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IW: inverseWishart distribution

LD: linkage disequilibrium

LDL cholesterol: lowdensity lipoprotein cholesterol
LOQ: limit of quantification

MAP: maximuma posteriori

MCMC: Markov chain Monte Carlo

NLME: nortlinear mixed effects

OATP: organic anion transporting polypeptide
OATP1B1.: organic anion transporting polypeptide 1B1
PBPK: Physiologicallybased pharmacokinetic
P-gp: Pglycoprotein
PK/PD:pharmacokinetic/pharmacodynamic
PK: pharmacokinetic

PMs: poor metabolisers

PRED: population predictions

QC: quality control

Roias relative bias

REE: relative estimation error

ResV: residual variability

RSE: relative standard error

SAEM: stochastic appramation expectation maximisation

SIRT: small intestinal residence time
SNP: single nucleotide polymorphism
SV: simvastatin (lactone form)

SVA: simvastatin acid (acid form)
UMs: ultrarapid metabolisers

VPC: visual predictive check
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Abstract

THE UNIVERSITY OF MANCHESTER

Abstract of thesis submitted by Nikolaos Tsamandouras for the degree of PhD,
entitl ed: ADevel opment an easedmplpatmaalanetic o n s
model s for popul ation data analyseso.
Month and year of submission: January 2015

Physiologically-based pharmacokinet{® BPK) modelling is traditionally employed to
predictdrug concentratiortime profiles inplasma andissuesusing information from
physiology / biology,in vitro experiments andn silico predictions. Modelbased
analyss of population pharmacokinetic(PK) data israrely performedin such a
mechanistic framework, as empirical compartmental models are mainly utilised for this
purposeHowever, the combination of traditional PBPK methodologies with parameter
estimationtechniqgues and nelmear mixed effects modelling is an approach with
progressively increasing impact due to the significant advantages it offers. Therefore,
the general aim of this thesis is to illustrate, explore and thus further facilitate the
applicaton of physiologicallypased pharmacokinetic models in the context of
population data analysis.

In order to pursue this aim, this work firstly particularly focuses tmn gopulation
pharmacokinetics of simvasta{i§V) and its active metabolite, simvastadrid (SVA)
The complex simvastatin pharmacokinetics and their clinical significance, due to the
association withsimvastatirinducedmyopathy, provide an excellent case to illustrate
the advantages of a mechanistically sound population miodde curent work, foth
conventional and physiologicallyased population models were developed using
clinical PK datafor SV and SVA Specifically,the developednodelbased approaches
successfully quantifiethe impact of demographics, genetic polymorphisms ang d
drug interactiongDDIs) on the SV/SVA pharmacokinetic¥herefore, theycan be of
significant applicatioreither in the clinicor duringdrug developmenh order to assess
myopathy and DDI risk.

Secondly, in this workhefollowing advantagesfferedby integrated population PBPK
modeling were clearly illustratedhrough specific applicationd) predction of drug
concentrations dhe tissue level, 2) ability to extrapolate outside the studied population
and/ or conditions and 3) ability to guidiée design (sample size) of prospective
clinical studies.

Finally, in the current workfurther methodological aspects related to the application
this integrated population PBPiKodellingapproachwere explored Of specific focus
was the parameter esttion process aided by prior distributions and the derivation of
the latter from differenin vitro / in silico sources. In additigrspecificmethodologyis
illustrated in this work that alloswthe incorporation of stochastic population variability
in the structural parameters of such modeisthout neglecting the undgmg
physiological constraints.
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1.1. Physiologically-based pharmacokinetic modelling in the context of

population data analysis

1.1.1.The conceptof physiologically-basedpharmacokinetic modelling

Pharmacokinetics is the study of theocesses that determine the concentretioe-

course of an administered drug inside the body. As variation in systemic concentration
partly accounts for the variability in therapeutic response, it is reasonable to develop
pharmacokinetic(PK) models in oder to mathematically interpreand predict
concentratiortime profiles. The complexity of these pharmacokinetic models can range
from being entirely fAex prhecharasticoandyutimately d e |
complex physiologicalhbased pharmacokatic (PBPK) modeld1]. This choice is
conditional on the goal of the modelling exercise as well as the amount and quality of
the available data. In other words, pharmacokinetic markeisbe built based mainly
ontheobserved clinical data (Atop downo
understanding of the human body ajf2d its
PBPK models have a physiologically pragmatic compartmental stru¢teeFigure

1.1) based on the actual anatomical characteristics of the body and its organs / tissues
[3, 4]. Theconcept of PBPK modelling isaced back many decadés and for many

years its applications were mainly related to envirental toxicology researdl, 7].

With regardto the pharmaceutical area, until recently PBPK research was mainly
carried out in academia. However, this approach has been much more popular and
appealing during the last decade, wapplications in both drug development and
regulatory sciencg8, 9]. This trend can be mainly attributed to three factors. Firstly,
advances in computerisace and the development modelling and simulation tosl|
facilitated the PBPK approach in terms of speed, accuracy and accessibility. Secondly,
in the past, PBPK models were heavily reliant on animal tissue data in order to
extrapolate to humafi0, 11]. The development ah silico methods to predict drug

tissue affinity and distributiofil2, 13] alleviated PBPK from the cost, time and ethical
constraints related to the intensive sampling of animal tissues. Fihalhgfinement of

the existingin vitro-in vivo extrapolation (IVIVE) methods allows a more accurate
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prediction of processes involved in absorption, distribution, metabolism and excretion
(ADME) of a compound14-16].
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Figurel.1l: Schematic structure of a typical wholeody PBPK modeDifferent organ/tissues

are represented as different compartments connected by perfusing bldbd. model above
has been previously used to descriibe pharmacokinetics of diazepanil7, 18].
Compartments abbreviated with Spl, St and ROB raferring to the splanchnic organs,
stomach and rest of body respectively.Ckepresents the hepatic metabolic intrinsic
clearance. Qefers to the blood flow perfusing the different organ/tissues and subscrigte
defined as: lu (lungs), mu (musgl br (brain), ki (kidney), he (heart), sp (splanchnic organs), ha
(hepatic artery), li (liver), st (stomach), ad (adipose), sk (skin), te (testes), ro (rest of body).

Physiologicallypbased models employ a richer information content than empirical
modelswith regards to the anatomy and physiology of the underlying system and
consequently they can predict drug exposure in inaccessible tissues where the drug acts
or exerts its toxicity[19]. The latter has motivated in recent years the move from

traditional perfusion limited PBPK models to transpemcorporated permeability
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limited models of certain orgarf20]. However, the main advantage of PBPK models
over their empirical counterparts is that they provide a rationad&ttapolate not only
from animal to human, but also in special populations such as paedi2tri2g] or the
obese[23] and in complex scenarios such as ddugg interactions[24]. On the
contrary, empirical models can be safely used only for interpolation within the studied

population and experimental conditidi2g).

Nevertheless, these advantages dacoote without cost. Physiologicalpased models

are systems of differential equations involving a considerable number of parameters
which come from disparate research fields. These parameters can be broadly classified
as systenrelated (e.g.blood flows, organ volumes) and druglated (e.g.intrinsic
metabolic clearance). Systemlated parameter values for a PBPK model can be
extracted from several publicatiof26-28]. However, it should be noted that these
values usually refer to an fAaverage 1ind
different disease states are difficult to find. Moreover, as PBPK model complexity is
increasing there is a need for more sophisticated sysleed parameters (e.qg.
absolute abundances of hepatic transporters), the determination of which is very
challenging. Dug-related parameters have to be extrapolated fnovitro experimental

data, which may be limited especially in the first stages of drug development.
Moreover, even when tha vitro data are available, the extrapolated model parameters
will always carrya certain degree of error due to the uncertainty imnthéro results or
potentially inappropriate systesrelated scaling factors. In practice, whenvivo data

are available, parameters which are either unknown or uncertain are determined through
simulation and calibration or more sophisticated parameter estimation techniques.
Al t hough s uCunht oa afipMpirdodalceh i s very Icaionef i ci
of physiological based models with all the merits described above, it is also prone to
limitations which should not be overlooked. Below, we highlight some of these
limitations and methodological issues that arise when parameter estimation is

perfomed in the PBPK modelling conteixt describe clinical PK data.

23



1.1.2.Structural identifiability

The <concept of structur al i dent afpiom bi | i 1
i dent i f[49 a8 is importan) to ensure that the unknown model parameters of
interest are uniquely identifiable from a specified experiment, assumingfrexsegata.

This notion particularly applies in PBPK modelling. In the absence of a unique
correspondence between @areter values and the observed output, it is impossible for
the researcher to quantify the physiological process that involves the unidentifiable
parameter. More importantly, extrapolation to species or populations outside the studied
conditions may be uogtified and dangerous. The reader is referref3ip 32] for

further information with regards to identifiability analysis techniques in PBioklels.

In practice indications for identifiability issues are: failure of thenoistition procedure

to convergeparameter values sensitive to the inigstimates used for optimisation,

and occurrence ohighly correlated parameter estimaf@4]. However, it should be
noted that structural identifiability analysis is an element of the experimental design and
is recommeded to be performed at an early stage. One of the possible solutions to
resolve identifiability issues is to provide additional information either by perturbing
the experimental desid33] (e.g. by sampling in an additional tisscempartmat), or

by applying a Bayesian framework where prior knowledge about model parameters is
utilised[34].

1.1.3.Practical / numerical identifiability and sensitivity analyses

Even when the model is itself structurally identifiable, it may suffer from practical non
identifiabilities[35]. These diffiulties arise mainly from two sources, separately and in
combination: i) due to an insufficient number and quality of observations and ii) due to

|l ack of sensitivity of the model ds out pu
Both of these condititss particularly apply in PBPK modelling. Ethical and
experimental considerations may affect the quantity and quality of the data, whilst the
physiologicalanatomical topology of the estimated parameter is remote from the
model 6s o b s er v e dasma)u Practical neflentfiabgity is yusugly
manifested with increased uncertainty (standard errors) in the parameter estimates
and/or problems in the optimisation routines to converge to a minimum, as the objective

function related to an insensitive del parameter is relatively flat. However, there are
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measures to avoid these difficulties. Firstly, one of the remedies lies again in the
experimental design, as an optimal design approach can be used to optimise sampling
collections and thus improve thefermation content of the daf86]. Secondly, before

any attempt to estimate an unknown parameter it is recommended that a sensitivity
analysis is performed in ordéo investigate if the output is sensitive to the unknown
model parameter. Sensitivity analysis is a method that examines how the variation in
the output of the model can be attributed, qualitatively or quantitatively, to different
sources of variatiof37]. The reader is referred {87] for a comprehensive review of

the different methods and technical issues related to seysithalysis and t¢38, 39

for applications in PBPK modelling.

