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Abstract 

Data mining is an essential part of knowledge discovery, and performs the extraction 

of useful information from a collection of data, so as to assist human beings in 

making necessary decisions. This thesis describes research in the field of itemset 

mining, which performs the extraction of a set of items that occur together in a 

dataset, based on a user specified threshold. Recent focus of itemset mining has been 

on the discovery of closed itemsets from high-dimensional datasets, characterised by 

relatively few rows and a relatively larger number of columns. A closed itemset is 

the maximal set of items common to a set of rows. By exponentially increasing 

running time as the average row length increases, mining closed itemsets from such 

datasets renders most column enumeration-based algorithm impractical. Existing 

row enumeration-based algorithms also show that they struggle to reach large 

cardinality closed itemsets. This is due to the implementation of the support 

constraint, which is based on the frequency of occurrence of the itemset. Frequent 

closed itemsets are usually smaller in size and larger in numbers, hence taking much 

of the memory space. Unfortunately, large cardinality closed itemsets are likely to 

be more informative than small cardinality closed itemsets in this type of dataset.  

 The research investigates the area of large cardinality closed itemset 

discovery by examining and analysing the literature and identifying both strengths 

and weaknesses of existing approaches. Based on this synthesis, a new algorithm, 

termed DisClose, has been designed and developed to discover large cardinality 

(colossal) closed itemsets from high-dimensional datasets. The algorithm strategy 

begins by enumerating large cardinality itemsets and from these, builds smaller 

itemsets. This is done by applying a bottom-up search of the row-enumeration tree. 

A minimum cardinality threshold has been proposed to identify colossal closed 

itemsets and to further reduce the search space. A novel closedness-checking 

method has been proposed which uses a unique generator to immediately discover 

closed itemsets without the need to check if each new closed itemset has previously 

been found. These approaches have been combined using a Compact Row-Tree 

(CR-Tree) data structure designed to assist in the efficient discovery of the colossal 

closed itemsets. For evaluation purposes four state-of-the-art algorithms have been 

selected for comparison. Experimental results show that algorithm DisClose is 

scalable and can efficiently extract colossal closed itemsets in the considered 

dataset, even for low support thresholds that existing algorithms cannot find.   
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Chapter: 1  

Introduction  

Data mining is nothing else than torturing the data until it confessesé  

and if you torture it enough, you can get it to confess to anything 

(Fred Menger)  

 

Rapid development in information technology has provided organizations with the 

ability to store, process and retrieve huge amounts of data. Nevertheless, there is a 

need to extract useful information and knowledge, efficiently and effectively, from 

these massive data stores. This serves to assist businesses, scientific and government 

related organizations to better plan, predict, and make decisions. This has led to the 

importance of data mining and the need to provide effective and efficient associated 

algorithm implementation. 

Data mining is the analysis step of knowledge discovery in databases (KDD) 

process (Fayyad et al., 1996). The steps in the KDD process are shown in Figure 

1.1. Data mining is defined as óthe analysis of (often large) observational datasets to 

find unsuspected relationships and to summarize the data in novel ways that are 

both understandable and useful to the data ownerô (Hand et al., 2001).
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  There are numerous data mining tasks, which include the discovery of 

association rules (Agrawal et al., 1993), sequential rules (Agrawal and Srikant, 

1995), correlations (Brin et al., 1997), episodes (Mannila et al., 1997), multi-

dimensional patterns (Lent et al., 1997), maximal patterns (Bayardo, 1998) and 

various other discovery tasks (Han & Kamber, 2001).  

This thesis will focus on the task of association rule discovery. Association 

rules (Agrawal et al., 1993) aim to describe noteworthy relationships between 

variables. Agrawal et al. (1993) introduced the itemset mining problem as part of 

association of rule discovery. An itemset is a collection of related items that occur 

together in a given dataset. This initial research was motivated by analysis of market 

basket (transactional) data. Given a transactional dataset, the aim is to identify all 

items which have been bought together most often. The set of items is represented 

by the customerôs transaction IDs. The results obtained help to generate association 

rules. This should then assists companies in better understanding of the purchasing 

behavior of customers, which should in turn help to improve decision making about 

marketing activities.  

In addition to market basket analysis, discovery of association rules has been 

employed in many other areas. These include: telecommunications (detecting 

intrusion in networks or system activities (Zhong and Qin, 2004; Patcha and Park, 

Figure 1.1: Steps of the KDD Process (Fayyad et al., 1996) 
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2007; Vaarandi and Podins, 2010)), bioinformatics (generating new knowledge in 

biology and medicine (Creighton and Hanash, 2003; Pan et al., 2003; Guns et al., 

2010)) and web usage analysis (discovering patterns from the web (Eirinaki and 

Vazirgiannis, 2003; Youssefi et al., 2004; Baraglia and Silvestri, 2007)).  

Generating association rules is a rather straightforward, computationally 

inexpensive part of the discovery task. Since the area was initially proposed, the 

focus of researchers and scientist has mostly been on optimizing the itemset mining 

process. In this thesis, a new method has been developed to efficiently mine large 

cardinality itemsets that exist in very large datasets. It is anticipated that the method 

will assist the discovery of association rules from large cardinality itemsets in this 

type of dataset. 

1.1 Research Motivation 

A typical business transaction dataset for market basket analysis contains a 

relatively large number of rows (transactions) compared to a relatively small number 

of columns (dimensions). However, other application areas such as gene expression 

matrices analysis in bioinformatics (Creighton and Hanash, 2003; Cong et al., 

2004b; Borgelt et al., 2011) and text processing (Nahm and Mooney, 2001; He et al., 

2011; Nassem, 2012) involve another kind of dataset, one which is characterized by 

a relatively small number of rows compared with a relatively large number of 

columns (or dimensions). Due to these features, this is known as a high-dimensional 

dataset.  

The opportunities created by high-dimensional datasets are significant. Such 

datasets have also attracted interest from researchers to devise new methods to 

effectively extract significant information. The amount of information that can be 

revealed is potentially huge, but extracting information, and ultimately knowledge, 

from these datasets is a non-trivial task.  

Applications that deal with high-dimensional datasets include:  
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¶ Discovering relationships between the data values within gene 

expression matrices or microarray datasets, in order to assist in 

understanding the cause and effect of biological processes. For 

instance, such relationships can help in predicting gene function for 

uncharacterized genes based on the similarity of their expression 

profiles to those of known genes (Brown et al., 2000); identifying 

genes that are important in specific cellular processes, diseases, or in 

cell differentiations (Segal et al., 2003); learning about gene 

regulation by finding and studying groups of regulated genes 

(Carmona-Saez et al., 2006); and finding how cells respond to 

various compounds, and then classifying predictions of responses by 

new compounds (Huang et al., 2009).  

¶ Sorting a set of documents automatically into categories from a pre-

defined set in order to increase connectivity and availability of the 

documents at all levels of the information chain. This is also known 

as text categorization (Sebastiani, 2002). Text categorization can be 

used to identify document genre (Bhattacharya et al., 2008), 

automated population of hierarchical catalogues of web resources 

(Golub and Lykke, 2009), indexing scientific articles according to 

predefined thesauri of technical terms (Renear and Palmer, 2009), 

and authorship attribution (Stamatatos, 2009).  

1.1.1 Challenges in Itemset Mining 

The primary issue in itemset mining is to efficiently and effectively discover the 

complete set of itemsets in a dataset with respect to a given user-defined threshold. 

However, the presence of an itemset of length k also implies the presence of 2
k
-2 

additional itemsets. It is to be noted that given the number of itemsets with a large k, 

enumerating the entire collection of itemsets has been demonstrated to be unfeasible 

for most algorithms. This is true especially when dealing with real-life datasets, 
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where the dataset size may be very large (Pan et al., 2003; Zhu et al., 2007; Liu et 

al., 2009). The physical limitation of real memory space results in an inability to 

store all the itemsets discovered. Further, enumerating the entire collection of 

itemsets also has an effect on processing costs.  

Besides scalability (or lack thereof), due to sheer size, discovered itemsets 

are difficult to interpret. This is called the information overload problem which has 

several side effects. For example, large itemsets increase the time and space 

complexity of the mining task. The complexity of the mining task is exponential 

with respect to the number of dimension (column) because of the notorious curse of 

dimensionality effect (Wang and Yang, 2010). Moreover, it is likely that there is a 

considerable amount of overlap between itemsets.   

Most strategies proposed to overcome these challenges have involved 

reducing the amount of output. These include finding only maximal itemsets 

(Bayardo, 1998) or finding only closed itemsets (Pasquier et al., 1999). An itemset is 

a maximal itemset if there is no immediate superset of the itemset. On the other 

hand, an itemset is a closed itemset if there is no proper superset with the same row 

(transaction) values. More formal definitions and examples of these two terms will 

be given in the next chapter. Depending on the dataset, maximal or closed itemsets 

can offer significant compression. Nevertheless, most algorithms opt to discover 

closed itemsets, due to their ability to provide a compact version of itemsets without 

information loss (Pasquier et al., 1999). However, for a high-dimensional dataset, 

the size of the solutions (i.e. collection of extracted closed itemsets) is still too large 

to deal with the threshold value (Rioult et al., 2003).  

Numerous algorithms have been proposed to mine closed itemsets on 

transactional data (Bayardo, 1998; Wang et al., 2003; Zaki and Gouda, 2003). These 

algorithms usually search the itemset space of the dataset; therefore, they are termed 

column enumeration-based algorithms. The method works well for datasets with 

small average row length, as if i is the maximum row size, there could be 2
i
-1 
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potential itemsets1; usually i < 100. On the contrary, a high-dimensional dataset 

contains a large number of items (columns). The run time for a column-enumeration 

based search strategy increases exponentially with an increasing average row length, 

which results in poor performance.  As a consequence, a search over the entire 

itemset space is impractical.  

There are a group of related algorithms that attempt to overcome the 

limitation of column-based search by enumerating the dataset in a row-wise manner 

(Pan et al., 2003; Cong et al., 2004b; Liu et al., 2009). These kinds of algorithms are 

termed row enumeration-based algorithms. However, the majority of these 

algorithms begin their search for closed itemsets that occur from the largest row 

(transaction) values. The number of closed itemsets that exists at the larger end of 

the row values tends to be small in size and bigger in number. As a result, it takes 

much memory space to store these many small closed frequent itemsets, thus 

making the proposed algorithms computationally infeasible to reach the large closed 

frequent itemsets. This is true especially for large and dense datasets such as high-

dimensional ones. It could face the risks of overseeing significant patterns.  

In association mining tasks, itemsets that are bigger in size are usually of 

greater importance, especially in domains such as bioinformatics, as bigger itemsets 

tend to be more informative compared to small ones (Zhu et al., 2007; Han et al., 

2007). Closed itemsets that are bigger in size can also be referred to as large 

cardinality closed itemsets. The term ócardinalityô refers to the measurement of the 

number of elements (items) that contain in a set. These large cardinality closed 

itemsets are called colossal itemsets, in order to distinguish them from closed 

itemsets with a large number of rows (Zhu et al., 2007).  

