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Month and year of submission: January 2015 

 

Physiologically-based pharmacokinetic (PBPK) modelling is traditionally employed to 

predict drug concentration-time profiles in plasma and tissues using information from 

physiology / biology, in vitro experiments and in silico predictions. Model-based 

analysis of population pharmacokinetic (PK) data is rarely performed in such a 

mechanistic framework, as empirical compartmental models are mainly utilised for this 

purpose. However, the combination of traditional PBPK methodologies with parameter 

estimation techniques and non-linear mixed effects modelling is an approach with 

progressively increasing impact due to the significant advantages it offers. Therefore, 

the general aim of this thesis is to illustrate, explore and thus further facilitate the 

application of physiologically-based pharmacokinetic models in the context of 

population data analysis. 

In order to pursue this aim, this work firstly particularly focuses on the population 

pharmacokinetics of simvastatin (SV) and its active metabolite, simvastatin acid (SVA). 

The complex simvastatin pharmacokinetics and their clinical significance, due to the 

association with simvastatin-induced myopathy, provide an excellent case to illustrate 

the advantages of a mechanistically sound population model. In the current work, both 

conventional and physiologically-based population models were developed using 

clinical PK data for SV and SVA. Specifically, the developed model-based approaches 

successfully quantified the impact of demographics, genetic polymorphisms and drug-

drug interactions (DDIs) on the SV/SVA pharmacokinetics. Therefore, they can be of 

significant application either in the clinic or during drug development in order to assess 

myopathy and DDI risk. 

Secondly, in this work the following advantages offered by integrated population PBPK 

modelling were clearly illustrated through specific applications: 1) prediction of drug 

concentrations at the tissue level, 2) ability to extrapolate outside the studied population 

and / or conditions and 3) ability to guide the design (sample size) of prospective 

clinical studies. 

Finally, in the current work, further methodological aspects related to the application of 

this integrated population PBPK modelling approach were explored. Of specific focus 

was the parameter estimation process aided by prior distributions and the derivation of 

the latter from different in vitro / in silico sources. In addition, specific methodology is 

illustrated in this work that allows the incorporation of stochastic population variability 

in the structural parameters of such models without neglecting the underlying 

physiological constraints.  
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1.1. Physiologically-based pharmacokinetic modelling in the context of 

population data analysis 

1.1.1. The concept of physiologically-based pharmacokinetic modelling 

Pharmacokinetics is the study of the processes that determine the concentration-time-

course of an administered drug inside the body. As variation in systemic concentration 

partly accounts for the variability in therapeutic response, it is reasonable to develop 

pharmacokinetic (PK) models in order to mathematically interpret and predict 

concentration-time profiles. The complexity of these pharmacokinetic models can range 

from being entirely ñexploratoryò and empirical, to semi-mechanistic and ultimately 

complex physiologically-based pharmacokinetic (PBPK) models [1]. This choice is 

conditional on the goal of the modelling exercise as well as the amount and quality of 

the available data. In other words, pharmacokinetic models can be built based mainly 

on the observed clinical data (ñtop downò approach) or based on our broader 

understanding of the human body and its mechanisms (ñbottom upò approach) [2]. 

PBPK models have a physiologically pragmatic compartmental structure (see Figure 

1.1) based on the actual anatomical characteristics of the body and its organs / tissues 

[3, 4].  The concept of PBPK modelling is traced back many decades [5] and for many 

years its applications were mainly related to environmental toxicology research [6, 7]. 

With regard to the pharmaceutical area, until recently PBPK research was mainly 

carried out in academia. However, this approach has been much more popular and 

appealing during the last decade, with applications in both drug development and 

regulatory science [8, 9]. This trend can be mainly attributed to three factors. Firstly, 

advances in computer science and the development of modelling and simulation tools 

facilitated the PBPK approach in terms of speed, accuracy and accessibility. Secondly, 

in the past, PBPK models were heavily reliant on animal tissue data in order to 

extrapolate to human [10, 11]. The development of in silico methods to predict drug-

tissue affinity and distribution [12, 13] alleviated PBPK from the cost, time and ethical 

constraints related to the intensive sampling of animal tissues. Finally, the refinement of 

the existing in vitro-in vivo extrapolation (IVIVE) methods allows a more accurate 
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prediction of processes involved in absorption, distribution, metabolism and excretion 

(ADME) of a compound [14-16]. 

  

 

Figure 1.1: Schematic structure of a typical whole-body PBPK model. Different organ/tissues 

are represented as different compartments connected by perfusing blood. The model above 

has been previously used to describe the pharmacokinetics of diazepam [17, 18]. 

Compartments abbreviated with Spl, St and ROB are referring to the splanchnic organs, 

stomach and rest of body respectively. CLint represents the hepatic metabolic intrinsic 

clearance. Qi refers to the blood flow perfusing the different organ/tissues and subscripts i are 

defined as: lu (lungs), mu (muscle), br (brain), ki (kidney), he (heart), sp (splanchnic organs), ha 

(hepatic artery), li (liver), st (stomach), ad (adipose), sk (skin), te (testes), ro (rest of body). 

Physiologically-based models employ a richer information content than empirical 

models with regards to the anatomy and physiology of the underlying system and 

consequently they can predict drug exposure in inaccessible tissues where the drug acts 

or exerts its toxicity [19]. The latter has motivated in recent years the move from 

traditional perfusion limited PBPK models to transporter-incorporated permeability 
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limited models of certain organs [20]. However, the main advantage of PBPK models 

over their empirical counterparts is that they provide a rationale to extrapolate not only 

from animal to human, but also in special populations such as paediatrics [21, 22] or the 

obese [23] and in complex scenarios such as drug-drug interactions [24]. On the 

contrary, empirical models can be safely used only for interpolation within the studied 

population and experimental conditions [25]. 

Nevertheless, these advantages do not come without cost. Physiologically-based models 

are systems of differential equations involving a considerable number of parameters 

which come from disparate research fields. These parameters can be broadly classified 

as system-related (e.g., blood flows, organ volumes) and drug-related (e.g., intrinsic 

metabolic clearance). System-related parameter values for a PBPK model can be 

extracted from several publications [26-28]. However, it should be noted that these 

values usually refer to an ñaverage individualò and data for special populations and 

different disease states are difficult to find. Moreover, as PBPK model complexity is 

increasing there is a need for more sophisticated system-related parameters (e.g., 

absolute abundances of hepatic transporters), the determination of which is very 

challenging. Drug-related parameters have to be extrapolated from in vitro experimental 

data, which may be limited especially in the first stages of drug development. 

Moreover, even when the in vitro data are available, the extrapolated model parameters 

will always carry a certain degree of error due to the uncertainty in the in vitro results or 

potentially inappropriate system-related scaling factors. In practice, when in vivo data 

are available, parameters which are either unknown or uncertain are determined through 

simulation and calibration or more sophisticated parameter estimation techniques. 

Although such a ñMiddle-Outò approach is very beneficial, as it permits the application 

of physiological based models with all the merits described above, it is also prone to 

limitations which should not be overlooked. Below, we highlight some of these 

limitations and methodological issues that arise when parameter estimation is 

performed in the PBPK modelling context to describe clinical PK data.  
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1.1.2. Structural identifiability  

The concept of structural identifiability (also referred in the literature as ña priori 

identifiabiltyò) [29, 30] is important to ensure that the unknown model parameters of 

interest are uniquely identifiable from a specified experiment, assuming noise-free data. 

This notion particularly applies in PBPK modelling. In the absence of a unique 

correspondence between parameter values and the observed output, it is impossible for 

the researcher to quantify the physiological process that involves the unidentifiable 

parameter. More importantly, extrapolation to species or populations outside the studied 

conditions may be unjustified and dangerous. The reader is referred to [31, 32] for 

further information with regards to identifiability analysis techniques in PBPK models. 

In practice indications for identifiability issues are: failure of the optimisation procedure 

to converge, parameter values sensitive to the initial estimates used for optimisation, 

and occurrence of highly correlated parameter estimates [31]. However, it should be 

noted that structural identifiability analysis is an element of the experimental design and 

is recommended to be performed at an early stage. One of the possible solutions to 

resolve identifiability issues is to provide additional information either by perturbing 

the experimental design [33] (e.g. by sampling in an additional tissue-compartment), or 

by applying a Bayesian framework where prior knowledge about model parameters is 

utilised [34].  

1.1.3. Practical / numerical identifiability  and sensitivity analyses 

Even when the model is itself structurally identifiable, it may suffer from practical non-

identifiabilities [35]. These difficulties arise mainly from two sources, separately and in 

combination: i) due to an insufficient number and quality of observations and ii) due to 

lack of sensitivity of the modelôs output to differences in the values of the parameter. 

Both of these conditions particularly apply in PBPK modelling. Ethical and 

experimental considerations may affect the quantity and quality of the data, whilst the 

physiological-anatomical topology of the estimated parameter is remote from the 

modelôs observed output (usually plasma). Practical non-identifiability is usually 

manifested with increased uncertainty (standard errors) in the parameter estimates 

and/or problems in the optimisation routines to converge to a minimum, as the objective 

function related to an insensitive model parameter is relatively flat. However, there are 
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measures to avoid these difficulties. Firstly, one of the remedies lies again in the 

experimental design, as an optimal design approach can be used to optimise sampling 

collections and thus improve the information content of the data [36]. Secondly, before 

any attempt to estimate an unknown parameter it is recommended that a sensitivity 

analysis is performed in order to investigate if the output is sensitive to the unknown 

model parameter. Sensitivity analysis is a method that examines how the variation in 

the output of the model can be attributed, qualitatively or quantitatively, to different 

sources of variation [37]. The reader is referred to [37] for a comprehensive review of 

the different methods and technical issues related to sensitivity analysis and to [38, 39] 

for applications in PBPK modelling. 

1.1.4. Physiological plausibility of the parameter estimates and the impact of 

parameter correlation  

It should be noted that although a good fit to plasma concentration profiles is a good 

diagnostic of the PBPK modelôs performance, it is not necessarily sufficient to regard 

the model adequate, as particular parameter values might be estimated to be outside 

their true physiological space in order to provide a good fit. Therefore, as good practice, 

it is recommended to firstly assess if the parameter estimates are physiologically 

plausible and secondly to evaluate the modelôs predictive performance in situations 

where some of the pathways/mechanisms of the system are perturbed (e.g., in drug-drug 

interactions or genetic polymorphisms).  