1.1.4. Physiological plausibility of the parameter estimates and the impact of

parameter correlation

It should be notedhat although a good fit to plasma concentrafoofiles is a good

di agnostic of the PBPK model 6s perfor man
the model adequate, as particular parameter values might be estimated to be outside
their true physiological space in order to provide a good fiéerdfore asgood practice,

it is recommendedo firstly assess if the parameter estimates are physiologically

pl ausi ble and secondly to evaluate the
where some of the pathwdggechanismsef the system are perted (e.g.in drugdrug

interactions or genetic polymorphisms).

An additional issue that should not be overlookedhen attempting to estimate
parameters in a PBPK model is that some of these parameters are intrinsically
correlated, through the underlyinghysiology [2]. High correlation between model
parameters, when neglected, may resuwltbiased, imprecise and sometimes -nhon
physiologically realistic parameter estimatéherefore, it is rational to try to account

for any parameter correlations or teparameterise the model in terms of a composite
variable. For example, it is benefictal parameterise the model in terms of the intrinsic
clearance of a compound per pmol of enzyme, instead of separately estimating a

different clearance in each eliminating tissueragdependenparameter.
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1.1.5. Approachesused to optimisePBPK model parameters from clinical data

As discussed in the previous sections, parameter estimation in PBPK models is
challenging because of the large number of involved parameters and the relative small
amount of observed data usually available. Several approhalieseen performed in

the literature in order to fit PBPK models to observed data. More specifically, one of
the proposed methods is to optimise al/l
optimisationo, usi ng Mo nt eetf©d40]l liosshoalgpltei mi s
noted that this approach may provide unrealiptitameters for some of the well
defined physiological parameters (e.g. flows and volumes) possibly due to
identifiability problems, and therefore it is recommended thatethmarameters should

be constrained (see discussion[4d)]). Alternatively, more modern methods such as
genetic algorithms, which are based on the concept of natural selptliprcan be
applied to simultaneously optimise many parameters in these complex n#els
However the approach which is more commonly used, is to fix most of the model
parameters (to values knovaither from physiology or previoug vitro andin vivo
experiments) and optimise only a few unknown model param8rsThis is usually
performed in the literatureither by a trial and error visual caltion to the observed
concentration profiles, or by more formal statistical approaches, such-disgameast
squares and maximum likelihood methods. However, this approach is not without
limitations and extreme care should be taken when these parastteates are used

for extrapolation. It should be recognised that with such an approach the parameter
estimates are conditional on the values that have been assumed for the fixed parameters
[40, 44]. Nevertheless, many of these fixed parameters in complex PBPK models
involving IVIVE may carry a certain degree of inaccuracy and/or imprecision as with
every experimentally obtained result. In addition, as model parameters might be
correlated through theinderlying system physiology, fixing some of them while
optimising for others distorts the covariance structure of the parameters and may lead to
biased estimatep45]. Finally, it should be pointed out that as with any optimised
parameter, the fitted estimate itself is always accompanied with a level of uncertainty
which derives from imperfect data or any model misspecificatidfl It is striking

that a large fraction of the recently published PBPK models (in the pharmaceutical
arena) that performed parameter optimisagstimation do not report any uncertainty

on the fittel estimate, while only a few da7, 48]. Reporting a single value for an
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estimated parameter gives no idea how reliable this estimate is. More importantly, when
this parameteris related to a mechanistic hypothesis, which is a subject of

extrapolation, any conclusions or predictions cannot be trusted. On such occasions,
sensitivity analysis is again a powerful tool to examine different scenarios and support

any conclusions.

1.16. Uncertainty and variability in PBPK modelling

At this point it shouldbe highlighted that the term uncertainty mentioned above is
clearly distinct from the term variability and the reader is referred48p for an
excellent discussion related to these two terms in PBPK modelling and simulation.
Briefly, variability refers to differences attributable to environmkatagenetic factors

and is a fundamental property of the studied system that cannot be reduced. On the
contrary uncertainty is variation that derives from errors in the experimental procedure,
measurement, modelling and assumptions of the studied systemot itself a system
property and it can be reduced through optimisation of the experiment. Although
difficult, it is desirable to disentangle and separate uncertainty and variability in a
parameter estimation process. Ideally, it is desirable toal@arameter estimates not
only for the fAaver age i ondnithe poguatoh.o, but a

In the majority of published studies using PBPK modelling only a structural model is
devel oped all owing onl vy f practce, aligieal datantllat v i d
are used for fitting areften extracted from published studies and therefore only
average population and no individual concentration profiles are usually available. It
should be noted that in this case, not only is #mdividual variability on model
parameters unattainable, but also parameter estimates might be biased as averaging of
data can produce a distorted picture of the individual model fun@&@nin addition, it

is commonly observed in the PBPK modelling literature, that even when individual data
are available, these areften treated as if they arise from the same unique
human/ ani mal , an approach wuswuall yertheef err
limitations of such an approach have been repeatedly des¢bhesl] and the use of

hierarchical populatioPK modelling(see belowis strongly recommended.
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1.1.7 The population approach

Populationpharmacokinetics haseen previouslydefinedby Aaronsas the study of the
variability in plasma drug concentrations between individuals when standard dosage
regimens are administerefb3]. In the population PKapproach the individual
concentration data from aditudied subjest areanalysedsimultaneouslywith a non

linear mixed effects (NLME) modelling approac&heiner and Beahad been
instrumentain illustrating the statistical methods for this kind of analysis 52]. One

of the advantages of the population approach is that it allows the investigation of the
pharmacokinetics of a drugyen when only sparse data are available. Such sparse data
routinely arise in Phase Il studies or when special populations are of interest (e.g.,
neonates, elderly) where frequent sampling may be restricted due to ethical and medical

consideration§54].

Th e t erIm niemddhE refers to the fact that the function under consideration

I S nonl inear i n the model par ameters ar

hierarchical pammeterisation of the moddl55]. Specifically such models usually

involve two components, thetructural model level and the stostia (or statistical)

mod el l evel. The parameters of these t w

and Ar an d oespectvélyfared dherefore theise of thei mi x ed ef f ect

highlights thecombinationof these two levels this approach

The structural modedescribes the typical concentratibme profile in the population.

As highlighted previously, its complexity can ran@@®m completely empirical
compartmental models, to semiechanistic and ultimately complex PBPK modEl$.

A sub-element of the structural model is the covariate modgglch aims todescribe
deviations from the typical population profile in relation to the individual covariate
values and therefore explain a part of the observed varialtyeral factors can affect
the pharmacokinetics @compound and therefore can be introduced as covarrates i
population PK model, includinglemographics (e.g., ageveigh), environmental
factors (e.g., smoking), genetics (e.g., polymorphisms in metabolising enzymes),
physiologic and pathophysiologic mditions (e.g., pregnancy, renal impairment).
Several strategielsave been proposed foovariate screening artle development of
the covariate sumodel (e.g., stepwise covariate model buildassisted by forward

inclusion and backward eliminatip56]. In addition, a physiologically reasonable
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covariate relationship can be directly incorporatethe population modebased on our

mechanistic understanding of the studied system.

The stochastic (statistical) modaims to describghe random varialdity in the
observed concentrations. Two sour¢dsvelsof variability are usually considered in
population analyses)amelyinter-individual variability (IIV) and residual variability
Inter-individual variability refers to the variancef the structural model parameter
acrossthe different individuals in the population. Residual variability refers tq#re

of variability in the observed concentrations theamains unexplained (e.g., arising
from assay measurement errorexperimental error, model misspecificationetc.).
Finally, an additional kel of variation referredto as interoccasion variability (IOV),

can be incorporated in thetochastic model when the data involve measurements in
multiple occa®ns / visits in order to dezibe the variability ofthe individual
parameters acrodbe different occasiongs7]. The reader is referred {®8] for the
different types of parameterisations usually applied in population PK modelling with

respect to the describetbovecomponents of the stochastic (statistical) model.

The estimation of the various population model paramdteth fixed and random
effects)is usually performed through maximum likelihood estimatidowever, the
marginal likelihooddensityfunction (a measure of how likely is to observe the obtained
data, given a specific set of population model parameters) that needs to be magimised
analytically intractable(in practice the negative logarithm of the marginal density is
minimised) Several algorithms have beproposed as a solution to this problem during
the search of the maximum likelihood estimatéghe population modeparameters
Oneof the most commonly applied algorithms is the first order conditiorigh&son
method (FOCE which brieflyapproximates the analytically intractable 4dgelihood

with a first order Taylor series linearization around the conditional estimates of the
individual random effect§59]. However, other estimation algorithms have also been
recently proposede.g., stochastic approximation expectation maximisation (SAEM))
and the reader is referred [t85, 60] for an overview of different available estimation

algorithms and further references.
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1.1.8 The Bayesianperspective

Many of the shdcomings mentioned in earliegectiors that arise during PK data
analyses with PBPK modetsan be avoided when a Bayesian approach is combined
with hierarchical population modelling. As highlightd before, the information
contained in the available data is usually insufficient to estimate the numerous
parameters in a complex PBPK model. In addijttbese parameters are mechanistic in
nature and thus prior information about their range can be extracted from physiology
literature, in vitro experiments and previously published moddlserefore, it is
reasonabldo take into account this prior knowledge to support parameter estimation
but alsoto allow the currently analysed Pd#atato updateprior knowledgein the case

they ntain information with regard to the model parameteBsich aBayesian
approach rather than providing single point estimates, outputs statistical distributions of
t he model par ameter val besi o(ncsadl)l.e d T hfiepsc
distributionsthrough the Bayes theoref®l] take into accounboth the fitted data
(likelihood) and prior knowledgdsee Figure 1.2). When this approach is combined
with a hierarchical population model, it yielgsosterior distributions bottat the
individud and at the population level62, 63]. In a typical Bayesian analysis these
distributions are produced by Markahain Monte Carlo (MCMC) methods. The
reader is referred tpt5] for an introduction on the Bayesian hierarchical approach and
to [17, 34, 44, 64-66] for relatedapplications in physiologicalipased toxicokinetic and
pharmacokinetic modelling.