Section 2.3 of the survey paper by Han et al. (2007) also contends that the 

main challenge in mining closed itemsets is to ensure whether a pattern mined is 

closed. Several existing closed itemset mining algorithms require the dataset to be 

                                                 
1 In mathematics, given a set S, the powerset of S (2

S
), is the set of all subsets of S. 



CHAPTER 1. INTRODUCTION 

 

 22 

checked repeatedly to see if an itemset is closed. Repeated checking for closed 

itemsets within the dataset or the result set lead to an increase in processing time.  

1.2 Aims and Objectives 

Existing algorithms do not address the challenges stated to find useful large 

cardinality itemsets; yet relatively large (colossal) closed itemsets in high-

dimensional datasets can provide valuable insights into the meaning of the datasets 

(Zhu et al., 2007; Han et al., 2007). The main hypothesis of our research is that such 

itemsets can be derived efficiently by using a strategy that begins the search from 

the largest itemset and progressively builds smaller itemset. This approach is 

supported by applying an effective closedness-checking method as well as a 

compact data structure.  

The aim of this thesis is to efficiently discover all large cardinality closed 

itemsets that exist in high-dimensional datasets, based on a user-defined cardinality 

threshold. 

 To achieve this aim, the following objectives are identified by means of 

several research questions: 

¶ The row-enumeration search strategy has addressed the problem of 

discovering closed itemsets from high-dimensional dataset. However, the 

majority of approaches identify the closed itemsets as beginning from the 

most frequent. Frequent itemsets generally tend to be smaller in size.  

To bypass these small frequent itemsets, can the search begin with the 

largest cardinality itemsets? 

¶ By using the support threshold, the existing closed itemset mining algorithms 

limit the search space, based on the occurrence of closed itemsets in the 

dataset.  

To identify large cardinality itemsets, is it possible to identify a method that 

can acquire and utilise an alternative threshold other than the support 

threshold? 
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¶ To reduce the memory space and processing time, can the closed itemsets be 

identified during the search thus avoiding the necessity of having to check 

whether the closed itemsets have already been discovered?  

¶ Generating candidates in order to discover large cardinality closed itemsets 

can necessitate usage of more memory space and increased computation 

time. This adds up if these candidates are not closed itemsets in the original 

dataset.  

Are there ways to avoid generating unnecessary candidate itemsets thus 

reducing memory space usage and computation time?  

¶ Existing algorithms begin their search from the most frequent itemsets. 

Large cardinality itemsets usually exist at the infrequent end of the support 

spectrum.  

Is there an efficient way to represent the results in order to compare and 

demonstrate the strengths and weaknesses of any proposed new method? 

1.3 Contributions 

This thesis studies itemset mining, particularly the mining of closed itemsets from 

high dimensional data. In particular, the following contributions are made. 

¶ Direct extraction of large cardinality closed itemsets by avoiding the 

search for small cardinality closed itemsets in high-dimensional data. 

¶ An alternative threshold is introduced to reduce the search space and 

identify the large closed itemsets based on their cardinality.   

¶ A closedness-checking method to check whether an itemset is closed. 

The method identifies large closed itemsets without the need for repeated 

checking from the result set. 

¶ A compact row-tree based (CR-Tree) data structure, which integrates the 

proposed techniques to provide a compact representation of the dataset 

and search space. 
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¶ Two effective optimization strategies to reduce the generation of 

candidate itemsets, in order to speed up the search process in the CR-

Tree. 

¶ An algorithm to discover large cardinality closed itemsets which also 

represents sufficient support values of the closed itemsets that other 

algorithms were not able to reach from high-dimensional datasets. 

¶ An experimental study on both synthetic and real world datasets to 

compare the performance of the proposed algorithm with selected state-

of-the-art algorithms. 

 

Part of the work presented in this thesis has been published as: 

Zulkurnain, N. F., and Keane, J. A., (2012). DisClose: Discovering Colossal 

Closed Itemsets via a Memory Efficient Compact Row-Tree. Proceedings of 

the 2
nd

 Doctoral Symposium on Data Mining (DSDMô12), in Pacific-Asia 

Conference on Knowledge Discovery and Data Mining (PAKDD 2012), pp. 

41ï52. 

1.4 Organization of the Thesis 

The remainder of this thesis is structured as follows: 

 

Chapter 2: Itemset Mining Preliminaries presents a systematic overview of 

itemset mining in relation to association rule discovery. The chapter begins by 

defining frequent itemsets in association rule mining. The types of frequent itemsets 

and the context of itemset mining in high-dimensional datasets are presented. 

 

Chapter 3: Strategies for Closed Itemset Mining begins by identifying limitations 

of general itemset mining when applied to high-dimensional datasets. Following 

this, work specifically developed for mining closed itemsets in high-dimensional 
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datasets is considered. Advantages and disadvantages in existing closed itemset 

mining approaches for high-dimensional datasets are discussed. 

 

Chapter 4: DisClose: Mining Colossal Closed Itemsets describes the development 

of closed itemset mining in high-dimensional datasets through the proposed 

algorithm, DisClose. It also addresses many of the research questions articulated in 

Section 1.2. A detailed description of the mining process is given which includes the 

proposed search strategy, the search threshold, closedness-checking method and data 

structure.    

 

Chapter 5: Experimental Evaluation presents a performance study of the 

DisClose algorithm. The chapter begins by providing the experimentation 

environment and the datasets chosen. It also presents the test results obtained by 

comparing DisClose with selected state-of-the-art algorithms. This is followed by an 

analysis discussion of the results to assess the capability of DisClose and provide the 

basis for future work.  

 

Chapter 6: Conclusions and Future Work discusses and summarizes the research 

contributions and their limitations. Suggestions and proposals for future work are 

also provided.  
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Chapter: 2  

Itemset Mining Preliminaries 

 

 

 

In this chapter, a systematic overview of itemset mining in relation to association 

rule discovery will be provided; with the aim of understanding the concept. This 

includes the terms and definitions that will provide the foundation for the remaining 

part of the research presented in this thesis.  

The chapter begins with Section 2.1, which introduces association rule mining 

and its role. This is followed by the definition of a frequent itemset by providing 

examples from simple transactional data. An illustration of frequent itemsets 

discovered from transactional data is also presented.  

Section 2.2 presents and defines two alternative approaches that have been 

proposed in order to overcome the problem of mining all frequent itemsets - 

maximal frequent itemset and closed frequent itemset.  

Section 2.3 provides the notion of dimensionality in the context of datasets, 

and in particular, high-dimensional data. The transposition method is presented, 

which was proposed in order to reduce the complexity of the search for closed 

frequent itemsets in high-dimensional data.  

Section 2.4 summarizes the chapter. 
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2.1 Frequent Itemset in Association Rule Mining 

The application of association rule mining has been widely used in order to discover 

interesting relationships between variables in large datasets. Association rule 

mining, as first proposed by Agrawal et al. (1993), examines the behaviour of 

customers in terms of the products (items) they often purchase together in a shop 

visit (transaction). The collection of data stored is known as a transactional dataset.  

Let T be a dataset table that consists of a collection of rows (transactions), 

},...,,{ 21 mrrrR=  and a list of items, },...,,{ 21 noooI = . This set of transactions 

represents the number of rows (m) and the set of items signifies the number of 

columns (n) in T. 

A nonempty subset IÌa  is called an itemset. An itemset, Ŭk, which consists 

of k items, is described as a k-itemset. Each transaction r i is represented by a unique 

identifier. Let t (r i) denote the itemset at row i of the table. Within a dataset, all of 

the row identifiers must be unique, but there may be duplicate row itemsets. That is, 

for r1 Í r2, it may be that t (r1) = t (r2). A set of rows is termed a rowset. 

 

Example 2.1 (Table T) Table 2.1 illustrates an example of a transactional dataset, T, 

that contains six rows and five items, so }6,5,4,3,2,1{=R  and },,,,{ edcbaI = . 

 

Definition 2.1 (Support Set) For any itemset Ŭ, the support set is represented as the 

set of rows in the dataset, T, that contains Ŭ.  This is represented as: 

)}(|{)( ii rtrr Ì= aa
                                                  

2.1 

 

Example 2.2 (Support Set) In Table 2.1, for an itemset Ŭ = {a, b, d, e}, the support 

set rŬ = {1, 3, 5}. 

 

Definition 2.2 (Support) The support of an itemset Ŭ is the number of rows in which 

Ŭ occurs in T ï denoted as | rŬ |.  



CHAPTER 2. ITEMSET MINING PRELIMINARIES 

 28 

Example 2.3 (Support) From Example 2.2, the support for itemset Ŭ = {a, b, d, e}, 

3|}5,3,1{||| ==ar .  

 

Definition 2.3 (Frequent Itemset) Given a dataset T and a minimum support 

threshold minsup, an itemset Ŭ is frequent if | rŬ | Ó minsup. 

 

Example 2.4 (Frequent Itemset) Suppose the user would like to identify items that 

occur in at least three of the transactions. A total of 19 frequent itemsets were found 

from Table 2.1 for minsup = 3, this is presented in Figure 2.1 where each itemset is 

shown along with its rowset. 

 

An association rule is an implication of the form 21 aa Ý , where Ŭ1 and Ŭ2 

are itemsets and faa =Æ 21 . The strength of an association rule is mainly measured 

by support and confidence. 

 

 

Table 2.1: Example of transactional dataset, T 

Transaction id Items 

1 a b d e 

2 b c e 

3 a b d e 

4 a b c e 

5 a b c d e 

6 b c d  
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Support Itemset {rowset} 

6 b {1, 2, 3, 4, 5, 6}  

5 e {1, 2, 3, 4, 5 }, be {1, 2, 3, 4, 5} 

4 a{1, 3, 4, 5}, c { 2, 4, 5, 6}, d { 1, 3, 5, 6},  

ab {1, 3, 4, 5}, ae {1, 3, 4, 5}, bc {2, 4, 5, 6},  

bd {1, 3, 5, 6}, abe {1, 3, 4, 5}  

3 ad {1, 3, 5}, ce {2, 4, 5}, de {1, 3, 5},  

abd {1, 3, 5}, ade {1, 3, 5}, bce {2, 4, 5},  

 bde {1, 3, 5}, abde {1, 3, 5}  

 

Figure 2.1: Frequent itemsets for minsup = 3 

 

Definition 2.4 (Support of a rule) The rule 21 aa Ý  holds in a dataset T with 

support, sup, where: 

sup
||

|)(|
)( 21

21
R

r aa
aa

Ç
=Ý                                        2.2 

Example 2.5 (Support of a rule) In Table 2.1, the support for the rule deabÝ : 

sup 5.0
6

3

||

|)(|
)( ==

Ç
=Ý

R

deabr
deab  

Definition 2.5 (Confidence of a rule) The rule 21 aa Ý  holds in the dataset T 

with confidence, conf, where:

 

||

|)(|
)(

1

21
21

a

aa
aa

r

r
conf

Ç
=Ý                                       2.3 
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Example 2.6 (Confidence of a rule) The confidence for a rule deabÝ  in 

Example 2.5: 

75.0
4

3

||

|)(|
)( ==

Ç
=Ý

abr

deabr
deabconf  

The aim of association rule mining is to find a complete set of rules that has 

support and confidence of no less than the user-specified thresholds. Frequent 

Itemset Mining (FIM) consists of the first part of association rule discovery, by 

identifying a set of items equal to or above a user specified minimum support 

threshold, minsup. Following this, the confidence of all rules that can be formed 

from the frequent itemsets can be calculated.  