An additional issue that should not be overlooked when attempting to estimate 

parameters in a PBPK model is that some of these parameters are intrinsically 

correlated, through the underlying physiology [2]. High correlation between model 

parameters, when neglected, may result in biased, imprecise and sometimes non-

physiologically realistic parameter estimates. Therefore, it is rational to try to account 

for any parameter correlations or to re-parameterise the model in terms of a composite 

variable. For example, it is beneficial to parameterise the model in terms of the intrinsic 

clearance of a compound per pmol of enzyme, instead of separately estimating a 

different clearance in each eliminating tissue as an independent parameter.  
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1.1.5. Approaches used to optimise PBPK model parameters from clinical data 

As discussed in the previous sections, parameter estimation in PBPK models is 

challenging because of the large number of involved parameters and the relative small 

amount of observed data usually available. Several approaches have been performed in 

the literature in order to fit PBPK models to observed data. More specifically, one of 

the proposed methods is to optimise all model parameters together, termed as ñglobal 

optimisationò, using Monte Carlo optimisation or the simplex method [40]. It should be 

noted that this approach may provide unrealistic parameters for some of the well-

defined physiological parameters (e.g. flows and volumes) possibly due to 

identifiability problems, and therefore it is recommended that these parameters should 

be constrained (see discussion in [40]). Alternatively, more modern methods such as 

genetic algorithms, which are based on the concept of natural selection [41], can be 

applied to simultaneously optimise many parameters in these complex models [42].  

However, the approach which is more commonly used, is to fix most of the model 

parameters (to values known either from physiology or previous in vitro and in vivo 

experiments) and optimise only a few unknown model parameters [43]. This is usually 

performed in the literature either by a trial and error visual calibration to the observed 

concentration profiles, or by more formal statistical approaches, such as non-linear least 

squares and maximum likelihood methods. However, this approach is not without 

limitations and extreme care should be taken when these parameter estimates are used 

for extrapolation. It should be recognised that with such an approach the parameter 

estimates are conditional on the values that have been assumed for the fixed parameters 

[40, 44]. Nevertheless, many of these fixed parameters in complex PBPK models 

involving IVIVE may carry a certain degree of inaccuracy and/or imprecision as with 

every experimentally obtained result. In addition, as model parameters might be 

correlated through the underlying system physiology, fixing some of them while 

optimising for others distorts the covariance structure of the parameters and may lead to 

biased estimates [45]. Finally, it should be pointed out that as with any optimised 

parameter, the fitted estimate itself is always accompanied with a level of uncertainty 

which derives from imperfect data or any model misspecifications [46]. It is striking 

that a large fraction of the recently published PBPK models (in the pharmaceutical 

arena) that performed parameter optimisation-estimation do not report any uncertainty 

on the fitted estimate, while only a few do [47, 48]. Reporting a single value for an 
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estimated parameter gives no idea how reliable this estimate is. More importantly, when 

this parameter is related to a mechanistic hypothesis, which is a subject of 

extrapolation, any conclusions or predictions cannot be trusted. On such occasions, 

sensitivity analysis is again a powerful tool to examine different scenarios and support 

any conclusions. 

1.1.6. Uncertainty and variability in PBPK modelling   

At this point it should be highlighted that the term uncertainty mentioned above is 

clearly distinct from the term variability and the reader is referred to [49] for an 

excellent discussion related to these two terms in PBPK modelling and simulation. 

Briefly, variability refers to differences attributable to environmental or genetic factors 

and is a fundamental property of the studied system that cannot be reduced. On the 

contrary uncertainty is variation that derives from errors in the experimental procedure, 

measurement, modelling and assumptions of the studied system; it is not itself a system 

property and it can be reduced through optimisation of the experiment. Although 

difficult, it is desirable to disentangle and separate uncertainty and variability in a 

parameter estimation process. Ideally, it is desirable to derive parameter estimates not 

only for the ñaverage individualò, but also their distribution in the population.  

In the majority of published studies using PBPK modelling only a structural model is 

developed allowing only ñaverage individualò predictions.  In practice, clinical data that 

are used for fitting are often extracted from published studies and therefore only 

average population and no individual concentration profiles are usually available. It 

should be noted that in this case, not only is inter-individual variability on model 

parameters unattainable, but also parameter estimates might be biased as averaging of 

data can produce a distorted picture of the individual model function [50]. In addition, it 

is commonly observed in the PBPK modelling literature, that even when individual data 

are available, these are often treated as if they arise from the same unique 

human/animal, an approach usually referred to as ñnaive pooled dataò. However the 

limitations of such an approach have been repeatedly described [51, 52] and the use of 

hierarchical population PK modelling (see below) is strongly recommended. 
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1.1.7. The population approach  

Population pharmacokinetics has been previously defined by Aarons as the study of the 

variability in plasma drug concentrations between individuals when standard dosage 

regimens are administered [53]. In the population PK approach, the individual 

concentration data from all studied subjects are analysed simultaneously with a non-

linear mixed effects (NLME) modelling approach. Sheiner and Beal had been 

instrumental in illustrating the statistical methods for this kind of analysis [51, 52]. One 

of the advantages of the population approach is that it allows the investigation of the 

pharmacokinetics of a drug, even when only sparse data are available. Such sparse data 

routinely arise in Phase III studies or when special populations are of interest (e.g., 

neonates, elderly) where frequent sampling may be restricted due to ethical and medical 

considerations [54]. 

The term ñnon-linearò in NLME refers to the fact that the function under consideration 

is nonlinear in the model parameters and the term ñmixed effectsò refers to the 

hierarchical parameterisation of the model [55]. Specifically, such models usually 

involve two components, the structural model level and the stochastic (or statistical) 

model level. The parameters of these two components are referred as ñfixed effectsò 

and ñrandom effectsò respectively and therefore the use of the ñmixed effectsò term 

highlights the combination of these two levels in this approach. 

The structural model describes the typical concentration-time profile in the population. 

As highlighted previously, its complexity can range from completely empirical 

compartmental models, to semi-mechanistic and ultimately complex PBPK models [1]. 

A sub-element of the structural model is the covariate model, which aims to describe 

deviations from the typical population profile in relation to the individual covariate 

values and therefore explain a part of the observed variability. Several factors can affect 

the pharmacokinetics of a compound and therefore can be introduced as covariates in a 

population PK model, including demographics (e.g., age, weight), environmental 

factors (e.g., smoking), genetics (e.g., polymorphisms in metabolising enzymes), 

physiologic and pathophysiologic conditions (e.g., pregnancy, renal impairment). 

Several strategies have been proposed for covariate screening and the development of 

the covariate sub-model (e.g., stepwise covariate model building assisted by forward 

inclusion and backward elimination) [56].  In addition, a physiologically reasonable 
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covariate relationship can be directly incorporated in the population model based on our 

mechanistic understanding of the studied system. 

The stochastic (statistical) model aims to describe the random variability in the 

observed concentrations. Two sources / levels of variability are usually considered in 

population analyses, namely inter-individual variability (IIV) and residual variability. 

Inter-individual variability refers to the variance of the structural model parameters 

across the different individuals in the population. Residual variability refers to the part 

of variability in the observed concentrations that remains unexplained (e.g., arising 

from assay measurement error, experimental error, model misspecification etc.). 

Finally, an additional level of variation, referred to as inter-occasion variability (IOV), 

can be incorporated in the stochastic model when the data involve measurements in 

multiple occasions / visits, in order to describe the variability of the individual 

parameters across the different occasions [57]. The reader is referred to [58] for the 

different types of parameterisations usually applied in population PK modelling with 

respect to the described above components of the stochastic (statistical) model. 

The estimation of the various population model parameters (both fixed and random 

effects) is usually performed through maximum likelihood estimation. However, the 

marginal likelihood density function (a measure of how likely is to observe the obtained 

data, given a specific set of population model parameters) that needs to be maximised is 

analytically intractable (in practice the negative logarithm of the marginal density is 

minimised). Several algorithms have been proposed as a solution to this problem during 

the search of the maximum likelihood estimates of the population model parameters. 

One of the most commonly applied algorithms is the first order conditional estimation 

method (FOCE), which briefly approximates the analytically intractable log-likelihood 

with a first order Taylor series linearization around the conditional estimates of the 

individual random effects [59]. However, other estimation algorithms have also been 

recently proposed (e.g., stochastic approximation expectation maximisation (SAEM)) 

and the reader is referred to [55, 60] for an overview of different available estimation 

algorithms and further references.  



30 

 

1.1.8. The Bayesian perspective 

Many of the shortcomings mentioned in earlier sections that arise during PK data 

analyses with PBPK models can be avoided when a Bayesian approach is combined 

with hierarchical population modelling. As highlighted before, the information 

contained in the available data is usually insufficient to estimate the numerous 

parameters in a complex PBPK model. In addition, these parameters are mechanistic in 

nature and thus prior information about their range can be extracted from physiology 

literature, in vitro experiments and previously published models. Therefore, it is 

reasonable to take into account this prior knowledge to support parameter estimation 

but also to allow the currently analysed PK data to update prior knowledge in the case 

they contain information with regard to the model parameters. Such a Bayesian 

approach rather than providing single point estimates, outputs statistical distributions of 

the model parameter values (called ñposterior distributionsò). These posterior 

distributions through the Bayes theorem [61] take into account both the fitted data 

(likelihood) and prior knowledge (see Figure 1.2). When this approach is combined 

with a hierarchical population model, it yields posterior distributions both at the 

individual and at the population level [62, 63]. In a typical Bayesian analysis these 

distributions are produced by Markov-chain Monte Carlo (MCMC) methods. The 

reader is referred to [45] for an introduction on the Bayesian hierarchical approach and 

to [17, 34, 44, 64-66] for related applications in physiologically-based toxicokinetic and 

pharmacokinetic modelling. 

The advantages of an approach that uses prior information in PBPK modelling can be 

summarised as follows: it is natural in that it updates prior beliefs in the light of new 

data; it sets biologically plausible ranges for the well-known physiological parameters; 

and it can stabilise the estimation procedure in terms of identifiability with regard to 

parameters that cannot be informed from the available data. However, the approach 

does also have a number of problems. The first is that sometimes it is difficult to 

summarise prior knowledge in terms of appropriate statistical prior distributions. This 

particularly applies to the contemporary IVIVE-incorporated PBPK models, where most 

of the prior information with regard to drug-related parameters comes from in silico 

methods and in vitro experiments, which either produce point estimates (e.g., 

mechanistic predictions of partition coefficients) or estimates in which uncertainty and 
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variability cannot be separated (e.g., intrinsic clearance predictions from pooled human 

liver microsomes). In addition, it should be noted that if the analysed data do not 

contain enough information with regard to the model parameters upon estimation, these 

parameter estimates will shrink towards the prior information which could not be 

updated. Finally, one of the most important shortcomings is that the Bayesian 

population approach is very computationally intensive and time-consuming, even with 

present-day fast computers [18, 67].  

 

Figure 1.2: Elementary example illustrating the dependence of the posterior distribution on 

both the observed data and prior knowledge. This basic example aims to illustrate the 

derivation through Bayes theorem of the posterior distribution of a parameter that has a 

normally-distributed prior. It is assumed that an unbiased method of experimental 

measurement exists for this parameter that yielded an observation (obs=10) that follows the 

normal distribution with known variance (=3). The difference between the three plots lies on 

the assumed confidence in the prior knowledge. In the left, middle and right plot we have 

assumed respectively a moderately informative (mean=15, variance=4), a strongly informative 

(mean=15, variance=0.9) and a weakly informative (mean=15, variance=15) prior distribution. 