The advantages of an approach that uses prior informatiBBPK modelling can be
summarised as follows: it is natural in that it updates prior beliefs in the light of new
data; it sets biologicajlplausible ranges for the wedhown physiological parameters;

and it can stabilise the estimation procedure imsesf identifiability with regardto
parameters that cannot be informed from the available data. However, the approach
doesalso have a number of problems. The first is that sometimes it is difficult to
summarise prior knowledge in terms of appropriate statistical prior distributions. This
particularly ajplies to the contemporary IVI\dihicorporated PBPK models, where most

of the pior information with regardo drugrelated parameters comes framsilico
methods andin vitro experiments, which either produce point estimates ,(e.qg.

mechanistic predictions of partition coefficients) or estimates in which uncertainty and
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variability cannot be separated (e.mtrinsic clearance predictions from pooled human
liver microsomes). In additignt should be noted that if the analysed data do not
containenough information with regatd the model parameters upon estimation, these
parameterestimates will shrink towards the prior information which could not be
updated. Finally, one of the most important shortcomirggsthat the Bayesian
population approach is very computationally intensive and-tiomsuming, even with

preseniday fast compuars|[18, 67].
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Figurel.2: Elementary example illustrating the dependence of the posterior distribution on
both the observed data and prior knowledgeThis basic example aims to illustrate the
derivation through Bayes theorem of the posterior distribution of a parameter that has a
normally-distributed prior. It is assumed that an unbiased method of experimental
measuraenent exists for this parameter that yielded an observation (obs=10) that follows the
normal distribution with known variance (=3). The difference between the three plots lies on
the assumed confidence in the prior knowledge. In the left, middle and ritgttvpe have
assumed respectively a moderately informative (mean=15, variance=4), a strongly informative
(mean=15, variance=0.9) and a weakly informative (mean=15, variance=15) prior distribution.

1.1.9 Maximum a posterioriestimation

In order to overcomethis last obstacle (see section abgve)thout losing the
advantages of using prior information, a maximanposteriori (MAP) estimation
approach can be applied (commonly referiadthe population pharmacokinesc
literature with theermfi us e of f r e).qThiemethodsvas inradiucedrthe O
field by Gisleskoget al[68], as a way to stabilise a sparse data population analysis with

information from previous studies when the data from the latter are inaccessible or
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impractical to pool. Briefly, this is achieved by incorporating a penalty term on the
objective function upon minimisation, which reflects a representation of the available
prior knowledge with regards to model paramet@ese Figure 1.3). This approach
should be clearly distinguished from a Bayesian method in that it does not assume a
distribution governing randomness on the parameter estifhateee does not output
posterior distributions) but rather outputs point parameter estimates which are
considered as unknown constants in the mddelvever,the MAP point estimate for a
model parameter corresponds by definition to the mode of its posterior distrigg8jon

This approachhas been successfully appligaeviously in PBPK modelling[18§]
providing parameter estimates which were in close agreement with those from a typical

Bayesian analysigl7], but with a substantiafiprovement in computation times.

OBJV(p) = OBJVP*a + (—2log(dp))

o
o

o

»
w
S

-2log @dP)

Prior density ¢p)

@o

p(2) L p(1)

Figure 1.3: lllustration of the penalty term included in the objective function upon
minimisation. In the elementary example above we have assumed a model with two
parametes, p(1) and p(2jor whicha bivariatenormal prior distribution hasbeen assiged
with means 3 and 6 respectivelijhe pior varianceassignedor both parametergs0.3and no
covarianced assumedThe surface plotted on the left represents the joprtor probability
density (aP). This density is translated ta penalty term(-2log(dP)) that is added on the
objective functiorthat isreferring to the data @BJY*®=-2log(ikelihood). The surfacelotted

on the right represents this penaltierm. Duing the maximum liglihood search of the
parameter estimatesthe overall objective function (OBJV(p)) is minimisd@uerefore, the
further a parameter value is away fromhme prior knowledge(3 and 6 for p(1) and p(2)
respectively)the value of the penajt term goes towards to the retdigher regons of the
plotted surface (right) and therefore the less likely it is that our estimation algorithm
converges to these valueslote thatin generalthe influence of this penalty ternon the
parameter estimates idecreasing as the information in the fitted data increases.
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1.1.10 Overparameterisation, lumping, and semimechanistic approach

In practice, in a typical pharmacokinetic study it is not usually achievable (or
statistically significant) to fia model withmore than three exponentials to a plasma
concentration profile, even with reasonably ndiee data sampled over a long period
after the dos¢33]. Therefore, complex PBPK models with numerous compartments
and parameters canebconsidered as priori overparameterised. The increased
dimensionality of such models cause computational and numerical problems during
estimation and therefore simpler but still physiologically satisfactory models are
desired. This can be achieved witiodel order reduction techniques, which aim to
formally reduce the dimensionality of a system of differential equations without losing
the key dynamic informatiofi70]. One of these methods proper lumping of tissue
compartmentswhich has been applied in PBPK to derive simpler models with kinetic
behaviour similar to that dhe original complex modelnda formal methodology for

this procedure habkeen proposed71]. Other lumping procedures have been also
applied to PBPK modelg72, 73], with the latter being appealing in that it imposes
fewer restrictions on lumping conmihs and allows concentration predictions in the
tissues of the original nelmmped model. However, it should be stated that lumping
procedures are valid only locally in the parameter space for a particular set of parameter
values[74]. This is of high importance in the context of PBPK models where most of
the model parameters are not precisely known and carry a certain degree of uncertainty
and variability. In order to address this issoesbme extent, a Bayesian automated
lumping method has been proposgth] that is optimal on average as it makes

compromises between the different parameter values.

Finally, the use of minimal or semmechanistic models iagn appealing approach that
avoids some of the parameter estimation difficulties in complex PBPK miaisés

above These models offer great flexibility as they retain their physiological
mechanistic nature only in the parts of tmodel that are relevant to the desired
modelling purpose (sg§6-78] asexample). In the same lin@ generalised minimal
PBPK modelwas recently proposg 79| that allows the estimation of physiologically
relevant pharmacokinetic parameters and offers a reasonable alternative to full PBPK

modelling when only plasma concentration dataavailable.
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1.2.Genetic variation andpharmacokinetics

1.2.1. The concept of pharmacogenetics

It is very commonly seen in clinical practice that drugs which are efficacious and well
tolerated to the majority of patients, often fail to work or even cause severe adverse
effects in some other patients. Although this large imewvidual variability is well
reported for several compounds, it has always been difficult and challenging to
determine its origir{80Q]. It is now well recognised that genetic variation in humans
significantly contributes to this observed intedividual variability in drug response
[81-85]. Clinical observations of differential respendo drugs due to genetic
differences have been reported almost 50 year$&6)&7] and since then a constantly
increasing scientific interest on thebgect has been reported, forming the area of
pharmacogenetics. However, it was the completion of the human genome project and
the remarkable evolutions in genetic science in the last decade that accelerated our
knowledge with regards to genetic variati{@®] and thus paved the road for the recent
explosion in pharmcogenetic research. According to the relevant EMA and FDA
technical reports, phar macogenetics are
sequence as rel dg896@. to drug responseo

The most common source of genetic variation in humanthe singlenucleotide
polymorphisms (SNPs). More than 14 million SNPs exist in human populd®dhs

and more than 60,000 of them are estimated to be located in coding regions of genes
[92]. At the molecular level a SNP maave effects suchsastructuraimodification of

the encoded protein and thus altered or completely abolished protein function, or effects
on the amount of protein that is being expre§986|. As drugs mainly interact with
proteins inside th body to mediate their effects these alterations can significantly

determine drug response.

1.2.2. Different levels of genetic variation

Altered response to drugs can be attelu to genetic variation both ahe

pharmacokinetic and the pharmacodynamic level. Any compound afteorats
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administration undergoes absorption, distribution, metabolism and finally excretion.
Therefore genetic variation that affects any of these processes affects also the
concentrabn of the drug that reaches its target. In this instance the genetic variation
lies on the pharmacokinetic level (e.€YP2C9polymorphism and warfarif97],
CYP2D6polymorphism and tricyclic antidepressaffi§]). On the contrarythe genetic
variation lies on the pharmacodynamic level when the genetic variant is located in a
gene coding for the protetarget of the drug or other proteins involved in the
downstream signalling cascade of the u g 6 s t, MKOB&Lpolynjoephiggn. and
warfarin [99], HMGCR polymorphism and statingl0(). In addition some genetic
variants although located in effirget genes (genes coding for proteins not involved in
the targeted pathway of the drug), they may significantly affect susceptibility-to off
target adverse effects (e.golymorphisms in MHC class Il genesid hepatotoxicity

with lumiracoxib [10]]). In this work we focus solely on genetic variation on the

pharmacokinetic level

1.2.3. Genetic polymorphisms of drug metabolising enzymes

Drugs are mainly eliminated from the body by renal excretion, enzymatic
biotransformation and biliary excretion. Metabolism is the most common clearance
mechanism mediated by several members otytechrome P450 superfamily or other
enzymes such as esterases &HoP-glucuronosyltransferase@JGTs) [107. With
regardto genetically driven variation in metabolic enzymes, individuals can be grossly
allocated in the following categories: extensive metabolisers (EMs) carrying two
functional wildtype alleles, intermediate metabolisers (IMs) carrying one wild type and
one nonfunctional or decreased function allele and poor metabolisers (PMs) carrying
two nonfunctional variant alleleg103. In addition for some genes encoding
metaolic enzymegCYP2D§ individuals have been identified to carry multiple copies
of the gene and thus referremlas ultrarapid metabolisers (UMJ)L04]. This genetic
variability is likely to be clinically significant as it leads to increased or decreased
metabolism of the parent drug and subsedly increased or decreased formation of
any active or toxic metabolitesCharacteristicallya PM may have increased plasma
levels of the administered parent drugnich may cause an increased incidence of
adverse effects. On the contraBMs or UMs mayhave decreased response to the drug
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due to lower plasma levels; or increased levels of the active molecule in the case that
the administered compound is a fhag or if the metabolite is pharmacologically

active (e.g., desipraminefiowever it should be noted that genetic polymorphisms in
genes coding for metabolic enzymes have clinically important effects on the treatment
outcome or tolerance of a drug when the following attribgtaeerallyapply: the drug

has a narrow therapeutic indek;¢ pol ymor phism | ies in t he
elimination; the metabolite differs in terms of therapeutic activity or toxicity from the
parent compound; the effect of the polymorphism is of a large extent compared to the

variance due to backgroundmgenetic noise.

