of altering the fracture dynamics at the margins. However, this alteration is not always desirable. For example, the reinforcement of XB with unidirectional FRC led to significant reduction in the edge strength in comparison with the control. This reduction could be attributed to the large thickness of incorporated unidirectional fibres which considerably reduced material bulk and negatively affected crack propagation (Figure 5.4). In contrast, the minimal thickness of bidirectional FRCs favourably reinforced PRCs without reducing their bulk. Therefore, it is recommended to characterise the mechanical behaviour of a material before attempting to reinforce its margins.

Some limitations were encountered in this study. The major obstacle was to spread the unidirectional fibres evenly at the margins and the required depth as the fibres were strongly attracted to each other in the bundle form. However, a careful adaptation was performed to ensure standardized amount of fibres at the margins. Another limitation was only comparing two orientations of FRC made from the same material type (E-glass) and preimpregnated by the same manufacturer. This can limit the results obtained to that specific type of fibres. Potential studies comparing different FRC types, orientations and impregnations are suggested in the future.

Overall, the marginal integrity of direct resin-composite materials could be enhanced by incorporating FRC in their bulk. However, this enhancement is dependent on FRC orientation and material type. From a clinical perspective, incorporating FRC in composite restorations could be an option to enhance their marginal integrity, especially in situations where high masticatory force and consequent marginal deteriorations are expected. A bulk-fill PRC reinforced with bidirectional FRC seems to be the best material combination to achieve excellent marginal integrity.
5.6 CONCLUSIONS:

Within the limitations of this study the following can be concluded:

1- Fibre reinforcement of direct resin-composite materials significantly influences their edge strength.

2- The efficiency of marginal reinforcement is dependent on PRC type and FRC orientation.

3- Bidirectional FRC causes a significantly better marginal reinforcement than unidirectional FRC.
5.7 REFERENCES:

Chapter 6: Influence of Fibre-Reinforced Composite on Shear Bond strength with Ceramic and Metal Substrates.
6.1 ABSTRACT:

Objectives: To i) investigate the effect of incorporating fibre-reinforced composite (FRC) layer on the shear bond strength (SBS) between resin-composite and ceramic/metal substrates *in-vitro*, and ii) examine the influence of ‘substrate material’, ‘surface treatment’ and ‘FRC orientation’ on SBS values.

Methods: Sixty disc-shaped specimens with 120 surfaces (16 x 2 mm) made of ceramic (*e.max* press, Ivoclar-Vivadent) and metal alloy (*Incise LaserPFM*, Rainshaw) were bonded with FRC and particulate-reinforced composite (PRC) after surface treatment. Group-A (ceramic, n=60) were pre-treated with hydrofluoric acid etching (HF: 9.5% *Porcelain etchant*, Bisco, n=30) and tribochemical silica-coating (SC: *Cojet Sand*, 3M-ESPE, n=30), whereas Group-B (metal, n=60) had silica-coating (n=30) and air-abrasion (AA: 50µm alumina particles, n=30). Subsequent silanization (*EPSE Sil*, 3M-ESPE) and bonding (*Viso-bond*, 3M-ESPE) were performed for all surfaces. Flowable resin-composite (*GradioSO flow*, Voco) was applied as a thin layer prior to further FRC/PRC adhesion. Three equal subgroups (n=10) were assigned for each group/surface treatment according to the used FRC. Unidirectional (*Everstick C&B*, Stick Tech Ltd) and bidirectional (*Everstick Net*, Stick Tech Ltd) FRCs were incorporated at the interface in subgroups U and B respectively, while subgroup C had no reinforcement (control). A veneering PRC (*X-tra fil*, Voco) was then packed in single increment (5 x 5x 3 mm) and light-cured (20s). All specimens were thermocycled (1000 cycles, 5-55°C, 10s dwell) and water stored (37°C, 48h) prior to SBS testing. A universal testing machine (*Zwick Z020*) was employed to apply shear load (0.5 mm/min crosshead speed) at the interface and calculate SBS (MPa). Statistical analysis using 2-way ANOVA (*Tukey’s post hoc*) was performed (α=0.05).

Results: FRC and their orientation had a significant influence on SBS independent of surface treatment and material substrate (p<0.001). Subgroup C had the highest mean SBS values (15.4-17.96 MPa) while Subgroup U had the lowest (5.38-9.76 MPa). Surface treatments had a significantly different effect with Group A (p=0.011), but not with Group-B (p=0.642). With silica-coating, the substrate material had no significant effect on SBS (p=0.418).

Conclusion: Incorporating FRC at the interface between PRC and ceramic/metal substrates reduces SBS values. Bidirectional FRCs tend to provide superior support for veneering PRCs than unidirectional FRCs under shear loading.
6.2 INTRODUCTION:
Fibre-Reinforced Composites (FRCs) are becoming a popular restorative material in dental practice, partly due to their superior mechanical properties and diverse applications. They are used as removable denture frameworks [1], periodontal splints [2], post-core systems [3, 4], orthodontic retainers [5, 6], single crowns, conventional fixed partial dentures (FPDs) [7] as well as adhesive and implant-supported FPDs [8, 9]. Recently, they have also been employed as an intermediate layer to restore teeth and repair fractured restorations intraorally [10-14]. This application has highlighted the ability of FRC to reinforce repairing structures and withstand stresses at the interface by stopping crack propagation [11, 13, 15, 16].

As a traditional repairing technique, particulate-reinforced composite (PRC) is often bonded to a fractured tooth/restoration [17-19]. A strong adhesion between PRC and fractured substrates is essential for a successful repair. It provides retention for the repairing material, ensures an adequate stress distribution at the interface, improves the longevity and reduces the necessity for replacement [5, 16, 20-22]. However, it is frequently reported that the interface between PRC/substrate is significantly weak and demonstrates many bonding failures, adversely affecting the mechanical properties and long-term durability of restorations [13, 15, 16, 23-26]. Using FRC at the interface is a viable method of reinforcement as it could increase bond strength at the interface by changing stress dynamics and mode of failure [15, 16, 23, 24, 26-28].

The orientation of FRC is also an important factor in relation to reinforcement. Unidirectional fibres offer reinforcement in one direction that leads to anisotropic properties, while bidirectional and random fibres provide orthotropic and isotropic properties, respectively [16, 23]. This suggests that FRCs with different orientation can have a diverse influence on the adhesive interface of repaired substrates. Previous studies have confirmed this diversity when differently-oriented FRCs employed to reinforce the interface between PRC and tooth structures [15, 16, 23, 24, 26-28]. However, the advantages on the bond strength are still uncertain. Some studies investigating the influence of fibre reinforcement on the shear bond strength (SBS) with natural and bovine tooth structures have reported no significant difference between the reinforced and unreinforced substrates [23, 27], while others have exhibited a significant improvement once specific fibre orientation used [26, 28]. Nevertheless, no pervious study has investigated the SBS of FRC with ceramic or metal substrates.
Adhesion to ceramic or metal substrates differs from that with tooth substance. Some preparation and subsequent activation for ceramic/metal surfaces are crucial prerequisites to ensure satisfactory micromechanical locking and chemical bonding of resin-composites [21, 29-31]. Acid-etching, air-abrasion with aluminium oxides and tribochemical silica-coating are the most common modalities of surface treatments capable of promoting micromechanical roughness and surface wettability [19, 21, 29, 32-38]. Subsequent silanization is also highly recommended as it activates the prepared surfaces and encourages their chemical adhesion with resin-composite materials [29-31, 34]. Many studies have investigated the effect of different surface treatments on SBS with ceramic/metal substrates but there is no published study that examines such influence with the presence of an intermediate FRC layer at the interface.

In view of that, the main aim of this study was to investigate the effect of incorporating a FRC layer at the interface between resin-composite and ceramic/metal substrates on SBS. The influence of ‘FRC orientation’, ‘surface treatment’ and ‘substrate material’ was also examined. Three null hypotheses were formulated as the following: 1) FRC and their orientation have no significant effect on SBS, 2) Different surface treatments for ceramic and metal substrates have no significantly different effect on SBS, 3) The substrate material has no significant effect on SBS when the same surface treatment employed.

6.3 MATERIALS AND METHODS:
Two differently-oriented FRCs were used to reinforce the bonding interface between a resin-composite material and two crown fabricating materials (lithium disilicate ceramic and cobalt-chrome metal alloy), and then assessed for their bond strength. All the materials used in this study, their compositions and manufacturers, are listed in Table 6.1.
<table>
<thead>
<tr>
<th>Materials</th>
<th>Description</th>
<th>Composition</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS e.max press</td>
<td>Silicate-based ceramic. (LT BL 1 ingot)</td>
<td>70 wt% lithium disilicate crystal (Li₂Si₂O₅), 30% glassy matrix (K₂O, MgO, Al₂O₃, P₂O₅)</td>
<td>Ivoclair Vivadent, Schaan, Liechtenstein</td>
</tr>
<tr>
<td>Incise LaserPFM</td>
<td>Laser-sintered Co-Cr metal alloys</td>
<td>Co (65 wt%), Cr (24 wt%), W, Si, Fe, Mn</td>
<td>Renishaw plc, Gloucestershire, UK</td>
</tr>
<tr>
<td>EverStick® C&B</td>
<td>Pre-impregnated unidirectional fibres</td>
<td>E-glass fibres, PMMA, Bis-GMA</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td>EverStick® Net</td>
<td>Pre-impregnated bidirectional E-glass fibres</td>
<td>E-glass fibres, PMMA, Bis-GMA</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td>X-tra fil</td>
<td>Packable bulk-fill micro-hybrid composite</td>
<td>86 wt% filler (barium-boron-alumina-silicate glass), Bis-GMA, UDMA, TEGDMA</td>
<td>VOCO GmbH, Cuxhaven, Germany</td>
</tr>
<tr>
<td>GrandioSO flow</td>
<td>Light-cured, flowable Nano-Hybrid Composite</td>
<td>81 wt% filler: (SiO₂:20–40nm), Bis-GMA, Bis-EMA, TEGDMA</td>
<td>VOCO GmbH, Cuxhaven, Germany</td>
</tr>
<tr>
<td>Porcelain Etchant</td>
<td>9.5% buffered HF acid gel</td>
<td>Hydrofluoric acid, polyacrylamidomethylprpane sulfonic acid</td>
<td>BISCO Inc, Illinois, USA</td>
</tr>
<tr>
<td>Cojet® Sand</td>
<td>Silicatized airborne sand</td>
<td>30µm silica-modified corundum particles</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>ESPE Sil®</td>
<td>Silane coupling agent</td>
<td>Silane, Ethanol</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>Visio-Bond®</td>
<td>One bottle bonding agent</td>
<td>Tricyclodecane diacylate</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
</tbody>
</table>

6.3.1 Specimen preparation
Sixty disc-shaped specimens (16 x 2 mm) of IPS e.max press (Group A, n=30) and Incise LaserPFM (Group B, n=30) were prepared by one specialized milling centre using CAD/CAM technology. A virtual 3D model representing the master disc specimen with the required dimensions was digitally generated (in the form of .STL file) and used to fabricate all the specimens. The corresponding specialized CAD/CAM machines were employed to mill the ceramic discs (CORiTEC 250i, Imes-Icore GmbH, Eiterfeld, Germany) and laser-sinter the metal specimens (Incise™ DM10, Renishaw plc, Gloucestershire, UK) according to the manufacturer’s instructions. Upon completion, the specimens were finished and polished with a fine grit diamond bur and 100, 600, 1200 grit silicon carbide abrasive discs under water-cooling, using a semi-automatic polishing machine (Metraserv™ 250, Buehler, UK). Both surfaces in Group A specimens were ground, while one surface was polished in Group B specimens, leaving the other surface with the macro-roughness induced during the laser-sintering process. Later, all specimens were ultrasonically cleaned for 3min in deionised water prior to subsequent surface treatment and bonding.

6.3.2 Surface treatment and bonding procedure:
Prior to bonding, both surfaces of each specimen were treated differently. In Group A, surfaces (n=60) were treated with either silica-coating (n=30) or hydrofluoric (HF) acid etching (n=30), while Group B surfaces (n=60) were treated with either silica-coating (n=30) or air-abrasion (n=30). To perform silica-coating (SC), CoJet™ sand (3M-ESPE, Seefeld, Germany) was perpendicularly applied to the surface (10mm distance, 2.5 bar pressure, 15s) by using a chairside abrader (Cojet™ Prep Micro-blower, 3M-ESPE). Acid-etching (HF) treatment was performed as described by the manufacturer, using 9.5% HF (Porcelain etchant, Bisco Inc, USA) for 60s, followed by spray-water rinsing for 30s. Air-abrasion (AA) was performed on the unpolished surface of Group B specimens using aluminium oxide particles (10cm distance, 6 bar pressure, 10s). Subsequent silanization was performed for all surfaces by applying one thin layer of ESPE™ Sil (3M-ESPE, Seefeld, Germany) and then air-drying (30s).

6.3.3 Bonding procedure:
A bulk-fill resin composite material was directly bonded to each surface, with the aid of an intermediate FRC layer to reinforce the adhesional interface. According to the FRC layer incorporated, all specimens in each main group were randomly allocated into three
equal subgroups (n=10). Specimens in subgroup EU were reinforced by unidirectional E-glass FRC (EverStick C&B, Stick Tech Ltd), while bidirectional E-glass FRC was used in subgroup EN (EverStick Net, Stick Tech Ltd) Subgroup C was the control with no FRC incorporated.

A customized Teflon mould (5 x 5 x 3 mm) was employed in order to standardize the shape of bonded resin-composite and resultant specimens. The mould was set on the centre of the bonding surface before the bonding procedure started. A layer of resin bonding agent (Viso-bond, 3M-ESPE) was initially applied to the surface and then light-cured (10s). A thin layer of flowable resin composite (GrandioSO Flow, Voco) was then applied in all specimens to facilitate the adaptation of the intermediate FRC layer and enhance the bonding. For subgroup EU, one unidirectional fibres bundle (5mm length) was adapted and spread all over the area before being light-cured for 20s using a hand-held LED curing light (Elipar™S10, 3M-ESPE). The mould was then completely filled with one increment of PRC and covered with a glass slide (with 5kg load for 5min) prior to the final light polymerisation (20s). The same technique was followed when a single square sheet (5 x 5 mm) of bidirectional fibres was used as the intermediate layer in subgroup EN. The control subgroup had no intermediate layer, and PRC was directly packed over the flowable resin-composite layer and then light-cured (20s). Upon the completion, all the specimens had a final polish using polishing discs (Optidisc, Kerr, CA, USA), and stored in water (37°C, 48h). Figure 6.1 shows one representative specimen for each main group.