1.1.9. Maximum a posteriori estimation 

In order to overcome this last obstacle (see section above), without losing the 

advantages of using prior information, a maximum a posteriori (MAP) estimation 

approach can be applied (commonly referred in the population pharmacokinetics 

literature with the term ñuse of frequentist priorsò). This method was introduced in the 

field by Gisleskog et al [68], as a way to stabilise a sparse data population analysis with 

information from previous studies when the data from the latter are inaccessible or 
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impractical to pool. Briefly, this is achieved by incorporating a penalty term on the 

objective function upon minimisation, which reflects a representation of the available 

prior knowledge with regards to model parameters (see Figure 1.3). This approach 

should be clearly distinguished from a Bayesian method in that it does not assume a 

distribution governing randomness on the parameter estimate (hence does not output 

posterior distributions), but rather outputs point parameter estimates which are 

considered as unknown constants in the model. However, the MAP point estimate for a 

model parameter corresponds by definition to the mode of its posterior distribution [69]. 

This approach has been successfully applied previously in PBPK modelling [18] 

providing parameter estimates which were in close agreement with those from a typical 

Bayesian analysis [17], but with a substantial improvement in computation times. 

 

Figure 1.3: Illustration of the penalty term included in the objective function upon 

minimisation. In the elementary example above we have assumed a model with two 

parameters, p(1) and p(2) for which a bivariate normal prior distribution has been assigned 

with means 3 and 6 respectively. The prior variance assigned for both parameters is 0.3 and no 

covariance is assumed. The surface plotted on the left represents the joint prior probability 

density (dP). This density is translated to a penalty term (-2log(dP)) that is added on the 

objective function that is referring to the data (OBJVData =-2log(likelihood)). The surface plotted 

on the right represents this penalty term. During the maximum likelihood search of the 

parameter estimates, the overall objective function (OBJV(p)) is minimised. Therefore, the 

further a parameter value is away from the prior knowledge (3 and 6 for p(1) and p(2) 

respectively), the value of the penalty term goes towards to the red higher regions of the 

plotted surface (right) and therefore the less likely it is that our estimation algorithm 

converges to these values. Note that in general the influence of this penalty term on the 

parameter estimates is decreasing as the information in the fitted data increases.     
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1.1.10. Overparameterisation, lumping, and semi-mechanistic approach 

In practice, in a typical pharmacokinetic study it is not usually achievable (or 

statistically significant) to fit a model with more than three exponentials to a plasma 

concentration profile, even with reasonably noise-free data sampled over a long period 

after the dose [33]. Therefore, complex PBPK models with numerous compartments 

and parameters can be considered as a priori overparameterised. The increased 

dimensionality of such models cause computational and numerical problems during 

estimation and therefore simpler but still physiologically satisfactory models are 

desired. This can be achieved with model order reduction techniques, which aim to 

formally reduce the dimensionality of a system of differential equations without losing 

the key dynamic information [70]. One of these methods is proper lumping of tissue-

compartments, which has been applied in PBPK to derive simpler models with kinetic 

behaviour similar to that of the original complex model and a formal methodology for 

this procedure has been proposed [71]. Other lumping procedures have been also 

applied to PBPK models [72, 73], with the latter being appealing in that it imposes 

fewer restrictions on lumping conditions and allows concentration predictions in the 

tissues of the original non-lumped model. However, it should be stated that lumping 

procedures are valid only locally in the parameter space for a particular set of parameter 

values [74]. This is of high importance in the context of PBPK models where most of 

the model parameters are not precisely known and carry a certain degree of uncertainty 

and variability. In order to address this issue to some extent, a Bayesian automated 

lumping method has been proposed [75] that is optimal on average as it makes 

compromises between the different parameter values. 

Finally, the use of minimal or semi-mechanistic models is an appealing approach that 

avoids some of the parameter estimation difficulties in complex PBPK models raised 

above. These models offer great flexibility as they retain their physiological-

mechanistic nature only in the parts of the model that are relevant to the desired 

modelling purpose (see [76-78] as examples). In the same line a generalised minimal 

PBPK model was recently proposed [79] that allows the estimation of physiologically 

relevant pharmacokinetic parameters and offers a reasonable alternative to full PBPK 

modelling when only plasma concentration data are available.  
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1.2. Genetic variation and pharmacokinetics 

1.2.1. The concept of pharmacogenetics 

It is very commonly seen in clinical practice that drugs which are efficacious and well-

tolerated to the majority of patients, often fail to work or even cause severe adverse 

effects in some other patients. Although this large inter-individual variability is well 

reported for several compounds, it has always been difficult and challenging to 

determine its origin [80]. It is now well recognised that genetic variation in humans 

significantly contributes to this observed inter-individual variability in drug response 

[81-85]. Clinical observations of differential response to drugs due to genetic 

differences have been reported almost 50 years ago [86, 87] and since then a constantly 

increasing scientific interest on the subject has been reported, forming the area of 

pharmacogenetics. However, it was the completion of the human genome project and 

the remarkable evolutions in genetic science in the last decade that accelerated our 

knowledge with regards to genetic variation [88] and thus paved the road for the recent 

explosion in pharmacogenetic research. According to the relevant EMA and FDA 

technical reports, pharmacogenetics are defined as ñthe study of variations in DNA 

sequence as related to drug responseò [89, 90]. 

The most common source of genetic variation in humans is the single nucleotide 

polymorphisms (SNPs). More than 14 million SNPs exist in human populations [91] 

and more than 60,000 of them are estimated to be located in coding regions of genes 

[92]. At the molecular level a SNP may have effects such as structural modification of 

the encoded protein and thus altered or completely abolished protein function, or effects 

on the amount of protein that is being expressed [93-96]. As drugs mainly interact with 

proteins inside the body to mediate their effects these alterations can significantly 

determine drug response. 

1.2.2. Different levels of genetic variation 

Altered response to drugs can be attributed to genetic variation both at the 

pharmacokinetic and the pharmacodynamic level. Any compound after its oral 
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administration undergoes absorption, distribution, metabolism and finally excretion. 

Therefore genetic variation that affects any of these processes affects also the 

concentration of the drug that reaches its target. In this instance the genetic variation 

lies on the pharmacokinetic level (e.g., CYP2C9 polymorphism and warfarin [97], 

CYP2D6 polymorphism and tricyclic antidepressants [98]). On the contrary, the genetic 

variation lies on the pharmacodynamic level when the genetic variant is located in a 

gene coding for the protein-target of the drug or other proteins involved in the 

downstream signalling cascade of the drugôs target (e.g., VKORC1 polymorphism and 

warfarin [99], HMGCR polymorphism and statins [100]). In addition, some genetic 

variants although located in off-target genes (genes coding for proteins not involved in 

the targeted pathway of the drug), they may significantly affect susceptibility to off-

target adverse effects (e.g., polymorphisms in MHC class II genes and hepatotoxicity 

with lumiracoxib [101]). In this work, we focus solely on genetic variation on the 

pharmacokinetic level. 

1.2.3. Genetic polymorphisms of drug metabolising enzymes 

Drugs are mainly eliminated from the body by renal excretion, enzymatic 

biotransformation and biliary excretion. Metabolism is the most common clearance 

mechanism mediated by several members of the cytochrome P450 superfamily or other 

enzymes such as esterases and UDP-glucuronosyltransferases (UGTs) [102]. With 

regard to genetically driven variation in metabolic enzymes, individuals can be grossly 

allocated in the following categories: extensive metabolisers (EMs) carrying two 

functional wild-type alleles, intermediate metabolisers (IMs) carrying one wild type and 

one non-functional or decreased function allele and poor metabolisers (PMs) carrying 

two non-functional variant alleles [103]. In addition, for some genes encoding 

metabolic enzymes (CYP2D6) individuals have been identified to carry multiple copies 

of the gene and thus referred to as ultra-rapid metabolisers (UMs) [104]. This genetic 

variability is likely to be clinically significant as it leads to increased or decreased 

metabolism of the parent drug and subsequently increased or decreased formation of 

any active or toxic metabolites. Characteristically, a PM may have increased plasma 

levels of the administered parent drug which may cause an increased incidence of 

adverse effects. On the contrary, EMs or UMs may have decreased response to the drug 
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due to lower plasma levels; or increased levels of the active molecule in the case that 

the administered compound is a pro-drug or if the metabolite is pharmacologically 

active (e.g., desipramine). However, it should be noted that genetic polymorphisms in 

genes coding for metabolic enzymes have clinically important effects on the treatment 

outcome or tolerance of a drug when the following attributes generally apply: the drug 

has a narrow therapeutic index; the polymorphism lies in the major pathway of drugôs 

elimination; the metabolite differs in terms of therapeutic activity or toxicity from the 

parent compound; the effect of the polymorphism is of a large extent compared to the 

variance due to background non-genetic noise.   

Several associations have been reported through the literature between genetic variation 

in cytochrome P450 isoforms and altered drug response. Characteristically we can refer 

to the effects of CYP2C9 variants on warfarin, phenytoin and losartan [97, 105, 106], 

CYP2C19 variants on omeprazole [107], CYP2D6 variants on amitryptilyne, metoprolol 

and codeine [98, 108, 109] and CYP3A5 variants on tacrolimus [110]. In addition, 

several polymorphisms have been also identified in other non-cytochrome P450 

metabolic genes which affect the metabolism and the effect of clinically used 

compounds. Among them of significant interest are the polymorphisms in TPMT, 

NAT2, DPYD, UGT1A1 and their effects on 6-mercaptopurine, isoniazid, 5-fluorouracil 

and irinotecan treatment, respectively [111-114].  

1.2.4. Genetic polymorphisms of drug transporters 

Although the best studied so far are polymorphisms of drug metabolising enzymes, 

increasing evidence has been published recently which indicates that polymorphisms in 

genes coding for drug transporters can significantly affect drugôs efficacy and safety 

[115]. This effect is mediated through altered disposition of the drug, as transporters are 

controlling the uptake and efflux of the drug in several tissues such as the intestine, 

liver, kidneys and brain.  

Several polymorphisms in drug transporter coding genes have been identified to be 

associated in vivo with inter-individual PK variability, which eventually may lead to 

variability in the therapeutic efficacy and safety of a pharmaceutical compound. 

Characteristically, the ABCG2 gene codes for an efflux transporter, commonly reported 

as the ñbreast cancer resistance proteinò (BCRP), which plays a significant role in the 
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intestinal absorption and biliary excretion of drugs. Indicatively, ABCG2 variants have 

been associated in vivo with significantly higher plasma levels of diflomotecan [116] 

and altered disposition and therapeutic efficacy of rosuvastatin [117, 118]. In addition, 

variants of the ABCB1 gene, which encodes the transmembrane efflux pump P-

glycoprotein (P-gp), have been significantly associated (although not consistently) with 

altered pharmacokinetics of digoxin and cyclosporine A [119]. However, the most 

clinically significant findings in the area of transporter pharmacogenetics so far are 

related to genetic variation in the SLCO1B1 gene (discussed below). 