Several associations have been reported through the literature between genetic variation
in cytochrome P450 isoforms and altered drug response. Characteristically we can refer
to the effects ofCYP2C9variants on warfarin, phenytoin amosartan[97, 105 106,
CYP2C19ariants on omeprazo[@07], CYP2D6variants on amitryptilynemetoprolol

and codeing98, 108 109 and CYP3A5variants on tacrolimu$l11(. In addition

several polymorphisms have de also identified in other nerytochrome P450
metabolic genes which affect the metabolism and the effect of clinically used
compounds. Among them of significant interest are the polymorphismisPMT,

NAT2 DPYD, UGT1Aland their effects on-fercaptopurine, isoniazid;fiuorouracil

and irinotecan treatmemespectivelyj111-114).

1.24. Genetic polymorphisms of drug transporters

Although the best studied so far ggelymorphisms of drug metabolising enzgsn
increasing evidence has begaublished recently which indica¢hat polymorphisms in
genes coding for drug transporters can
[115. This effect is mediated througheaed disposition of the drugs transporters are
controlling the uptake and efflux of the drugsdaveraltissues such as g¢hintestine,

liver, kidneys and brain

Several polymorphisms in drug transporter coding genes have been identified to be
associatedn vivo with inter-individual PK variability, which eventuallymay lead to
variability in the therapeutic efficacy and safety of a pharmacautompound.
Characeristically, theABCG2gene codes for an efflux transporteemmonly reported

as the fAbreast ¢ anc e,(whiche@lays & digaificanerolepin tbet e i n

36



intestinal absorption and biliary excretion of drugs. IndicativAaCG2variants have
been associatenh vivo with significantly higher plasma levels of diflomotecgiiq
and altered disposition and therapeutic efficacy of rosuvagttin 118. In addition,
variants of theABCB1 gene which encodes the transmembrane efflux pump P
glycoprotein(P-gp), have been significantly associat@ithough not consistentlyyith
altered pharmacokinetics of digoxin and cyclosporind1A9. However the most
clinically significant findings in the area of transporter pharmacogenetiasfar are
related to genetic variation in ti&.CO1Blgene(discussedelow).

1.25. Genetic variation in theSLCO1Bl1gene

SLCO1Blis the gene encoding the organic anion transportiatyppptide 1B1
(OATP1BYJ), which is an uptakdransporter located on the basolateral (sinusoidal)
membrane of humanepatocytes. This transportenediats the active transport of
several compounds from the portal blood into hepatodyi2@ 121]. To date several
single nucleotide polymorphisms (SNPs) have been identified irSit&01B1lgene
with various allele frequencies and dif
[121]. Among these SNRP$s4149056(c.521T>C) andrs2306283 (c.388A>Glare
relatively frequent (variant allele frequency > 10% in Europ¢af%) andhave been
observed to cause atteration in the function of the transpar; thus these two SNPs

have been studied more extensivedpecifically, rs4149056has been found to result in
reduced membrane expression and activity of the transporter towards several substrates
in vitro [122126. However the effects 0frs2306283in vitro are more controversial
[122-12€. It is importantto note that these two SNPs are not inherited independently
and thus their effect is tier described in combination through t@ecific haplotypes

they form The rs4149056(c.521T>C) polymorphisneither alone or in conjunction

with thers2306283 plymorphism (through the formdthplotypeshas been repeatedly
asociated in vivo with alteled pharmacokinetics of several compoundgore
specifically, this genetic variation haseen associated with increaggdsmaexposure

of pravastatin[127], pitavastatin[128, simvastatin acid129, atorvastatin[13(,
rosuvastatirf131], repaglinidg132 and irinotecar133.
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1.2.6. Inclusion of genetic information in population PK models

The effecs of genetic polymorphismsnothe pharmacokinetic®f a drugare usually
investigaed in conventional(intensive samplingPK studieswith noncompartmental
analysis The resulting PK parameters (e.g., AUC, Cma®n such an analysiare

then compared between the different genotype groups in order to identify any
significant differenceddowever, more refined techniques candmplied which employ

the population PK gpoachin orderto incorporate genetic information as a covariate in
anonlinear mixed effect\LME) model[134, 135. Such modebased approaches are
recently receiving great interest and have progressively increasing impact in the
literature as they can offer significant advangsgwhich are listed belo a) they allow

the investigation ofa genetic variant effe@ven in the case wheraainly sparsely
sampled data are availaplg) allowthe simultaneouanalysis of multiplegenetic ad
nongenetic covariates, gyrovide a mechanistic frameworkor the genetic variant
effect, d) achieve increased statistical power for the detection of a genotype effect
compared t@a conventional type of analysasdfinally e) the developed model can be

used for clinical trial simulation.

However,with such an approach the detection of a polymorphic effect can be seen as a
model selection problerfii36 and therefore several methodolaichallenges arise.
These challenges are relatéal the application of the most appropriatevariate
selection proceduréhat will exhibit high statistical power for the detection ofrae
genotype effectwhile the probabity for a Typel error (false positive) is maintained

low [137-139. Finally, an additional methodological challenge thas recently
emergedwith the adent of highthroughput genotypinglatformsis thathundreds or
thousands ofsingle nucleotide polymorphisméSNP9 are routinely available for
covariate screening. Adding fughcomplexity SNPsat closely linked genetic loci are
not independents they are correlated in the population through linkage disequilibrium
[140. Specific techniques for the incorporation of multiple SNPs in NLME
pharmacokinetic mode have been recently proposed by Lehal [14]] and Bertrand

et al[147.
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1.3. The pharmacokinetics of simvastatin

1.3.1 Simvastatin use angnechanism of actim

Simvastatin is a drug that belongs to the group dfy@oxy3-methylglutaryt
coenzyme A (HMGCoA) reductase inhibitors which are used to treat
hypercholesterolemia and hypertriglyceriderfil@3. Clinical studies have provided
evidence that HMECoA reductase inhibitors (statins) considerably decrease the risk of
cardiovascular morbidity and mortality in patients with or without coronary heart
disease and thus can hé&so usedin highrisk individualsfor primary or secondary
prevention[144, 145. Simvastatin is a semisynthetic derivative of lovastatin that
chemically differs only by having an additional side chain methyl groupg, (see
Figurel.4).
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Figurel.4: Lovastatin and simvastatin chemical structuge

Statins primary mechanism of action is mediated through competitive inhibitithe
HMG-CoA reductase, an enzyme which is the rate limiting stefeinovocholesterol
synthesis in the liver. The consequergduction in the intracellular cholesterol levels
induces an wpegulation of lowdensity lipoproteifLDL) cholesterol recepts on the
hepatocyte cell surfacé his processsubsequently results in an increased extraction of
LDL cholesterolfrom the blood and thus decreased circutatinDL cholesterol
concentrationssgeFigurel.5), [147-149.
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Figurel.5: The primary mechanism aiction of statirs. Adaped from[15Q].

1.3.2. Simvastatin adverse effects arttie incidence ofmyopathy

Simvastatin is generally a very well tolerated drug and serious adverse effects are seen
rarely. The most serious adverse effect is related to skeletal muscle and it can range
from myalgia to myopathy and the rare but potentially-thfieeatening rhabdomyysis

[15]]. With regardto statin therapy, myopathy is defined with the presence of
symptoms such as myalgia, fatigue or weakness along with a marked elevation of the
creatinine kinase levels (>10 times the upper normal limit). Rhabdomyolysis isra seve
form of myopathy that consists a clinical syndrome accompanied with myoglobinuria
and target organ damage such as acute renal f§il6&. The molecular mechanism

that governs statin induced myopathy is still not clearly defined and several

mechanisms have been propoEEs3.

Simvastatininduced myopathyis a doseelated adverse effect, as its incidence is less
than 0.1%with simvastatindoses less than 40 migut it increases to 0% with
simvastatindose of80 mg.[154. Moreover it has beenobserved that the risk of
myopathy increases along with concomitadministration of other drggwhich inhibit
simvastatin metabolic pathways and transporting systgls&-157]. Finally, genetic

variationin the geng([SLCO1B} coding for the OATP1B1 hepatic uptake transporter
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has been also strongly associated with an increased risk of myopaéhgl$ésection
1.3.6below) [15§. All the aboveindicate thathe simvastatirinducedmyopathyrisk is
concentationdependentand thus atleast partially of a pharmacokinetic origin
Therefore further understanding of the processes that determine the disposition of

simvastatins particularly crucial.

1.3.3 Absorption, distribution and bioavailability of simvastatin

Previous studies indicate thati®b% of a simvastatidose is absorbed and that it is
unlikely to be subject to extensive bacterial metabolism in the gut Ijfrsh. The
bioavailability of simvastatins very low due toextensiveintestinal walland hepatic
first pass metabolismSpecifically, the bioavailability of a simvastatioral dosein
humanss estimated to be less than $%43. Simvastatins a highly lipophilic neutral
compound and thus can easily penetrate plasma memb{is@sand distribute into
tissuesTheplasma protein bindingf simvastatin is higi¢>95%) [159.