Figure 6.1: Two representative specimens. A) ceramic substrate and B) Co-Cr metal substrate
6.3.4 Thermocycling:
Before testing of the shear bond strength (SBS), accelerated thermocyclic aging for 1000 cycles (10s dwell) in water baths (5-55°C) was performed for all specimens to simulate the adverse effects of the oral environment. Further storing in water (37°C, 24h) and then air drying (1h) were done before SBS testing.

6.3.5 Shear bond testing:
A Zwick/Roell Z020 universal testing machine (Zwick GmbH, Ulm, Germany) with a single-sided chisel indenter was employed to apply shear loading (0.5 mm/min crosshead speed) along the adhesive interface between resin composite and metal/ceramic materials in each specimen. The shear bond strength (MPa) was then calculated according the following equation:

\[SBS = \frac{F_{\text{Max}}}{A} \]

Equation 6.1

Where \(F_{\text{Max}} \) is the ultimate load-to failure (N) and \(A \) is the bonded area (mm\(^2\)) of resin composite. The debonded surfaces were examined under light microscopy with high magnification (x30) in order to assess the failure mode. The mode of failure was reported for each specimen and classified as adhesive failure within substrate interface, adhesive within PRC interface, cohesive failure within FRC and mixed adhesive/cohesive failure.

6.3.6 Statistical analysis:
The data for all subgroups were analysed statistically with SPSS 22.0 (IBM SPSS Statistics, SPSS Inc., Chicago, IL, USA). A series of two-way ANOVA was used to investigate the influence of material substrate, surface treatment and FRC orientation on SBS. Post-hoc testing was accomplished with the Tukey’s test. The level of significance was set at \(\alpha=0.05 \).
6.4 RESULTS:
The means and standard deviations of SBS (MPa) for all subgroups are shown in Table 6.2 and graphically presented in Figure 6.2. The control subgroup had the highest mean strength values independent of type of substrate material and surface treatment, while EU had the lowest values. Ceramic specimens treated with HF etchant and without the intermediate FRC layer exhibited the highest shear bond strength among all subgroups (18.0±3.4 MPa).

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Ceramic (A)</th>
<th>Metal (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silica Coating</td>
<td>HF acid etching</td>
</tr>
<tr>
<td>C : Control (No FRC)</td>
<td>15.2±3.6<sup>a,1</sup></td>
<td>18.0±3.4<sup>a,2</sup></td>
</tr>
<tr>
<td>EU: Unidirectional FRC</td>
<td>9.1±2.1<sup>b,1</sup></td>
<td>9.8±2.8<sup>b,1</sup></td>
</tr>
<tr>
<td>EN: Bidirectional FRC</td>
<td>10.9±3.1<sup>c,1</sup></td>
<td>14.1±3.9<sup>c,2</sup></td>
</tr>
</tbody>
</table>

*Different superscript letters indicate a significant difference within same column.
** Different superscript numbers indicate a significant difference within the same row in each main group.

The use of intermediate FRC layer and its orientation had a significant influence on SBS regardless of the substrate used and its surface treatment (p<0.001). The influence of substrate material and the interaction with using FRC layer were found non-significant when the same surface treatment was employed (p=0.418, 0.515 respectively). Comparing the main groups separately, surface treatment had a significant influence (p=0.011) on SBS with no significant interaction with fibre content (p=0.426) when the ceramic material was the bonding substrate. For the metal alloy, surface treatment had no significance (p=0.642) but their interaction with fibre content was significant (p=0.007).

Analysis of the fractured specimens exhibited differences in fracture patterns among all the tested subgroups (Table 6.3). Examples of fractured specimens are shown in Figure 6.4. Control subgroups had mostly an adhesional failure while the reinforced subgroups demonstrated more cohesive fractures within their FRC layer. Surface treatment had also an influence on mode of failure. A high percentage (40%) of cohesive failure in ceramic substrate was evident within control subgroups, whereas metal substrate exhibited no cohesive failure.
Figure 6.2: Bar chart showing mean (SD) shear bond strength for all groups according to their substrate and surface treatment.
Table 6.3: Fracture mode distribution for all tested groups according to the surface treatment applied.

<table>
<thead>
<tr>
<th>Group & Treatment</th>
<th>Subgroup</th>
<th>Mode of Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Adhesive with (T)</td>
</tr>
<tr>
<td>Ceramic SC (HF)</td>
<td></td>
<td>Adhesive with substrate</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>6 (6)</td>
</tr>
<tr>
<td></td>
<td>EU</td>
<td>3 (1)</td>
</tr>
<tr>
<td></td>
<td>EN</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Metal SC (AA)</td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>EU</td>
<td>1 (6)</td>
</tr>
<tr>
<td></td>
<td>EN</td>
<td>1 (5)</td>
</tr>
</tbody>
</table>

* SC: silica coating, HF: hydrofluoric acid, AA: air abrasion.
* The numbers in and out brackets indicate the frequency of fracture corresponding to the surface treatment in and out brackets, respectively.

Figure 6.3: Examples of the failure modes observed following SBS testing, A) cohesive fracture in bidirectional FRC layer with metal, B) cohesive fracture in unidirectional FRC layer with ceramic, C) mixed adhesion/cohesion fracture at the ceramic interface with no reinforcement.
6.5 DISCUSSION:
This *in-vitro* study investigated the effect of incorporating FRC as an intermediate layer within resin-composite materials (PRC) when adhesion to ceramics or metal alloys is required. The influence of three experimental factors, namely FRC orientation, surface treatment and substrate material, on the shear bond strength (SBS) was accordingly considered.

The first null hypothesis was rejected since the use of FRC and their orientation significantly influenced SBS irrespective of the substrate material bonded or surface treatment used. Using an intermediate layer of FRC underneath PRC was advocated by many authors, whenever a repair of tooth structure or restoration is indicated, since it would improve fracture resistance and reduce subsequent failures [10, 11, 13, 21]. It was also premised on the idea that the presence of a FRC network would reinforce the relatively-weak substrate/PRC interface, and provide a stress-breaking shield that alters stress dynamics at the adhesive interface and reduces crack initiation and propagation [22, 26]. Studies investigating this technique were able to confirm its positive influence on the fracture resistance of bonded substrates [13, 20-22]. However, the potential benefits on adhesion and shear strength are still controversial. Some studies have reported positive influence of fibre reinforcement on SBS when natural and bovine teeth were used [26, 28], while others have found the effect is not significant [23, 27]. In contrast, the findings of this study show a significantly negative effect on SBS when both unidirectional and bidirectional FRCs were used to bond either ceramic or metal substrates. This could be explained by the fact that different substrate materials have different adhesive properties, and so ceramics and metal alloys are not expected to behave in the same way as natural or bovine teeth.

SBS values for all subgroups with bidirectional FRC were significantly higher than those with unidirectional orientation. This is in accordance with previous studies showing that SBS of resin-composite to FRC substrates relies on the load to fibre direction [16, 23, 26]. The highest shear resistance is reported when FRC orientation corresponds to the direction of shear load, while a lesser degree of resistance is reported for the fibres perpendicular to the load direction [16]. The difference in Krenchel factor (K_θ) (which describes the effectiveness of fibre reinforcement in relation to the direction of load) can also explain these findings [1]. According to their Krenchel factor, the unidirectional FRC have the highest effectiveness ($K_\theta=1$) when been loaded along their
orientation. However, their effectiveness drops to the minimal ($K_\theta = 0$) once they have been perpendicularly loaded [1]. In contrast, bidirectional FRC have fibres oriented along two different directions with ($K_\theta = 0.5$), and expected to exhibit better reinforcement than unidirectional FRC under the perpendicular shear load, which agrees with this study.

This study also reported a change in the failure mode of specimens as a consequence of utilizing different FRCs. As anticipated, the mode of fracture for most unreinforced specimens was adhesive in nature (80% for metal, 60% for ceramic) at the substrate/PRC interface. For those with reinforcement, the cohesive fracture within the FRC layer was the most observed failure mode (70% for unidirectional FRC and 50% for bidirectional FRC). This would indicate that the bond with substrates was stronger than the cohesive strength of the FRC. Such observations are in accordance with previous studies which reported similar changes in fracture patterns as a result of using FRC to reinforce enamel and dentine [15, 24, 28]. A considerable reduction in SBS values was found to accompany the cohesive fracture within FRC. This can imply that the incorporated FRC layer tends to be the weakest part in the ‘substrate-FRC-PRC’ assembly, leading to accelerated crack propagation at the interface. However, this introduced weakness is not entirely hostile since it could be beneficial to prevent undesirable failures in the bonding substrates. For example, the cohesive fractures within the ceramic substrates (Figure 6.3.C) were completely prevented as a consequence of FRC incorporation.

The second null hypothesis was partially rejected as the difference between surface treatments was found statistically significant in case of ceramic substrate ($p=0.011$) but not significant with the metal alloy ($p=0.642$). Comparing the ceramic treatments together, the acid-etching with HF was found to have a more influence on SBS values (17.96, 9.76, 14.08) compared with the tribochemical silica-coating (15.23, 9.10, 10.93). Similar findings have been reported, and the necessity of acid-etching silica-based ceramics in order to obtain a robust SBS with repairing resin-composite materials has been emphasised [29, 32]. However, some studies have reported no significant difference between acid-etching and silica-coating in terms of SBS when used to repair ceramic- and metal-based restorations [21, 25, 33, 35].

As a principle, acid-etching relies on selective dissolving of the glass matrix from ceramic superficial microstructure that causes physical alteration and promotes
micromechanical locking of resin-composite to the porous surface [17, 30]. Additionally, it generates unsaturated oxygen bonds which enhance surface wettability and serve as bonding partners for the subsequent silanization [32]. Silica-coating, on the other hand, has a different mechanism of action which relies on the impact of silica modified micro-particles (30µm) to produce micromechanical roughening and tribocochemical coating [38]. A blast of silica-modified corundum particles under high air-pressure (2-3 bars) causes not only surface abrasion (up to 15 µm depth) but also releases high levels of heat utilized to generate chemical bonds between silica and the microblased surface [31]. Such silica coating provides an additional micromechanical roughening within the surface, and also improves the chemical affinity to silane coupling agents [31, 34]. Owning to its unique crystalline microstructure, lithium disilicate ceramic is considered highly susceptible to HF acid-etching which enables a higher degree of surface micromechanical roughening compared with silica-coating [29, 32].

For metal substrates, air-abrasion and silica-coating have been used in order to promote surface micromechanical roughness. Although both techniques share the same mechanism of action, no tribocochemical silica-coating occurs with the former technique which is postulated to offer lower values of SBS accordingly [38]. However, both treatments exhibited no significant difference on SBS of metal specimens, but with a relative superiority of the air-abrasion. This can be explained by the macro-roughness induced during the laser-sintering process on the surfaces treated with air-abrasion [39]. This roughness was kept on one side of metal specimens with the intention to represent the porcelain-bonding surface in PFM restorations previous to repairing. This additional roughness demonstrated a positive influence on SBS of the unreinforced metal subgroups by increasing the retention of resin-composite. However, it seems to have an adverse effect on FRC layer as it prevents effective fibre/surface adaptation and causes stresses concentration within FRC. This explains the significant interaction (p=0.007) reported between surface treatment and FRC orientation in metal specimens.

The third null hypothesis was accepted as no significantly different effect (p=0.418) exhibited between ceramic and metal substrates on SBS when the same surface treatment was employed. It is established that different material substrates have dissimilar adhesional behaviours owning to the variation in their superficial microstructure [36]. Previous studies have reported a variation in SBS values when a resin-composite material bonded to combination substrates, like enamel/dentine or
ceramic/metal, and highlighted the need of using selective surface treatments to ensure adequate adhesion [24, 25, 36, 37, 40]. Although metal alloys are less prone to air-abrasion due to their superior mechanical properties compared with ceramics, the use of silica-coating and silanization tends to produce a comparable effect on their adhesive behaviour with resin-composite. Many studies have supported the use of a silica-coating/silanization technique to repair fractured restorations with exposed metal and ceramic structures [17, 19, 21, 25]. It is claimed that this would standardize the adhesion between both substrates and resin-composite, producing higher SBS values and reducing the need for replacement, in comparison with other repair modalities [25].

The process of silanization itself is considered as the most effective method for improving resin bonding with silica-based ceramics and metal alloys [29, 30]. The bifunctional molecules of silane form chemical bonds with the silica or unsaturated oxygen layers on the bonding substrate from one side, and the resin molecules from the other side through a process of polymerization [31, 34]. Furthermore, the surface wettability is also enhanced by the presence of silane, which promotes resins penetration within a substrate microstructure [25, 30]. Therefore, this study used silanization as a standard subsequent treatment for all the specimens. Low viscosity (flowable) resin composite, as recommended by many authors, was also used in order to facilitate fibre adaptation and enhance resin penetration [5, 13, 26, 27]. However, some studies have reported that there is no significant benefit of using this technique on SBS [24]. Thermocycling and water storage were also used to simulate the adverse effect of oral environment on SBS and confirmed in previous studies [41].

Some limitations were encountered during the fabrication of specimens, especially when air abrasion was used. The macro-roughness induced from the laser sintering process has led to a difficulty during the adaption of FRC to specimen surface. The relatively large spikes on the surface increased the stress concentration and caused a separation of the fibres from its bundle form, leading to some degree of misdistribution, especially when a unidirectional FRC used. This explains the massive redaction of SBS in subgroup B_{EN} (with air abrasion). Another limitation was the only use of preimpregnated E-glass FRC to investigate the effect on SBS, which limits the results to that type of material. Potential studies comparing different FRC types, orientations and impregnations are suggested in the future.
To summarize, the incorporation of an intermediate FRC layer between resin-composite and ceramic/metal substrate tends to have a negative effect on SBS despite the confirmed positive effect on fracture resistance. This seems to be due to the weak cohesion between the reinforcing fibres themselves, which could not withstand high shear stresses and so fractured cohesively. From clinical perspective, this technique could be beneficial when a provisional adhesion to ceramic/metal restorations is indicated since it would reduce the possibility of undesirable fractures in bonding substrates. Moreover, it could be essential to modify the loading direction away from shear when FRC are indicated to repair or bond restorations. The use of bidirectional FRCs instead of unidirectional FRC is also recommended as their reinforcement tends to be more effective against shear loading.