1.2.5. Genetic variation in the SLCO1B1 gene 

SLCO1B1 is the gene encoding the organic anion transporting polypeptide 1B1 

(OATP1B1), which is an uptake transporter located on the basolateral (sinusoidal) 

membrane of human hepatocytes. This transporter mediates the active transport of 

several compounds from the portal blood into hepatocytes [120, 121]. To date, several 

single nucleotide polymorphisms (SNPs) have been identified in the SLCO1B1 gene 

with various allele frequencies and different outcomes on the transporterôs function 

[121]. Among these SNPs, rs4149056 (c.521T>C) and rs2306283 (c.388A>G) are 

relatively frequent (variant allele frequency > 10% in Europeans [121]) and have been 

observed to cause an alteration in the function of the transporter; thus these two SNPs 

have been studied more extensively. Specifically, rs4149056 has been found to result in 

reduced membrane expression and activity of the transporter towards several substrates 

in vitro [122-126]. However, the effects of rs2306283 in vitro are more controversial 

[122-126]. It is important to note that these two SNPs are not inherited independently 

and thus their effect is better described in combination through the specific haplotypes 

they form. The rs4149056 (c.521T>C) polymorphism either alone or in conjunction 

with the rs2306283 polymorphism (through the formed haplotypes) has been repeatedly 

associated in vivo with altered pharmacokinetics of several compounds. More 

specifically, this genetic variation has been associated with increased plasma exposure 

of pravastatin [127], pitavastatin [128], simvastatin acid [129], atorvastatin [130], 

rosuvastatin [131], repaglinide [132]  and irinotecan [133].   
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1.2.6. Inclusion of genetic information in population PK models 

The effects of genetic polymorphisms on the pharmacokinetics of a drug are usually 

investigated in conventional (intensive sampling) PK studies with non-compartmental 

analysis. The resulting PK parameters (e.g., AUC, Cmax) from such an analysis are 

then compared between the different genotype groups in order to identify any 

significant differences. However, more refined techniques can be applied which employ 

the population PK approach in order to incorporate genetic information as a covariate in 

a non-linear mixed effect (NLME) model [134, 135]. Such model-based approaches are 

recently receiving great interest and have progressively increasing impact in the 

literature, as they can offer significant advantages which are listed below: a) they allow 

the investigation of a genetic variant effect even in the case where mainly sparsely 

sampled data are available, b) allow the simultaneous analysis of multiple genetic and 

non-genetic covariates, c) provide a mechanistic framework for the genetic variant 

effect, d) achieve increased statistical power for the detection of a genotype effect 

compared to a conventional type of analysis and finally e) the developed model can be 

used for clinical trial simulation. 

However, with such an approach the detection of a polymorphic effect can be seen as a  

model selection problem [136] and therefore several methodological challenges arise. 

These challenges are related to the application of the most appropriate covariate 

selection procedure that will exhibit high statistical power for the detection of a true 

genotype effect, while the probability for a Type-I error (false positive) is maintained 

low [137-139]. Finally, an additional methodological challenge that has recently 

emerged with the advent of high-throughput genotyping platforms is that hundreds or 

thousands of single nucleotide polymorphisms (SNPs) are routinely available for 

covariate screening. Adding further complexity, SNPs at closely linked genetic loci are 

not independent, as they are correlated in the population through linkage disequilibrium 

[140]. Specific techniques for the incorporation of multiple SNPs in NLME 

pharmacokinetic models have been recently proposed by Lehr et al [141] and Bertrand 

et al [142]. 
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1.3. The pharmacokinetics of simvastatin 

1.3.1 Simvastatin use and mechanism of action  

Simvastatin is a drug that belongs to the group of 3-hydroxy-3-methylglutaryl-

coenzyme A (HMG-CoA) reductase inhibitors which are used to treat 

hypercholesterolemia and hypertriglyceridemia [143]. Clinical studies have provided 

evidence that HMG-CoA reductase inhibitors (statins) considerably decrease the risk of 

cardiovascular morbidity and mortality in patients with or without coronary heart 

disease and thus can be also used in high-risk individuals for primary or secondary 

prevention [144, 145]. Simvastatin is a semisynthetic derivative of lovastatin that 

chemically differs only by having an additional side chain methyl group  [146], (see 

Figure 1.4). 

 

Figure 1.4: Lovastatin and simvastatin chemical structures 

 

Statins primary mechanism of action is mediated through competitive inhibition of the 

HMG-CoA reductase, an enzyme which is the rate limiting step in de novo cholesterol 

synthesis in the liver. The consequent reduction in the intracellular cholesterol levels 

induces an up-regulation of low-density lipoprotein (LDL) cholesterol receptors on the 

hepatocyte cell surface. This process subsequently results in an increased extraction of 

LDL cholesterol from the blood and thus decreased circulating LDL cholesterol 

concentrations (see Figure 1.5), [147-149].  
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Figure 1.5: The primary mechanism of action of statins. Adapted from [150]. 

1.3.2. Simvastatin adverse effects and the incidence of myopathy 

Simvastatin is generally a very well tolerated drug and serious adverse effects are seen 

rarely. The most serious adverse effect is related to skeletal muscle and it can range 

from myalgia to myopathy and the rare but potentially life-threatening rhabdomyolysis 

[151]. With regard to statin therapy, myopathy is defined with the presence of 

symptoms such as myalgia, fatigue or weakness along with a marked elevation of the 

creatinine kinase levels (>10 times the upper normal limit). Rhabdomyolysis is a severe 

form of myopathy that consists a clinical syndrome accompanied with myoglobinuria 

and target organ damage such as acute renal failure [152]. The molecular mechanism 

that governs statin induced myopathy is still not clearly defined and several 

mechanisms have been proposed [153]. 

Simvastatin-induced myopathy is a dose-related adverse effect, as its incidence is less 

than 0.1% with simvastatin doses less than 40 mg but it increases to 0.4% with 

simvastatin dose of 80 mg. [154]. Moreover, it has been observed that the risk of 

myopathy increases along with concomitant administration of other drugs which inhibit 

simvastatin metabolic pathways and transporting systems [155-157]. Finally, genetic 

variation in the gene (SLCO1B1) coding for the OATP1B1 hepatic uptake transporter 
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has been also strongly associated with an increased risk of myopathy (see also section 

1.3.6 below) [158]. All the above indicate that the simvastatin-induced myopathy risk is 

concentration-dependent and thus at least partially of a pharmacokinetic origin. 

Therefore, further understanding of the processes that determine the disposition of 

simvastatin is particularly crucial. 

1.3.3. Absorption, distribution and bioavailability of simvastatin  

Previous studies indicate that 61ï85% of a simvastatin dose is absorbed and that it is 

unlikely to be subject to extensive bacterial metabolism in the gut lumen [159]. The 

bioavailability of simvastatin is very low due to extensive intestinal wall and hepatic 

first pass metabolism. Specifically, the bioavailability of a simvastatin oral dose in 

humans is estimated to be less than 5% [143]. Simvastatin is a highly lipophilic neutral 

compound and thus can easily penetrate plasma membranes [160] and distribute into 

tissues. The plasma protein binding of simvastatin is high (>95%) [159]. 

1.3.4. Formation of the active simvastatin acid metabolite 

Simvastatin (SV) can be considered a pro-drug as it possesses an inactive lactone ring 

moiety that needs to be converted to the open acid form of simvastatin acid (SVA) in 

order to be capable of HMG-CoA reductase inhibitory activity [159] (see Figure 1.6 

below). This conversion can be achieved non-enzymatically by hydrolysis and 

enzymatically by carboxylesterases present in different tissues (especially liver and 

small intestinal wall) and also by paraoxonases in plasma [161]. However, although the 

formation of SVA is favoured [161], it is not a one-way process as SVA can be 

converted back to the lactone form (SV) either via an acyl-glucuronide intermediate that 

can undergo spontaneous cyclization or via a coenzyme A-dependent pathway [162]. 

Similarly, the oxidative metabolites of both SV and SVA (see section 1.3.5 below) are 

also subjects of this inter-conversion process. The inter-conversion kinetics between SV 

and SVA are illustrated in Figure 1.6. 
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Figure 1.6: Inter-conversion kinetics between the simvastatin lactone (SV) and the acid (SVA) 

form. Adapted from [162]. 

1.3.5. Oxidative metabolism and excretion 

SV oxidative metabolism is mediated through the cytochrome P450 and specifically by 

the CYP3A4/5 enzymes (3-fold higher affinity for CYP3A4 than CYP3A5) [163, 164]. 

SV oxidative metabolism can take place not only in hepatocytes, but also in the small 

intestinal wall, a concept that is confirmed by the fact that grapefruit juice significantly 

increases the AUC of SV [165]. Several oxidative metabolites of SV have been reported 

from both in vivo and in vitro studies, while the open acids of some of the synthesised 

metabolites show also HMG-CoA reductase activity [163, 166]. In particular, 6ô-

hydroxy-SV, 3ôô-hydroxy-SV, 6ô-hydroxymethyl-SV and 6ô-hydroxycarbonyl-SV, after 

conversion to their acid forms show respectively 50%, 20% , 90% and 40% of the SVA 

activity [143, 166].  
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SVA also undergoes oxidative metabolism by P450, mediated primarily through 

CYP3A4/5 with a small contribution of CYP2C8 (<20%) [164, 167]. It has been 

observed that the CYP-mediated metabolic clearance of SVA is much lower than that of 

SV, as the parent lactone (SV) is more lipophilic and thus represents a better CYP 

substrate than the hydrophilic acid form [164]. In addition to P450 metabolism, SVA 

undergoes also ɓ-oxidation [168] and glucuronidation [162] (see Figure 1.6 above). 

After a radiolabelled dose of simvastatin to humans, 58% of the radioactivity was 

collected in faeces secondary to biliary excretion. However, minimal amounts of intact 

SV or SVA were found due to extensive metabolism [143]. In accordance to that, in a 

study involving patients with T-tube drainage little or no SV or SVA were present in 

the bile after a single oral dose of simvastatin [169]. From studies in animals, there is 

some evidence of enterohepatic reabsorption of the 6ô-hydroxy-SVA metabolite [159]. 

Finally, the urinary excretion of simvastatin in humans is considered minimal, as after a 

radiolabelled simvastatin dose only 13% of the radioactivity was collected in the urine 

[143]. 

1.3.6. Genetic polymorphisms affecting the disposition of simvastatin 

Polymorphisms in several genes that encode for metabolising enzymes and transporters 

have been associated in clinical studies with altered SV/SVA pharmacokinetics or 

pharmacodynamics. More specifically these polymorphisms are located within the 

SLCO1B1 (coding for OATP1B1 uptake transporter) [129], CYP3A4 [170], CYP3A5 

[171], ABCG2 (coding for the BCRP efflux transporter) [172] and ABCB1 (coding for 

the P-gp efflux transporter) [173] genes. Many of these polymorphisms were identified 

to have differential effects on the pharmacokinetics of SV and SVA, as the two forms 

have dissimilar physicochemical properties and interact differently with metabolic 

enzymes and transporters. It should be noted that in these previous clinical 

pharmacogenetic studies, the different polymorphisms have not been simultaneously 

analysed and therefore any combined effects have been neglected. 