1.3.4. Formation of the activesimvastatin acid metabolite

Simvastatin (SV) can be considered a-grog as it possesses an inactive lactone ring
moiety that needs tbe converted to the open acid form of simvastatin acid (SVA) in
order to be capable of HMGOA reductase inhibitory activity159 (seeFigure 1.6
below). This conversion can be achieved remzymatically by hydilysis and
enzymatically bycarboxylesterases present different tissues (especially liver and
small intestinal wall) andlsoby paraoxonases in plasiiB61]. However, althouglthe
formation of SVA is faoured [16]], it is not a onavay process as$SVA can be
converted back to the lacte form (SV) either via an acglucuronide intermediate that
can undergo spontaneoagclization or via a coenzyme-éependent pathwajl62.
Similarly, the oxidative metabolites of both SV and SVA (seetion 1.3.%elow) are
alsosubjects of this inteconversion process. The irteonversion kinetis between SV
and SVA are illustrad inFigure1.6.
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Figurel.6: Inter-conversion kinetics between theimvastatinlactone (SV) and the acid (SVA)
form. Adapted from[162].

1.3.5. Oxidative metabolism and excretion

SV oxidative metabolism is mediated through the cytochrome P450 ariticsigcdoy

the CYP3A4/5 enzynee(3fold higher affinity forCYP3A4 thanCYP3A5) [163 164].

SV oxidative metabolism can take place not only in hepatocytes, but also in the small
intestinal wall, a concept that is confirmed by the fact that grapefruit juice significantly
increases the AUC of SM.65. Severabxidativemetabolites of SV have been reported

from bothin vivo andin vitro studies while the open acids of some of the synthesised
metabolites showalso HMG-CoA reductase activitj163 164. I n particu
hydroxyS V, -h@l@xXS V , -hy@réxymethydlS V  a shgdrody€arbonyiSV, after
conversion to their acid forms show respectively 50%, 20% , 90% and 40% of the SVA
activity [143, 1664].
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SVA also undergoes oxidative maeblism by P450, mediated primarily through
CYP3A4/5 with a small contribution of CYP2C8 (<209d)64, 167]). It has been
observed that the C¥mediated metabolic clearance of &1 much lower than that of
SV, as the parent lacton&V) is more lipophilic and thus peesets a better CYP
substrate than thieydrophilic acid form[164]. In addition to P450 metabolisriBVA

undergoeslsob-oxidation[168 and glucuronidatiofl6Z (seeFigurel.6 above.

After a radolabelled dose of simvastatin tmumans 58% of the radioactivity wa
collected in faeces secondary to biliary excretidowever minimal amountf intact

SV or SVA werefound due to extensive metabolisihi43. In accordance to thain a

study involving patients with -fube drinage little or no SV or SVAvere present in

the bile after a single oral dose of simvastdti69. From studies in animals, there is
someevi dence of ent er oh elpydrdxySVA metabobtef1dY.pt i or
Finally, theurinary excretion of simvastatin humanss considered minimahsafter a

radiolabelledsimvastatindoseonly 13% ofthe radioactivitywas collectedin the urine

[143.

1.3.6. Genetic polymorphismaffecting the disposition ofsimvastatin

Polymorphisms in several genes that eledor metabolising enzymes atchnsporters
have been associatad clinical studieswith altered SV/ISVA pharmacokietics or
pharmacodynamicsMore specifically these polymorphisms are located within the
SLCO1B1(coding for OATP1B1 uptake transportg)29, CYP3A4[17(, CYP3A5
[171, ABCG2(coding for the BCRP efflux transportdt)72] and ABCB1(coding for
the Rgp efflux transporter)173 genesMany of these polymorphisms weidentified

to have differentiakffects on the pharmacokinetics of SW&aVA, as the two forms
have dissimilar physicochemicalproperties and interact differently with metabolic
enzymes andtransportes. It should be notedthat in these previous clinical
pharmacogenetic studiethe different polymorphismshave not beersimultaneously
analyse and thereforany combined effectsave been neglected

From all theassociationseportedabove the onethat clearly stands out in terms it$
clinical importance is the polymorphism in t8&CO1B1lgene. In tl pharmacokinetic
studyby Pasanewet al [129, individuals with the homozygous variant genotype (CC)
for the SLCO1B1rs4149056(c.521T>C) polymorphism had 221% higher SVA plasma
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exposure than individuals with thBomozygous wiledype genotype (TT).This
increased plasma exposure is attributed to the decreased uptake of SVA into the
hepatocytes and consequently decreased metabdlianthe contraryno significant
difference was observed for the pharmacokinetics of the lactone form (SV) between the
different genotypesrThis is justifiable as the lactone form (SW) contrast to SVAis

highly lipophilic, can readily penetrate the hepatosyteoughpassive diffusion and
therefore does not depend on thetivity of the OATP1B1 transporter. More
importantly, n addition to the altered SVA pharmacokinetics, this polymorphism has
been strongly associated with increased risk for the developmsimidsatin-induced
myopathy based on a genonwade association studyl58. Specifically, it was
reported thamore than 60% of the observed myopathy cases could be attributed to the
presence of this genetic variga68. Therefore specific guidelinefiave beemecently
published [157, 174 with regard to pharmacogenetic testing of this variant and
simvastatin dose adjustmeantan effort to reduce the risk of myopathy in thimical

practice
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1.4. Hepatic permeability as a determinant of hepatic clearance

Drug elimination of a compound in the liver can be generally dissected to 4 distinct
processes: hepatic uptake (inflisgm the blood into the hepatocytasmusoidal efflux

from the hepatocyteback to the blood, metabolism and/or biliary excretivy.
Transporters ar@volved in all the mentioned processes apart from metabolism, thus
they can be significantedlerminants of hepatic eliminati¢hl15, 176. In this thesis, of
particular interest is the mechanistic modelling of compounds which dueeto th
physicochemical properties cannot reagibnetrate the hepatocytsslely by passive
diffusion and therefore rely on active uptake mediated by hepatic transpresesin

the basolatergkinusoidal)membraneln this situation the transportenediated hepatic
uptake plays arucial role in thedispasition of the drug It should be noted thaegeral
compoundswith such behaviouhave beenused therapeuticallye.g, pitavastatin,
pravastatin, rosuvastatin, cerivastatirepaglinide, bosentan, telmisartan, valsartan)
[175 177.

Therefore, m this part of the intragction fundamental concepts that arise during the
mathematical modelling of a compound with such behavieillr be discused In

addition, it is aimed to practically demonstraiein what extent alterations in the
involved mechanisms (e.g., metabolic and active uptake clearance) can tiaéfect

overall (net) hepaticclearance and the exposure to sucompound.

The weltstirred model isroutinely used to describe hepatic clearafCéy) as a
function of hepatic blood flow (Q, fraction unbound of the druigp blood (fu,) and
intrinsic hepaticmetabolic clearancCLe), (EQ.11)[178 179.
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One of themain assumptions of thiiver model is that no diffusional barrier exists
between the drug in blood and the hepatietabolicenzymes, thus the distribution
occurs rapidly by passive diffusiqi7g. Howewr, in the situation discussed heae
permeability barrier clearly exists at the hepatocyte levelnd therefore this
mathematical model cannot be applied to describe hepatic clearance onteet of

trarsportermediated hepatiaptake.
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A simplified mechanistic model is employed héseeFigurel1.7), in orderto illustrate

in practicethe mathematical description of the main physiological processes taking
place at the hepatocyte leveffor simplicity, the drug is assumed to be given with an
IV (intravenous)olus directly to a single system(central)compartmenandthat any

biliary or urinary excretion is negligible

Q
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Figure 1.7: Simplified threecompartment mechanistic model Qu, PRif, Claet and Claet
represent the hepatic blood flow, bidirectional passive diffusion clearance, active uptake
clearance and metabolic clearance respectiv8lyS, LV and LT are referring to the systemic
(central) liver vascular (liver blood) and liver tissue compartmeaspectively.

Qx

The mass balance differential uagions of thesystemdepicted inFigure 1.7 are
described belowWEqgs.1.21.4), where G V; and fy refer to concentration, volume and

fraction unbound respectively eachcompartment
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1 Integrating Eq.1.2rom O to infinity( B)
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1 Integrating Eq.1.3rom O to infinity( B)
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1 Integrating Eq.1.4rom O to infinity( B)
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After algebraic manipulaties in the system of equations -ILY, analytical solutions

arederived (Eqs.1-8.10) with regard to the exposure in each of the compartments:
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The @uations 1.81.10abow illustrate thgparametershat affect the exposuren each
of the model compartmest For example, it is obvious from Eq.l1.1that the liver
exposure isdetermined by the metabol@nd not by theuptake clearance On the
contrary, Eq.1.8 illustrates that the systemicexposure is dependent dhe interplay
betweenall the following processes: metabolic clearance, passive diffusion and active

uptake clearance.

Based on the defition of clearance and under the assumptlat hepatic metabolism
is the only elmination nechanisnof the drug, the overa(het) hepatic clearance (Gl
after an IV administratio can be determined with Eq.1.11

0¢i Q
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After substitution of AUGys from EQ.1.8 to Eg.1.11 and assuming that fifaetion
unbound inthe liver vascular compartment (f) equas to the fraction unbound in
blood (fu,), the overall(net) hepatic clearance (Gl. can be derigd by Eq.1.12, where

is a composé parameter defined in Eq.1.13.
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Note that for drugs in which theasolaterapermeabilty by passive diffusions very

high, it occurs that0 | 6 0 MO ,thus” 60 and thedefinition of the

overall (net) hepatic clearance (Eg.1)l8pproximates the wedtirred model (Eqg.1.1).
Note also that in this occasi the systemic exposure (Eq.)1o8 the drugwill be mainly

determined by the metabolic clearance {g)L

At the other extremes the scenarivhere basolateral permeability a drugby passive
diffusion is very low andd L 60 , thus” 0 6 0 and the overal(net)
hepatic clearance (Eq.1.12s mostly determinedby the processes responsible for the
influx of the drug into the hepatocytes rather by the hepatic metabolrmsrthis
occason the systemic exposure (Eq)L\Bill be very sensitive to any changes in the
trangortermediated hepatic uptake (séegure 1.8a) and relatively insensitive to

changes inhepatic metabolic clearance (sdegure 1.8b). On the other hand, the
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exposure in the liver tissue is very sensitive to changes in metabolic clearance (see
Figure 1.8b) butrelatively insensitive to changes in the transportexdiated hepatic
uptake (sed-igure1.8a, liver tissueAUC remains relatively unaltered although Cmax
changes). These concepts are illustrateBligure 1.8 (see below)throughsimulatiors

with the presented model in the context of a hypothetical compounchich the

hepatic uptake predomindntetermines the overall (net) hepatic clearance.
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Figure 1.8: Simulations of systemic and livetissue concentrationtime profiles of a
hypothetical compound forwhich the hepatic uptake predominatly determines itsoverall
(net) hepatic clearance(a) Effect of changes in hepatic active uptake clearancg,)®©h the
systemic (left) and liver tissue (right) concentratiime profiles. (b) Effect of changes in
hepatic metabolic clearance (gl on the systemic (left) and liver tissue (right) concetiira:
time profiles.Simulations were performed with the model presentedRigure 1.7using the
following parameter valuesDose=100mg, 87 L/h, ¥vs5 L, W=0.2 L, V=1.6 L, GL=10
L/h, Ry=1 L/h, Cke=40 L/h, fu= fu+=0.05
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1.5. Aims of thethesis

The generakim of this thesis is tdlustrate exploreand thusfurther facilitatethe
application of physiologicallybased pharmacokineticmodek in the context of

population datanalysis.