6.6 CONCLUSION:
Within the limitation of this study, the following conclusions were drawn:
1- FRC has a negative influence on SBS when incorporated between resin-composite and metal/ceramic substrates.
2- Bidirectional FRC performs better than unidirectional FRC under shear loading.
3- Acid-etching, as a surface treatment, promotes better adhesion than silica-coating with ceramic substrates. With metal substrates, silica-coating and air-abrasion have the same influence on SBS.
4- Using silica-coating, both ceramic and metal substrates has the same influence on SBS.
6.7 REFERENCES:

Chapter 7: Fracture Load of Fibre-Reinforced Composite Bridges after \textit{in-vitro} Chewing Simulation
7.1 ABSTRACT

Objectives: To investigate the effects of framework design and dynamic fatigue on initial fracture (IF) and final fracture (FF) loads of directly-fabricated 3-unit inlay-retained fibre-reinforced composite fixed partial dentures (FRC-FPDs).

Methods: Twenty FRC-FPDs (n=20), replacing a lower first molar by two inlay-retainers, were directly fabricated over duplicated acrylic teeth. Woven polyethylene fibres (Construct, Kerr) were used to fabricate the main framework of all samples. Type-I specimens (n=10) had one additional bidirectional E-glass fibre sheet (Everstick Net, Stick Tech Ltd) perpendicularly-embedded within the pontics, while Type-II had an additional woven fibre bundle (Construct, Kerr). Two equal subgroups were allocated from each group. Subgroup A (n=5) was the control, while subgroup B (n=5) specimens were cyclically-loaded in a chewing simulator (240,000 cycles, 5 kg). All specimens were loaded in a universal testing machine with a compressive load (N) applied along the central fossa (1 mm/min crosshead speed) until fracture. IF and FF values were recorded for each specimen. A series of paired and independent t-tests were used to detect any statistical difference within subgroups (α=0.05).

Results: All specimens in subgroup B survived the dynamic fatigue with no signs of fracture. Under static loading, Type-I_A specimens exhibited the highest mean IF (623.8±115.2 N) and FF values (1598.6±361.8 N), while specimens of Type-II_B scored the lowest (421.6±121.9 N and 716.0±72.1 N respectively). Both ‘framework type’ and ‘dynamic fatigue’ had a significant influence on FF (p<0.001), but IF was significantly affected by ‘framework type’ alone (p<0.001).

Conclusion: Modifying the framework of FRC-FPDs by incorporating additional reinforcing fibres within the pontic improves load-bearing capacity. The design of this modification significantly affects the outcome values, and the perpendicular configuration of incorporated bidirectional fibres provides the best fracture resistance.
7.2 INTRODUCTION:

In the modern era of metal-free minimally-invasive dentistry, replacing missing posterior teeth with a conventional porcelain fused-to-metal fixed partial denture (FPD) has become undesirable. An implant-supported prosthesis is often considered a ‘gold standard’ although it is not always feasible due to contraindications and patient preference [1]. All-ceramic materials and fibre-reinforced composite resins (FRC) are alternatives that have been clinically well-practiced as adhesive inlay-retained FPDs, especially where abutment teeth have carious lesions or exiting fillings adjacent to the saddle area [2]. Both materials are considered as metal-free, minimal-invasive, yet durable for replacing missing teeth in anterior and posterior areas. They are advocated to provide restorations with excellent aesthetics, good adhesion and favourable mechanical strength [3, 4]. However, the brittleness of all-ceramic materials means that a larger amount of tooth substance removal is needed in order to accommodate sufficient connector dimensions, thus limiting their clinical application [5]. On the contrary, FRC-FPDs retain the advantage of minimal invasion, provide broader applications, directly or indirectly, with better cost-effectiveness and maintainability [6]. Consequently, their implementation has gained increasing interest recently.

FRC-FPDs are generally made from supporting FRC frameworks veneered by particulate-reinforced composite (PRC) to reproduce the anatomical morphology, and then resin-bonded to the abutments. Many factors have been identified to have an influence on the clinical performance and lifespan of such restorations, including fibre type [7], orientation [8], position [9, 10], volume fraction [11, 12], abutment preparation [13-15] and also framework design [16]. High-volume fraction frameworks have been found to provide better clinical performance than low-volume fraction frameworks due to their better support for the veneering composite [11]. A framework with a curved bundle of fibres following the contour of the tension side of the pontic has also been reported to enable a better stress distribution than the ‘traditional’ straight fibres connecting abutments together [17]. This design of framework has recently been advocated and validated using finite element analysis [5, 10, 18]. However, no study has attempted to investigate the influence of combining the two bundles together. Superior strength and load-bearing capacity are also reported when FRC frameworks with unidirectional fibres are used since they have the highest Krenchel factor [7]. However, fibres with bidirectional or woven orientations have a better potential to arrest crack propagation and support veneering composite, respectively [8, 19].
In a recent systematic review, the mean survival rate of FRC-FPDs was reported to be 77.5% for 5 years [20], while it is 88.6% for all-ceramic FPDs [21], 94.3% for zirconia-ceramic [22] and 94.4% metal-ceramic FPDs [21]. Delamination at the interface between the fibres and matrix of veneering composite represents the main mode of failure [14, 20, 23]. The connectors, loading points and pontics are also reported as the weakest parts where most fractures were observed [2, 14, 15]. All of that implies the necessity for further reinforcements. A few studies have attempted to address these problems, either by embedding additional reinforcing fibres within pontics to limit delamination [16, 24], or by altering the layout of the constituent materials within pontics or connectors to improve stress distribution [5, 10, 16], or even using different pontic materials and occlusal morphologies [25, 26]. To the authors’ knowledge, no study investigates the effect of combining such modifications on the performance of FRC-FPDs.

The aims of this study were i) to propose two new framework designs for direct inlay-retained FRC-FPDs, and ii) to investigate their performance after chewing simulation in-vitro. The effect of two experimental factors, namely ‘framework design’ and ‘dynamic fatigue’, on initial (IF) and final fracture (FF) load values was investigated. The null hypothesis tested was that neither ‘framework design’ nor ‘fatigue condition’ would demonstrate a significant influence on IF nor FF loads.

7.3 MATERIALS AND METHODS:

Twenty specimens (n=20), representing directly-fabricated inlay-retained fibre-reinforced composite fixed partial dentures (FRC-FPD), replacing a lower first molar by two inlay-retainers, were tested for their initial (IF) and final fracture (FF) load values in-vitro. The materials used to fabricate specimens are all listed in Table 7.1.
<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
<th>Composition</th>
<th>Lot No. /Shade</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-tra®Fill (XF)</td>
<td>Bulk-fill nanohybrid composite</td>
<td>86 wt% filler, Bis-GMA, UDMA, TEGDMA</td>
<td>1209351 U</td>
<td>Voco GmbH, Cuxhaven, Germany</td>
</tr>
<tr>
<td>X-tra®Base (XB)</td>
<td>Flowable bulk-fill nanohybrid composite</td>
<td>75 wt% filler, Aliphatic dimethacrylate, Bis-EMA</td>
<td>1208392 U</td>
<td>Voco GmbH, Cuxhaven, Germany</td>
</tr>
<tr>
<td>Construct™ (P)</td>
<td>Non-impregnated woven FRC</td>
<td>Cold gas plasma-treated pre-silanated ultra-high strength polyethylene fibres (1mm).</td>
<td>2944115</td>
<td>Kerr, USA</td>
</tr>
<tr>
<td>EverStick®Net (EN)</td>
<td>Pre-impregnated bidirectional FRC</td>
<td>E-glass mesh, PMMA, Bis-GMA,</td>
<td>120424</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td>Stick Resin</td>
<td>Unfilled light-cured resin</td>
<td>Bis-GMA, TEGDMA</td>
<td>1203211</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
<tr>
<td>ESPE™ Sil</td>
<td>Silane coupling agent</td>
<td>3-methacryloxypropyl trimethoxysilain, ethanol</td>
<td>529392</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>Visio-Bond</td>
<td>Light-curing bonding agent</td>
<td>Dicyclopentylidimethylene diacrylate, 2-propenoic acid, 2-metyl, 2-(2-hydroxyethyl)(3-methoxypropyl) (amin P ethyl ester)</td>
<td>526323</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>Cojet™ Sand</td>
<td>Blast-coating agent</td>
<td>Corundum particles coated with silica, particles size 30µm</td>
<td>534151</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
</tbody>
</table>

PMMA: poly methyl methacrylate, **Bis-GMA:** bisphenol-A-glycidyl dimethacrylate, **TEGDMA:** triethylene glycol dimethacrylate, **BisEMA:** bisphenol-A-dyethoxy dimethacrylate, **UDMA:** urethane dimethacrylate.
7.3.1 Specimen preparation:
A mandibular artificial model with plastic teeth (KaVo model, KaVo dental GmbH, Biberach, Germany) was used with a missing lower right first molar. Two box-shaped inlay cavities, representing the future bridge retainers, were prepared on the second premolar and molar, using a high speed air turbine with coarse grit shoulder end diamond bur, according to specific dimensions (Figure 7.1). Following the duplication of both prepared teeth with silicon duplicating material (Gemini, Bracon, East Sussex, UK), twenty identical premolars and molars were constructed from cold-cure acrylic resin. To simulate the periodontal ligament (PDL) space within the future specimens, the duplicated teeth were pre-coated with 0.2mm-thickness wax, prior to mounting within epoxy-resin (B&K Resins Ltd, Bromley, UK). A standardised position of abutment teeth, with 11mm pontic space and 2mm base support below CEJ, was ensured through the mounting process using a custom-made holder made from a vacuum-formed matrix. Once the epoxy-resin was set, the wax coatings were replaced by light-bodied impression material (Aquasil LV, Dentsply, USA) to reproduce PDL elasticity.

7.3.2 FRC-FPD fabrication:
Twenty FRC-FPDs (n=20) were directly-fabricated over each of the mounted teeth, utilizing two bundles of woven ultrahigh molecular weight polyethylene (UHMWPE) fibres (Construct, Kerr) as the main supporting framework (Figure 7.2). Prior to the fibre adaptation, sandblasting (Cojet™Sand, 3M-ESPE) and silanization (ESPE™Sil, 3M-ESPE) pre-treatments were performed to the cavities according to the manufacturer’s instruction, followed by the application of a bonding agent (Viso-Bond, 3M-ESPE) which was cured for 20s. A thin layer of flowable bulk-fill composite (X-base, Voco) was then applied to the cavities to facilitate FRC adaptation. The two fibre bundles were impregnated with an unfilled resin (Stick resin, Stick Tech Ltd) for 5 minutes before being adapted and cured (20s) within the inlay cavities. One bundle (24mm) was curvedly adapted between the abutments to reinforce the pontic at the tension side, while the other bundle (18mm) was straight. A high-filled bulk resin-composite (X-tra fill, Voco) was adapted between the fibres to build the pontic core and then light-cured (20s).

Two types of frameworks with different additional reinforcing fibres were subsequently fabricated. Type-I (n=10) had a bidirectional E-glass fibre sheet (6 X 5 mm) (Everstick
Net, Stick Tech Ltd) perpendicularly-adhered to the core, whereas Type-II had an additional bundle (12mm) of the UHMWP fibres (Construct, Kerr) wrapped around the core in an inverted U-shape fashion. A thin layer of flowable composite (X-tra base, Voco) was used to facilitate fibre adaptation to the core before the additional fibres were light-cured in place. To reproduce the final specimen shape in standardised way, a veneering resin-composite (X-tra fill, Voco) was applied and cured through a clear vacuum index produced from the original model. A handheld LED curing light (Eliper™ S10, 3M-ESPE, USA) was employed to perform all light-curing steps. Coarse/medium finishing discs (OptiDisc, Kerr, Switzerland) were used for specimen finishing and polishing. All specimens were stored in water (37°C, 48h) prior to further testing.

Figure 7.1: Diagrams showing A) the specimen assembly and dimensions of inlay cavities in each abutment, B) Type-I fibre framework, and C) Type-II framework. The dimensions of major connectors were 5mm height, 2.5mm width at premolar side and 3.5mm width at molar side. The clearance of the pontic base from the PMMA base was 3mm, ensured by using a custom silicon index beneath the pontic during fabrication.
Figure 7.2: 3D representations of a specimen during the preparation, A) silica coating for the cavities to enhance adhesion, B) bonding of the main FRC framework within the inlay retainers using bonding agent (Viso-Bond) and flowable PFC (x-tra Base) , and C) full build-up for the pontic with packable bulk-fill PRC (X-tra fil).
7.3.3 Chewing simulation:
An *in-vitro* chewing simulator machine (*CS*-4.2, *SD Mechatronic, Germany*) was employed to simulate the effect of mastication and dynamic fatigue. Two subgroups were allocated equally from each framework type. Subgroup A (n=5) was the control with no pre-cyclic loading applied, whereas subgroup B included specimens were cyclically loaded for 240,000 cycles (5kg, 1.8Hz) in the chewing machine using a stainless steel stylus. The stylus was positioned to axially load the pontic with 2.5mm vertical movement towards the central fossa and then 0.7mm oblique movement over the lingual groove of buccal cusps (Figure 7.3). The contact point and buccal movement were checked by 40µm-thick articulating paper (*Hanel, Coltene, Switzerland*). To enable periodic recovery of the specimen, the stylus was automatically left off the specimen every 2500 cycles for a 5s period. After the chewing simulation, the specimens were each evaluated for cracks or signs of fracture using an optical microscope (*Meiji EMZ-TR, Meiji Techno Co. Ltd., Tokyo, Japan*) with high magnification (x40), and then stored in water (37°C) until further testing.

Figure 7.3: One representative specimen mounted in CS 4.2 machine, A) during the cyclic loading with the stylus moving vertically to the central fossa and then obliquely over the buccal groove, and B) after the completion of cyclic loading.
7.3.4 Static loading to fracture:
All the specimens (fatigued and control) were statically loaded to fracture in a universal testing machine (Zwick Z020, Zwick/Roell GmbH, Germany). A steel ball indenter (4mm Ø) was used to apply a compressive load along the pontic central fossa, with 1 mm/min crosshead speed. Tin foil (0.2mm thickness) was inserted between the indenter and the tested specimen to enable an even stress distribution. Initial fracture (IF) and final fracture (FF) loads (N) were recorded for each specimen. Fracture initiation was recognised as an initial sharp decline in the stress/strain curve. The mode of fracture was reported for each specimen as horizontal cracks, delamination or vertical midline fracture.