Therefore, association rule discovery may be divided into two parts 

(Agrawal et al., 1993): 

1. Mining of all frequent itemsets in dataset T that have support that is 

greater than or equal to the user specified minimum support threshold, 

minsup.  

2. Generating association rules from each of the frequent itemsets 

discovered, with a confidence greater than or equal to the user specified 

minimum confidence threshold, minconf.  

 

Various methods have been introduced which focus on the efficient 

discovery of frequent itemsets. The problem of mining frequent itemsets is to find 

the complete set of frequent itemsets in a dataset, T, with respect to a given support 

threshold minsup. Extracting frequent itemsets is the most costly task of association 

rule mining; this is due to the fact that it requires enumerating all possible 

combinations of itemset. Once all frequent itemsets and their support are known, the 

association rule generation is straightforward. 

However, the difficulty of mining the entire set of frequent itemsets is that 

the amount of frequent itemsets occurring in a dataset may be very large. Algorithms 
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developed in order to discover frequent itemsets have been shown to be inadequate 

when discovering frequent itemsets at the lower minimum support thresholds, or on 

datasets that contains long frequent itemsets (Agrawal et al., 1993; Han et al., 2000; 

Zaki, 2000a). This is because the presence of a frequent itemset of length k implies 

the presence of 2
k
-2 additional frequent itemsets as well. Therefore, generating and 

counting the supports of all frequent itemsets in the dataset cannot be achieved 

within a reasonable time. In addition, storing the complete set of frequent itemsets 

requires higher memory cost. Studies have shown that frequent itemsets contain 

much redundant information (Bayardo, 1998; Pasquier et al., 1999).  

The next section discusses the two alternative approaches to frequent itemset 

mining that have been proposed to address these problems ï maximal frequent 

itemset (Bayardo, 1998) and closed frequent itemset (Pasquier et al., 1999).  

2.2 Alternatives Approaches to Frequent Itemset Mining 

2.2.1 Maximal Frequent Itemset Mining 

Maximal frequent itemset (MFI) mining was first proposed through an algorithm 

called MaxMiner (Bayardo, 1998). The advantage of mining maximal frequent 

itemset is that it has the ability to discover long frequent itemsets by providing a 

compact set of items from the dataset.  

 

Definition 2.6 (Maximal Itemset) An itemset Ŭ is a maximal itemset in T if there 

exists no immediate supersets Ŭô where TÍ'a , such that 'aaË . 

 

Definition 2.7 (Maximal Frequent Itemset) An itemset is a maximal frequent 

itemset if none of its immediate supersets has support value equal or greater than 

minsup. 

 

Example 2.7 (Maximal Frequent Itemset) Figure 2.2 shows the maximal frequent 

itemsets (highlighted in bold). bce and abde are the largest itemsets with no other 
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supersets discovered with minsup = 3, hence, they are the maximal frequent 

itemsets.  

Support Itemset {rowset} 

6 b {1, 2, 3, 4, 5, 6}  

5 e {1, 2, 3, 4, 5 }, be {1, 2, 3, 4, 5}  

4 a{1, 3, 4, 5}, c { 2, 4, 5, 6}, d { 1, 3, 5, 6},  

ab {1, 3, 4, 5}, ae {1, 3, 4, 5}, bc {2, 4, 5, 6},  

bd {1, 3, 5, 6}, abe {1, 3, 4, 5}  

3 ad {1, 3, 5}, ce {2, 4, 5}, de {1, 3, 5},  

abd {1, 3, 5}, ade {1, 3, 5}, bce {2, 4, 5}, 

 bde {1, 3, 5}, abde {1, 3, 5} 

 

Figure 2.2: Maximal frequent itemsets (highlighted in bold) for minsup =3 

 

The number of maximal frequent itemsets is typically orders of magnitude 

fewer than the number of frequent itemsets. Hence, mining them is computationally 

less complex than mining all frequent itemsets (Bayardo, 1998; Lin and Kedem, 

2002; Gouda and Zaki, 2001; Burdick et al., 2005). However, maximal frequent 

itemsets do not provide the complete subset frequency for generating association 

rules. As an example, taking the maximal itemset abde { 1, 3, 5}, based on the 

Definition 2.4, the support for the rule deabÝ  can be obtained since the 

frequency of occurrence for this itemset is known to be 3. Hence, the support of this 

rule is equal to (3/6) or 0.5. On the other hand, this is not true for rule eabÝ . 

Based on Figure 2.2 the support of this rule does not equal to (3/6) since the 

frequency of occurrence for this itemset is 4. Mining for maximal frequent itemsets 

does not produce abe { 1, 3, 4, 5} given that abdeabeË , therefore it is unable to 

generate the rule. 
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Given that the consequences of mining maximal itemsets result in loss of 

information, further discussion on maximum frequent itemset mining will not be 

elaborated on further in the thesis (interested readers can refer to Bayardo (1998), 

Agarwal et al. (2000), Gouda and Zaki (2001), Lin and Kedem  (2002), Burdick et 

al. (2005), Grahne and Zhu (2005) for further details). 

2.2.2 Closed Frequent Itemset Mining 

Closed Frequent Itemset (CFI) mining was proposed in order to overcome the 

problems of mining frequent itemsets and maximal frequent itemsets by removing 

itemsets that are not needed, and at the same time, being able to generate the 

complete set of association rules (Pasquier et al., 1999).  

 

Definition 2.8 (Closed Itemset) An itemset Ŭ is a closed itemset in dataset T if there 

is no proper superset Ŭô (ŬËŬô) such that the support of Ŭ is the same as the support 

of Ŭô. 

 

Closed itemsets are also the maximal set of items common to a rowset 

(Pasquier et al., 1999). 

 

Definition 2.9 (Closed Frequent Itemset) An itemset Ŭ is a closed frequent itemset 

in dataset T if | rŬ | Ó minsup.  

 

Example 2.8 (Closed Frequent Itemset) In Figure 2.3, there are 7 closed frequent 

itemsets discovered from Table 2.1 with minsup = 3: b {1, 2, 3, 4, 5, 6}, be {1, 2, 3, 

4, 5}, bc {2, 4, 5, 6}, bd {1, 3, 5, 6}, abe {1, 3, 4, 5}, bce {2, 4, 5},and abde {1, 3, 5}. 

As can be observed, the closed itemsets discovered are the maximal set of itemsets 

amongst the itemsets of the same rowset value. 

 

The closed itemset lattice is defined by employing a closure mechanism, 

based on the Galois connection, a theory of order and lattices (Davey and Priestley, 
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1994). The closed itemset lattice is a sub-order of the itemset lattice; hence the 

search space is much smaller.  

 

Support Itemset {rowset} 

6 b {1, 2, 3, 4, 5, 6} 

5 e {1, 2, 3, 4, 5 }, be {1, 2, 3, 4, 5} 

4 a{1, 3, 4, 5}, c { 2, 4, 5, 6}, d { 1, 3, 5, 6},  

ab {1, 3, 4, 5}, ae {1, 3, 4, 5}, bc {2, 4, 5, 6},  

bd {1, 3, 5, 6}, abe {1, 3, 4, 5} 

3 ad {1, 3, 5}, ce {2, 4, 5}, de {1, 3, 5},  

abd {1, 3, 5}, ade {1, 3, 5}, bce {2, 4, 5}, 

 bde {1, 3, 5}, abde {1, 3, 5} 

 

Figure 2.3: Closed frequent itemsets (highlighted in bold) for minsup =3 

 

The closed itemset lattice is used as a formal framework for discovering 

closed frequent itemsets, based on the following properties (Pasquier et al., 1999): 

i. All subsets of a frequent itemset are frequent. 

ii.  All supersets of an infrequent itemset are infrequent. 

iii.  All subsets of a closed itemset of a frequent closed itemset are 

frequent. 

iv. All supersets of a closed itemset of an infrequent closed itemset are 

infrequent. 

v. The set of maximal frequent itemset is identical to the set of maximal 

frequent closed itemsets. 
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vi. The support of a frequent itemset Ŭ which is not closed is equal to the 

support of the smallest frequent closed itemset containing Ŭ (i.e. the 

closure of a frequent itemset is frequent). 

 

Given that mining closed frequent itemsets limits the search space based on 

the closed itemset lattice, both the number of dataset passes and the CPU overhead 

incurred by frequent itemset searching decreases (Pasquier et al., 1999; Pei et al., 

2000; Wang et al., 2003; Grahne and Zhu, 2005; Zaki and Hsiao, 2005). In addition, 

closed frequent itemsets are lossless, in the sense that they can produce a complete 

set of association rules from a much smaller set of frequent itemsets. Thus, the 

frequent itemset mining problem is reduced to the problem of determining closed 

frequent itemsets and their support. 

2.3 CFI  in High-Dimensional Dataset 

As was highlighted in Chapter 1, a typical business transaction dataset is represented 

with the characteristics of having a relatively large number of rows (transactions) 

and a relatively small number of columns (items). Recent interest has led to applying 

association rule mining to high-dimensional datasets. An example of such a dataset 

is the gene expression matrices or microarray data, where association rule mining is 

applied to discover significant relationships among different genes, based on 

expression levels (Tuzhilin and Adomavicius, 2002).  

Contrary to a transactional dataset, high-dimensional datasets (microarray 

data) usually contains a relatively large number of columns (genes) and a relatively 

small number of rows (biological samples). Table 2.2 shows a simple example of a 

discretized microarray dataset, Tm. The transaction IDs represents a set of patients 

and the items denote a set of genes. There are altogether 5 patients (rows) and nine 

groups of genes (items) in Table 2.2. Therefore, R = {1, 2, 3, 4, 5} and I = {a1, a2, 

b1, c1, c2, d1, d2, e1, e2}.  
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2.3.1 Transposition method 

The advantages of the closed-based technique, designed to handle pattern 

redundancy, have made it relatively common place in applying association rule 

discovery on high-dimensional datasets (Pan et al., 2003; Pan et al., 2004; Liu et al., 

2006; Zhu et al., 2007; Liu et al., 2009).  

Due to the complexity of searching for closed frequent itemsets, based on the 

number of columns in high-dimensional data, the transposition method was 

proposed (Rioult et al., 2003). The study states that by using the Galois connection 

(Davey and Priestley, 1994), the same results may be extracted from the transposed 

table by associating the sets of rows with the sets of columns, as per the original 

table, which associates sets of columns with sets of rows. Hence, the original dataset 

is transposed, so that each item (with different level of expressions) is now 

represented as a row value, and the rowset related to each row is represented as a 

column value.  