From all the associations reported above, the one that clearly stands out in terms of its 

clinical importance is the polymorphism in the SLCO1B1 gene. In the pharmacokinetic 

study by Pasanen et al [129], individuals with the homozygous variant genotype (CC) 

for the SLCO1B1 rs4149056 (c.521T>C) polymorphism had 221% higher SVA plasma 
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exposure than individuals with the homozygous wild-type genotype (TT). This 

increased plasma exposure is attributed to the decreased uptake of SVA into the 

hepatocytes and consequently decreased metabolism. On the contrary, no significant 

difference was observed for the pharmacokinetics of the lactone form (SV) between the 

different genotypes. This is justifiable as the lactone form (SV), in contrast to SVA, is 

highly lipophilic, can readily penetrate the hepatocytes through passive diffusion and 

therefore does not depend on the activity of the OATP1B1 transporter. More 

importantly, in addition to the altered SVA pharmacokinetics, this polymorphism has 

been strongly associated with increased risk for the development of simvastatin-induced 

myopathy based on a genome-wide association study [158]. Specifically, it was 

reported that more than 60% of the observed myopathy cases could be attributed to the 

presence of this genetic variant [158]. Therefore, specific guidelines have been recently 

published [157, 174] with regard to pharmacogenetic testing of this variant and 

simvastatin dose adjustment in an effort to reduce the risk of myopathy in the clinical 

practice.  

 

 

 

 

 

 

 

 

 



45 

 

1.4. Hepatic permeability as a determinant of hepatic clearance 

Drug elimination of a compound in the liver can be generally dissected to 4 distinct 

processes: hepatic uptake (influx) from the blood into the hepatocytes, sinusoidal efflux 

from the hepatocytes back to the blood, metabolism and/or biliary excretion [175]. 

Transporters are involved in all the mentioned processes apart from metabolism, thus 

they can be significant determinants of hepatic elimination [115, 176]. In this thesis, of 

particular interest is the mechanistic modelling of compounds which due to their 

physicochemical properties cannot readily penetrate the hepatocytes solely by passive 

diffusion and therefore rely on active uptake mediated by hepatic transporters present in 

the basolateral (sinusoidal) membrane. In this situation the transporter-mediated hepatic 

uptake plays a crucial role in the disposition of the drug. It should be noted that several 

compounds with such behaviour have been used therapeutically (e.g., pitavastatin, 

pravastatin, rosuvastatin, cerivastatin, repaglinide, bosentan, telmisartan, valsartan) 

[175, 177].   

Therefore, in this part of the introduction fundamental concepts that arise during the 

mathematical modelling of a compound with such behaviour will  be discussed. In 

addition, it is aimed to practically demonstrate, in what extent alterations in the 

involved mechanisms (e.g., metabolic and active uptake clearance) can affect the 

overall (net) hepatic clearance and the exposure to such a compound. 

The well-stirred model is routinely used to describe hepatic clearance (CLH) as a 

function of hepatic blood flow (QH), fraction unbound of the drug in blood (fub) and 

intrinsic hepatic metabolic clearance (CLmet), (Eq.1.1) [178, 179]. 

ὅὒ
ὗ ϽὪόϽὅὒ

ὗ ὪόϽὅὒ
              ╔▲ȢȢ  

One of the main assumptions of this liver model is that no diffusional barrier exists 

between the drug in blood and the hepatic metabolic enzymes, thus the distribution 

occurs rapidly by passive diffusion [178]. However, in the situation discussed here, a 

permeability barrier clearly exists at the hepatocyte level and therefore this 

mathematical model cannot be applied to describe hepatic clearance in the context of 

transporter-mediated hepatic uptake. 
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A simplified mechanistic model is employed here (see Figure 1.7), in order to illustrate 

in practice the mathematical description of the main physiological processes taking 

place at the hepatocyte level.  For simplicity, the drug is assumed to be given with an 

IV (intravenous) bolus directly to a single systemic (central) compartment and that any 

biliary or urinary excretion is negligible. 

 

Figure 1.7: Simplified three-compartment mechanistic model. QH, Pdif, CLact and CLmet 

represent the hepatic blood flow, bidirectional passive diffusion clearance, active uptake 

clearance and metabolic clearance respectively. SYS, LV and LT are referring to the systemic 

(central), liver vascular (liver blood) and liver tissue compartments respectively. 

The mass balance differential equations of the system depicted in Figure 1.7 are 

described below (Eqs.1.2-1.4), where Ci, Vi and fui refer to concentration, volume and 

fraction unbound respectively in each compartment. 

ὠ Ͻ
Ὠὅ

Ὠὸ
ὗ Ͻὅ ὅ              ╔▲ȢȢ  

ὠ Ͻ
Ὠὅ

Ὠὸ
ὗ Ͻὅ ὅ ὖ ϽὪόϽὅ ὖ ὅὒ Ͻ ὪόϽὅ      ╔▲ȢȢ  

ὠ Ͻ
Ὠὅ

Ὠὸ
ὖ ὅὒ ϽὪόϽ ὅ ὖ ὅὒ ϽὪόϽὅ             ╔▲ȢȢ  
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¶ Integrating Eq.1.2 from 0 to infinity (Ð): 

ὠ Ͻ
Ὠὅ

Ὠὸ
 Ὠὸὗ Ͻ ὅ  Ὠὸὗ Ͻ ὅ  Ὠὸ        P  

π ὈέίὩὗ ϽὃὟὅ ὗ ϽὃὟὅ                 ╔▲ȢȢ  

 

¶ Integrating Eq.1.3 from 0 to infinity (Ð): 

ὠ Ͻ
Ὠὅ

Ὠὸ
 Ὠὸὗ Ͻ ὅ  Ὠὸὗ Ͻ ὅ  Ὠὸὖ ϽὪόϽ ὅ  Ὠὸ 

                                    ὖ ὅὒ Ͻ ὪόϽ ὅ  Ὠὸ                              P   

π ὗ ϽὃὟὅ ὗ ϽὃὟὅ ὖ ϽὪόϽὃὟὅ ὖ ὅὒ ϽὪόϽὃὟὅ    ╔▲ȢȢ   

 

¶ Integrating Eq.1.4 from 0 to infinity (Ð): 

ὠ Ͻ
Ὠὅ

Ὠὸ
 Ὠὸ ὖ ὅὒ ϽὪόϽ ὅ  Ὠὸ ὖ ὅὒ ϽὪόϽ ὅ  Ὠὸ    P  

π ὖ ὅὒ ϽὪόϽὃὟὅ ὖ ὅὒ ϽὪόϽ ὃὟὅ            ╔▲ȢȢ  

 

After algebraic manipulations in the system of equations 1.5-1.7, analytical solutions 

are derived (Eqs.1.8-1.10) with regard to the exposure in each of the compartments: 

ὃὟὅ
ὈέίὩϽὅὒ ὖ

ὅὒ ϽὪόϽὖ ὅὒ

ὈέίὩ

ὗ
               ╔▲ȢȢ  

ὃὟὅ
ὈέίὩϽὅὒ ὖ

ὅὒ ϽὪόϽὖ ὅὒ
               ╔▲ȢȢ  

ὃὟὅ
ὈέίὩ

ὅὒ ϽὪό
               ╔▲ȢȢ   
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The equations 1.8-1.10 above illustrate the parameters that affect the exposure in each 

of the model compartments. For example, it is obvious from Eq.1.10 that the liver 

exposure is determined by the metabolic and not by the uptake clearance. On the 

contrary, Eq.1.8 illustrates that the systemic exposure is dependent on the interplay 

between all the following processes: metabolic clearance, passive diffusion and active 

uptake clearance. 

Based on the definition of clearance and under the assumption that hepatic metabolism 

is the only elimination mechanism of the drug, the overall (net) hepatic clearance (CLH) 

after an IV administration can be determined with Eq.1.11. 

ὅὒ
ὈέίὩ

ὃὟὅ
             ╔▲ȢȢ  

After substitution of AUCSYS from Eq.1.8 to Eq.1.11 and assuming that the fraction 

unbound in the liver vascular compartment (fuLV) equals to the fraction unbound in 

blood (fub), the overall (net) hepatic clearance (CLH) can be derived by Eq.1.12, where 

” is a composite parameter defined in Eq.1.13. 

ὅὒ
ὗ ϽὪόϽ”

ὗ ὪόϽ”
             ╔▲ȢȢ  

”
ὅὒ Ͻὖ ὅὒ

ὖ ὅὒ
                ╔▲ȢȢ  

Note that for drugs in which the basolateral permeability by passive diffusion is very 

high, it occurs that: ὖ ḻὅὒ ȟὅὒ   , thus ” ὅὒ  and the definition of the 

overall (net) hepatic clearance (Eq.1.12) approximates the well-stirred model (Eq.1.1). 

Note also that in this occasion the systemic exposure (Eq.1.8) of the drug will be mainly 

determined by the metabolic clearance (CLmet). 

At the other extreme is the scenario where basolateral permeability of a drug by passive 

diffusion is very low and ὖ Ḻὅὒ  , thus ” ὖ ὅὒ  and the overall (net) 

hepatic clearance (Eq.1.12) is mostly determined by the processes responsible for the 

influx of the drug into the hepatocytes rather by the hepatic metabolism. In this 

occasion the systemic exposure (Eq.1.8) will be very sensitive to any changes in the 

transporter-mediated hepatic uptake (see Figure 1.8a) and relatively insensitive to 

changes in hepatic metabolic clearance (see Figure 1.8b). On the other hand, the 
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exposure in the liver tissue is very sensitive to changes in metabolic clearance (see 

Figure 1.8b) but relatively insensitive to changes in the transporter-mediated hepatic 

uptake (see Figure 1.8a, liver tissue AUC remains relatively unaltered although Cmax 

changes). These concepts are illustrated in Figure 1.8 (see below), through simulations 

with the presented model in the context of a hypothetical compound in which the 

hepatic uptake predominantly determines the overall (net) hepatic clearance.   

 

 

Figure 1.8: Simulations of systemic and liver tissue concentration-time profiles of a 

hypothetical compound for which the hepatic uptake predominantly determines its overall 

(net) hepatic clearance. (a) Effect of changes in hepatic active uptake clearance (CLact) on the 

systemic (left) and liver tissue (right) concentration-time profiles. (b) Effect of changes in 

hepatic metabolic clearance (CLmet) on the systemic (left) and liver tissue (right) concentration-

time profiles. Simulations were performed with the model presented in Figure 1.7, using the 

following parameter values: Dose=100mg, QH=87 L/h, VSYS=5 L, VLV=0.2 L, VLT=1.6 L, CLact=10 

L/h, Pdif=1 L/h, CLmet=40 L/h, fuLV= fuLT=0.05.  
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1.5. Aims of the thesis 

The general aim of this thesis is to illustrate, explore and thus further facilitate the 

application of physiologically-based pharmacokinetic models in the context of 

population data analysis. 