7.3.5 Statistical analysis:
Data collection and statistical analysis were performed with SPSS software (IBM SPSS statistics 20, Chicago, IL, USA). Mean and standard deviation (SD) values were calculated for IF and FF loads. The collected data were found homogenous and normally-distributed according to Levene’s test (p>0.05) and histograms. A two-way ANOVA was conducted to verify the statistical effect of framework types and dynamic fatigue on the observed fracture values. A series of paired and independent t-tests was performed to detect differences between IF and FF values in the same and different groups, respectively. The Weibull statistics of fracture probability for both framework types were performed to identify the Weibull modulus (m) and the characteristic strength (σθ) (the strength value that 63.2% of the specimens would fail up to) [27].
7.4 RESULTS:

7.4.1 Quantitative findings

Static initial (IF) and final fracture (FF) loads for FRC-FPDs with different framework types and loading condition are shown in Table 7.2, and graphically represented in Figure 7.4. Type-I_A had the highest IF (623.8 N) and FF values (1598.6 N), while Type-II_B had the lowest (421.6-716.0 N respectively). FF values were always significantly higher than IF values (p<0.05) with the highest difference among Type-I_A (974.8 N) and the lowest in Type-II_B (294.4 N). A positive linear correlation was found between IF and FF loads for both framework types (Figure 7.5).

<table>
<thead>
<tr>
<th>Group (framework type)</th>
<th>Subgroup A (Control) (without previous fatigue)</th>
<th>Subgroup B (Fatigued) (with previous fatigue)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IF</td>
<td>FF</td>
</tr>
<tr>
<td>Type-I (with unidirectional FRC)</td>
<td>623.8±115.2a</td>
<td>1598.6±361.8b<sup>1</sup></td>
</tr>
<tr>
<td>Type-II (with bidirectional FRC)</td>
<td>505.2±104.2a</td>
<td>1125.8±278.2c<sup>2</sup></td>
</tr>
</tbody>
</table>

Different superscript letters and numbers indicate statistical significance with intra- and inter-groups, respectively.

Both framework type and cyclic loading had a significant influence on FF load (p=0.002) with no significant interaction (p=0.854), whereas the framework type only had a significant effect on IF load (p=0.005). Cyclic loading had no significant effect on IF values (p=0.204) nor interaction (p=0.591). According to Weibull statistics, represented in Figure 7.6 and Figure 7.7, the FRC-FPD specimens with Type-I framework had a better performance (m=0.954, σθ=1555.4 N) than those with Type-II framework (m=0.836, σθ=1074.5 N).
Figure 7.4: Bar chart showing the mean (SD) values of static IF and FF values for all tested groups with (B) and without previous thermocycling and dynamic fatigue (A).
Figure 7.5: Scatter plot showing the positive linear correlation between initial fracture and final fracture in both framework types.
Figure 7.6: Scatter plot showing the Weibull modulus (m) for both framework types.
Figure 7.7: Scatter plot showing the characteristic strength (σ_0) for both framework types.
7.4.2 Qualitative findings:

Subsequent to the chewing simulation, the inspection for subgroup B specimens exhibited 100% survival with no cracks/signs of fracture. Analysis of all the fractured specimens following static loading exhibited various modes of fracture as shown in Table 7.3. Failures within Type-I framework were mainly delamination, while the vertical fracture dominated failures of Type-II framework (Figure 7.8).

Table 7.3: The mode of fracture exhibited in all tested specimens.

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>Type-I_A</th>
<th>Type-I_B</th>
<th>Type-II_A</th>
<th>Type-II_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal cracks</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Delamination</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Midline fracture</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 7.8: Examples of the fracture modes observed in FRC-FPDs after static loading, A) horizontal cracks extending from underneath the major connectors to the central fossa (loading point), B) delamination fracture with a separation of a mesio-lingual veneering PRC and C) midline (catastrophic) fracture extending vertically between both retainers.
7.5 DISCUSSION:

Two new fibre frameworks for FRC-FPDs were proposed and tested based on the current available evidence in the literature. The influence on fracture resistance (represented with IF and FF values) of FRC-FPDs was compared between the frameworks. Both frameworks shared the same layout of the main framework but differed in the form of additional FRCs incorporated to support the veneering resin-composite. A bidirectional fibre sheet incorporated perpendicular to the main FRC framework was used to modify Type-I framework, while Type-II had a woven fibres bundle perpendicularly-incorporated and wrapped around the pontic core. The rationale of such modifications was to allow more effective support for the pontic cusps and overall veneering resin-composite than the main fibre framework could provide alone. Although a high compressive strength can be offered by the main FRC framework, the support for the veneering composite is not as effective since the interface between veneering resin-composite and framework is weak [15, 24], which explains the frequent delamination failure of FRC-FPDs reported in previous studies [4, 10, 14, 16, 20, 23]. Therefore, the present study attempted to overcome this problem by incorporating additional FRC at the interface with the veneering resin-composite to aid in enhancing adhesion, increasing support, conquering shear and tensile stresses, and consequently reducing delamination failures.

Comparing the performance of both frameworks, specimens with Type-I framework had significantly better IF (589-624 N) and FF (1144-1599 N) values than those with Type-II framework (IF: 422-505 N, FF: 716-1126 N) independent of the fatigue condition applied. This variation in fracture resistance means that Type-I framework has higher load-bearing capacity and threshold of fracture than Type-II framework. The Weibull analysis also confirmed the superiority of the Type-I framework and revealed that it had more favourable Weibull modulus and characteristic strength values than Type-II framework, and therefore better failure behaviour and performance [27]. Nevertheless, this does not rule out that both framework types could survive the mean masticatory force that human can produce clinically at the molar region (500-600N) [28]. Consistent load-bearing capacity values have been reported previously with relatively similar pontic span (11mm) and retainer configuration (box inlay-retainers) [15]. However, the literature shows a wide range of load-bearing capacity values reported in previous studies (500N-2500N) [24, 29], which can be explained by the differences in test set-up, pontic span, materials and type of FRC incorporated.
A possible explanation for the variation between groups in the present study can be attributed to the difference in Krenchel factor. According to Krenchel [30], the efficiency of reinforcement for fibres loaded at a given direction, or the so-called ‘Krenchel factor (K_0)’, is highly influenced by the fibre orientation. The higher K_0 found for fibres the better efficiency of reinforcement provided in that direction. Consequently, fibres with bidirectional orientation have been reported to have higher K_0 (=0.5) under a perpendicular loading, and therefore provide better effective reinforcement than those with woven orientation (K_0 =0.25) [2, 8, 31], which supports the findings of the present study. Another potential explanation is the wider area of reinforcement and the more perpendicular occlusal support allowed by the bidirectional fibre sheet compared with the woven bundle. Such configuration of bidirectional FRC tends to stop crack propagation, delay fracture initiation and provide support for the occlusal veneering resin-composite better than the narrow curved woven bundle [8].

Specimens with Type-II framework also experienced more midline pontic fractures, yet, fewer delamination failures than those with Type-I framework. This observation certifies the influence of framework design on fracture dynamics and support for the veneering material. It also suggests that the configuration of Type-I framework tends to provide a wider support for the cusps and occlusal resin-composite, while the configuration of Type-II framework tends to enable a more retention for the buccal/lingual resin-composite. Previous studies comparing the influence of different framework modifications within the pontic of FRC-FPDs have reported similar findings [16, 24, 25, 32]. One study has found that the perpendicular incorporation of additional unidirectional fibre bundles reduces the delamination and provides the highest load-bearing capacity, in comparison with the incorporation of parallel unidirectional bundles or multidirectional fibres veil. [24]. Another study has also claimed reduction in the delamination failure and enhancement in load bearing capacity as a consequence of modifying the pontic framework with double perpendicular unidirectional fibres or short random FRC [16]. Nevertheless, the framework modifications used in the current study have not been previously investigated.

All specimens in this study were supported with two main bundles of FRCs in order to ensure high volume fraction of reinforcing fibres. Enhanced reinforcement and strength have been reported as a consequence of using high volume FRC-FPDs [11, 12]. The curved fibre bundle within the tension side of the pontic provides excellent stress distribution and crack growth resistance [5, 10, 18], while the straight bundle within the
compression side enables the required support for veneering composites and enhances the stiffness [15, 32, 33]. The employment of the box-shaped design for inlay cavities was also beneficial. It was not only a preservative approach but also provided the required space to include the two fibre bundles as needed, which permitted high fibre content and large connectors to resist stress concentrations at that area [15, 33]. This design also hindered crack propagation within the retainers as the small boxes tend to absorb great energy level before failure [14].

The chewing simulator was a valuable tool to investigate the performance of FRC-FPDs in-vitro since it allowed an accelerated simulation of the occlusal load in a standardised clinical fashion. The mean biting force (50N) was used to induce dynamic fatigue equivalent to one year of average mastication [34, 35]. Such dynamic fatigue was found critical to the structural integrity of FRC-FPDs as the FF values for subgroup B specimens were significantly lower than those for subgroup A specimens. This detrimental effect is potentially attributed to the cyclic stresses affecting the fibre-matrix interface of FRCs and causing debonding [11, 36]. Upon further static loading, the length of the debonded interface will propagate until abrupt load reduction and large acoustic emission observed. This event represents the point of fracture initiation (IF) which corresponds to the separation of entire fibre length [31, 37]. Despite the non-significant effect of dynamic fatigue on fracture initiation, it may still be responsible for lowering the threshold of fracture initiation in subgroup B.

With the intention of limiting the inconsistency that would result from the use of natural human teeth, this study used duplicated acrylic teeth as abutments. The variability of abutment dimensions, the discrepancies among the multiple preparations and the variation of dentine structures are all possible confounding factors that were omitted [34]. Nevertheless, the adhesion between composite resin and acrylic teeth is not guaranteed. Therefore, a standardised surface pre-treatment was performed to the abutment cavities aiming to enhance the retention. Moreover, an artificial periodontium was incorporated around the abutment roots to simulate the physiological tooth movement and the resultant stresses developing at the gingival part of the connectors. Such movement and stresses have been considered essential for investigating the performance of adhesive FPDs [34].

Nevertheless, this study has some limitations. Only one design of FPD (inlay-retained) has been investigated, and the results can be only applied to that design. Other designs,
including the conventional and prep less FPDs can be considered in future studies. Another limitation was encountered by not using a control group (without additional FRC incorporated in the pontic). Such a group would have emphasised the finding when its load bearing capacity compared with other groups. Moreover, limiting the investigation to one type of FRC as the main framework is an obstacle that prevents generalising the findings to other types of FRC. Accordingly, future studies investigating different types and designs of FRC-FPDs are suggested.

Overall, modifying the framework of FRC-FPDs via incorporating additional reinforcing fibre within pontics tends to enhance fracture resistance. Improved load bearing capacity, superior reinforcement for the veneering layer and reduced delamination fractures were reported. The configuration and orientation of incorporated fibres are also important as they regulate the effectiveness of reinforcement. Significantly different initial and final fracture values were reported as result of using frameworks with bidirectional and woven reinforcing fibres, which supports rejection of the first null hypothesis. The second null hypothesis was partially rejected as the dynamic fatigue significantly affected finial fracture alone. From a clinical perspective, improved longevity and enhanced overall performance can be achieved by FRC-FPD with some simple modifications in its framework design, and since it offers versatility, maintainability and minimal invasion, it could be a potential alternative to replace posterior missing teeth.

7.6 CONCLUSIONS:
Within the limitations of this study, the following can be concluded:
1- The load-bearing capacity of FRC-FPD is significantly influenced by the framework design of its pontic.
2- The additional bidirectional fibres placed perpendicularly on the occlusal surface of the main framework provides better fracture resistance than the woven bundle incorporated around the pontic core.
3- Both framework designs provide lower fracture resistance when subjected to prior dynamic fatigue.
7.7 REFERENCES:

8.1 ABSTRACT:

Objectives: To monitor the morphological changes of three metal-free crowns after *in-vitro* dynamic fatigue simulation using a 3D intraoral scanner.

Methods: Metal-free crowns (n=15), for a lower first molar, were fabricated using three different materials. In groups LZ (n=5) and LU (n=5), monolithic crowns were manufactured using CAD/CAM technology from zirconia-based ceramic (*Lava Zirconia, 3M-ESPE*) and resin nano-ceramic (*Lava Ultimate, 3M-ESPE*) materials, respectively. In group FRC-S (n=5), experimental fibre-reinforced composite (FRC) crowns were made conventionally from bidirectional reinforcing-fibres (*Stick Net, Stick Tech Ltd*) and resin-composite material (*Sinfony, 3M-ESPE*). All crowns were adhesively cemented (*RelyX-UniCem2, 3M-ESPE*) over identical acrylic abutments. Following thermocycling aging (3500 cycles, 5-55°C, 10s), all crowns were cyclically loaded to induce wear using a chewing simulator (*CS-4.2, SD-Mechatronic*). A 3D intraoral scanner (*3M True Definition Scanner, 3M-ESPE*) was employed to monitor the resultant morphological changes. 3D scans were taken at baseline (C0: No cyclic loading), after 240K cycles (C1) and 480K cycles (C2) and then compared. The wear analysis was performed using surface matching software (*Geomagic Control, Geomagic*). The mean morphological change (µm) was recorded for each specimen after C1 and C2. One-way ANOVA and paired t-test were conducted to detect the significance of experimental factors (material type and loading phase) on the quantitative degree of wear (α=0.05).

Results: The highest cumulative wear was detected for LU (348.2±52.0 µm) while LZ had the lowest (16.4±1.5 µm). The degree of wear detected following C1 phase was significantly higher than that detected after C2 phase independent of the constructing material.

Conclusion: Wear rate of metal-free crowns is significantly influenced by the constructing material and number of loading cycles. *Lava Zirconia* has the most significant resistance, while *Lava Ultimate* has the least. The initial phase of wear simulation has the most significant effect on the degree of wear.
8.2 INTRODUCTION:

Tooth wear is becoming an increasingly recognised problem due to its growing prevalence and severity [1, 2]. It is an irreversible condition with multi-factorial aetiology that affects both teeth and restorative materials, and represents their cumulative surface loss under operational conditions [3]. It may be a physiological process that has a low estimated annual rate (approximately 20-38 µm); however, can be pathological under certain circumstances, such as parafunctional habits and high acid consumption, which excessively amplify its rate to a degree that adversely affects functionality and appearance of affected structures [3, 4]. Therefore, early diagnosis, regular monitoring and accurate interventions are always necessary.