This general aimvas pursued througihe accomplisimentof specific objectives which

are listed below:

I. Develop both conventional and physiologicdbigsed population models to
describe the complex pharmacokinetics of simvastatin (SV) and its active

metabolite, simvastatin acid (SVA) in different individuals.

II.  Identify and clearly illustraten practicethe advantagesf physiologicallybased
population modellingIn particular, specific modelling applicatioa related to
simvastatin and repaglinide will be utilised &ssesshe capability of this
approachfor extrapolation outside the studied dataset and conditpyediction

of tissue concentrations and design of prospective clinical studies.

Il Explore further methodological aspects related tthe application of
physiologicallybased modsl for populationdata analysege.g., parameter
estimation with the aid of prior distributions and their derivatiorgorporation
of stochastiovariability in model parametenwithout neglecing the underlying

physiological constraints)
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Chapter 2: Identification of multiple
polymorphisms effects on the pharmacokinetics
of simvastatin and simvastatin acid using a

population moddling approach
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Abstract of Chapter 2

The aim of this chapter is the development of canventional population
pharmacokinetic model for simvastatin (SV) and its active metabolite simvastatin acid
(SVA) that incorporates the effects of multiple genetic polymorphisms and clinical
demographic characteristics. SV/ISVA plasma concentrations, demograplmécal

data and genotypefor 18 genetic variants were collectédm 74 individuas (3
clinical trials) and analysd with a nonlinear mixed effects mdkiteg approach. The
structural model that best described the data included aameb a oneeompartnent
disposition model for SV and SVA respectively. Age, weight, Japanese ethnicity and 7
genetic polymorphismsys4149056 (SLCO1B), rs776746 CYP3AY, rs12422149
(SLCO2B}), rs2231142 ABCG2, rs4148162 ABCG2, rs4253728 PPARA and
rs35599367 CYP3AJ3, were identified to significantly affect model parameters. The
developed model was used to assess combinations of these covariates highlighting
specific risk factors associated wititered SV/SVA parmacokinetics and potentially
myopathy casewhich camot be solely attributedo thers414905homozygous variant

(CC) genotype.
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2.1. Introduction

Simvastatin is a HMEG0A reductase inhibitor, which is used to treat
hypercholesterolemia, hypertriglyceridemia and to reduce total mortality and incidence
of cardiovascular events in high risk individufl3-145 18(. Simvastatin (SV) can

be charactered as a pralrug as it needs conversido the open acid form of
simvastatin acid (SVA) in order to be active (see section 1[238]. This conversion

can be achieved by namzymatic hydrolysis and also enzymatically by
carboxylesterases presentainly in the liver and small intestinal walland by
paraoxonases in plasmia6l]. However, although the formation of SVA figvoured
[161], it is not a onavay process, as SVA can convert back to the tecform (SV)
either via an acyylucuronide intermediate that can undergo spontaneous cyclization or
via a CASH-dependent pathwayl62. In addition both SV and SVA undergo
oxidative metabolism primarily mediated by CYP3A41%3 167 and the open acid
forms of some of these metabolites show actiNi§g. The bioavailability (F) of SV is

low (<5%) due to extensive intestinal and hepatic first passholesen[143.

The most serious adverse effect of simvastatin is related to skeletal muscle and it can
range from myalgia to myopathy andtioately to the rare but potentially life
threatening rhabdomyolysj474, 181]. Several factors have bemlentified to increase

the risk of muscle toxicity. These include demographics,(adyanced age); clinical
factors such as high dose and concomitant administration of compounds that affect the
pharmacokinetics of SV/SVAand finally genetic predispoginh [174. The single
nucleotide polymorphism (SNP)s4149056 (c.521T>C) which lies in the gene
(SLCO1BJ) coding for the hepatic uptake OATP1B1 transporter is strongly associated
with elevated plasma levels of SV29 and increased risk of myopathy5§.
Specific guidelines wereecently publisheduggesting screenirgf this geneticvariant

in clinical practice to aigdimvastatin dose adjustmdit7, 174.

The risk of simvastatimduced myopathy is a concentratidapendent adverse effect
which is at least partly of a pharmacokinetic origl21]. The effects of genetic
polymorphisms and drudrug interactions (DDIs) on the pharmacokinetics of SV and
SVA vary between these two forfis82 183. Pdymorphisms in several metabofig

enzyme andtransporter genes have begneviously reported to affect SV/SVA
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pharmacokinetics and pharmacodynamics, specificallpli€O1B1[129, CYP3A4

[17Q, CYP3A5[17], ABCG2[172 and ABCB1[173 genes. However, to date the
studies that have reported associations between SNPs and AS¥ylgvmacokinetics

are focused on the analysis of an individual genetic variant or haplotype at a time and
thereforeareneglecting any potential combined effects. In addition-campartmental
analysis of the pharmacokinetic data is usually performedomtrast the population
modetbased approach for the analysisP#t data with regard to the impact of genetic
variants has numerous advantagdsch were specifically discussed in section 1.2.6

(see Chapter 1)

However, to date population modehsed analyses of simvastatin pharmacokinetics are
very limited[184, 185. Therefore, the aim of this work the development cd joint
SV/ISVA population pharmacokinetic model including multiple genetic and
demographic covariates which is currently lacking to our knowletlgge model can be
subsequently used to investigate difetr scenarios regarding the incidence of specific
genetic and demographic risk factors and their effect on SV/SVA plasma exposure.
Eventually such an approach can quantitatively inform dosing recommendations in

different individuals.
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2.2. Methods

2.2.1 Description of the availabledata for model development

Pharmacokinetic data from three clinical studies conducted by Eli Lilly and Company
were included in the analysis. Each of the three study protocols were reviewed and
approved by an ethical revidvoard. The studies were conducted in accordance with all
applicable regulatory and Good Clinical Practice guidelines and followed the ethical
principles originating in the Declaration of Helsinki. All subjects signed an informed

consent document prior participation in the studies.

Study 1 involved 16 healthy volunteers who were administered a 40mg simvastatin

dose followed by a second 40mg dose 24 hours later, with rich sampling through this

48-hour period Specifically, venous blood samples were draat 0.25, 0.5, 1, 1.5, 2, 3,

4, 6, 8, 12, 24, 24.25, 24.5, 25, 25.5, 26, 27, 28, 30, 32, 36 and 48 hours after the first

dose.

Study 2 involved 18 healthy volunteers who were administered a single 20mg
simvastatin dose and were intensively sampled fat-o2ir period Specifically, blood
samples were drawn at 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 18 and 24 hours after the dose.

Study 3 involved 40 patients who were on a daily regimen of 40mg simvaatatin
lastedfor 12 weeks. Study 3 participants were sparsely sampled on different visits to
the clinical research unit (approximately 4 visits per individual) for the duration of the
study. In general at every visit to the clinical research unit, a-dose blood sample

was drawn to determine trough SV and SVA concentrations (the majority of them were
20-28 hours since last dose); subsequently a 40mg dose was administered anrd a post
dose blood sample was drawn to determine SV and SVA concentrations (the majority
of them aken 16 hours after the dosejhese patients were not receiving any other
medication that could interact with SV or SVA. Their underlying disease is not known
to affect any of the pathways responsible for SV/SVA absorption, metabolism,

distribution and ecretion.
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The analyticalmethodology used to determine SV and SVA plasma coratemts in

the blood samples ixtensively describetsee Appendix A1)JL The demographic and

clinical characteristics dll the participants are reportedTiable2.1.

Table2.1: Demographic and clinical characteristics of the studied population

Study 1 Study 2 Study 3

Number of study participants 16 18 40
Gender

Male 14 (87.5%) 16 (88.9%) 12 (30%)

Female 2 (12.5%) 2 (11.1%) 28 (70%)
Age (years) 37.5(9) 39.4 (12) 61 (10)
Height (cm) 173.6 (7.6) 169.7 (8.7) 168 (8.2)
Weight (kg) 80.4 (9.8) 67 (8.4) 79.6 (15.4)
Ethnicity

Caucasian 11 (68.8%) 36 (90%)

African 3 (18.7%) 2 (5%)

Japanese 1 (6.25%) 18 (100%)

Other 1 (6.25%) 2 (5%)
Body Mass Index (BMI) 26.6 (2.3) 23.3(2.2) 28.2 (4.9)
Creatinine clearance (mL/min) - - 88.8 (26.8)
Alcohol consumption - - 26 (65%)
Smoke consumption - - 6 (15%)
Caffeine consumption - - 37 (93%)
Disease state Healthy Healthy Patients

For the qualitative characteristics, numbers in parentheses refer to percentages in each study population. For
quantitative characteristics, numbers in parenthesefer to standard deviations.