 

Table 2.2: Example of discretized microarray dataset, Tm 

Transaction id 

(Patients) 

Items (Genes) 

a1 a2 b1 c1 c2 d1 d2 e1 e2 

1 1 0 1 1 0 0 1 0 1 

2  0 1 1 0 1 0 1 0 1 

3 1 0 1 0 1 1 0 0 1 

4 0 1 1 0 1 0 1 0 1 

5 1 0 1 0 1 1 0 1 0 
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Definition 2.10 (Transposed Table T
t
) Given a table T = (R, I), the transposed table 

T
t 
of T consists of a set of tuples. Each tuple corresponds to an item IokÍ  and a 

rowset. If tuple ok contains r j in T
t
, it means item ok is included in row r j in table T. 

 

Example 2.9 (Transposed Table T
t
) Table 2.3 represents the transposed version of 

Table 2.2, denoted T
t
. As an example, {2, 4} is the set of rows (rowset) that contain 

item a2 in Tm which is the second tuple in T
t
.  

2.3.2 CFI  Mining on Transposed Data 

The transposition method enables reduction of the complexity of the search on 

datasets that contain relatively few rows and relatively many columns. As the 

smaller dimension concerns the number of rows, the closed frequent itemsets can be 

discovered by searching for a large closed rowset from transposed table T
t
. 

Table 2.3: Transposed table T
t
 of microarray dataset Tm 

Items Tidset 

a1 {1, 3, 5} 

a2 {2, 4}  

b1 {1, 2, 3, 4, 5} 

c1 {1}  

c2 {2, 3, 4, 5} 

d1 {3, 5}  

d2 {1, 2, 4} 

e1 {5}  

e2 {1, 2, 3, 4} 
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Definition 2.11 (Closed Rowset) Given the transposed table T
t
, a rowset ɓ is a 

closed rowset if not a proper superset ɓô exists (ɓËɓô), such that the support of ɓ is 

the same as the support of ɓô. 

 

Example 2.10 (Closed Rowset) From Table 2.3, for a rowset {1, 2}, the common 

itemset that occur in {1, 2} is b1d2e2.  However, b1d2e2 occurs also in rowset {4}. 

Therefore b1d2e2 = {1, 2, 4}. Based on Definition 2.11, {1, 2} is not a closed rowset 

as }4,2,1{}2,1{ Ë . Hence, {1, 2, 4} is a closed rowset. 

 

Definition 2.12 (Closure) Given a list of items, },...,,{ 21 noooI = , an itemset 

IÌa  and a rowset RÌb , it is defined that:  

}:|{)( jkjk orIoRrR ÍÍ"Í=a ,                                      2.4 

)}(:|{)( kjkj rtorIoI ÍÍ"Í= bb .                                     2.5 

 

By this definition, C (Ŭ) can be defined as the closure of itemset Ŭ and C (ɓ) 

as the closure of rowset ɓ, as follows: 

))(()( aa RIC =                                                   2.6 

))(()( bb IRC =                                                   2.7 

 

Hence, an itemset Ŭ is a closed itemset if Ŭ = C (Ŭ) and ɓ is a closed rowset if 

ɓ = C (ɓ). 

2.4 Summary 

This chapter has provided an overview and definitions of association rule mining, 

beginning from frequent itemset mining in transactional datasets and then 

considering mining closed frequent itemsets in high-dimensional data. This will 

provide a basic understanding on the types of itemsets that can be mined, especially 

closed itemsets, in relation to the forthcoming chapters. 
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Mining closed frequent itemsets has been shown to be the best alternative 

when compared to mining only frequent itemsets or maximal frequent itemsets. The 

ability to provide a complete and reduced set of answers shows that closed itemset 

mining is computationally less costly in the association rule discovery.  

 The next chapter will consider the search strategies that have been proposed 

as a means of discovering closed frequent itemsets, in particular for high-

dimensional datasets. This includes closedness-checking methods proposed by the 

algorithms to identify the closed itemsets. The advantages and disadvantages of 

these approaches are analyzed and discussed. 



 

 40 

 

 

 

 

Chapter: 3  

Strategies for Closed Frequent Itemset Mining 

 

 

 

This chapter provides a review of the literatures on various search strategies that 

have been proposed in order to discover closed frequent itemsets. By examining 

these search strategies, an understanding of their advantages and disadvantages will 

be provided, and the gaps in current methods will be identified.  

The chapter begins with Section 3.1, which describes the historical 

development of search strategies for mining closed frequent itemsets and their 

drawbacks.  

Section 3.2 presents the current approach to discovering closed frequent 

itemsets from high-dimensional data.  

Section 3.3 gives an example of an algorithm that proposes the search for 

large cardinality closed itemsets in high-dimensional datasets.  

Section 3.4 considers an algorithm that searches closed itemsets using more 

than one constraint.  

Finally, Section 3.5 summarizes the chapter, and concludes by pointing out the 

gaps in the literature that will be addressed in this thesis.
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3.1 Column Enumeration-based Strategy 

3.1.1 Apriori -based Bottom-up Search 

The enumeration-based strategy delivers numerical information in the form of 

counts for individual items or events retrieved (Brown, 1995). A column set 

enumeration-based strategy explores a dataset according to its item value. The 

earliest frequent itemset mining algorithm that employed this strategy was the 

Apriori (Agrawal et al., 1993). The Apriori algorithm enumerates the frequent 

itemsets in ascending order of size. This enumeration approach is termed a bottom-

up search. Figure 3.1 illustrates an example of the bottom-up column (item) 

enumeration tree, showing all the item combinations of the dataset in Table 2.1 from 

Chapter 2. 

{}  

a 

b 

c 

d 

e 

ab 

ac 

ad 

ae 

bc 

bd 

be 

cd 

ce 

de 

abc 

abd 

abe 

acd 

ace 

ade 

bcd 

bce 

bde 

cde 

abcd 

abce 

abde 

acde 

bcde 

abcde 

Figure 3.1: Bottom-up column enumeration tree 
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Apriori traverses the column enumeration tree using a bottom-up search in 

breadth-first order. This means that each level of the tree must be fully explored to 

discover frequent itemsets before moving onto the next level. The algorithm implies 

that frequent itemsets are mined through an iterative level-wise approach, based on 

candidate generation. Candidate itemsets refer to the itemsets generated whose 

supports are counted during the process of discovering frequent itemsets. Therefore, 

to identify entire frequent itemsets, all possible candidate itemsets must be tested.  

However, as in reality the number of existing candidate itemsets can be huge, 

and therefore, identifying all candidates for these itemsets is both challenging and 

time consuming, and runs into the problem of achieving scalability. To reduce the 

search space for candidates, Apriori applies the anti-monotonic or downward 

closure property, which defines an itemset as frequent if and only if all of its sub-

itemsets are frequent (Agrawal et al., 1993). This means that all of the supersets of 

an infrequent itemset found do not have to be considered.  

 

Definition 3.1 (Anti-monotonic) Given a dataset, T, with items I, let Ŭ1 and Ŭ2 be two 

itemsets such that IÌ21,aa , then: 

 

2121 aaaa TT ²ÝË
                                           

3.1
 

 

The Apriori algorithm, as presented in Algorithm 3.1, begins by first 

scanning the dataset to find the frequent 1-itemsets. It then uses the frequent 1-

itemsets to generate candidate frequent 2-itemsets, and checks these against the 

dataset to obtain the frequent 2-itemsets, and so on. The algorithm iterates until no 

more frequent k-itemsets can be generated for some k.  

Apriori is a level-by-level candidate-generation-and-test algorithm where, to 

discover frequent itemset of size n, the algorithm has to scan the dataset n times and 

requires the checking of 2
n
-1 candidate itemsets. Several frequent itemset mining 

algorithms have been proposed that extend Apriori in various ways, which includes 
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implementing the hashing technique to reduce the number of candidate itemsets 

(Park et al., 1995).  There are methods that attempt to reduce the number of dataset 

searches by dividing the dataset into non-overlapping partitions (Savasere et al., 

1995) and dynamically counting candidate itemsets of varying length (Brin et al., 

1997). Another method, proposed by Bastide et al. (2000) performs pattern counting 

inference based on the concept of key patterns. A key pattern is the smallest itemset 

that represents a group of itemsets with equivalent support. This leads to a reduction 

in the number of patterns counted, as well as a reduction in dataset scans. As the 

focus of this research is on discovering closed itemsets, further details of these 

algorithms will not be discussed. 

An example of a well-known algorithm that discovers closed frequent 

itemsets using an Apriori-based search is A-CLOSE. 

Algorithm 3.1: Apriori algorithm 

 

Input : D = Dataset, minsup = minimum support 

Output : F1, F2, é, Fk, a set of frequent itemsets 

 

F1 = {Frequent 1-itemsets}; 

for  ( k=2, Fk-1Í0, k++) do begin 

      Ck = New candidate generation from Fk-1 

       forall  transactions DtÍ do begin 

             Ct = Candidate contained in t 

              forall  candidates 
tCcÍ do 

                    c.count++; 

        end 

        Fk={ kCcÍ | c.count Ó minsup} 

             end 
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A-CLOSE (Pasquier et al., 1999) (see Algorithm 3.2), was the first algorithm 

to discover closed frequent itemsets using an Apriori-based framework. An example 

of the application of the algorithm is illustrated in Figure 3.2, based on the dataset 

from Table 2.1. The algorithm constructs a set of generators to identify closed 

Algorithm 3.2: A-CLOSE algorithm 

 

Input : Dataset, minsup = minimum support 

Output : CFI, a set of closed frequent itemsets 

 

            G1 = {1-itemsets generators}; 

            support = count (G1)            

            forall generators 1GpÍ do begin 

                  if (support(p) < minsup) then delete p from G1;     

            end 

            level = 0; 

            for (i = 1; Gi.generator Í Ï; i++) do begin 

                  Gi+1 = Generate (i+1)-generators of Gi  

                  if ( level = 0) then level = i;       // Iteration number of the first prune  

            end 

             if  (level > 2) then begin 

                  };1|{ -<= leveljGG j8        // Those generators are all closed 

                   forall  generators GpÍ do begin 

                   p.closure = p.generator; 

                   end 

            end 

             if  (level Í 0) then begin 

                 
};1|{' -²= leveljGG j8  

; // Some generators that are not closed 

                  Gô = Closure of generator Gô 

            end 

            CFI = {c.closure, c.support| 'GGc ÇÍ };  
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frequent itemsets. These generators are the smallest itemsets that can determine the 

closed itemsets, based on the properties of the closed itemset lattice2.  

During the search process, generators that have the same support as one of 

their subsets and therefore have the same closure as the subset are pruned. At the 

end of the search, the closure of all the generators identified is obtained by 

                                                 
2 Properties of the closed itemset lattice have been outlined in Chapter 2. 
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intersecting all the transactions that contain the generator as a subset. Duplicate 

closures are then removed.  