It has been demonstrated that tooth wear is influenced by many different tribological parameters in the oral cavity. The properties of articulating surfaces, their roughness and topography, the abrasive nature of food, saliva and lubrication, chewing behaviour and biting force as well as other environmental factors are among parameters that simultaneously affect the mechanism of wear [5, 6]. Accordingly, different mechanisms of wear have been identified [7]. Attrition is a wear resulting from direct sliding action between antagonistic teeth or restorations during mastication or any other occlusal movements. It is usually described as two-body wear as long as there is no intermediate layer transmitting forces between the interlocking surfaces [5, 8]. The presence of an intermediate layer (like food or other soft medium) during mastication serves as a third body and causes abrasion wear [8]. In contrast, the repetitive cyclic load of mastication provokes surface micro-cracking which induces chipping and so fatigue wear [5, 9]. Corrosive wear, however, is more related to a chemical reaction that softens superficial microstructures and facilitates their scrapping away by antagonistic contact [10]. Understanding of all these parameters and mechanisms is the key role for tooth wear management.

Selection of restorative materials is also crucial for tooth wear management. The use of materials with high wear resistance may complicate the clinical situation due to their abrasiveness that can cause teeth sensitivity and occlusal imbalance [6, 11, 12]. Ideally, wear behaviour of restorative materials should match that of antagonistic structures in order to preserve occlusal form and prevent instability. Precious metal alloys, irrespective of their poor aesthetics, are the first choice for restoring worn posterior teeth as their wear behaviour is comparable to enamel [11, 13]. Dental resin-composites,
as aesthetic alternatives, have continuously been improved in terms of wear resistance; however, their relatively poor mechanical properties and insufficient wear behaviour limit their application under high-demand situations [14, 15]. Dental ceramics, on the other hand, have been widely used to restore posterior teeth, owing to their high wear resistance and excellent aesthetics. However, their abrasiveness that affects opposing dentition may be enough to enhance pathological tooth wear and generate other complications [12]. In comparison with other ceramics, recent studies have suggested the use of polished monolithic zirconia-based restorations as they offer not only superior mechanical properties but also optimum wear behaviour. However, their abrasiveness is still questionable [6, 16, 17].

Many techniques have been employed to optimize wear resistance and abrasiveness of metal-free restorative materials. Filler size, shape and volume of resin-composites have been modified in order to minimize filler exfoliation and improve wear resistance [5, 18-21]. Incorporation of long or short reinforcing fibres has been also suggested to improve mechanical properties, and so enhance the overall wear behaviour [22, 23]. Microstructures of various ceramics have been also modified with different processing and polishing techniques, leading to a consequent reduction in the abrasiveness [17, 24]. Moreover, new materials combining the favourable properties of resin-composites and ceramics have been recently developed [25-27]. However, limited information on their wear behaviour compared with other materials is available [28].

Monitoring pathological tooth wear and quantifying the consequential changes are also essential steps for management [29]. Many monitoring techniques have been developed, including tooth wear indices, image analysis, cusp-height measurement, scanning electron microscopy, computer graphics and profilometry [30, 31]. However, 3D scanning is currently the most preferable to quantify tooth wear, owing to its accuracy and versatility. Surface mapping systems, like contact/non-contact profilers, micro-CT scanners, laser scanners and CAD/CAM systems, are used to obtain sequential 3D images [30, 32]. Analysis and comparison of such images have been reported as the most accurate method for tooth wear measurement [33]. Nevertheless, these systems depend on impressions, gypsum casts or epoxy-resin dies for image acquisition, which could produce inherent errors [32, 34, 35]. Direct intraoral scanning of worn teeth would be the potential gold standard for wear measurement since it would decrease the number of steps and enhance accuracy, but this area has not been extensively studied.
The aim of this *in-vitro* study was to compare the wear behaviour of three metal-free restorative materials by investigating the effect of sequential chewing simulation and monitoring the morphological changes using a 3D intraoral scanner. The first null hypothesis was that there is no difference between the tested materials in terms of wear resistance, while the second was that there is no difference in the wear rate as a result of sequential chewing simulation.

8.3 MATERIALS AND METHODS:

Fifteen posterior crowns (n=15) constructed from three metal-free crown fabricating materials were dynamically fatigued *in-vitro* and monitored for the resultant morphological changes using an intraoral 3D scanner. The fabricating materials used, their description and manufacturers are listed in Table 8.1.

<table>
<thead>
<tr>
<th>Group</th>
<th>Fabrication Mode</th>
<th>Material</th>
<th>Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZ</td>
<td>CAD/CAM</td>
<td>Lava™ Zirconia</td>
<td>Pre-sintered Zirconia-based ceramic</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>LU</td>
<td>CAD/CAM</td>
<td>Lava™ Ultimate</td>
<td>Resin nano-ceramic</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>FRC-S</td>
<td>Conventional</td>
<td>Sinfony</td>
<td>Indirect laboratory micro-hybrid composite</td>
<td>3M-ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stick Net</td>
<td>Bidirectional E-glass reinforcing fibres sheet</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
</tbody>
</table>

8.3.1 Specimen Preparation:

Fifteen identical specimen assemblies representing a prepared lower first molar tooth and its supporting structure were produced in a standardised manner. A master preparation was performed on a molar plastic tooth (*KaVo dental GmbH, Biberach, Germany*) using a high speed air turbine with coarse grit shoulder end diamond bur, according to specific dimensions (1mm finish line, 1.5–2 mm occlusal clearance). A silicon master mould (*Gemini, Bracon, East Sussex, UK*) was then produced and used to fabricate fifteen identical teeth made of cold-cure acrylic resin (*Metropair Denture Repair, Metrodent Limited, Huddersfield, UK*). All the duplicated teeth were pre-coated with wax before being mounted within an epoxy-resin base (*Epoxy resin, B&K Resins Ltd, Bromley, UK*) in order to reproduce the periodontium and bone support.
Subsequently, the wax coatings were substituted with light-bodied impression material (Aquasil LV, Dentsply, PA, USA) to simulate the elasticity of periodontal ligament.

8.3.2 Crown fabrication:

Fifteen mandibular first molar crowns (n=15) with the same occlusal morphology and dimensions were fabricated from three different metal-free materials (Figure 8.1). In groups LZ and LU (n=5 each), monolithic crowns were manufactured using CAD/CAM technology from zirconia-based ceramic (Lava Zirconia, 3M-ESPE) and resin nanoceramic (Lava Ultimate, 3M-ESPE) materials, respectively. In group FRC-S (n=5), experimental fibre-reinforced composite (FRC) crowns were made conventionally from bidirectional reinforcing-fibres (Stick Net, Stick Tech Ltd) and resin-composite material (Sinfony, 3M-ESPE).

Prior to preparing the master plastic tooth, digital impression and transparent vacuum-formed matrix were created to standardise the morphology of all crowns. An intraoral 3D scanner (3MTM True definition scanner, 3M-ESPE, USA) was used to obtain the digital impressions for the master tooth, before and after preparation, in order to be utilized in the fabrication of the CAD/CAM crowns. All the CAD/CAM crowns were milled by one milling centre using the same set of 3D digital impressions for designing and processing. The vacuum-formed matrix and one master tooth were used by one trained technician to fabricate the experimental FRC crowns. A standardized 2-coat thickness of die spacer (blue die spacer 20µm, Kerr, USA) was ensured for all crowns by painting-on the master tooth before crown fabrication. Upon completion, all crowns were hand-polished (with no glaze application), inspected and then tried on the master tooth. The crowns were then adhesively cemented to the corresponding specimen assemblies using self-adhesive resin cement (RelyX UniCem 2, 3M-ESPE, Seefeld, Germany). In order to improve adhesion, the teeth and the intaglio (inner) surfaces of the crowns were sandblasted (2.5 bar pressure, 15s) and silanated (30s) using CojetTM repair system (3M-ESPE, Seefeld, Germany) before cementation. A standardized load (5kg for 5 min) was used to ensure optimal seating. All the specimens were then stored in water (37°C, 24h) prior to further testing.
Figure 8.1: Fabricating materials used to prepare all specimens, A) Lava Zirconia, B) Lava Ultimate and C) Stick Net & Sinfony.
8.3.3 Wear simulation:

The *in-vitro* wear simulation was performed in three distinctive phases. In the first phase (C₀), thermocycling (3500 cycles) was performed in hot/cold water baths (5 - 55 °C, 10s dwell time) for all crowns. A digital impression was then taken for each crown to register the baseline occlusal morphology without any wear. *3M™ True definition scanner* was used to obtain all the required digital impressions (as .STL files) for future wear analysis. Before taking the impressions, a dusting layer (10µm) of titanium dioxide-based powder (*3M™ High-Resolution Scanning Spray, 3M-ESPE*) was sprayed all over the specimen in order to enhance accuracy and speed of capture. This was followed by washing and drying to ensure no residual powder left.

The successive two phases (C₁, C₂) simulated mechanical wear in a clinically-relevant approach. A chewing simulator machine (CS-4.2, *SD Mechatronic, Germany*) was used to introduce wear by mimicking parafunctional mastication. A stainless steel stylus, representing the opposing working cusp, was used as an antagonist that transmitted the biting load (5Kg) into the specimens and induced wear. The stylus motion was adjusted to initially contact crowns in the deepest point of the central fossa with a vertical movement (2.5mm), followed by a further oblique sliding movement (2.0mm) along the buccal groove. The point of contact between stylus and crown was verified using 40µm-thick articulating paper (*Hanel, Coltene, Switzerland*). The same motion was repeated cyclically (1.8Hz frequency) with a total of 240,000 cycles for each phase. Digital impressions, as previously described, were taken at the end of each phase and saved for future analysis.

8.3.4 Wear analysis:

Geomagic Control 2014 software (*Geomagic, 3D System Corporation, USA*) was used to digitally inspect all the specimens and monitor the resultant morphological changes. The specimens were analysed one at a time via inspecting the three sequential impressions (at C₀, C₁ and C₂) simultaneously (Figure 8.2). The morphological changes were visualised as deviations from the baseline impression using ‘Best fit alignment’ and ‘3D comparison’ functions in the software (Figure 8.3). The mean vertical deviation was measured at one particular area (0.5mm radius) within the wear facets (Figure 8.4). Three wear values (W₁, W₂ and Wₐ) were recorded per specimen; W₁ represents the resultant wear of phase C₁, W₂ represents the resultant wear of phase C₂, and Wₐ is the cumulative vertical wear.
8.3.5 Statistics:
Data collection and statistical analysis were performed with SPSS software (IBM SPSS statistics 20, Chicago, IL, USA). Mean and standard deviation (SD) values were calculated for each group. The assumption of homogeneity and normal distribution was granted according to Levene’s test (p>0.05) and histograms. One-way ANOVA (Tukey’s post hoc) and paired t-test were conducted to detect the significance of ‘material type’ and ‘loading phase’ on the degree of wear (α=0.05).

Figure 8.2: Occlusal views for one representative specimen from each group showing the wear facet (*) and its morphological changes after C0, C1 and C2 phases (using Geomagic Control software). LZ had the modest morphological changes, while LU had the largest.
Figure 8.3: A snapshot from the Geomagic software after the ‘Best Fit Alignment’ function was performed (top), the area of interest ‘common area’ was selected prior to the alignment (middle), and then the 3D Comparison performed and the deviations visualised via deviation spectrum (bottom).
Figure 8.4: 3D comparisons for one representative specimen in group LU. (Top) shows the mean wear value ‘W1’ within the wear facet (0.5mm radius) after phase C1, while (bottom) shows the cumulative wear W_C at the end of phase C2.
8.4 RESULTS:
The mean wear values for all the tested groups are shown in Table 8.2, and graphically represented in Figure 8.5. The highest cumulative wear (W_C) was detected for LU (348.2±52.0 µm) while LZ had the lowest (16.4±1.5 µm). The fabricating material had a statistically significant influence on the degree of wear independent of the loading phase. Moreover, both loading phases had a significantly different impact on the cumulative wear. Phase C1 had the most influence on the cumulative wear irrespective of the fabricating material. Both fabricating material and loading phase significantly influenced the degree of wear detected.

Table 8.2: Wear measurements (µm) for all specimens, using 3D analysis.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean±SD</th>
<th>Mean±SD</th>
<th>Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W_1</td>
<td>W_2</td>
<td>W_C</td>
</tr>
<tr>
<td>LZ</td>
<td>11.0±4.4</td>
<td>5.4±5.2</td>
<td>16.4±1.5</td>
</tr>
<tr>
<td>LU</td>
<td>215.1±95.2</td>
<td>133±45.5</td>
<td>348.2±52.0</td>
</tr>
<tr>
<td>FRC-S</td>
<td>177.6±105.8</td>
<td>56.3±31.3</td>
<td>233.9±100.4</td>
</tr>
</tbody>
</table>

*Different superscript letters and numbers indicate statistical significance within the same columns (one-way ANOVA/post hoc), and rows (Paired t-test) respectively.

Figure 8.5: Graph showing the mean cumulative wear (µm) for all the tested groups.
8.5 DISCUSSION:
This study monitored the morphological changes and quantified the progression of wear among three metal-free crown systems following in-vitro dynamic fatigue simulation, and using a 3D intraoral scanner. The results demonstrated that the fabricating material significantly influences the wear resistance independent of the loading condition. Lava Zirconia was ranked as the most wear-resistant in comparison with FRC-Sinfony and Lava Ultimate. This supports rejection of the first null hypothesis. Furthermore, the successive phases of chewing simulation did not exhibit the same wear rate since the earlier loading phase (C1) induced the most significant material loss, leading to the rejection of the second null hypothesis.

The materials were chosen as representatives of their main categories, and compared in terms of wear behaviour. A significant difference was found in their wear resistance, which can be explained by the variation in their mechanical properties and tribological behaviours [5, 6, 9]. Other possible influencing factors, including lubrication, testing environment, surface polishing and specimen topography, were all standardised in this study. Materials with high mechanical strength are wear-resistant as they are less susceptible to surface fatigue and chipping [9]. As reported by the manufacturers, Lava Zirconia with its flexural strength (1100 MPa), E-modulus (210 GPa) and hardness (1200 VKH) demonstrates far more strength than Sinfoy (105 MPa, 3.1 GPa, 250 VKH) and Lava Ultimate (204 MPa, 12.7 GPa, 280 VKH) [36]. This superiority in strength was clearly reflected by wear resistance as it exhibited the least degree of wear. Many studies comparing dental ceramics in terms of wear-resistance have also confirmed the superiority of zirconia-based ceramics due to their high overall strength, and therefore recommended their use as monolithic restorations [6, 24, 28].