Study 1, 2 & 3 participants were genotyped for 18 geneticnpaighisms of 7 genes
(3,3,1,1,7,2and 1iABCB1 ABCG2 CYP3A4CYP3A5SLC0O1B1SLCO2Bland
PPARA genes, respectively), which were selected based on either published
associations with SV/SVA pharmacokinetics/pharmacodynamics or strong candidate
SNPs The distribution of these variants in the studied population is presenteadtblia

2.2 and the details of the genotyping and quality control (QC) methods are also reported
(see Appendix Al.2).
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Table2.2: Genotyped variants and their distribution in the studied population

Study 1 Study 2 t TOTAL
SNP Gene wt v (wt/wt, Wt/\)// vIv) (wt/wt, Wt/\)//, viv) (Wt/v%t, 3v(tj/\)// \:/?;v) (thwt,cv)vt/v, viv)
rs1045642 ABCB1 C T 4,9,2 4,11, 3 10, 18, 12 18, 38, 17
rs1128503 ABCB1 C T 591 1,10,7 13, 17, 10 19, 36, 18
rs2032582 ABCB1 G AIT 7,7, 1 3,12, 3 14, 17,9 24, 36, 13
rs2231142 ABCG2 C A 12,3,0 6, 10, 2 25,14,1 43,27, 3
rs2622604 ABCG2 G A 7,7, 1 11,7,0 28,9,3 46,23, 4
rs4148162 ABCG2 TCA - 3,9,3 7,9, 2 12, 20,8 22,38, 13
rs35599367 CYP3A4 C T 14,1,0 18,0,0 35,5,0 67,6,0
rs776746 CYP3A5 A G 3,39 4,9,5 1,7,32 8, 19, 46
rs4253728 PPARA G A 11,3,1 18,0,0 27,13,0 56, 16, 1
rs11045879 SLCO1B1 T C 7,8,0 4,11, 3 25,15,0 36, 34,3
rs2291075 SLCO1B1 T C 3,84 5,10, 3 7,25,8 15, 43, 15
rs4149048 SLCO1B1 A G 7,6,2 3,10,5 23,17,0 33,33,7
rs4149050 SLCO1B1 T C 6,7,2 3,10,5 23,17,0 32,34,7
rs4149056 SLCO1B1 T C 10,5,0 15,3,0 26,14,0 51,22,0
rs4149081 SLCO1B1 G A 7,8,0 4,11, 3 25,15,0 36, 34, 3
rs4363657 SLCO1B1 T C 8,7,0 4,11, 3 25,15,0 37,33,3
rs12422149 SLCO2B1 G A 10, 4,1 11,6,1 28,12,0 49, 22,2
rs2306168 SLCO2B1 C T 14,1,0 12,5,1 39,1,0 65,7,1

wt: wild type allele, v: variant allele, wt/wt: homozygous wild type individuals, wt/v: heterozygous individuals, v/v: lgmuszsariant individuals
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2.2.2. Poplation pharmacokinetic analysis

Populationpharmacokinetic modlieng was performed using nonlinear mixed effects
modeling software (NONMEM 7.2, ICON Development Solutions) and first order
conditional estimation method with interaction (FGQEAdditional investigations on

the NONMEM output,statistical and graphical analysis was performed in Matlab
R2012a (The MathWorks, Inc.). In total, 740 SV and 687 SVAtlagsformed plasma
concentrations derived from all the three pharmacokineidiess were simultaneously
analygd. Any concentrationselow the limit of quantification (BQL) were treated as
missing data and were excluded from the analysis. However this approach was
evaluated by also applying the M3 methft86 (a method that retains BQL
observations as censored data and maximizes the likelihood to indeed predict these
observations below the ugntification limit) and not observing any significant
alterations in the model fiThe entireanodéling procedure towards the development of
the structural and statistical (stochastibpse SV-SVA pharmacokinetic model is

extensively desdred inAppendix A1.3

Both continuous and categorical covariates were investigated in the covariate model
building procedure including: gender, age, ethnicity, height, weight, body mass index
(BMI) and genotpes for the 18 SNPs reped in Table 2.2. Covariate analysis was
performed on the identif i abAppendid AlgpOne ent O
out of the 74 subjects had missiggnotypes for all the typed SNPs and therefore these
were imputed with the most common genotype in the relevant population used as a
reference. A sensitivity analysis was also performed by excluding this subject from the
analysis to assess the impact bistassumption on the results. Techniques for the
incorporation of multiple SNPs in ndmear mixed effect PK models have been
recently proposefll4l, 142. In our study, as the number of tested SNPs is relatively
small a computationally intensive iterative procedure similar to the one proposed in
[141] was applied. Brieflycovariate selection was performed using a stepwise forward
inclusion i backward elimination process that also examines the degree of linkage
disequilibrium(LD) between correlated SNPs upon inclusion in each stencise

schematic representation ofglpiocess is presented igure2.1. However the reader
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is referred to Appendix Al.4 foxeensivedetails orthe entirecovariate model building

procedure
Base Model
ANOVA between EBEs'of [€
NO

SNP with lowest p value. Is it < 0.1?

lYES

Investigate correlation with other SNP

1

Incorporate SNP into the modsg

]

LRtest: Significant OBJV reduction (>3.84

Jves

Investigate alternative genetic models and keep bet

V)

N

\ 4

Full covariate mode

1

Backward elimination OBJV change > 7.88 (p<0.005,H Final model

Figure2.1: Schematic representation of the covariate model building procedure with regard

to the analysed SNPJhe entire covariate model building procedure is extensively described

in Appendix Al.4. ANOVA: analysis of variance, EBEs: empirical Bayes estimaitegr-
AYRAGARIZE € QI NRAIFOAfAGE NILK RS WkeliBobdFr&iO@sOBIS:NY 2 vy
objective function value.

2.2.3. Evaluation of the population model

Typical goodness of fit plots such as observations versus population (DV vs) RRE&ED
individual (DV vs IPRED) predictions and conditionally weighted residuals versus time
(CWRES vs TIME) and population predictions (CWRES vs PRED) were used to detect

any misspecifications in the structural and statistical model. In addition for bodin®
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SVA visual predictive checks (ns100) stratified by study were used to test the overall
predictive performance of the model. The populatiomariate characteristics for the
visual predictive check were randomly sampled from the original datasetcbfstudy

in a way that entire covariate rows of the dataset were sampled together in order to
retain the correct covariance structure of the covariates (especially importamyfor
correlated SNPs). A bootstrapping procedure @8Q) was performed witPsN 3.5.3
(PertspeaksNONMEM) [187] for the final model in order to evaluate the robustness of
the parameter estimates, the accuracy of the asymptotic standard errors provided by
NONMEM covariance step and to provide roerametric 95% confidence intervals on

the parameter estimates.

2.2.4 Further investigations performed with the developed population model

The final population model was used tofpan simulations K=5,000 individualg for

each modeincorporated covariate separately and assess their independent effect on the
plasma expage of both SV and SVA together with 95% prediction intervalse
simulations were performed using the variability estimates of the final pharmacokinetic

model.

In addition to assessment of individual covariate effébtsdeveloped model was used

to identify the effects of combinations of these covariates and more importantly to
highlight specific combinations that can be associated withically important
increasesn SV/SVA plasma exposure. The complete procedure performed to identify
physiologicallyplausible and clinically important multiple risk factor combinations is
extensively described (ség@pendix Al.5.
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2.3. Results

The model that described plasma concentrations of both simvastatin forms the best is

presented ifrigure2.2.

S\
VSF

§W T

Depot =2 sw [CLSH sva
VS( VSA
CLSV CLSA

Figure2.2: Final structural SV/SVA pharmacokinetic mod8V is absorbed through a lagged
first-order process to the central SV compartment (SVc) and then distributed to the peripheral
SV compartment (SVp). SV undergoes elimination from the central compartment to both non
SVA metabolites (CLSV) and to SEASH). SVA pharmacokineticgléscribed by a one
compartment disposition model.akand Q represent the firgirder absorption rate constant

and intercompartmental clearance respectively. VSC, VSP and VSA represent the SV central,
SV peripheral and SVA volume of distribution respectively.

The set of atdast locally identifiable parameters in the selected pharmacokinetic model
were: Kka (first-order absorption rate constant), Q/F (apparent -cderpartmental
clearance), CLSH/VSA (apparent SV to SVA hydrolysis clearance), CLSV/F (apparent
clearance of SVa other metabolites), CLSA/VSA (apparent SVA clearance), VSC/F
and VSP/F (apparent SV central and peripheral compartment volume of distribution
respectively). Alternative combinations of drogetabolite disposition models, the
inclusion of a firstpass fomation of SVA and the inclusion of a batknsformation
clearance from SVA to SV in the model resulted in either model misspecification or no
significant improvement of the objective functiealue (OFV) and diagnostic plots

compared to the selected madEhe parameter estimation process and the covariance
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step for the final population model (including covariates) converged successfully under
the first order conditional estimation method with interaction (FO)CGEhd a requested
precision of more than Sghificant digits in the parameter estimates. The parameter
estimates of the final population phawco&inetic model are reported ihable 2.3
together with the bootstrap results and the 95%parametric confidence intervals of
these estimates. The final population model consisted of a diagonal omega structure and
inter-individual variability was estimated for all the structural model parameters apart
from the lagtime. Inclusion of inteloccasionvariability significantly improved the
OFV and model diagnostics when applied on ka and CLSH/VSA. The unexplained
residual variability 6r SV and SVA concentrations was mbed as reporteth Table

2.3. The final population model included the influence of age, weight, Japanese
ethnicity and 7 SNPs #t were identified to significantly affect model parametsese(
Table 2.3). The inclusion of covariates resulted in a substantial improvement of the
model as theydecreased the OFV by 104.9 units compared to the base ribeel.
statistical evidence regarding each covariate incorporated in the final mpdedented

in Table 2.4. Imputing the missing genotypes of one out of the 74 subjects with the
most common genotype in the relevant population had no effect on parameteteastima
Specifically, when this subject was excluded from the analysis all the parameter
estimates (inclding all the covariate effects) were comparable (the ratio between
estimates when excluding this individual compared to imputing its genotypes was in the

range of 0.94 1.04 for all parameters).

The equations which describe the typical values of thé fmimalel paameters wee as

follows:
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, Where the terms denotes a dummy variable that takes the value of 1 for individuals
having the genotype(s¢ported for each SNP ifable2.3, else is O; the subscript of
represents the two last numbers of db&NP[188 rs# identifier notation that was used
throughout this chapter for each SNIRPis a dummy variable that takes the vaifid

for individuals of Japanese ethnicity, else isWTE denotes the weight of each

individual in kg andAGE represents the age of each individual in years.