Apriori-based algorithms have shown good performance when applied to 

sparse datasets where the frequent itemsets or closed frequent itemsets are relatively 

short. However, with dense datasets, these algorithms have been shown to scale 

poorly and are impractical, because of high-computational costs (Brin et al., 1997; 

Pasquier et al., 1999; Bastide et al., 2000). This drawback is because of: (i) 

generation of a huge number of candidate itemsets (or generators in the case of the 

A-CLOSE algorithm) and (ii) repeated scanning of the dataset and checking the 

candidates by pattern matching. 

3.1.2 Pattern Growth without Candidate Generation 

To overcome the limitations of the Apriori-based approach, Han et al. (2000) 

proposed the discovery of frequent itemsets without candidate generation through an 

algorithm called FP-growth (Frequent Pattern-growth). The main idea of this 

algorithm relies on a compact tree data structure called the FP-tree, which stores 

only information related to the mining of frequent itemsets ï i.e. the number of 

itemsets and its frequency of occurrence.  

An example of the FP-tree that is constructed from Table 2.1 for minsup = 3 

is given in Figure 3.3. The dataset is initially scanned to derive a list of frequent 

items, which are then ordered in frequency descending order, e.g. à(b: 6), (e: 5), (a: 

4), (c: 4), (d: 4)ð. These items are stored in the header table. The dataset is then 

scanned for the second time to build the FP-tree. Only frequent 1-itemsets are stored 

as nodes in order to ensure the compactness of the tree. The nodes are arranged in 

frequency descending order, so that frequently occurring nodes will have better 

chances in prefix sharing than otherwise. If two transactions share a common prefix 

node, these nodes are merged as one prefix structure, and the count of each node 

associated with the prefix is incremented. This helps to prevent repeated scanning of 

the dataset.  
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The FP-growth algorithm is given in Algorithm 3.3. The method searches 

for the frequent itemsets by recursively partitioning the FP-tree into non-

overlapping subsets based on the item list. Following the frequency ascending order 

Algorithm 3.3: FP-growth algorithm 

 

Input : Tree = FP-tree constructed from dataset D, minsup = minimum support 

Output : F, a set of frequent itemsets 

 

if Tree contains a single path P; 

then for each combination (denoted as Ŭ) of the nodes in the path P do 

         generate itemset FÇa  with support = minsup of nodes in Ŭ; 

 else for each item ik in the header Tree do {  

         generate itemset FikÇ=a with support = ik.support; 

         construct Ŭôs conditional pattern base and then Ŭôs conditional FP- tree          

         TreeŬ; 

         if TreeŬ Í Ï 

         then call FP-growth (TreeŬ, Ŭ)             } 
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of the item list, the algorithm begins with each frequent length-1 itemset as the suffix 

item. It then traverses the FP-tree by following the link of each frequent item that 

co-occurs with the suffix item. The collection of all frequent itemsets co-occurring 

with the suffix item forms the conditional pattern base. The FP-tree constructed 

from the conditional pattern base is called the conditional FP-tree.  

FP-growth is achieved by concatenating the suffix item with the frequent 

itemsets generated from the conditional FP-tree. The suffix item of length-1 itemset 

will then be used to continuously generate those with a length equal to 2, and so on, 

until the conditional FP-tree contains only one single path from which frequent 

itemsets can be directly generated. Table 3.1 shows the conditional pattern base and 

conditional FP-tree of Figure 3.3 for every suffix item. 

As an example, in Figure 3.3, (d: 4) is the suffix item with the smallest 

number of support after item ordering. There are 3 branches that co-occur with item 

d. These branches are the conditional sub-database related to suffix item d. The 

conditional FP-tree for item d consists of à(b: 4), (e: 4), (a: 3), (b, e: 3), (b, a: 3), (a, 

e: 3), (b, e, a: 3)ð, and all the combinations of frequent itemsets that consists of d as 

its component are {(d : 4), (bd : 4), (ed : 3), (ad : 3), (bed : 3), (bad : 3), (aed : 3), 

Table 3.1: Conditional pattern base and conditional FP-trees for each suffix item 

item conditional pattern base conditional FP-tree 

d {(b, e, a, c : 1),  (b, e, a : 2), (b, c : 1)}  { (b : 4), (e : 3), (a : 3),  

(b, e : 3), (b, a : 3), (a, e : 3), 

 (b, e, a : 3)}|d 

c {(b, e, a : 2), (b, e : 1), (b : 1)}  {(b: 4), (e : 3), (b, e : 3)}| c 

a {(b, e : 4)}  {(b , e : 4)}| a 

e {(b : 5)}  {(b : 5)}| e 

b Ø Ø 
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(bead : 3)}. Several closed frequent itemset mining algorithms have been devised as 

extensions to the FP-growth method that maintain the discovered itemsets using the 

FP-tree structure or in a pattern-tree similar to an FP-tree. These include: (i) 

CLOSET, (ii) CLOSET+, (iii) FP-Close, (iv) AFOPT. 

(a) CLOSET (Pei et al., 2000) identifies the closed frequent itemsets by 

performing a depth-first search on the FP-tree.  The algorithm applies the 

single prefix path compression technique which searches for a single 

prefix path in the FP-tree in which closed itemsets can be directly 

extracted from the conditional pattern base. As an example, for a-

conditional database in Table 3.1, its corresponding FP-tree has only one 

branch: )5:(),6:( eb , hence the closed frequent itemsets, (abe : 4) can 

be directly enumerated. The discovery of closed frequent itemsets is then 

continued by recursively building the conditional FP-tree and identifying 

the superset of the remaining itemsets that appear in every transaction 

before checking the subset of the particular itemset. CLOSET has shown 

to be much faster than Apriori-based A-CLOSE algorithm on dense 

dataset when the minimum support threshold is low (Pei et al., 2000).  

(b) CLOSET+ (Wang et al., 2003) introduces a hybrid tree-projection 

method which builds the conditional pattern base depending on whether 

the dataset is sparse or dense. The algorithm also proposed two subset-

checking techniques to determine if a discovered itemset is a subset of an 

already found closed itemset candidate with the same support. For dense 

datasets, a two-level hash-indexed result tree is applied, where each level 

uses the ID of the last item and the support of the current itemset as the 

hash key. Each closed itemset discovered is inserted into the result tree 

and the length of its path is recorded. In contrast to the FP-tree structure, 

the support of a node is replaced by the maximum value among the 

support of closed itemsets sharing the common prefix. For sparse 

datasets, the subset-checking is applied on the global prefix-tree because 
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the result tree is not very space-efficient. All the nodes of the tree and 

their corresponding prefix path can be traced by following the side-link 

pointer recorded in its header table. Therefore, a closed itemset is 

obtained using the upward subset-checking to see whether it appears in 

each prefix path with respect to the prefix itemset. CLOSET+ shows that 

it is an order of magnitude faster and consumes less memory than 

CLOSET at lower support thresholds. CLOSET+ is also more scalable 

than CLOSET as the number of rows increases (Wang et al., 2003). 

CLOSET+ has the advantage of applying different methodologies prior 

to the characteristics of the dataset whether it is sparse or dense.  

(c) Grahne and Zhu (2003) introduced the algorithm FP-Close to discover 

closed itemsets by constructing a CFI-tree (Closed Frequent Itemset-

tree). Like CLOSET+, during the insertion of a closed frequent itemset, 

the support count of the nodes in the CFI-tree is replaced by the current 

maximal support count for the related itemset. FP-Close also performs a 

similar subset-checking technique to CLOSET+ with the difference that 

the algorithm also considers the support count of the itemset. The support 

count of each item in the list must be equal to, or greater than, the 

support count of the itemset, before ensuring that it is not a subset of 

another itemset with the same support value. FP-Close shows similar 

performance at lower support thresholds as compared to the algorithms 

selected in Grahne and Zhu (2003). The reason for this is that FP-Close 

generates more non-closed frequent itemsets hence increases the amount 

of time needed to check for closed itemsets. However, FP-Close requires 

less amount of memory due to the compactness of the constructed CFI-

tree. 

(d) Liu et al. (2003) introduced the algorithm AFOPT, which stores closed 

frequent itemsets in a tree structure called a Condensed Frequent Pattern 

tree or CFP-tree. The algorithm traverses the tree in both a top-down and 
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bottom-up manner. Each node of the CFP-tree is a variable-length array, 

in which items in the same node are sorted in frequency ascending order. 

The CFP-tree has two properties: (1) the left containment property that 

ensures the items of an itemset can only appear in the subtrees pointed to 

by the itemset or from previous itemsets in the tree; (2) the Apriori 

property ensures that the support of any child nodes of a CFP-tree for a 

particular itemset cannot be greater than the support of that itemset. 

AFOPT performs superset-checking of the CFP-tree based on these two 

properties. Superset-checking ensures that an itemset is a closed itemset 

if all of its supersets have a lower support threshold. The algorithm also 

performs subset-checking by applying a two-layer hash map similar to 

CLOSET+ to check whether the itemset is closed before searching the 

CFP-tree. The hash map contains the item and the maximal length of the 

itemset mapped to it. A closed itemset is discovered if any of the items it 

mapped to contain a lower value than its length. AFOPT shows that the 

algorithm scales well as the average transaction length increases as 

compared to the algorithms selected in Grahne and Zhu (2003). The 

algorithm demonstrates better performance in terms of running time on 

dense datasets due to its adaptive nature and the efficiency of the subset 

checking technique. AFOPT is also memory efficient due to the 

construction of the compact CFI-tree. 

 

The high compression ratio of the FP-tree has contributed to the reduction of 

the search space for discovering closed frequent itemsets, especially in dense 

datasets. In addition to the breadth-first order applied in the Apriori-based approach, 

the search for frequent itemsets from the FP-tree can be made in a depth-first 

manner. This means that the supports of all descendant itemsets of a node are 

determined before determining the frequent extensions of other nodes in the column 

enumeration tree. Thus, the depth-first search strategy quickly tends to find the 
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longer itemsets first in the search process and the branches of a node is searched 

only if the itemset is frequent. Hence, the strategy is able to reduce the processing 

time by cutting down the search space that contains itemsets which do not satisfy the 

desired threshold. However, FP-tree based algorithms are unable to give good 

compression for long itemsets. Building the FP-tree will require a larger amount of 

time and memory space, especially for datasets with large number of columns 

(items).  

3.1.3 Exploring t he Vertical Data Format 

Datasets for mining frequent itemsets are generally represented in a horizontal 

format, with each row corresponding to a list of items (i.e., {rid:itemset}), where rid 

is the row-id and itemset is the set of items in row rid. A study by Zaki (2000a) 

proposed an alternatively representation of the dataset which shows that the row 

information can also be recorded in a vertical data format. The vertical data format 

is an inverted representation of the original dataset. It is generated by scanning the 

dataset, and builds the rowset of each single item where the identities of the rows 

containing the item are listed (i.e., {item:rowset}). Table 3.2 shows an example of 

the vertical representation of the transactional dataset from Table 2.1. The advantage 

of applying the vertical data layout is that there is no need to scan the dataset to find 

Table 3.2: Example of the vertical data format for transactional dataset, T 

Items Tidset 

a 1 3 4 5 

b 1 2 3 4 5 6 

c 2 4 5 6 

d 1 3 5 6 

e 1 2 3 4 5 
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the support of (k + 1)-itemsets (for 1²k ). This is because the rowset of each k-

itemset carries the complete information required for counting such support. Hence, 

computing the supports is simpler and faster.  