This general aim was pursued through the accomplishment of specific objectives which 

are listed below: 

I. Develop both conventional and physiologically-based population models to 

describe the complex pharmacokinetics of simvastatin (SV) and its active 

metabolite, simvastatin acid (SVA) in different individuals. 

 

II.  Identify and clearly illustrate in practice the advantages of physiologically-based 

population modelling. In particular, specific modelling applications related to 

simvastatin and repaglinide will be utilised to assess the capability of this 

approach for extrapolation outside the studied dataset and conditions, prediction 

of tissue concentrations and design of prospective clinical studies. 

 

III.  Explore further methodological aspects related to the application of 

physiologically-based models for population data analyses (e.g., parameter 

estimation with the aid of prior distributions and their derivation,  incorporation 

of stochastic variability in model parameters without neglecting the underlying 

physiological constraints)  
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Abstract of Chapter 2 

The aim of this chapter is the development of a conventional population 

pharmacokinetic model for simvastatin (SV) and its active metabolite simvastatin acid 

(SVA) that incorporates the effects of multiple genetic polymorphisms and clinical / 

demographic characteristics. SV/SVA plasma concentrations, demographic / clinical 

data and genotypes for 18 genetic variants were collected from 74 individuals (3 

clinical trials) and analysed with a nonlinear mixed effects modelling approach.  The 

structural model that best described the data included a two- and a one-compartment 

disposition model for SV and SVA respectively.  Age, weight, Japanese ethnicity and 7 

genetic polymorphisms, rs4149056 (SLCO1B1), rs776746 (CYP3A5), rs12422149 

(SLCO2B1), rs2231142 (ABCG2), rs4148162 (ABCG2), rs4253728 (PPARA) and 

rs35599367 (CYP3A4), were identified to significantly affect model parameters. The 

developed model was used to assess combinations of these covariates highlighting 

specific risk factors associated with altered SV/SVA pharmacokinetics and potentially 

myopathy cases which cannot be solely attributed to the rs4149056 homozygous variant 

(CC) genotype. 
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2.1. Introduction 

Simvastatin is a HMG-CoA reductase inhibitor, which is used to treat 

hypercholesterolemia, hypertriglyceridemia and to reduce total mortality and incidence 

of cardiovascular events in high risk individuals [143-145, 180]. Simvastatin (SV) can 

be characterised as a pro-drug as it needs conversion to the open acid form of 

simvastatin acid (SVA) in order to be active (see section 1.3.4) [159]. This conversion 

can be achieved by non-enzymatic hydrolysis and also enzymatically by 

carboxylesterases present mainly in the liver and small intestinal wall and by 

paraoxonases in plasma [161]. However, although the formation of SVA is favoured 

[161], it is not a one-way process, as SVA can convert back to the lactone form (SV) 

either via an acyl-glucuronide intermediate that can undergo spontaneous cyclization or 

via a CoASH-dependent pathway [162]. In addition both SV and SVA undergo 

oxidative metabolism primarily mediated by CYP3A4/5 [163, 167] and the open acid 

forms of some of these metabolites show activity [166]. The bioavailability (F) of SV is 

low (<5%) due to extensive intestinal and hepatic first pass metabolism [143].  

The most serious adverse effect of simvastatin is related to skeletal muscle and it can 

range from myalgia to myopathy and ultimately to the rare but potentially life-

threatening rhabdomyolysis [174, 181]. Several factors have been identified to increase 

the risk of muscle toxicity. These include demographics (e.g., advanced age); clinical 

factors such as high dose and concomitant administration of compounds that affect the 

pharmacokinetics of SV/SVA; and finally genetic predisposition [174]. The single 

nucleotide polymorphism (SNP) rs4149056 (c.521T>C) which lies in the gene 

(SLCO1B1) coding for the hepatic uptake OATP1B1 transporter is strongly associated 

with elevated plasma levels of SVA [129] and increased risk of myopathy [158]. 

Specific guidelines were recently published suggesting screening of this genetic variant 

in clinical practice to aid simvastatin dose adjustment [157, 174]. 

The risk of simvastatin-induced myopathy is a concentration-dependent adverse effect 

which is at least partly of a pharmacokinetic origin [121]. The effects of genetic 

polymorphisms and drug-drug interactions (DDIs) on the pharmacokinetics of SV and 

SVA vary between these two forms [182, 183]. Polymorphisms in several metabolising 

enzyme and transporter genes have been previously reported to affect SV/SVA 
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pharmacokinetics and pharmacodynamics, specifically in SLCO1B1 [129], CYP3A4 

[170], CYP3A5 [171], ABCG2 [172] and ABCB1 [173] genes. However, to date the 

studies that have reported associations between SNPs and SV/SVA pharmacokinetics 

are focused on the analysis of an individual genetic variant or haplotype at a time and 

therefore are neglecting any potential combined effects. In addition, non-compartmental 

analysis of the pharmacokinetic data is usually performed. In contrast, the population 

model-based approach for the analysis of PK data with regard to the impact of genetic 

variants has numerous advantages which were specifically discussed in section 1.2.6 

(see Chapter 1). 

However, to date population model-based analyses of simvastatin pharmacokinetics are 

very limited [184, 185]. Therefore, the aim of this work is the development of a joint 

SV/SVA population pharmacokinetic model including multiple genetic and 

demographic covariates which is currently lacking to our knowledge. This model can be 

subsequently used to investigate different scenarios regarding the incidence of specific 

genetic and demographic risk factors and their effect on SV/SVA plasma exposure. 

Eventually such an approach can quantitatively inform dosing recommendations in 

different individuals. 
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2.2. Methods 

2.2.1 Description of the available data for model development 

Pharmacokinetic data from three clinical studies conducted by Eli Lilly and Company 

were included in the analysis. Each of the three study protocols were reviewed and 

approved by an ethical review board. The studies were conducted in accordance with all 

applicable regulatory and Good Clinical Practice guidelines and followed the ethical 

principles originating in the Declaration of Helsinki. All subjects signed an informed 

consent document prior to participation in the studies.  

Study 1 involved 16 healthy volunteers who were administered a 40mg simvastatin 

dose  followed by a second 40mg dose 24 hours later, with rich sampling through this 

48-hour period. Specifically, venous blood samples were drawn at 0.25, 0.5, 1, 1.5, 2, 3, 

4, 6, 8, 12, 24, 24.25, 24.5, 25, 25.5, 26, 27, 28, 30, 32, 36 and 48 hours after the first 

dose. 

Study 2 involved 18 healthy volunteers who were administered a single 20mg 

simvastatin dose and were intensively sampled for a 24-hour period. Specifically, blood 

samples were drawn at 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 18 and 24 hours after the dose. 

Study 3 involved 40 patients who were on a daily regimen of 40mg simvastatin and 

lasted for 12 weeks. Study 3 participants were sparsely sampled on different visits to 

the clinical research unit (approximately 4 visits per individual) for the duration of the 

study. In general, at every visit to the clinical research unit, a pre-dose blood sample 

was drawn to determine trough SV and SVA concentrations (the majority of them were 

20-28 hours since last dose); subsequently a 40mg dose was administered and a post-

dose blood sample was drawn to determine SV and SVA concentrations (the majority 

of them taken 1-6 hours after the dose). These patients were not receiving any other 

medication that could interact with SV or SVA. Their underlying disease is not known 

to affect any of the pathways responsible for SV/SVA absorption, metabolism, 

distribution and excretion. 
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The analytical methodology used to determine SV and SVA plasma concentrations in 

the blood samples is extensively described (see Appendix A1.1). The demographic and 

clinical characteristics of all the participants are reported in Table 2.1.  

Table 2.1: Demographic and clinical characteristics of the studied population 

 Study 1  Study 2  Study 3  

Number of study participants  16 18 40 

Gender     

                      
Male  14 (87.5%) 16 (88.9%) 12 (30%) 

                      
Female  2 (12.5%) 2 (11.1%) 28 (70%) 

Age (years)  37.5 (9) 39.4 (12) 61 (10) 

Height (cm)  173.6 (7.6) 169.7 (8.7) 168 (8.2) 

Weight (kg)  80.4 (9.8) 67 (8.4) 79.6 (15.4) 

Ethnicity     

              Caucasian  11 (68.8%) - 36 (90%) 

              African  3 (18.7%) - 2 (5%) 

              Japanese  1 (6.25%) 18 (100%) - 

              Other  1 (6.25%) - 2 (5%) 

Body Mass Index (BMI)  26.6 (2.3) 23.3 (2.2) 28.2 (4.9) 

Creatinine clearance (mL/min)  - - 88.8 (26.8) 

Alcohol consumption  - - 26 (65%) 

Smoke consumption  - - 6 (15%) 

Caffeine consumption  - - 37 (93%) 

Disease state Healthy Healthy Patients 

For the qualitative characteristics, numbers in parentheses refer to percentages in each study population. For 
quantitative characteristics, numbers in parentheses refer to standard deviations. 

Study 1, 2 & 3 participants were genotyped for 18 genetic polymorphisms of 7 genes 

(3, 3, 1, 1, 7, 2 and 1 in ABCB1, ABCG2, CYP3A4, CYP3A5, SLCO1B1, SLCO2B1 and 

PPARA genes, respectively), which were selected based on either published 

associations with SV/SVA pharmacokinetics/pharmacodynamics or strong candidate 

SNPs. The distribution of these variants in the studied population is presented in Table 

2.2 and the details of the genotyping and quality control (QC) methods are also reported 

(see Appendix A1.2).  
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Table 2.2: Genotyped variants and their distribution in the studied population 

SNP Gene wt v Study 1 
(wt/wt, wt/v, v/v)  

Study 2 
(wt/wt, wt/v, v/v)  

Study 3 
(wt/wt, wt/v, v/v)  