Typical goodness of fit plots and visual predictive check with respect to the final
population nodel are presented iRigure 2.3 and Figure 2.4 respectively.Empirical

Bayes estimates (EBEs) of the model parameters identified to be influenced by
covariates were plotted against the respective covariate groups and are presented in
Figure2.5 andFigure 2.6. Extensivedetailsand interpretatiomegarding the rests for

each of the genetic and demographic covariates which were identified to have a
significant effect and were incorporated in the final model are reported in Appendix

Al1.6 and Appendix Al.7 respectively.
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Table2.3: Parameter estimates of the final SV/SVA population pharmacokinetic model

Model parameter NONMEM estimate® Bootstrap estimate 95% CI&
(RSE% (RSE%)

Structural model

Lag time (h) 0.231 (1.32) 0.230(1.30) (0.224 , 0.235)

‘1 ka (W) 2.11 (20.33) 2.24 (22.78) (1.44 , 3.45)

“ 2 QIF (L/h) 386 (13.52) 384.08 (15.6) (272.1, 515.6)

‘. CLSH/VSATh 0.0975 (10.67) 0.0958 (9.64) (0.078 , 0.115)

“ 4 CLSV/F (L/h) 1050 (6.67) 1038.9 (6.70) (905.4 , 1189.2)

‘5 CLSAIVSA Th 0.297 (7.17) 0.293 (5.88) (0.256 , 0.327)

‘& VSCIF (L) 2770 (9.39) 2735.72 (9.60) (2265.4 , 3290.9)

‘2 VSP/F (L) 3960 (12.10) 4041.7 (15.24) (2923.3 , 5549.6)

Covariate effects

‘ §: 154148162 (TCAC/TCAC) on ka
' o: Age coefficient on F

‘ 10:1s35599367 (TC) on F

‘11 IST76746 (AA) on CLSH/VSA

‘ 12: Japanese ethnicity on CLSH/VSA
* 13 14149056 (TC) on VSA
‘1418776746 (AA) on CLSA/VSA
‘15 1512422149 (AA) on CLSA/VSA
‘16152231142 (AA) on CLSA/VSA
* 17 154253728 (AAJAGY on CLSA/NVS/
‘ 15 IS414905§TC) on CLSA

‘ 1o: Weight exponent on CLSA
Weight exponent on CLSH (fixed)
Weight exponent on VSA (fixed)
Weight exponent on VSP (fixed)
Inter-individual variability (%CV‘)e)
Lag time

ka

Q/F

CLSH/VSA

CLSV/F

CLSA/VSA

VSC/F

VSP/F

Inter-occasion variability 1’ (%CV)
ka

CLSH/VSA

Inter-occasion variability 2’ (%CV)
ka

CLSH/VSA

Residual variability"

epsly

epsy

epslsya

epsva

epsdva

Msya

-0.538 (23.05)
0.0133 (30.23)
0.490 (71.63)
0.726 (35.54)
0.682 (33.14)
-0.464 (14.37)
0.562 (32.03)
0.790 (16.33)
-0.395 (16.96)
-0.243 (26.21)
-0.435 (14.44)
0.887 (21.76)
0.75

1

1

103.29 (32.09)
123.16 (23.51)
33.77 (28.43)
54.13 (21.91)
12.17 (110.20)
60.06 (43.83)
59.03 (31.04)

102.99 (29.60)
36.02 (42.95)

69.92 (72.11)
17.92 (69.62)

0.187 (19.84)
0.101 (19.80)
0.0207 (24.40)
2.85 (47.37)
0.0409 (21.96)
0.0999 (28.5)

-0.522 (28.19)
0.0135 (29.53)
0.537 (76.05)
0.755 (38.43)
0.701 (32.43)
-0.462 (15.85)
0.591 (34.4)
0.808 (19.17)
-0.391 (19.55)
-0.234 (32.14)
-0.434 (15.89)
0.892 (24.76)
0.75

1

1

93.79 (38.28)
123.43 (28.67)
32.86 (28.65)
53.87 (20.42)
12.84 (83.86)
60.20 (41.05)
57.32 (37.99)

99.16 (33.05)
34.32 (44.67)

73.44 (66.47)
20.59 (51.02)

0.185 (20.08)
0.102 (17.42)
0.0206 (22.79)
3.16 (69.92)
0.0412 (20.65)
0.104 (28.05)

(-0.736 -0.141)
(0.005 , 0.021)
(-0.226 , 1.399)
(0.257 , 1.402)
(0.307 , 1.186)
(-0.592 -0.309)
(0.191, 1.012)
(0.524 , 1.123)
(-0.530 -0.224)
(-0.368 -0.076)
(-0.562 -0.293)
(0.445 , 1.301)

(45.98 , 147.39)
(77.24 , 188.85)
(22.24 , 42.42)
(41.38 65.88)
(0.80, 23.16)
(30.38 , 92.76)
(32.29 , 84.28)

(53.05 147.43)
(12.71, 48.71)

(10.47 , 147.28)
(8.04 , 30.86)

(0.117 , 0.261)
(0.071, 0.142)
(0.012, 0.031)
(1.134 , 8.223)
(0.027 0.061)
(0.051, 0.167)

(a) Population parameter estimates refer to a typical Caucasian individual with a body weight of 70 kg, 50.6 years of age

and having the most frequent (in the analysed dataset) genotype for each SNP incorporated in the model.
(b) Relative standard errors §E%) are calculated a® O AT A D PRDAGAT A n
(c) Nonparametric confidence intervals (Cls) obtained from bootstrap @64 of the final pharmacokinetic model.

(d ¢KS aavyoz2f aué A&
(e) Inter-individual variability ixpressed in terms of coefficient of variation (% CV) calculated &&:

RSTAYSR

a2 NE P

ppmm

(f) Inter-occasion variability 1 and 2 refer to variability between each dose administration and eacpevisit

respectively (see Appendix Al.3).

(h) SV residual variadlity was modelledvith an additive error model on the legansformed data and a separate residual
error variance estimate for concentrations observed betwee? 10 after dose (epsd) and concentrations observed
later than 2 h after dose (epsd. Ther@ A Rdzl t @ NAF oAt AGEe F2NJ { ! 4l a Y2RSfE
Y2RSt ¢ FT2NJ 02y 0Sy (i NI-Hihaeydose2he &siriRS dk epgl s Bvmabdynsyarefer to the
S NNE NJ .3 Shvfritespectively as defined in Eq.A1.2Apendix A1.3. For SVA concentrations observed later
than 5 h after dose, the residual error was modelled with an additive error on thgdogformed data (eps/).
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Table2.4: Stdistical evidence regardinghe incorporation of each covariate in the model

Covariate Parameter ANOVA pvalue (shre) nh C+x 0 ¢ LRT pralue
rs4149056 VSA, CLSA 9.87 x 10' (14.67%) 26.515 (2) 1.75 x 10
rs776746 CLSA/VSA 7.20 x 10 (27.50%) 17.345 (1) 3.12x 10
Japanese CLSH/VSA N.A. 16.574 (1) 4.68x 10
Age F N.A. 15.940 (1) 6.54 x 10
rs12422149 CLSA/VSA 1.10 x 10 (38.55%)” 11.965 (1) 5.42 x 1¢
rs4148162 ka 1.74 x 10 (21.78%) 10.177 (1) 1.40 x 10
rs776746 CLSH/VSA 4.35x 10" (15.41%) 9.827 (1) 1.70 x 10
rs2231142 CLSA/VSA 2.10 x 10 (33.00%" 9.753 (1) 1.80 x 10
rs4253728 CLSA/VSA 2.59 x 10 (45.47%}° 9.359 (1) 2.20x 10
rs35599367 F 8.58 x 10 (16.42%) 5.464 (1) 1.94 x 16

The EBEs ¢fvalues from the base model were used for covariate screening. The calculateihkage values in

the base model were moderate: ka (25.1%), Q/F (16.3%), CLSH/VSA (15.8%), CLSV/F (4.4%), CLSA/VSA (28.6%),
VSC/F (14.5%), VER37.2%). Howeverthey were al less than the threshold of 40% set for this wdqdee

Appendix Al.4and therefore the EBEs were considered adequate for the initial covariate screening. Nevertheless

in later steps of the forward inclusion process the shrinkage of some parametergatii the 40% threshold,

therefore direct testing of the covariates in the model was also applied using the objective function and not the

EBEs as a guide for covariate screer(sge Appendix Al.4)The shrinkage estimates in the final population
pharmacolnetic model were: ka (22.8%), Q/F (16.1%), CLSH/VSA (21.7%), CLSV/F (3.3%), CLSA/VSA (53.3%), VSCI/F
(18.1%), VSP (39.5%).In the above tablethe ANOVA palues refer to the statistical evidence obtained by
performing the test on the EBEs bfvalues of the parameter of interest between different genetic groups
(genotype classes are merged according to the genetic model) during different covariate screening steps of the
forward inclusion process. Values in parentheses (shr%) report the defjteshoinkage related to the parameter

of interest in the corresponding forward inclusion step. The ANOMALlpt dzS -shrigkRge teported for
rs35599367 is related to the EBES ofalues for Q/F as this particular covariate is simultaneously included in

apparent parameters (relative to F). The ANOWalpie and' -shrinkage reported fors4149056is related to the

EBEsof @l fdzSa F2NJ /[ {1l kzx{! ®d ¢KS phcC+x o6®Sd NBLNBaSyia i
elimination of each covariate froite final model and degrees of freedom (df) are reported in parentheses. LRT p

Gl tdzS ra GKS adlrdradrodort SOARSYOS 2060GFAYSR FTNRA. GKS f 1
(@), (b), (c): For parameters with -shrinkage >30% walso report the decrease in OFV observed from the direct

testing of the covariate in the mod@LRT)n the corresponding forward inclusion step which are: 6.436, 10.851 and

7.838 for a, b and c respectively.
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Figure2.3: Goodness of fit plotsfor the final population pharmacokinetic modeli) and (ii) are referring to SV and SVA respectiv@ly vs PRED and DV vs
IPRED denote observations versus population iadividual predictions respectively. CWRES vs TIME and CWRES vs PRED denote conditionally weighted
residuals versus time and population predictions respectively.
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