An example of the algorithm that utilizes the vertical data format to discover 

closed frequent itemsets is CHARM (Zaki and Hsiao, 2005). CHARM 

simultaneously explores both the itemset and rowset space in a depth-first manner 

on a dual itemset-tidset search tree (IT-tree). In addition to the itemset value, each 

node in the IT-tree also represents its rowset value. The rowset of the corresponding 

(k + 1)-itemsets is obtained by intersecting the rowset of the frequent k-itemsets. The 

process repeats, until no frequent or candidate itemsets can be found.  

The closed itemsets are identified using the IT-pair (Itemset-Tidset pair) 

properties proposed in the study made by Zaki and Hsiao (2005). In addition, a hash 

function is applied to the rowset value by performing the sums of rids in the rowset 

to quickly identify the closed itemsets.  

The drawbacks of the vertical data format are that it consumes a lot memory 

to store large cardinality rowsets, and increasing number of rowset intersections. 

CHARM attempts to reduce the size of the intermediate rowset through diffset which 

keeps track of the differences in rids of the candidate itemsets from its parent 

frequent itemsets. This has led to an increase in the algorithmôs performance due to 

the less number of rowset intersection.  

CHARM has shown that it performs better than pattern-growth based closed 

itemset mining algorithms, such as A-CLOSE and CLOSET. It is several orders of 

magnitude faster than A-CLOSE and CLOSET at low support thresholds. CHARM 

also scales well, having linear increase in running time with increasing number of 

transactions. One of the advantages of CHARM is that the diffset format is resilient 

to sparsity. However, if the dataset contains many short itemsets, the tidset/diffsets 

operation in CHARM can be expensive. Also, CHARM is a column-enumeration 

based algorithm that performs the search using the Apriori-based approach, which is 

known to generate large number of candidate itemsets. 
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3.2 Row Enumeration-based Strategy 

In contrast to the transactional data, high-dimensional datasets may contain 10 K ï 

100 K columns or items but usually have only 100 to 1000 rows or transactions 

(typically a difference of a few orders of magnitude). Column enumeration-based 

mining algorithms described above typically begin the search for closed frequent 

itemsets with small itemsets that appear frequently and uses these intermediate 

results to build larger and larger itemsets. This strategy is generally effective for 

datasets with the characteristic of having a relatively large number of rows and a 

relatively smaller number of columns, hence the term column-enumeration search.  

Datasets with relatively many more columns than rows present efficiency 

challenges for algorithms that search based on the column values. This is because 

the number of possible column combinations is extremely high, and hence, 

correspondingly increases the search space size. For this reason, a high-dimensional 

dataset is considered to be dense. Therefore, enumerating the closed frequent 

itemsets by considering the row-space (e.g. experiments) rather than the column-

space (e.g. items) should be more effective.  

3.2.1 Bottom-up Search 

CARPENTER was the first algorithm to adopt the approach of mining the closed 

frequent itemsets in high-dimensional datasets using the row enumeration space in a 

bottom-up manner (Pan et al., 2003). The bottom-up search strategy of the row 

enumeration space implies that the dataset is searched starting from the smallest 

rowset value, and builds larger rowset values during the process. Figure 3.4 

ill ustrates an example of the row enumeration tree that lists all the rowset values in 

bottom-up order. Unlike the column enumeration-based search tree, the nodes of the 

row enumeration tree are now viewed as a set of row values (rowset), as opposed to 

a set of column (itemset) value.  

The algorithm integrates the advantage of vertical data format (Zaki, 2000a) 

by transposing the dataset (Rioult et al., 2003) so that the rowset is viewed as a set 
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of rows. In contrast to the column enumeration-based method which performs 

intersection on the rowset values of the transposed table, row enumeration-based is 

driven by intersecting the itemsets in order to discover the closed frequent itemsets. 

CARPENTER applies a depth-first search of the row enumeration tree. The 

algorithm recursively constructs conditional transposed tables where each computed 

conditional transposed table represents a node in the row enumeration tree. Each 

conditional transposed table contains items that exist in the conditional rowset, 

along with rids of the items that are larger than any of the conditional rowset.  

The advantage of the conditional transposed table is that once a closed 

itemset is discovered for that particular rowset, further checking on the node for the 

rowset value is unnecessary. An example of a conditional transposed table, T
t
|x, 

{}  

1 

2 

3 

4 

5 

12 

13 

14 

15 

23 

24 

25 

34 

35 

45 

123 

124 

125 

134 

135 

145 

234 

235 

245 

345 

1234 

1235 

1245 

1345 

2345 

12345 

Figure 3.4: Bottom-up row enumeration tree 
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where x = {2, 3, 4}, from Table 3.2 is as shown in Table 3.3. As rid 5 occurs in each 

tuple of T
t
|{2,3,4}, b1c2 = {2, 3, 4, 5} is a closed itemset. 

Study shows that CARPENTER performs better with respect to run time than 

CHARM and CLOSET, as the minimum support threshold varies (Pan et al., 2003). 

This is due to the fact that the increase in the column enumeration space leads to the 

decrease in the performance of the column-enumeration based algorithm such as 

CHARM and CLOSET. CARPENTER also is 100 times faster than CHARM and 

1000 times faster than CLOSET as the number of length ratio of the dataset 

increases.  

There are several algorithms that have their basis in CARPENTER ideas, and 

these include: (i) FARMER, (ii) TopKGRS, (iii) COBBLER. 

(a) FARMER (Cong et al., 2004a) was particularly designed to find all 

association-based classification rules by row enumeration. The algorithm 

searches the row enumeration tree in depth-first order to build classifiers of 

the form X Ÿ C, where C is a class label and X is a set of attributes. Hence, it 

requires a duplicate of the dataset in order to classify the classesô information 

prior to mining. The method is supported through the transposed tables, 

taking into account class information. Thus, each itemset in the transposed 

table is enumerated according to a positive and negative class. In this 

particular algorithm, the association rules discovered are required to satisfy 

more than one constraint such as support, confidence and chi-square (Cong 

et al., 2004a). FARMER shows that it is 2 to 3 orders of magnitude faster 

than ColumnE (Bayardo and Agrawal, 1999) and CHARM as the minimum 

support threshold decreases (Cong et al., 2004a). This is because FARMER 

Table 3.3: Conditional transposed table, T
t
|{2, 3, 4} 

Item Rowset 

b1 5 

c2 5 
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depends on the number of row combination of the high-dimensional dataset 

as compared to the number of column combinations made by ColumnE and 

CHARM.  

(b) RERII (Cong et al., 2004b) extracts all closed frequent itemsets by searching 

the row-enumeration space depth first. The algorithm begins by removing all 

infrequent 1-itemsets from the dataset. Each row value of the sibling nodes 

in the enumeration tree is then intersected with one another, iteratively 

generating sub-itemsets of greater support. If the sub-itemset is equal to the 

parent itemset, the support of the parent itemset increases. This continues 

recursively until no smaller itemsets can be formed or the branch of the sub-

itemset is equivalent to the parent itemset. All the closed frequent itemsets 

that do not satisfy the minsup threshold are pruned. RERII has been shown to 

be faster in terms of runtime than the column enumeration-based algorithms 

CLOSET+  and CHARM at low support thresholds for similar reasons, as 

with FARMER. The algorithm also performs 2-4 times faster than 

CARPENTER on the test datasets since it does not require building the 

conditional transposed tables (Cong et al., 2004b). 

(c) Similar to FARMER, TopKGRS was designed to discover a set of rule groups 

(Cong et al., 2005). The algorithm uses a preference selection to specify the 

number of top covering rule groups (top-k), in order to reduce the number of 

rule set. By implementing the top-k, TopKGRS has shown to be 2 to 3 orders 

of magnitude faster than FARMER especially at low minsup threshold. This 

is because FARMER discovers a large number of rule groups at low minsup 

as compared to the restricted number of rule groups obtained by TopKGRS. 

The runtime of TopKGRS monotonously increase with increasing value of k. 

The improvement in the runtime is also due to the implementation of the 

compact prefix-tree in the algorithm (Cong et al., 2005).  

(d) COBBLER (Pan et al., 2004) employs dynamic evaluation of closed frequent 

itemsets by combining both the bottom-up row-enumeration and bottom-up 
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column-enumeration approach, depending on the dataset characteristics. 

Similar to CARPENTER, COBBLER performs a depth-first traversal search 

of both trees, by recursively constructing several conditional tables and 

conditional transposed tables. Each conditional table represents a column-

enumerated node, while each conditional transposed table represents a row 

enumerated node. The change from row enumeration to feature enumeration 

or vice versa is decided through evaluating a switching condition. The 

objective is to estimate the enumeration costs for the sub-trees and selecting 

the smallest one from both sub-trees, i.e. column or row based. The 

enumeration cost is estimated from two components of the tree, its size and 

the computation cost at each node of the tree. The size of the tree is based on 

the estimated number of nodes it contains, while the computation cost at a 

node is measured using the estimated number of rows (features) that will be 

processed at the node. The advantage of this strategy is that each portion of 

the dataset can be processed using the most suitable method, hence making 

the mining more efficient. Experiments show that at higher minsup 

thresholds, when the dataset needs to consider large numbers of rows as 

compared to the number of columns, column enumeration-based algorithms, 

CLOSET+ and CHARM performs better in terms of runtime in most of the 

cases. If  the minsup threshold is reduced, COBBLER performs better in terms 

of run-time. The effectiveness of COBBLER has been demonstrated in 

experiments on a dataset, with both a relatively large number of rows and 

columns (Pan et al., 2004). 

(e) MAXCONF (McIntosh and Chawla, 2007) applied the row enumeration-

based bottom-up search to discover closed itemsets using the confidence 

measures. This algorithm arose from the observation that implementing the 

support threshold has lead to the pruning of many interesting unknown 

itemsets that could provide high confidence rules. The algorithm proposed 

two confidence pruning methods, which results in MAXCONF to scale well 
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with the changes in the confidence threshold. It also shows that it could 

discover interesting rule groups with high confidence as compared to the 

support-based algorithm, RERII (McIntosh and Chawla, 2007). 

 

As stated in the previous chapters, mining closed frequent itemsets based on 

the support constraint as the search threshold means discovering closed itemsets that 

contain large rowsets. Therefore, the main restriction of the bottom-up approach is 

the size of the rowset. As it is monotonic in terms of the bottom-up search order, it is 

hard to prune the row enumeration search space early. For example, suppose the 

minsup is set to 3, although all the nodes in the first two levels from the root 

obviously cannot satisfy this constraint, these nodes still need to be checked (Pan et 

al., 2003; Cong et al., 2004a; Cong et al., 2004b). Hence, as minsup increases, the 

time needed to complete the mining process does not decrease correspondingly or 

rapidly. This limits the application of this kind of algorithm in real situations. In 

addition, the inability to prune the search space earlier adds to the increase in 

memory cost. For example, the CARPENTER algorithm needs to save many x-

conditional transposed tables in memory during the mining process. For a table with 

n rows, the maximum number of different levels of transposed tables in memory is 

n, although among these, the first (minsup-1) levels will not contribute to the final 

result. 