TOTAL 
(wt/wt, wt/v, v/v)  

rs1045642  ABCB1 C T 4, 9, 2 4, 11, 3 10, 18, 12 18, 38, 17 

rs1128503   ABCB1 C T 5, 9, 1 1, 10, 7 13, 17, 10 19, 36, 18 

rs2032582 ABCB1 G A/T 7, 7, 1 3, 12, 3 14, 17, 9 24, 36, 13 

rs2231142 ABCG2 C A 12, 3, 0 6, 10, 2 25, 14, 1 43, 27, 3 

rs2622604 ABCG2 G A 7, 7, 1 11, 7, 0 28, 9, 3 46, 23, 4 

rs4148162 ABCG2 TCAC - 3, 9, 3 7, 9, 2 12, 20, 8 22, 38, 13 

rs35599367 CYP3A4 C T 14, 1, 0 18, 0, 0 35, 5, 0 67, 6, 0 

rs776746 CYP3A5 A G 3, 3, 9 4, 9, 5 1, 7, 32 8, 19, 46 

rs4253728 PPARA G A 11, 3, 1 18, 0, 0 27, 13, 0 56, 16, 1 

rs11045879 SLCO1B1 T C 7, 8, 0 4, 11, 3 25, 15, 0 36, 34, 3 

rs2291075 SLCO1B1 T C 3, 8, 4 5, 10, 3 7, 25, 8 15, 43, 15 

rs4149048 SLCO1B1 A G 7, 6, 2 3, 10, 5 23, 17, 0 33, 33, 7 

rs4149050 SLCO1B1 T C 6, 7, 2 3, 10, 5 23, 17, 0 32, 34, 7 

rs4149056 SLCO1B1 T C 10, 5, 0 15, 3, 0 26, 14, 0 51, 22, 0 

rs4149081 SLCO1B1 G A 7, 8, 0 4, 11, 3 25, 15, 0 36, 34, 3 

rs4363657 SLCO1B1 T C 8, 7, 0 4, 11, 3 25, 15, 0 37, 33, 3 

rs12422149 SLCO2B1 G A 10, 4, 1 11, 6, 1 28, 12, 0 49, 22, 2 

rs2306168 SLCO2B1 C T 14, 1, 0 12, 5, 1 39, 1, 0 65, 7, 1 

wt: wild type allele, v: variant allele, wt/wt: homozygous wild type individuals, wt/v: heterozygous individuals, v/v: homozygous variant individuals 
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2.2.2. Population pharmacokinetic analysis 

Population pharmacokinetic modelling was performed using nonlinear mixed effects 

modelling software (NONMEM
®
 7.2, ICON Development Solutions) and the first order 

conditional estimation method with interaction (FOCE-I). Additional investigations on 

the NONMEM output, statistical and graphical analysis was performed in Matlab 

R2012a (The MathWorks, Inc.). In total, 740 SV and 687 SVA log-transformed plasma 

concentrations derived from all the three pharmacokinetic studies were simultaneously 

analysed. Any concentrations below the limit of quantification (BQL) were treated as 

missing data and were excluded from the analysis. However this approach was 

evaluated by also applying the M3 method [186] (a method that retains BQL 

observations as censored data and maximizes the likelihood to indeed predict these 

observations below the quantification limit) and not observing any significant 

alterations in the model fit. The entire modelling procedure towards the development of 

the structural and statistical (stochastic) base SV-SVA pharmacokinetic model is 

extensively described in Appendix A1.3.  

Both continuous and categorical covariates were investigated in the covariate model 

building procedure including: gender, age, ethnicity, height, weight, body mass index 

(BMI) and genotypes for the 18 SNPs reported in Table 2.2. Covariate analysis was 

performed on the identifiable ñapparentò model parameters (see Appendix A1.3). One 

out of the 74 subjects had missing genotypes for all the typed SNPs and therefore these 

were imputed with the most common genotype in the relevant population used as a 

reference. A sensitivity analysis was also performed by excluding this subject from the 

analysis to assess the impact of this assumption on the results. Techniques for the 

incorporation of multiple SNPs in non-linear mixed effect PK models have been 

recently proposed [141, 142]. In our study, as the number of tested SNPs is relatively 

small, a computationally intensive iterative procedure similar to the one proposed in 

[141] was applied. Briefly, covariate selection was performed using a stepwise forward 

inclusion ï backward elimination process that also examines the degree of linkage 

disequilibrium (LD) between correlated SNPs upon inclusion in each step. A concise 

schematic representation of this process is presented in Figure 2.1. However, the reader 
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is referred to Appendix A1.4 for extensive details on the entire covariate model building 

procedure. 

 

Figure 2.1: Schematic representation of the covariate model building procedure with regard 

to the analysed SNPs. The entire covariate model building procedure is extensively described 

in Appendix A1.4. ANOVA: analysis of variance, EBEs: empirical Bayes estimates, í, :̒ inter-

ƛƴŘƛǾƛŘǳŀƭ ǾŀǊƛŀōƛƭƛǘȅ ǊŀƴŘƻƳ ŜŦŦŜŎǘ ǘŜǊƳ ƻƴ ŀ ǇŀǊŀƳŜǘŜǊ ʻΣ LR test: likelihood ratio test, OBJV: 

objective function value.  

2.2.3. Evaluation of the population model 

Typical goodness of fit plots such as observations versus population (DV vs PRED) and 

individual (DV vs IPRED) predictions and conditionally weighted residuals versus time 

(CWRES vs TIME) and population predictions (CWRES vs PRED) were used to detect 

any misspecifications in the structural and statistical model. In addition for both SV and 

LR test: Significant OBJV reduction (>3.84)

Base Model

ANOVA between EBEs of í,ʻ

SNP with lowest p value. Is it < 0.1?

Investigate correlation with other SNPs

YES

Incorporate SNP into the model

Investigate alternative genetic models and keep best

YES

Full covariate model

NO

Backward elimination OBJV change > 7.88 (p<0.005,1df) Final model
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SVA visual predictive checks (n=1,000) stratified by study were used to test the overall 

predictive performance of the model. The population-covariate characteristics for the 

visual predictive check were randomly sampled from the original dataset of each study 

in a way that entire covariate rows of the dataset were sampled together in order to 

retain the correct covariance structure of the covariates (especially important for any 

correlated SNPs).  A bootstrapping procedure (n=1,000) was performed with PsN 3.5.3 

(Perl-speaks-NONMEM) [187] for the final model in order to evaluate the robustness of 

the parameter estimates, the accuracy of the asymptotic standard errors provided by 

NONMEM covariance step and to provide non-parametric 95% confidence intervals on 

the parameter estimates.  

2.2.4. Further investigations performed with the developed population model 

The final population model was used to perform simulations (n=5,000 individuals) for 

each model-incorporated covariate separately and assess their independent effect on the 

plasma exposure of both SV and SVA together with 95% prediction intervals. The 

simulations were performed using the variability estimates of the final pharmacokinetic 

model. 

In addition to assessment of individual covariate effects, the developed model was used 

to identify the effects of combinations of these covariates and more importantly to 

highlight specific combinations that can be associated with clinically important 

increases in SV/SVA plasma exposure. The complete procedure performed to identify 

physiologically plausible and clinically important multiple risk factor combinations is 

extensively described (see Appendix A1.5). 
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2.3. Results   

The model that described plasma concentrations of both simvastatin forms the best is 

presented in Figure 2.2.  

 

Figure 2.2: Final structural SV/SVA pharmacokinetic model. SV is absorbed through a lagged 

first-order process to the central SV compartment (SVc) and then distributed to the peripheral 

SV compartment (SVp). SV undergoes elimination from the central compartment to both non-

SVA metabolites (CLSV) and to SVA (CLSH). SVA pharmacokinetics is described by a one-

compartment disposition model. ka and Q represent the first-order absorption rate constant 

and inter-compartmental clearance respectively. VSC, VSP and VSA represent the SV central, 

SV peripheral and SVA volume of distribution respectively. 

The set of at least locally identifiable parameters in the selected pharmacokinetic model 

were: ka (first-order absorption rate constant), Q/F (apparent inter-compartmental 

clearance), CLSH/VSA (apparent SV to SVA hydrolysis clearance), CLSV/F (apparent 

clearance of SV to other metabolites), CLSA/VSA (apparent SVA clearance), VSC/F 

and VSP/F (apparent SV central and peripheral compartment volume of distribution 

respectively). Alternative combinations of drug-metabolite disposition models, the 

inclusion of a first-pass formation of SVA and the inclusion of a back-transformation 

clearance from SVA to SV in the model resulted in either model misspecification or no 

significant improvement of the objective function value (OFV) and diagnostic plots 

compared to the selected model. The parameter estimation process and the covariance 

SVc SVA 

SVp

CLSH
Depot

ka

CLSV CLSA

Q

VSC VSA

VSP
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step for the final population model (including covariates) converged successfully under 

the first order conditional estimation method with interaction (FOCE-I) and a requested 

precision of more than 5 significant digits in the parameter estimates. The parameter 

estimates of the final population pharmacokinetic model are reported in Table 2.3 

together with the bootstrap results and the 95% non-parametric confidence intervals of 

these estimates. The final population model consisted of a diagonal omega structure and 

inter-individual variability was estimated for all the structural model parameters apart 

from the lag-time. Inclusion of inter-occasion variability significantly improved the 

OFV and model diagnostics when applied on ka and CLSH/VSA. The unexplained 

residual variability for SV and SVA concentrations was modelled as reported in Table 

2.3. The final population model included the influence of age, weight, Japanese 

ethnicity and 7 SNPs that were identified to significantly affect model parameters (see 

Table 2.3). The inclusion of covariates resulted in a substantial improvement of the 

model as they decreased the OFV by 104.9 units compared to the base model. The 

statistical evidence regarding each covariate incorporated in the final model is presented 

in Table 2.4. Imputing the missing genotypes of one out of the 74 subjects with the 

most common genotype in the relevant population had no effect on parameter estimates. 

Specifically, when this subject was excluded from the analysis all the parameter 

estimates (including all the covariate effects) were comparable (the ratio between 

estimates when excluding this individual compared to imputing its genotypes was in the 

range of 0.94 ï 1.04 for all parameters). 

The equations which describe the typical values of the final model parameters were as 

follows: 
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, where the term rs denotes a dummy variable that takes the value of 1 for individuals 

having the genotype(s) reported for each SNP in Table 2.3, else is 0; the subscript of rs 

represents the two last numbers of the dbSNP [188] rs# identifier notation that was used 

throughout this chapter for each SNP; JAP is a dummy variable that takes the value of 1 

for individuals of Japanese ethnicity, else is 0; WTE denotes the weight of each 

individual in kg and AGE represents the age of each individual in years. 