Surprisingly, one unanticipated finding was that the crowns made of Sinfoy revealed less obvious wear facets and higher wear resistance than those made of Lava Ultimate despite the latter having superior mechanical properties. This inconsistency can be attributed to the FRC layer incorporated within the occlusal bulk of FRC-S crowns. This incorporation enhances the overall strength of resin-composites by increasing filler content and reinforcement efficiency [23, 37-39]. Superior support and reduced crack propagation are also achieved within the veneering resin-composite, which tend to reduce the influence of cyclic loading and the consequent wear [38].
Another possible explanation of this variation is based on material microstructure. Both Sinfony and Lava Ultimate are composed of inorganic fillers embedded in a resin matrix. The resin matrix will be worn away at some point during the wear simulation, leaving the inorganic particles unsupported and promoting surface roughness. Subsequently, the inorganic particles become separated and accumulate between the antagonist and crown surface, causing gradual increase in ‘self-abrasion’ [40]. The larger and harder the particles accumulated, the higher surface roughness induced, and the higher the abrasion rate [5, 41, 42]. Accordingly, Lava Ultimate, which is formulated from a combination of ceramic nanomer (silica: 20nm, zirconia: 4-11nm) and nanocluster (0.6-10 µm) fillers, would be more affected by self-abrasion than Sinfony, which is composed of relatively smaller particles (0.5-0.7 µm). Conversely, Lava Zirconia is believed to show no notable self-abrasion due to its persistent superficial microstructure [28]. It is composed of tough yttria partially-stabilized tetragonal zirconium dioxide polycrystals (Y-TZP) that maintain their structure over time. The phase transformation of such crystals from tetragonal to monoclinic crystalline states (transformation toughening) during cyclic loading hinders crack propagation and prevents consequent grains separation, which explains the trivial morphological changes among LZ crowns [43].

In an attempt to simulate clinical conditions, this study used a dual-axis chewing simulator and anatomical crowns in order to reproduce wear. The chewing simulator allowed an accelerated simulation of the chewing load and induced clinically-relevant wear patterns [42]. The chewing force used here was adjusted to match the mean physiological biting force (50 N) exhibited in a non-bruxist patient [42]. Its vertical application as well as an additional lateral movement was cyclically repeated to induce fatigue wear and attrition. Given that no abrading medium was initially included in such simulation, a possible abrasive wear was considered absent at the commencement. However, this abrasive wear became obtainable when particles of the interfacing material have been worn away. The number of cycles performed was set, in accordance with previous studies, to be equivalent to two years of clinical mastication, and the subsequent wear pattern was as indicated in clinical studies [8, 44]. A stainless steel stylus was used as antagonist to exert the masticatory movement owing to its enamel-comparable properties [45]. Ideally, antagonists made of enamel should be used due to their relevancy, but difficulties in the machining and shaping process as well as
variations in the natural composition make them less precise compared to synthetic materials (stainless steel, steatite, ceramic) [9].

Two distinctive phases of mechanical simulation were performed in order to compare the wear rate. The phase C1, which is equivalent to one-year performance, was found the most influential. This complies with a previous study which found that most restoration wear is noticeable during the first 6 months of performance [46]. A possible explanation for this might be that the surface topography for interfacing materials will change after a certain degree of wear. Wider contact areas and more stress distribution will be produced gradually, diminishing the wear rate. This is applicable for softer materials like Lava Ultimate and Sinfony; however, harder materials like Lava Zirconia are less susceptible to change. This explains the minor wear percentages exhibited after the phase C2 (LZ: 33%, LU: 38%, FRC-S: 24%).

This study also described a novel method to monitor tooth wear and quantify the changes using intraoral digital scanner and surface matching software. The 3M True definition scanner, a chairside intraoral scanner conventionally used for taking digital impressions, was used in this study as a tool for direct mapping of tooth surfaces. Many previous tribology studies have also used surface mapping systems to investigate wear [30-32, 34, 35]. However, they have relied on an indirect technique by scanning impressions, gypsum casts or epoxy-resin dies to acquire viable scans. Such an indirect technique is subject to inherent errors that might lead to inaccuracy and misinterpretation, while the direct technique used in the current study had no intermediate steps for the digital acquisition, and hence it is more precise, feasible and convenient. High degree of trueness and repeatability is also achievable by the use of powder coating since it reduces the coefficient of reflectance for tooth surfaces and enhances signal to noise ratio. Measurement discrepancies that arise from powder particles (10µm maximum diameter) are also negligible, and would be minimized by using a standardized technique for powder application Surface matching software (Geomagic Control), whose accuracy has been previously verified in the literature, was also used for tooth wear analysis [32]. Wear measurements were performed through the software by superimposing the sequential 3D scans together, a technique that is considered as the most accurate way for wear quantification [33]. This technique has been previously validated and a high level of accuracy reported (uncertainty= 2.7 µm) [32]. Nevertheless, future studies investigating this technique clinically are still recommended.
Some limitations were encountered in this study. One limitation was restricting the investigation to a single type and design of FRC crowns, and comparing them to only two different material types. Studies comparing more materials and designs together are recommended in the future. Moreover, the wear behaviour of the experimental FRC crowns has not been compared with that of composite crowns conventionally-made without fibre reinforcement. Such a comparison in the future would emphasis the role of fibre reinforcement and its effect on wear behaviour.

Overall, this study with its specific methodology was able to discriminate three different crown systems according to their wear resistance. Crowns made from Lava Zirconia have the most resistant; however, they might be still the least favourable due to their abrasiveness. They are not subject to appreciable abrasive wear, which means their anatomical shape will be maintained over time. This could be significant when considering a treatment plan for patients with parafunctional habits or active wear. Alternatives, like Lava Ultimate or FRC crowns, with lesser wear-resistance and abrasiveness would be preferable.

8.6 CONCLUSIONS:
Within the limitation of this study, the following conclusions were drawn:
1. Wear resistance of metal-free crowns is significantly influenced by the fabricating material. Lava Zirconia has the most significant resistance, while Lava Ultimate has the least.
2. The initial phase of mechanical wear simulation has the most significant effect on the cumulative wear independent of the fabricating material.
3. The $3M^{TM}$ True definition scanner, combined with surface matching software, is a valid methodology to quantify wear in-vitro.

8.7 ACKNOWLEDGEMENTS:
The authors thank 3M-ESPE (Seefeld, Germany) for the loan of the $3M^{TM}$ True definition Scanner to perform this study, and for all the valuable assistance with the software.
REFERENCES:

36. Pittayachawan P. Comparative Study of Physical Properties of Zirconia Based Dental Ceramics [Doctoral]; University College London; 2009:352.

Chapter 9: Load-Bearing Capacity of Fibre-Reinforced Composite Crowns in Comparison with Machined Alternatives.
9.1 ABSTRACT:

Objectives: To i) compare the fracture resistance of fibre-reinforced composite (FRC) crowns with other metal-free alternatives in-vitro, and ii) investigate the influence of fabricating materials and dynamic fatigue on the load-bearing capacity.

Methods: Identical metal-free crowns (n=30), for a lower first molar, were made of three different materials. In groups LZ (n=10) and LU (n=10), monolithic crowns were manufactured using CAD/CAM technology from zirconia-based ceramic (Lava Zirconia, 3M-ESPE) and resin nano-ceramic (Lava Ultimate, 3M-ESPE) materials, respectively. In group FRC-S (n=5), experimental fibre-reinforced composite (FRC) crowns were made conventionally from bidirectional reinforcing-fibres (Stick Net, Stick Tech Ltd) and resin-composite material (Sinfony, 3M-ESPE). All crowns were adhesively cemented (RelyX-UniCem2, 3M-ESPE) over identical acrylic teeth. Half of the crowns from each group (n=5) were subjected to thermocycling (3500 cycles, 5-55°C, 10s dwell) before being cyclically fatigued (480k cycles, 5kg) using a dual-axis chewing simulator (CS-4.2, SD-Mechatronic). The other half (n=5) was control with no fatigue simulation. Crowns were loaded statically in a universal testing machine (Zwick Z020, Zwick/Roell) with a compressive load (1 mm/min crosshead speed) applied perpendicularly at the central fossa until fracture. The load-bearing capacity (N) was recorded for each crown. Statistical analysis using 2-way ANOVA was conducted to detect the effect of fabricating material and dynamic fatigue on the load-bearing capacity (α=0.05).

Results: All the fatigued crowns survived the cyclic loading with no fracture signs detected. LZ had the highest load-bearing capacity values with fatigue (1997.8±260.2 N), or without fatigue (2155.6±181.6 N). LU had the lowest load-bearing capacity values with fatigue (756.5±290.9 N), or without fatigue (1023.9±407.7 N). Both material and dynamic fatigue had a significant influence (p<0.001) on the load-bearing capacity.

Conclusion: Crowns made of fibre-reinforced composite exhibited load-bearing capacity comparable to that of monolithic CAD/CAM alternatives, which confirms its potential as a restorative material for posterior teeth.
9.2 INTRODUCTION:
In the era of metal-free dentistry, dental ceramics are becoming the most widely used restorative materials, owing to their excellent aesthetics and durability. However, their inherent brittleness, low flexural strength and fracture toughness are the major drawbacks of their extensive application [1, 2]. High failure rates are reported when conventional glass and alumina all-ceramic restorations have been used in posterior area [3-7]. Bulk catastrophic fracture is the most prominent mode of failure owing to inherent structural flaws that influence the distribution of tensile stresses and enhance crack propagation [4, 6]. In contrast, zirconia-based ceramics exhibits superior mechanical strength and fracture resistance as a consequence of their inherent ‘transformation toughening’ mechanism [8, 9]. However, due to the opacity and whitish appearance, they tend to be used as core materials and veneered with translucent porcelains for better aesthetics [2, 5, 10, 11], but this presents weak structural points, introduced by the veneer or the veneer/core interface, causing chipping/delamination cracks that may extend through the core materials [6, 10, 12, 13].

Monolithic ceramic restorations made by CAD/CAM technology have been introduced for solving processing-related problems [12-16]. The CAD/CAM processing of restorations allows an efficient and standardised fabrication with significant reductions in porosities and structural flaws [17, 18]. It also improves the mechanical properties and enables a superior reproduction of anatomy with more shade/translucency optimization [15-21]. For example, the use of CAD/CAM yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) monolithic restoration is advocated under high demanding conditions, as they provide superior mechanical stability compared with layered zirconia or lithium disilicate restorations [2, 11, 22-24]. However, these restorations still have restricted applications due to their limited resiliency, difficult maintainability, long-term degradation, questionable adhesion and undesirable abrasiveness [2, 13, 19, 25-27].

Resin nano ceramic (RNC), which is a material combining the favourable properties of resin-composite and ceramic together, has been developed as a substitution for monolithic Y-TZP ceramic [14, 23, 28]. It is formulated with a high percentage of nano ceramic particles embedded in a resin matrix and produced in millable monolithic blocks. Due to its unique composition, it is claimed to offer not only excellent fatigue and wear behaviour, but also good fracture resistance, superior bonding and simple
maintenance [14, 20, 23, 28-31]. Some studies have confirmed that it could provide a fracture resistance as good as other CAD/CAM ceramics with greater thickness, owing to better stress distribution and less crack propagation in its bulk [14, 23]. However, few studies have investigated its fatigue behaviour.

Particulate-reinforced composite (PRC) is a metal-free restorative material that offers many advantages in terms of aesthetic, adhesion and maintainability. However, their limited durability and insufficient fatigue behaviour restrict their applications [32-34]. Fibre-reinforced composite (FRC) has been developed as a modification of PRC, and confirmed to provide significant improvements in flexural strength, fracture toughness, stiffness and fatigue resistance [32, 34-37]. Accordingly, FRC are used as substructure constructions or beneath the veneering layer of PRC restorations with the intention of enhancing clinical performance [38]. Many parameters have been identified influencing the properties of resultant FRC-PRC restorations, including fibres orientation, position, adhesion and volume fraction as well as PRC type. Yet, scarce information is available on their overall performance [32, 39].

The aim of this study was to evaluate FRC and two CAD/CAM alternatives as posterior metal-free crown systems, and compare their in-vitro performance in terms of fracture resistance and fatigue behaviour. The null hypothesis was that neither fabricating material nor dynamic fatigue will affect the load bearing capacity.

9.3 METHODOLOGY:

Thirty metal-free single crowns (n=30) for a lower first molar were fabricated and tested in-vitro. Table 9.1 shows the materials used to fabricate the crowns.

<table>
<thead>
<tr>
<th>Group</th>
<th>Fabrication Mode</th>
<th>Material</th>
<th>Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZ</td>
<td>CAD/CAM</td>
<td>Lava™ Zirconia</td>
<td>Pre-sintered Zirconia-based ceramic</td>
<td>3M ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>LU</td>
<td>CAD/CAM</td>
<td>Lava™ Ultimate</td>
<td>Resin nano-ceramic</td>
<td>3M ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td>FRC-S</td>
<td>Conventional</td>
<td>Sinfony</td>
<td>Indirect laboratory micro-hybrid composite</td>
<td>3M ESPE, Seefeld, Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stick Net</td>
<td>Bidirectional E-glass reinforcing fibres sheet</td>
<td>Stick Tech Ltd, Turku, Finland</td>
</tr>
</tbody>
</table>

Table 9.1: Materials used to fabricate all crowns in the study.
9.3.1 Specimen Preparation:
Thirty identical specimen assemblies (Figure 9.1) representing a prepared lower first molar tooth and its supporting structure were produced in a standardised manner. A master preparation was performed on a molar plastic tooth (*KaVo dental GmbH, Biberach, Germany*) using a high speed air turbine with coarse grit shoulder end diamond bur, according to specific dimensions (1mm finish line, 1.5-2 mm occlusal clearance). A silicon master mould (*Gemini, Bracon, East Sussex, UK*) was then produced and used to fabricate thirty identical teeth made of cold-cure acrylic resin (*Metropair Denture Repair, Metrodent Limited, Huddersfield, UK*). All the duplicated teeth were pre-coated with wax before being mounted within an epoxy-resin base (*Epoxy resin, B&K Resins Ltd, Bromley, UK*) in upright position. The wax coating was then substituted with light-bodied poly-vinyl siloxane (PVS) impression material (*Aquasil LV, Dentsply, PA, USA*) to simulate the elasticity of periodontal ligament.

![Duplicated acrylic tooth](image)

Figure 9.1: Representative specimen assembly showing a duplicated abutment in epoxy resin base (2mm below CEJ) and surrounded with PVS layer (0.2mm thickness) to simulate PDL.