3.2.2 Top-down Search 

To take advantage of the support constraint, Liu et al. (2006) proposed that the row 

enumeration-tree is traversed in a top-down manner. A top-down search implies that 

along each path of the tree, the rowsets are check from large to small ones. Given a 

minsup threshold, for a dataset with n-rows, the search for closed frequent itemsets 

ends for levels greater than (n-minsup) in the row enumeration tree.  

Figure 3.5 shows an example of the top-down row enumeration for 5 rows 

from Table 2.3. Each node of the tree represents a rowset value. The level of root 

node is defined as 0, and the highest level for a dataset with n rows is (n-1). Suppose 
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the minsup = 2, a further search is stopped at level 3, because the rowsets 

represented by nodes at level 3 and 4 will not contribute to the set of closed frequent 

itemsets. 

Two examples of the algorithms that apply the top-down approach are: (i) TD-

Close and (ii) TTD-Close.  

(a) TD-Close (Liu et al., 2006) was the first algorithm to implement the top-

down approach of the row enumeration tree. Similar to CARPENTER, TD-

Close employs an array-based data structure by performing sub-division of 

the itemsets using conditional transposed tables. Each sub-table 

corresponds to a node in the row enumeration tree. The conditional 

transposed table is called an x-excluded transposed table, where x is a 

rowset, excluded from the table. The algorithm finds all the items from the 

transposed table that contain the rowset id, rids, greater than the specified 
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Figure 3.5: Top-down row enumeration tree 
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rowset value, x, but only items which contain rids less than x are retained in 

the x-excluded transposed table. During this process, items that do not 

satisfy the minsup constraint are discarded. Based on Definition 2.11, a 

rowset is closed if a larger rowset value containing the same itemset does 

not exist. To satisfy this condition, TD-Close performs a trace-based 

closedness-checking method by keeping track of the rids excluded during 

the intersection of the itemset. Hence, to facilitate the search for closed 

rowsets, a column value is added to the x-excluded transposed table called 

skip-rowset. The itemsets that occur in the same rowset are merged and at 

the same time, the intersection of the skip-rowset values is performed. The 

itemset which produces an empty skip-rowset during the merge is a closed 

itemset. Experimental results demonstrate that TD-Close is faster than FP-

Close and CARPENTER in terms of runtime as the minsup threshold 

decreases. The ability of the top-down search of the row enumeration tree 

to prune the search space that does not satisfy the minsup threshold earlier 

adds siginificantly to the running time of the algorithm. Because of this, 

TD-Close consumes less memory as compared to a bottom-up approach in 

CARPENTER. On the other hand, FP-Close is a column enumeration-based 

algorithm which requires an explosive number of frequent itemsets that 

need to be checked. 

(b) The TTD-Close (Liu et al., 2009) algorithm, a development of TD-Close, 

represents the dataset using a tree data structure, as opposed to the flat table 

in TD-Close to perform the search for closed frequent itemsets. The main 

advantage of using this approach is that the tree structure provides a more 

compact representation of the dataset. The tree structure, termed FR-tree 

(Frequent Rowset-tree), is similar to the representation of the FP-tree (Han 

et al., 2000). The differences between the trees are that instead of 

representing the nodes with the item value (FP-tree), each node of the FR-

tree is represented with the rid value and the nodes in the FR-tree are 
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linked through a parent pointer instead of a child pointer (FP-tree). An 

additional structure, termed IP-List (Itemset Pointer List), is added to the 

FR-tree, and contains information that assists in the discovery of closed 

frequent itemsets. An example of the FR-Tree and the IP-List for the 

transposed table T
t
 of Table 2.3 is shown in Figure 3.6. IP-List is similar to 

the x-excluded transposed table in TD-Close. The difference is that instead 

of using the excluded rowset x during recursion, the algorithm uses the 

rowsets which do not contain x. The IP-List consists of four parts: (i) a set 

of pointers each of which represents an itemset and points to a node in the 

1 2 3 

3 4 2 3 5 

4 5 3 4 
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Figure 3.6: FR-Tree and IP-List 
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FR-Tree; (ii) an explicit rowset which contains several rids that may 

represent the itemset; (iii) an implicit rowset which represents rids that exist 

for the particular itemset and (iv) the current minimum support threshold, 

cMinsup. The recursion path of TTD-Close follows the changes in the 

explicit rowset. Experiments conducted by Liu et al. (2009) demonstrate 

that TTD-Close provides the least runtime as compared to the algorithms, 

TD-Close, FP-Close and CARPENTER. TTD-Close also consumes the least 

amount memory during mining for closed itemsets. This is because TD-

Close needs to build several x-excluded transposed tables, CARPENTER 

needs to deal with rowsets that are smaller than the minsup threshold and 

FP-Close needs to build more FP-trees.  

 

However, due to the density of high-dimensional datasets, the row 

enumeration based strategy still encounters exponential space size with respect to 

the number of itemsets. As the frequency threshold gets smaller, the time required to 

find closed frequent itemsets dramatically increases (Liu et al., 2009). Even with the 

various search strategies proposed, these algorithms still encounter challenges 

mining relatively large itemsets. This is because the previous search processes 

require the generation of an explosive number of small frequent itemsets, hence 

taking much of the memory space to store large frequent ones. 

3.3 Pattern-Fusion: Mining the Colossal Itemsets 

Association mining tasks usually give greater importance to itemsets that are bigger 

in size, especially in areas such as bioinformatics. These long cardinality itemsets 

are termed colossal itemsets (Zhu et al., 2007).  

The concept of colossal itemsets was first introduced by Zhu et al. (2007) in 

an algorithm based on pattern-fusion for finding a measurably good approximation 

to the enumeration of all colossal closed itemsets in high-dimensional datasets. The 

algorithm traverses the tree according to the column (item) enumeration. However, 
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instead of traversing each node of the tree, it randomly discovers large cardinality 

itemsets by merging the small cardinality candidate frequent itemsets selected. 

These small cardinality candidate itemsets are known as core-patterns.  

 

Definition 3.2 (Core Pattern) For a pattern Ŭ, an itemset abÌ is said to be Ű-core 

pattern of Ŭ if  t
b

a
²

T

T
, 0 < Ű Ò 1. Ű is called the core ratio and T is the transaction 

dataset. 

 

Pattern-Fusion begins by generating a desired set of small frequent itemsets. 

Based on the user-specified maximum number of itemsets to be mined, random 

selections of core-patterns are made from the generated small frequent itemsets. All 

the itemsets that satisfy the core ratio for each core patterns are then combined to 

produce larger cardinality itemsets. 

The concept of a core pattern was proposed in order to provide the ability for 

the algorithm to skip a large number of frequent itemsets whenever possible. This is 

because the growth of each itemset is not performed by adding one item each time, 

but by an agglomeration of selected multiple itemsets. Hence, Pattern-Fusion is able 

to traverse down the search tree much more rapidly toward the colossal itemsets. 

Zhu et al. (2007) also stated that colossal itemsets exhibit robustness, in the sense 

that if a small number of items are removed from the itemset, the resulting itemset 

will  have a similar support set. This is based on the relationship between the support 

set of a colossal itemset and those of its sub-itemsets: the larger the itemset size, the 

more prominent the robustness observed. 

 

Definition 3.3 ((d, Ű)-Robustness) A pattern Ŭ is (d, Ű)-robust if d is the maximum 

number of items that can be removed from Ŭ for the resulting pattern to remain a Ű-

core pattern of Ŭ. 
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 As the number of colossal itemsets discovered is an approximation of a 

complete solution, Zhu et al. (2007) also proposed an evaluation model to assess the 

quality of mining results against the complete set. This model provides a way to 

measure the goodness of an approximate solution against a complete solution by 

measuring the distance between two arbitrary itemsets. 

Several studies conducted on both synthetic and real datasets have 

demonstrated that Pattern-Fusion is able to provide a good approximation for 

discovering colossal itemsets in datasets. Unlike existing frequent itemset mining 

algorithms, Pattern-Fusion skips the need to examine a large number of mid-sized 

ones. Interestingly, their experimental results were presented with a minimum 

support threshold as the x-axis whereby the running time for Pattern-Fusion is 10 

times faster at lower support threshold as compared to the selected algorithms. 

3.4 D-Miner: Mining the Constraint -based Concept 

Another approach in mining a high-dimensional dataset is to find a formal concept 

(FC) (Dong et al., 2005). Given a 0/1 matrix, a formal concept is a subset of k rows 

and l columns, such that all the matrix entries in one of the k rows and l columns 

contain a 1. Such a row and column subset is called a 1-rectangle. If the rows were 

rearranged so that all of the k subset rows appeared first (i.e., in rows 1 through k) 

and all columns were rearranged so that l columns of the subset appeared in columns 

1 through l, the upper-left k by l rectangle of the matrix would contain all 1 entries.  

A closed itemset may be considered as column subsets and the collection of support 

as a row subset.  

Besson et al. (2005) have applied the mining of (formal) concepts using 

constraints on high-dimensional datasets with the D-Miner algorithm. The high-

dimensional dataset is initially transposed and is represented using a binary format 

(Table 3.4) where the values in the dataset are represented as 0 or 1. The algorithm 

begins with the largest cardinality itemset and the largest cardinality rowset that 

represents the dataset. This set of itemsets and rowsets are called a bi-set. D-Miner 
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performs a depth-first search of concepts by recursively splitting the initial bi-set 

into smaller bi-sets that do not contain ñ0ò values. The division of the bi-sets is 

made using the elements that are found in the dataset which represents the ñ0ò value. 

These elements are called cutters. The result of each divided bi-sets contains a 

concept of an itemset without a rowset value of ñ0ò and a concept of a rowset 

without an itemset value of ñ0ò.  

Figure 3.7 shows an example of how D-Miner discovers the concepts using 

the binary representation of the dataset shown in Table 3.4. The search begins with 

the largest itemset (a b c d) and rowset (t1 t2 t3) value. The first cutter, (a, t2), which 

is represented in a box, is identified from the dataset as it is represented with a ñ0ò 

value. The cutter is then used to divide the first bi-sets into further sub-bi-sets. The 

method repeats until there are no more cutters which leave the concepts representing 

a 1-rectangle. All the discovered concepts are shown in the last line of Figure 3.7. 

However, bi-set (cd, t1) (highlighted in bold) is not a concept as it is a subset of the 

bi-set (acd, t1). This is done through comparison with the existing concepts 

discovered. 