Typical goodness of fit plots and visual predictive check with respect to the final 

population model are presented in Figure 2.3 and Figure 2.4 respectively. Empirical 

Bayes estimates (EBEs) of the model parameters identified to be influenced by 

covariates were plotted against the respective covariate groups and are presented in 

Figure 2.5 and Figure 2.6. Extensive details and interpretation regarding the results for 

each of the genetic and demographic covariates which were identified to have a 

significant effect and were incorporated in the final model are reported in Appendix 

A1.6 and Appendix A1.7 respectively. 
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Table 2.3: Parameter estimates of the final SV/SVA population pharmacokinetic model 
Model parameter NONMEM estimate 

(a) 

(RSE%) 
(b) 

Bootstrap estimate 
(RSE%)

 
95% CIs 

(c) 

Structural model 
Lag time (h)            0.231 (1.32) 0.230 (1.30) (0.224 , 0.235) 

1̒: ka (h
-1
)            2.11 (20.33) 2.24 (22.78) (1.44 , 3.45) 

2̒: Q/F (L/h) 386 (13.52) 384.08 (15.6) (272.1 , 515.6) 

3̒: CLSH/VSA (h
-1
) 0.0975 (10.67) 0.0958 (9.64) (0.078 , 0.115) 

4̒: CLSV/F (L/h) 1050 (6.67) 1038.9 (6.70) (905.4 , 1189.2) 

5̒: CLSA/VSA (h
-1
) 0.297 (7.17) 0.293 (5.88) (0.256 , 0.327) 

6̒: VSC/F (L) 2770 (9.39) 2735.72 (9.60) (2265.4 , 3290.9) 

7̒: VSP/F (L) 3960 (12.10) 4041.7 (15.24) (2923.3 , 5549.6) 
Covariate effects 

8̒: rs4148162 (TCAC/TCAC) on ka -0.538 (23.05) -0.522 (28.19) (-0.736 , -0.141) 

9̒: Age coefficient on F 0.0133 (30.23) 0.0135 (29.53) (0.005 , 0.021) 

1̒0: rs35599367 (TC) on F 0.490 (71.63) 0.537 (76.05) (-0.226 , 1.399) 

1̒1: rs776746 (AA) on CLSH/VSA 0.726 (35.54) 0.755 (38.43) (0.257 , 1.402) 

1̒2: Japanese ethnicity on CLSH/VSA 0.682 (33.14) 0.701 (32.43) (0.307 , 1.186) 

1̒3: rs4149056 (TC) on VSA -0.464 (14.37) -0.462 (15.85) (-0.592 , -0.309) 

1̒4: rs776746 (AA) on CLSA/VSA 0.562 (32.03) 0.591 (34.4) (0.191 , 1.012) 

1̒5: rs12422149 (AA) on CLSA/VSA 0.790 (16.33) 0.808 (19.17) (0.524 , 1.123) 

1̒6: rs2231142 (AA) on CLSA/VSA -0.395 (16.96) -0.391 (19.55) (-0.530 , -0.224) 

1̒7: rs4253728 (AA|AG)
(d)

 on CLSA/VSA -0.243 (26.21) -0.234 (32.14) (-0.368 , -0.076) 

1̒8: rs4149056 (TC) on CLSA -0.435 (14.44) -0.434 (15.89) (-0.562 , -0.293) 

1̒9: Weight exponent on CLSA 0.887 (21.76) 0.892 (24.76) (0.445 , 1.301) 
Weight exponent on CLSH (fixed) 0.75 0.75 - 
Weight exponent on VSA (fixed) 1 1 - 
Weight exponent on VSP (fixed) 1 1 - 
Inter-individual variability (%CV) 

(e) 

Lag time - - - 
ka 103.29 (32.09) 93.79 (38.28) (45.98 , 147.39) 
Q/F 123.16 (23.51) 123.43 (28.67) (77.24 , 188.85) 
CLSH/VSA 33.77 (28.43) 32.86 (28.65) (22.24 , 42.42) 
CLSV/F 54.13 (21.91) 53.87 (20.42) (41.38 , 65.88) 
CLSA/VSA 12.17 (110.20) 12.84 (83.86) (0.80 , 23.16) 
VSC/F 60.06 (43.83) 60.20 (41.05) (30.38 , 92.76) 
VSP/F 59.03 (31.04) 57.32 (37.99) (32.29 , 84.28) 
Inter-occasion variability 1

 (f)
 (%CV)

  

ka    102.99 (29.60) 99.16 (33.05) (53.05 , 147.43) 
CLSH/VSA            36.02 (42.95) 34.32 (44.67) (12.71 , 48.71) 
Inter-occasion variability 2

 (f) 
(%CV)

  

ka 69.92 (72.11) 73.44 (66.47) (10.47 , 147.28) 
CLSH/VSA 17.92 (69.62) 20.59 (51.02) (8.04 , 30.86) 
Residual variability 

(h) 
   

eps1SV 0.187 (19.84) 0.185 (20.08) (0.117 , 0.261) 
eps2SV  0.101 (19.80) 0.102 (17.42) (0.071 , 0.142) 
eps1SVA  0.0207 (24.40) 0.0206 (22.79) (0.012 , 0.031) 
eps2SVA 2.85 (47.37) 3.16 (69.92) (1.134 , 8.223) 
eps3SVA 0.0409 (21.96) 0.0412 (20.65) (0.027 , 0.061) 
mSVA  0.0999 (28.5) 0.104 (28.05) (0.051 , 0.167) 

(a)   Population parameter estimates refer to a typical Caucasian individual with a body weight of 70 kg, 50.6 years of age 
and having the most frequent (in the analysed dataset) genotype for each SNP incorporated in the model.  

(b)   Relative standard errors (RSE%) are calculated as:  ÓÔÁÎÄÁÒÄ ÅÒÒÏÒÍÅÁÎ ÖÁÌÕÅϳ Ͻρππ  
(c)   Non-parametric confidence intervals (CIs) obtained from bootstrap (n=1,000) of the final pharmacokinetic model. 
(d)   ¢ƘŜ ǎȅƳōƻƭ άμέ ƛǎ ŘŜŦƛƴŜŘ ŀǎ άƻǊέΦ 

(e)   Inter-individual variability is expressed in terms of coefficient of variation (% CV) calculated as:  Ὡ ρϽρππ 
(f) Inter-occasion variability 1 and 2 refer to variability between each dose administration and each visit-period 

respectively (see Appendix A1.3). 
(h)  SV residual variability was modelled with an additive error model on the log-transformed data and a separate residual 

error variance estimate for concentrations observed between 0-2 h after dose (eps1SV) and concentrations observed 
later than 2 h after dose (eps2SV). The reǎƛŘǳŀƭ ǾŀǊƛŀōƛƭƛǘȅ ŦƻǊ {±! ǿŀǎ ƳƻŘŜƭƭŜŘ ǿƛǘƘ ǘƘŜ άŘƻǳōƭŜ ŜȄǇƻƴŜƴǘƛŀƭ ŜǊǊƻǊ 
ƳƻŘŜƭέ ŦƻǊ ŎƻƴŎŜƴǘǊŀǘƛƻƴǎ ƻōǎŜǊǾŜŘ ōŜǘǿŜŜƴ л-5 h after dose; the estimates of eps1SVA, eps2SVA and mSVA refer to the 
ŜǊǊƻǊ ǘŜǊƳǎ ʶ1Σ ʶ2 and m respectively as defined in Eq.A1.2 of Appendix A1.3. For SVA concentrations observed later 
than 5 h after dose, the residual error was modelled with an additive error on the log-transformed data (eps3SVA). 



65 

 

 
Table 2.4: Statistical evidence regarding the incorporation of each covariate in the model 

Covariate Parameter ANOVA p-value (shr%) ɲhC± ōΦŜΦ όŘŦύ LRT p-value 

rs4149056 VSA , CLSA 9.87 x 10
-4
 (14.67%)

 
26.515 (2) 1.75 x 10

-6
  

rs776746 CLSA/VSA 7.20 x 10
-4
 (27.50%) 17.345 (1) 3.12 x 10

-5 

Japanese CLSH/VSA N.A. 16.574 (1) 4.68 x 10
-5
 

Age F N.A. 15.940 (1) 6.54 x 10
-5
 

rs12422149 CLSA/VSA  1.10 x 10
-3
 (38.55%)

 (a) 
11.965 (1) 5.42 x 10

-4
 

rs4148162 ka 1.74 x 10
-2
 (21.78%) 10.177 (1) 1.40 x 10

-3
 

rs776746 CLSH/VSA 4.35 x 10
-4
 (15.41%) 9.827 (1) 1.70 x 10

-3
 

rs2231142 CLSA/VSA  2.10 x 10
-3
 (33.00%)

 (b) 
9.753 (1) 1.80 x 10

-3
 

rs4253728 CLSA/VSA  2.59 x 10
-2
 (45.47%)

 (c) 
9.359 (1) 2.20 x 10

-3
 

rs35599367 F 8.58 x 10
-2
 (16.42%) 5.464 (1) 1.94 x 10

-2
 

The EBEs of ́ values from the base model were used for covariate screening. The calculated -́shrinkage values in 

the base model were moderate: ka (25.1%), Q/F (16.3%), CLSH/VSA (15.8%), CLSV/F (4.4%), CLSA/VSA (28.6%), 

VSC/F (14.5%), VSP/F (37.2%). However, they were all less than the threshold of 40% set for this work (see 

Appendix A1.4) and therefore the EBEs were considered adequate for the initial covariate screening. Nevertheless, 

in later steps of the forward inclusion process the shrinkage of some parameters did reach the 40% threshold, 

therefore direct testing of the covariates in the model was also applied using the objective function and not the 

EBEs as a guide for covariate screening (see Appendix A1.4). The shrinkage estimates in the final population 

pharmacokinetic model were: ka (22.8%), Q/F (16.1%), CLSH/VSA (21.7%), CLSV/F (3.3%), CLSA/VSA (53.3%), VSC/F 

(18.1%), VSP/F (39.5%). In the above table, the ANOVA p-values refer to the statistical evidence obtained by 

performing the test on the EBEs of ́ values of the parameter of interest between different genetic groups 

(genotype classes are merged according to the genetic model) during different covariate screening steps of the 

forward inclusion process. Values in parentheses (shr%) report the degree of -́shrinkage related to the parameter 

of interest in the corresponding forward inclusion step. The ANOVA p-ǾŀƭǳŜ ŀƴŘ ʹ-shrinkage reported for 

rs35599367 is related to the EBEs of  ́values for Q/F as this particular covariate is simultaneously included in all 

apparent parameters (relative to F). The ANOVA p-value and ́ -shrinkage reported for rs4149056 is related to the 

EBEs of ́ ǾŀƭǳŜǎ ŦƻǊ /[{Iκ±{!Φ ¢ƘŜ ɲhC± ōΦŜΦ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ŎƘŀƴƎŜ ƛƴ ƻōƧŜŎǘƛǾŜ ŦǳƴŎǘƛƻƴ ŘǳǊƛƴƎ ōŀŎƪǿŀǊŘ 

elimination of each covariate from the final model and degrees of freedom (df) are reported in parentheses. LRT p-

ǾŀƭǳŜ ƛǎ ǘƘŜ ǎǘŀǘƛǎǘƛŎŀƭ ŜǾƛŘŜƴŎŜ ƻōǘŀƛƴŜŘ ŦǊƻƳ ǘƘŜ ƭƛƪŜƭƛƘƻƻŘ Ǌŀǘƛƻ ǘŜǎǘ ǳǎƛƴƎ ǘƘŜ ōŀŎƪǿŀǊŘ ŜƭƛƳƛƴŀǘƛƻƴ ɲhC± ό˔
2
, df).   

(a), (b), (c):  For parameters with ́-shrinkage >30% we also report the decrease in OFV observed from the direct 

testing of the covariate in the model (LRT) in the corresponding forward inclusion step which are: 6.436, 10.851 and 

7.838 for a, b and c respectively. 
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Figure 2.3: Goodness of fit plots for the final population pharmacokinetic model. (i) and (ii) are referring to SV and SVA respectively. DV vs PRED and DV vs 

IPRED denote observations versus population and individual predictions respectively. CWRES vs TIME and CWRES vs PRED denote conditionally weighted 

residuals versus time and population predictions respectively. 




























































































































































































































































































































































































































































































































































