9.3.2 Crown fabrication:
The crown fabrication process started with creating a transparent vacuum-formed matrix in order to register the anatomy of the master tooth previous to any preparation. An intraoral 3D scanner (*3M™ True definition scanner, 3M-ESPE, USA*) was used then to obtain digital impressions for the master tooth, before and after preparation, in order to be utilized in the CAD/CAM crown fabrication (Figure 9.2)
Figure 9.2: 3D impressions for the master preparation using 3M True Definition Scanner, A) Buccal view showing the shoulder finish line (1mm) and buccal cusp bevel, and B) bite registration with 1.5mm interocclusal clearance.
Three materials were chosen to construct thirty identical crowns with the same morphology and dimensions, matching the original master tooth. In groups LZ (n=10) and LU (n=10), zirconia-based ceramic (Lava™ Zirconia, 3M-ESPE) and resin nanoceramic (Lava™ Ultimate, 3M-ESPE) were used to manufacture monolithic crowns by CAD/CAM technology, respectively. For Group FRC-S (n=10), bidirectional FRC (Stick Net, Stick Tech Ltd) and indirect resin-composite (Sinfony, 3M-ESPE) were combined to conventionally fabricate experimental crowns.

For the fabrication of FRC crowns, the prepared master tooth was used as a working die for all crowns. A standardized 2-coat thickness of die spacer (blue die spacer 20µm, Kerr, USA) was applied over the entire die to within 0.5mm of the margin. One layer of the bidirectional FRC was cut to an appropriate size (7 x 6 mm), enough to cover the entire occlusal surface, before being impregnated for 5 minutes with filler-free resin (Stick Resin, Stick Tech Ltd, Turku, Finland). A thin layer of resin-composite (Sinfony, 3M-ESPE) was initially applied over the occlusal third of the die, and the impregnated fibre layer was subsequently adapted and light-cured (20s). A full crown was produced from the resin-composite (Sinfony, 3M-ESPE) and shaped using the vacuum-formed matrix. To initiate polymerization, a hand LED curing light (Elipar™ S10 LED, 3M ESPE, USA) was used for 20s per surface prior to the 15-minute final vacuum polymerization inside a laboratory curing unit (Visio™ Beta Vario Light Unit, 3M ESPE, USA). Final finishing and polishing were manually completed using Sof-Lex™ discs (3M ESPE, Seefeld, Germany). At the end, the resulting crowns were thoroughly inspected for any void or discrepancy that could lead to exclusion and remaking. In order to guarantee standardization, all these procedures were performed by one trained operator.

For the fabrication of CAD/CAM crowns, one milling centre was hired to manufacture all the crowns from the same digital impressions. A master 3D crown was virtually designed, and a standardised cement space (40-µm thickness) was digitally incorporated. Crown machining was then performed using a CAD/CAM milling machine (CORiTEC 250i, Imes-Icore GmbH, Eiterfeld, Germany) according to the manufacturers’ instructions. Finishing, shading, sintering and hand polishing (with no glaze) were then performed to produce identical monolithic crowns made from Lava Zirconia and Lava Ultimate.
All crowns were adhesively cemented to the corresponding specimen assemblies using self-adhesive resin cement (*RelyX UniCem2, 3M-ESPE, Seefeld, Germany*). The acrylic teeth and the inner surfaces of the crowns were silica-coated and silanized (*Cojet Repair System, 3M-ESPE, Seefeld, Germany*) before cementation. A 5kg seating-load was used for 5 minutes to ensure standardised cementation. All the specimens were then stored in water (37°C, 24h) before any further testing.

9.3.3 Dynamic fatigue:

Two equal subgroups were allocated randomly for each main group. Subgroup X (LZx, LUx, FRCx, n=5) was artificially fatigued by implementing accelerated thermocycling aging and cyclic loading, whereas subgroup C was the control. The thermocycling process was completed inside water baths (3500 cycles, 5-55°C, 10s dwell) prior to the initiation of cyclic loading. A dual-axis chewing simulator machine (*CS-4.2, SD Mechatronic, Germany*) was used to apply cyclic loading (480,000 cycles, 5kg load, 1.8Hz frequency) (Figure 9.3). A stainless steel stylus was used as an antagonist to transmit the required load into the specimens. The stylus action was adjusted to initially contact the deepest point of central fossa in a vertical motion (2.5mm) prior to a further oblique sliding (2.0mm) along the buccal groove. The points of contact and separation were verified by using articulating paper (*Hanel, Coltene, Switzerland*). The loading cycles were conducted in two subsequent phases (C1 and C2, 240K cycles each). Upon the completion of each phase, an inspection for signs of fracture was performed using optical microscope (*Meiji EMZ-TR, Meiji Techno Co. Ltd., Tokyo, Japan*) with high magnification (x40). Specimens were stored back in water (37°C, 48h) prior to the 'static loading' testing.
Figure 9.3: CS 4.2 chewing simulator machine with its two compartments (top), one representative specimen mounted in one compartment (left), the same specimen after the completion of cyclic loading with a pronounced wear facet (right).
9.3.4 Static loading:
Specimens were tested for their ultimate fracture strength under a static loading. A Zwick/Roell Z020 universal testing machine (Zwick GmbH, Ulm, Germany) with a steel ball indenter (4mm Ø) was employed to apply a compressive axial load (1 mm/min crosshead speed) along the specimen central fossa (Figure 9.4). Tin foil (0.2mm thickness) was inserted between the indenter and the specimen to enable even stress distribution. The maximum force-to-fracture (F_{Max}) and fracture pattern were reported for each specimen.

Figure 9.4: One representative crown specimen mounted in the Zwick machine prior to static loading.

9.3.5 Statistical analysis:
Data collection and statistical analysis were performed with SPSS software (IBM SPSS statistics 20, Chicago, IL, USA). Mean and standard deviation (SD) values were calculated for each subgroup. The assumption of homogeneity and normal distribution was granted according to Levene’s test ($p>0.05$) and histograms. Two-way ANOVA was conducted to verify the statistical effect of experimental factors (constructing material and dynamic fatigue) on F_{Max} values.
9.4 RESULTS:

All crowns in subgroup X survived the chewing simulation with no fracture signs detected. The mean and SD values of F_{Max} for all groups are listed in Table 9.2, and graphically presented in Figure 9.5. Both constructing material and dynamic fatigue had a significant influence ($p<0.001$) on the load-bearing capacity but with no significant interactions between the parameters ($p=0.845$). Group LZ had the highest F_{Max} values, followed by group FRC-S and Group LU, respectively. Dynamic fatigue significantly decreased F_{Max} values independent of the constructing materials used. Examples of fractured specimen are shown in Figure 9.6.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup</th>
<th>Control (C)</th>
<th>Fatigued (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZ</td>
<td></td>
<td>2155.6±181.6<sup>a1</sup></td>
<td>1997.8±260.2<sup>a2</sup></td>
</tr>
<tr>
<td>LU</td>
<td></td>
<td>1023.9±407.7<sup>b1</sup></td>
<td>756.5±290.9<sup>b2</sup></td>
</tr>
<tr>
<td>FRC-S</td>
<td></td>
<td>1698.6±373.7<sup>c1</sup></td>
<td>1386.5±258.4<sup>c2</sup></td>
</tr>
</tbody>
</table>

* Different superscript letters and numbers indicate statistically significant difference within the same column and row respectively.

![Figure 9.5](image-url): Bar chart showing the mean load bearing capacity for all tested groups.
Figure 9.6: Fractured representative specimens from each group. Lava Zirconia: LZ (top) Lava Ultimate: LU (mid), FRC-S (bottom)
9.5 DISCUSSION:

This in-vitro study examined the performance of three metal-free crown systems and investigated the influence of material and dynamic fatigue on the load-bearing capacity. The null hypothesis that no experimental factor has an effect on the ultimate fracture strength was rejected since both material and dynamic fatigue were found statistically significant.

Specimens made of Lava Zirconia were found to have the highest F_{Max} values, in comparison with those made of FRC or Lava Ultimate, irrespective of the fatigue condition. This can be explained by the fact that Lava Zirconia has a robust crystalline microstructure (Y-TZP) that provides not only superior mechanical properties but also enables excellent resistance to fracture and surface degradation as a result of its transformation toughening [2]. Upon its loading, a consequential stress-generated transformation of the metastable tetragonal phase to the monoclinic phase occurs and escorts a volumetric expansion that tends to increase toughness, suppress crack propagation and prevent degradation [9, 27]. In contrast, materials with composite microstructure, like Lava Ultimate and FRC-Sinfony, are more susceptible to fracture owing to their limited ability of deformation that reduces stress concentration at a crack tip [16]. Accordingly, the structural flaws within composite materials tend to expand under constant loading, and penetrate deeper through the resin matrix and around the fillers, causing ultimate failure.

Specimens made of Lava Ultimate significantly exhibited lower load-bearing capacity than those made of Sinfony. Theoretically, Lava Ultimate material is expected to provide superior fracture resistance owing to its higher filler content (80 wt%) and larger particles (0.6-10 µm), in comparison with Sinfony (50 wt%, 0.5-0.7 µm) [40]. However, this study found that latter material performs better as a posterior crown, irrespective of the loading condition. This unanticipated behaviour can be attributed to the FRC layer incorporated within the occlusal bulk of Sinfony crown. Such a layer can enhance the support for the veneering material, and hence improve fracture resistance [32, 34]. It can also act as a physical barrier in the direction of crack, which hinders crack propagation and reduces loading impact [32, 34, 39]. This also explains the more maintainable fracture modes observed in FRC-S crowns.

All specimens in the present study exhibited a reduction in the load-bearing capacity when subjected to prior dynamic fatigue, which is in agreement with previous studies.
[12, 16, 21, 35]. However, different fatigue behaviour and degree of reduction were found among the tested groups. In LZ, the reduction is attributed to the transformed monoclinic layer that tends to increase as a consequence of moisture, thermal fluctuation and dynamic loading [11, 27, 41]. This unfavourable layer increases the susceptibility for fracture since it accommodates the residual microcracks resulted from the transformation toughening and responsible for fatigue failure [27]. The findings of recent studies investigating the performance of monolithic Y-TZP crowns also confirm this observation as increased spontaneous transformation to the monoclinic phase and reduced fracture resistance exhibited following cyclic loading or water storage [11, 27, 42]. In the resin-based crowns (LU, FRC-S), thermal fluctuation and dynamic loading enhance crack propagation from the inherent flaws, which will eventually combine together to form microcracks. Under further loading, such microcracks reach a critical dimension that could initiate spontaneous (fatigue) failure or reduce load-bearing capacity [16, 43]. The superior durability and fatigue resistance of Lava Zirconia were also demonstrated by the wear behaviour. Upon chewing simulation, wear facets were not obvious in LZX crowns, while prominent wear facets and wide surface degradation were noticed in LUX and FRC-SX crowns. This surface degradation could influence the load-bearing capacity and explain the degree of strength reduction among groups (LZ: 7.4%, LU: 26.1%, FRC-S: 18.4%).

A clinically-relevant testing protocol was followed in this study to compare the fatigue behaviour among the three groups. The specimens subjected to a definite number of thermocyclic and cyclic loading equivalent to two years of clinical mastication [44, 45]. A dual-axis chewing simulator was used to simulate the masticatory force, as indicated by previous studies, in a clinically-relevant fashion. The stylus moved from the central fossa of the crown upwards on the inclined buccal groove to simulate balancing contacts during the mastication. Steel stylus material was chosen since it is rigid and reliable to avoid breakage during the lateral movement. The chewing force was chosen to match the mean physiological biting force (50 N) exhibited in a non-bruxist patient. The exaggerated lateral movement of 2mm is, however, in contrast with the clinical situation and average sliding movement (0.3-0.7 mm) but is needed to synergise the impact of the lateral tensile stresses and accelerate the fatigue process [45]. This lateral movement may increase the force acting on the crown 2-3 times more than the force of static weight [44]. Anatomical crowns were used as specimens in this study in order to reproduce the stresses generated from restoration geometry [22, 46].
The possible inconsistencies and confounding factors that might arise from using natural teeth, like the variations of abutment dimension and adhesion, were omitted by the employment of duplicated acrylic teeth [45]. Nevertheless, their adhesion with the resin cement is not guaranteed. Therefore, this study used silica-coating and silanization in order to enhance tooth wettability prior to cementation [26]. An artificial periodontium was also used around the roots to simulate damping of periodontal ligament. The effect of moisture on fracture resistance was also simulated by using water storage [24].

Some limitations were encountered in this study. One limitation was restricting the fatigue cycles to two year equivalence of cycles because of an overall time limit. Future studies investigating the fatigue behaviour up to 5 years and generating survival analysis would be more clinically relevant. Another limitation was the use of a single design of FRC crowns in the comparison. Studies comparing more designs of FRC crowns together with composite crowns conventionally-made without fibre reinforcement are suggested in the future to emphasis the role of fibre reinforcement and its design on fatigue behaviour, load bearing capacity and fracture resistance.

Overall, crowns made from monolithic Y-TZP have the highest values; however, they might be not favourable in terms of abrasiveness, translucency and maintainability. Modified-resin composite material, like Lava Ultimate and FRC, would be a potential alternative despite its lower load-bearing capacity. Future studies comparing the clinical performance of such materials are recommended for improving clinical practice.

9.6 CONCLUSION:
Within the limitation of this study, the following conclusions were drawn:

1. Material and dynamic fatigue significantly influence the load-bearing capacity of metal-free crowns.
2. Lava Zirconia has the best fatigue resistance and load bearing capacity, while Lava Ultimate has the worst.
3. FRC offers significantly lower fatigue and fracture resistance than Lava Zirconia but higher than Lava Ultimate.
REFERENCES:

Chapter 10: General Discussion, Implications, Recommendations for Future Work and Conclusions.
10.1 GENERAL DISCUSSION:
The concept of fibre reinforcement and its implementation in dentistry were discussed extensively in the literature review (Chapter 1). Briefly, this engineering concept, which relies on incorporating fibres to reinforce overlaying polymeric materials, has been implemented to potentially address the physico-mechanical inadequacies resin-composite materials would endure under high-demanding clinical conditions. Significant desirable developments in terms of strength, stiffness and toughness have been confirmed as a consequence of reinforcement, allowing the use of resin-composites in many untraditional applications, like fixed partial dentures [1-6]. However, some uncertainties regarding the design, longevity and clinical performance of reinforced resin-composite restorations limit their everyday practice, in comparison with the other well-established alternatives, such as dental ceramic [7-15]. Accordingly, this research set out to address such uncertainties and explore the influence of fibre reinforcement on the performance of resin-composite restorations by characterising some mechanical properties.

As the literature was inconclusive with regard to some clinical aspects of fibre reinforcement, particular gaps of knowledge were identified. The effect of fibre reinforcement on surface mechanical properties, like hardness and marginal strength, has not been previously established. From a clinical perspective, it is essential to understand such effects as it would influence the clinical performance of FRC restorations by determining their ability to resist plastic deformation and marginal breakage [16, 17]. Furthermore, the effect of fibre reinforcement on the bond strength between restorative materials and different bonding substrates is also important to comprehend. This is due to the fact that the strength of bonding interface regulates the effectiveness of stress distribution between bonding structures, and so aids in determining restoration overall performance [18, 19]. Moreover, investigating the influence of fibre reinforcement on the fatigue and corresponding wear was also needed as these properties regulate the clinical longevity of restorations subjected to the dynamic force of mastication[20-23]. The effect of design and orientation of reinforcing fibres on the overall performance has been also considered and highlighted in order to establish guidelines for the fabrication of FRC restorations. Likewise, a performance comparison between FRC restorations and other well-practiced alternatives was established in order to give more meaningful context to the findings.
A systematic approach of testing has been followed to address knowledge gaps. Six consecutive experiments were carried out in-vitro to particularly answer the research questions by measuring particular mechanical properties in specific testing configurations. The initial three experiments applied the relevant standardised testing configuration to investigate the influence of fibre reinforcement on three elementary mechanical properties of resin-composite materials, namely surface microhardness, edge-strength and shear bond strength. The remaining experiments utilized testing configurations relevant to the clinical situation to investigate the performance of anatomically-shaped FRC restorations while considering properties such as wear resistance, fatigue and load-bearing capacity.

FRCs with different structural parameters (fibre type, orientation and impregnation) were examined in this research as such parameters significantly influence the mechanical properties and overall performance (Section 1.2.5). Both E-glass and UHMWP reinforcing fibres were employed in this research due to their superior mechanical properties, excellent aesthetics and common applications (Section 1.2.5.1). FRCs with unidirectional, bidirectional and woven orientation were also utilized and compared herein since they have different reinforcement efficiency; and hence impact on the mechanical properties (Section 1.2.5.5). Direct FRC restorations were the main interest of this research in order to investigate and understand their clinical performance (Chapter 4-7). However, the performance of indirect FRC restorations, which follow the same principle of direct fibre reinforcement, was also investigated to validate the comparison with ceramic alternatives (Chapter 8 and 9).

The effect of incorporating differently-oriented FRCs on the surface microhardness of direct resin-composite material was evaluated (Chapter 4). Top and bottom, initial and post-storage Vickers hardness numbers (VHNs) were also measured to study the influence on ‘depth of cure’ and ‘post-cure polymerization’. The findings showed that all VHNs significantly increased as a consequence of fibre reinforcement. This indicates that FRC, irrespective of its orientation, has a positive effect on the immediate and post-storage microhardness of direct resin-composites, and so an improvement in the overall performance would be expected. However, the effect on depth of cure was not favourable since a significant reduction in the bottom/top hardness ratio was detected after reinforcement. Although this reduction was not beyond the minimal acceptable percentage (80%), it still indicates that the presence of reinforcing fibres would attenuate the light transmittance and affect the properties of bottom surface.
To confirm this observation, the light irradiance (I_R) and total energy (E_T) delivered to specimen bottom surface were measured during curing. As expected, a significant reduction in I_R and E_T values as a result of incorporating FRC was detected, which confirms that FRCs attenuate light transmittance. This finding has clinical relevance as FRC restorations would need additional curing time in order to account for the attenuation effect of fibre reinforcement. Interestingly, the orientation of incorporated FRC also seems to have an influence on hardness and light transmittance since bidirectional FRCs exhibited the highest VHNs and lowest attenuation effect. This means that FRC with bidirectional orientation is favourable to incorporate in direct resin-composite restorations as it would provide excellent reinforcement for whole restoration thickness. Accordingly, bidirectional FRCs were mainly employed during the designing process of anatomical FRC restorations in the later experiments (Chapter 7-9).

Similar findings were also established when the effect of FRC orientation on the edge-strength was investigated (Chapter 5). The effect on edge-strength was important to consider as it would give a useful indication about the integrity of restoration margins and their susceptibility to deteriorate throughout the clinical service [17, 24]. Significant improvement in the edge-strength values was seen as a consequence of fibre reinforcement. The efficiency of marginal reinforcement, however, was influenced by fibre orientation since the bidirectional FRC reinforced the margins more effectively than unidirectional FRC. These findings are in accordance with those of the previous experiment, indicating the superiority of bidirectional FRC in terms of marginal integrity and deformation resistance. Additionally, this experiment exhibited that bulk-fill resin-composite materials tend to have better marginal integrity than the conventional ones, hence their use in the later experiments.

The shear bond strength (SBS) between FRC restorations and other restorative materials is also another significant clinical parameter to consider (Chapter 6). This is because that FRCs are clinically indicated to be used as an intermediate layer to reinforce the bonding interface between resin-composite and other restorative materials [25-28]. Accordingly, this research investigated the effect of differently-oriented FRCs on SBS between veneering resin-composite and two crown-fabricating materials (lithium disilicate and Co-Cr alloys) with different surface treatments. This testing set-up is equivalent to clinical situations where FRC restorations have to be bonded to other substrates in order to be functional.

252
The main finding of the SBS experiment was that FRCs significantly reduced the SBS irrespective to the type of bonding material or surface treatment, which indicates the poor performance of FRC under shear loading. However, FRCs did reinforce the veneering material by favourably altering stress dynamics at the interface and preventing cohesive and catastrophic failures. Once again, bidirectional FRCs exhibited better SBS values than unidirectional FRCs, and performed better under shear loading. One clinical implication of these findings is to consider supporting the veneering material by incorporating a bidirectional reinforcing layer away from pure shear loading. This technique was used later in this research (Chapter 7) in an attempt to prepare FRC restorations with a design that would reduce delamination failures and improve longevity.

Delamination of the veneering composite layer from the reinforcing fibre framework has been clinically reported as the main mode of failure in FRC restorations, especially FPDs [15, 29, 30]. From a clinical perspective, this means that a reduced clinical longevity would be predicted for such restorations. However, from an engineering perspective, this indicates that the stress distribution along the interfaces during loading is not desirable, and so the restoration framework needs to be redesigned in order to provide more support for the veneering material. Inspired by this, as well as the need to provide some guidelines for the designing of FRC restoration, two designs of FRC-FPDs were proposed and tested for their load-bearing capacity and performance (Chapter 7). An additional layer of bidirectional FRC was incorporated perpendicularly to the loading in Type-I design in order to mainly support the occlusal veneering resin-composite. In contrast, Type-II had an additional woven FRC bundle in an inverted-U configuration that was supposed to change stress distribution and entirely support the veneering material. Both types were tested in a clinically-relevant environment and subjected to cyclic eccentric (chewing) loading. This form of loading was important to employ since it simulates not only the clinical masticatory force with its both components but also the corresponding fatigue.

The effect of fatigue on the performance of FRC-FPDs was also explored since it has been believed to be detrimental, yet design-dependent [20, 22, 23, 31-35]. As anticipated, the fatigue was found to have a significant negative effect on the performance of both designs, especially on Type-II. Type-I had significantly better overall performance which was attributed to the superior properties of bidirectional FRC. Nevertheless, the failure analysis showed that Type-II FRC-FPDs had fewer
delamination failures owing to the unique fibre configuration that allowed better support to the veneering layer buccally and lingually. In view of that, it is confirmed that the design of the fibre framework would significantly influence the overall performance of FRC restorations since it controls the crack propagation and fatigue behaviour. The design with bidirectional reinforcing-fibres incorporated perpendicular to the loading direction on a wide area is recommended for use as it improves the fatigue behaviour and allows superior reinforcement with excellent stress distribution.

The above principle of designing was also followed later to prepare indirect FRC crowns whose wear performance and fatigue behaviour were compared in relation to other metal-free restorations (Chapter 8 and Chapter 9). Two established CAD/CAM restorations (Lava Zirconia and Lava Ultimate) were chosen to set a reference for the comparison, which would put the findings into a meaningful context that improves the clinical recognition of FRC restorations. Again, a clinically-relevant protocol was employed during the testing, taking into account the effect of thermal aging, fatigue and dynamic loading. Importantly, the wear performance of FRC restoration was also considered in order to give an indication about the clinical longevity of FRC restorations, their resistance to deterioration and abrasiveness. Novel methodology using an intraoral scanner was followed to quantify the wear, and was found to be simple, feasible and reliable for future use. The findings were promising as the FRC crown showed desirable load-bearing capacity and fatigue behaviour better than Lava Ultimate and comparable to the robust Lava Zirconia restorations. This gives insight about the performance of FRC restorations in relation to other alternatives under high-demanding condition. Also, the wear values were indicative of the reasonable deterioration resistance, longevity and abrasiveness of FRC restorations, which cumulatively would advocate the use of FRC restoration instead of ceramic in certain clinical situations, especially with natural teeth as the opposing structures.
10.2 IMPLICATIONS:
Several noteworthy contributions have been made to the current literature and clinical practice by addressing many uncertainties about FRC restorations and providing practical guidelines.

Firstly, the findings imply that incorporating a layer of FRC within a resin-composite restoration can effectively enhance many properties, including hardness, marginal integrity and fracture resistance. Fatigue behaviour and wear performance also tend to be improved in comparison with non fibre-reinforced composites, like Lava Ultimate. Clinically, this can be a valuable technique to strengthen many restorative modalities (e.g. class-I, class-II, inlays, onlays, crowns and FPDs) under high-demanding conditions. Importantly, the incorporated FRC layers should be well-adapted between the restoration layers and include the margins as this would ensure optimum reinforcement and marginal integrity.

Secondly, this research suggests that the orientation of reinforcing fibres seems to regulate the efficiency of reinforcement in resin-composite restorations, and so affect the overall performance. According to the current literature, unidirectional FRCs are the most effective in reinforcing bulk properties, like flexural strength and modulus of elasticity. Nevertheless, this research suggests that bidirectional FRCs seem to be better in terms of surface properties, including hardness, and edge-strength. From a clinical perspective, the use of unidirectional FRC can be advocated within the main frameworks of restorations to support against the flexural loading, whereas bidirectional FRCs are more recommended in situations where an additional reinforcement is required to enhance the surface resistance against deterioration.

Thirdly, this research also suggests that the performance of FRC restoration is dependent on the design of fibre framework as well as its configuration in relation to the direction of loading. The perpendicular incorporation of FRC is recommended as it is the best to counteract the loading forces and enhance the mechanical properties. Therefore, this research highlights the importance of understanding how the stress would distribute in FRC restorations in order to tailor their frameworks in a way that hinders crack propagation and ultimately enhances the clinical performance. Using multiple reinforcements with different configurations might be an option to support extensive restorations in different places.
Fourthly, this research also suggests that the incorporation of FRC within PRC can affect light transmittance and reduce the irradiance and energy delivered to deep layers. This can affect the depth of cure, degree of conversion and so some physico-mechanical properties. From a clinical perspective, curing time longer than that suggested by manufacturers is needed to compensate the energy lost by the reinforcing fibres.

Fifthly, this research shows that the performance of FRC under shear loading is poor, as it leads to significant reduction in shear bond strength. However, its incorporation at the bonding interface can change the stress dynamics and prevent unfavourable fractures in bonding substrates. Clinically, this can be a valuable technique to limit the destruction of functional restorations used as abutments during the provisionalization of adjacent restorations.

10.3 RECOMMENDATION FOR FUTURE WORK:
This in-vitro research has expanded our understanding of FRC restorations, and established fundamentals for future studies aiming to develop further knowledge and understanding.

Future proposed in-vitro studies include:
- Identifying different designs of FRC restorations and investigating their fatigue behaviour under prolonged or accelerated loading
- Investigating the effect of FRC incorporation on the optical properties of resin-composite restoration, such as translucency and colour stability.

Investigating the performance of restorations made of short FRC material further reinforced with long FRC layer as a framework.

Further in-vivo research proposals include:
- Randomised control trials investigating the clinical performance of FRC restoration in relation to other alternatives in terms of wear behaviour, and longevity.
- Prospective clinical cohort studies investigating the effectiveness of incorporating FRC with different orientation on the surface integrity of resin-composite restorations and their resistance to surface deteriorations.
- Randomised control trials comparing the performance of different designs of FRC-FPDs.
- Clinical setups validating the use of intraoral 3D scanners as direct tooth wear monitoring instruments.
10.4 CONCLUSIONS:

I. Based on the initial three experiments and within their limitations, the following conclusions can be drawn:

- FRC incorporation significantly improves the surface hardness and edge-strength of direct resin-composite materials.
- The presence of FRC within direct resin-composite restorations significantly reduces the transmittance of light as well as the bond strength with metal/ceramic substrates.
- The effectiveness of fibre reinforcement is significantly influenced by the orientation of reinforcing fibres.
- Bidirectional FRC has significantly more effective reinforcement than unidirectional FRC in terms of surface properties (edge-strength, hardness and bond strength).

II. Based on testing the performance of anatomical FRC restorations in the later experiments and within their limitations, the following conclusions can be drawn:

- The design of fibre framework and its configuration in relation to the direction of loading significantly influence the fatigue behaviour and load bearing capacity of FRC restorations.
- The perpendicular incorporation of additional reinforcing fibres within FRC-FPDs is the most beneficial to encounter loading force and support the occlusal veneering material.
- Dynamic fatigue significantly reduces the load bearing capacity of FRC restorations.
- FRC crowns demonstrate fracture and fatigue resistances better than Lava Ultimate but lesser than Lava Zirconia crowns.
- FRC and Lava Ultimate crowns exhibit lesser wear resistance and abrasiveness in relation to Lava Zirconia.
- The use of 3M True definition scanner is a reliable method to monitor and quantify tooth wear.
REFERENCES:

Appendix I:

Irradiance measurement of LED curing unit (Eliper S10, 3M-ESPE).

Baseline irradiance measurement
Curing time: 20s, Mode: standard

Wave Length 420-480 nm (Single peak)

Direct contact with sensor
Irradiance output: 1943 mW/cm²

1mm glass separation:
1764 mW/cm²

3mm space+1mm glass separation:
1032 mW/cm²

3mm-thickness PRC specimen
During curing 200 mW/cm²
After curing: 220 mW/cm²

3mm-thickness FRC-PRC specimen
During curing 185 mW/cm²
After curing: 200 mW/cm²