As stated previously, entire concepts (or closed itemsets) that exist in the high-

dimensional dataset are unlikely to be discovered. Therefore, to reduce the search 

space, D-Miner attempts to discover concepts that satisfy two constraints, based on 

the length of the rowsets, as well as the length of the itemsets discovered. The 

performance of D-Miner has been compared to CLOSET and CHARM, using the 

Table 3.4: Example of the binary representation of dataset 

 t1 t2 t3 

a 1 0 1 

b 0 1 1 

c 1 1 1 

d 1 0 0 
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support threshold. Unsurprisingly, D-Miner performs better than these two 

algorithms on high-dimensional datasets especially at lower minimum support 

threshold (Besson et al., 2005). The results of the study also show that D-Miner has 

gain significant decrease (as high as 97%) in the total closed itemsets discovered 

when applying more than one constraint. Hence, this shows that the algorithm is 

useful for the discovery of a particular group of closed itemsets satisfying specified 

constraints.  

3.5 Summary 

This chapter outlines the strategies to discover closed frequent itemsets, with 

examples of the algorithms as well as quantitative comparison and discussions of the 

drawbacks of the methods when applied to high-dimensional datasets.  

From the foregoing, it can be concluded that: 

(abcd, t1t2t3) 

(a, t2) 

(bcd, t1t2t3) (abcd, t1t3) 

(b, t1 ) (b, t1) 

(cd, t1t2t3) (bcd, t2t3) (acd, t1t3) (abcd, t3) 

(d, t2t3) 

(c, t1t2t3) (cd, t1) (bc, t2t3) (bcd, Ø) (acd, t1) (ac, t1t3) (abc, t3) 

(d, t2t3) (d, t2t3) (d, t2t3) 

(abcd, Ø) 

Figure 3.7: Discovering the concepts using D-Miner 
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¶ A column enumeration-based search strategy is suitable for datasets that 

contains a relatively smaller number of columns or items. There are three 

basic methodologies described under this strategy: (i) Apriori-based 

generation that produces candidate itemsets in a level-wise manner. An 

example of the algorithm using this generation method is A-Close; (ii) the 

Pattern-growth method that mines the complete set of frequent itemsets 

without candidate generation. Examples of this type of algorithm include 

CLOSET, CLOSET+, FP-Close and AFOPT; and (iii) Vertical dataset 

representation in which each item in the dataset is represented with a set of 

row values. An example of the algorithm using the vertical data 

representation is CHARM.  

All these methods adopt a bottom-up search of the column 

enumeration tree. For high-dimensional dataset, the characteristics of the 

dataset of having a relatively smaller number of rows and a relatively large 

number of columns means that the column-enumeration based methods 

require a considerable amount of resource to search the itemset space.  

¶ A row enumeration-based search strategy is suited to mining itemsets in 

high-dimensional datasets due to the fact that it searches the rowset space.  

o The initial approach of the search was to traverse the row 

enumeration tree in a bottom-up manner. By using the support 

threshold, traversing the row enumeration tree bottom-up does not 

take advantage of the constraint. This is because the method has to go 

through all the nodes in the levels of the tree that do not satisfy the 

constraint and discard them. Examples of algorithms using the 

bottom-up row enumeration search are CARPENTER, FARMER, 

RERII, TopKGRS, COBBLER and MAXCONF. 

o The top-down search strategy takes advantage of the support 

threshold by discovering itemsets beginning from the largest rowset 

value (the most frequent). However, by applying the support 
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constraint the strategy struggles to reach the large cardinality itemsets 

that exist at the lower end of the support threshold. Examples of 

algorithms within this category are TD-Close and TTD-Close. 

¶ The Pattern-Fusion algorithm is an example of an algorithm that attempts to 

discover large cardinality (colossal) closed itemsets by approximating the 

number of colossal closed itemsets generated. However, approximating the 

number of colossal closed itemsets discovered might lead to missing some of 

the colossal closed itemsets that are of value. In addition, experimental 

results show that using the minimum support threshold, raises the question - 

ñWhat is the maximum ócolossalô value of the itemsets that the algorithm can 

discover?ò 

¶ D-Miner applies more than one constraint to discover the closed itemsets in 

high-dimensional datasets. However, the objective of the algorithm was to 

discover only a group of closed itemsets that are of interest.  

In the next chapter (Chapter 4), the limitations of the approaches as stated 

above, will be address through a new proposed algorithm. 
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Chapter: 4  

DisClose: Mining Colossal Closed Itemsets 

 

 

 

This chapter presents the proposed algorithm which has been developed to 

efficiently discover the colossal closed itemsets from high-dimensional datasets. 

Section 4.1 provides an overview of the steps taken in order to efficiently 

discover the colossal closed itemsets from high-dimensional datasets.  

Section 4.2 introduces the approach to discovering large cardinality closed 

itemsets from high-dimensional datasets. The section continues by describing the 

implementation of the transposition operation on the original dataset. An example of 

the input dataset, as well as its transposed version, is also given. In addition, the 

proposed user defined threshold is described, including the definitions and examples 

of colossal closed itemsets.  

Section 4.3 introduces and defines the closedness-checking approach 

proposed. This section includes examples and proofs that demonstrate the 

correctness of the method. 
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Section 4.4 introduces the proposed data structure that enables efficient search 

for colossal closed itemsets. An illustration of the structure and its relationship with 

the dataset is also presented.  

Section 4.5 introduces the algorithm DisClose, developed on the basis of the 

search strategies, the closeness-checking approach and the data structure proposed. 

Examples and proofs of the search process are presented. Space and time analysis of 

DisClose is also discussed.  

Finally Section 4.6 summarizes the chapter.   

4.1 Overview 

Figure 4.1 shows the overall steps undertaken in mining the colossal closed itemset 

proposed in this thesis. Mining for colossal closed itemsets from high dimensional 

High Dimensional 

Dataset 

1. Discovering 

Colossal Itemsets 

Bottom-up 

Row 

Enumeration 

Search 

Strategy 

Minimum 

Cardinality 

Threshold - 

mincard 

2. Identifying 

Closed Itemsets 

Unique 

Generator 

Colossal Closed 

Itemsets 

Compact Row-

Tree (CR-Tree) 

Figure 4.1: Colossal Closed Itemset Mining Procedures 
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dataset requires 2 major steps: (i) discovering the colossal itemsets; and (ii) 

identifying the closed itemsets. Several strategies shown in Figure 4.1 were 

proposed in order to accomplish these two main steps. These proposed strategies are 

discussed in detail in the subsequent sections.  

4.2 Proposed Search Strategies 

Finding the most common itemsets in high-dimensional data leads to the likelihood 

of finding itemsets common to most situations (rids - row ids) but which contain 

only a few of the items (columns). The computational complexity of having to 

obtain all closed frequent itemsets, usually results in algorithms that struggle to find 

larger itemsets. It may be that itemsets common to only a few situations (rids), 

which contain a larger number of items (columns), may provide interesting insights 

into the nature of the dataset. Therefore, to discover these large closed itemsets, 

rather than generating candidate itemsets and checking for the closure property, this 

study proposes an approach which begins with closed itemsets (entire transactions) 

that exist in the dataset, which may have very small support (usually only one, 

unless duplicate transactions exist). From this collection of closed itemsets, smaller 

itemsets are built with higher support.  

4.2.1 Bottom-up Row-enumeration Search 

Extracting large itemsets involves determining the column (attribute) that has the 

highest cardinality of values associated with it in the dataset. This implies that the 

search strategy can be based on a top-down column enumeration. Figure 4.2 shows 

an example of a top-down column enumeration tree for a dataset which contains five 

items, {a, b, c, d, e}.  

However, it can be observed that for a dataset with m number of columns 

(items), there will also be m number of levels for a top-down column enumeration 

tree. In addition, the maximum number of nodes (itemsets) that will exist in the top-

down column enumeration will equal 2
m
-1. For a high-dimensional dataset, the 



CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS 

 

 73 

value of m is very large (i.e. hundreds of thousands); hence, enumerating the 

itemsets based on the number of columns is unfeasible.  

It makes sense to search for closed itemsets based on the number of rows 

because, as previously stated, it is relatively small compared to the number of 

columns in high-dimensional datasets (Pan et al., 2003; Cong et al., 2004; Liu et al., 

2009). The largest cardinality itemset initially exists in every single row of the high-

dimensional dataset (unless duplicate rows occur). Therefore, most large closed 

itemsets begin from the infrequent end of the support spectrum. As a result, using 

the bottom-up row enumeration tree as the basis of the search strategy would appear 

to be more appropriate.  
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Figure 4.2: Top-down column enumeration tree 
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4.2.2 Transposed Table 

Since the proposal of the method by Rioult et al. (2003), transposition has been 

widely used by algorithms that discover closed itemsets from high-dimensional 

datasets (Pan et al., 2003; Cong et al., 2004a; Liu et al., 2009). High-dimensional 

datasets in domain such as biomedical engineering, telecommunications, geospatial 

data, and climate data are known to be dense (Han et al., 2002). A dataset tend to be 

dense in that they have any or all of the following properties: (i) many frequently 

occurring items; (ii) strong correlation between several items; (iii) many items in 

each record (Bayardo et al., 1999). Table 4.1 shows an example of a discretized 

high-dimensional dataset. Mining the closed itemsets directly from the original 

dataset can be complicated. Therefore, applying the method of transposition to the 

original dataset helps to simplify the extraction of closed itemsets in high-

dimensional data. This is because when the original dataset is transposed, each 

column (item) value of the original dataset will become a row value in the 

transposed table, and will be represented by a set of rows (rowset) where that 

particular item occurs.  

Table 4.2 represents the transposed version of Table 4.1. It can be observed 

that the transposed dataset provides a sparser representation of the original input 

Table 4.1: Example of a discretized high-dimensional dataset 

tid Item 

a b c d e f g h i j  k l m n 

1 1 1 1 2 2 1 2 1 2 2 2 2 2 1 

2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 

3 1 1 2 1 2 2 2 2 2 1 2 2 2 2 

4 2 1 2 1 2 2 1 2 2 2 2 2 2 2 

5 1 1 2 1 1 2 2 2 2 1 2 2 2 2 
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dataset. As a result of this simplification, the method of transposition is utilised in 

the algorithm proposed here. 

4.2.3 Minimum Cardinality Threshold, mincard 

As highlighted in Chapter 3, it is impractical to mine all closed itemsets from high-

dimensional datasets, due to their cardinality. Various types of threshold have thus 

been proposed in order to reduce the search space. The most common of these 

thresholds is the minimum support threshold, minsup, which assists in reducing the 

search space based on the frequency of occurrence. Essentially, a low support 

Table 4.2: Example of Transposed Dataset 

Item Tidset 

a1 1  3  5 

a2  2  4  

b1 1 2 3 4 5 

c1 1     

c2  2 3 4 5 

d1   3 4 5 

d2 1 2    

e1     5 

e2 1 2 3 4  

f1 1     

f2  2 3 4 5 

g1    4  

g2 1 2 3  5 

h1 1     

h2  2 3 4 5 

i1  2    

i2 1  3 4 5 

j1   3  5 

j2 1 2  4  

k2 1 2 3 4 5 

l1     5 

l2 1 2 3 4  

m1  2    

m2 1  3 4 5 

n1 1     

n2  2 3 4 5 
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threshold may incur a combinatorial explosion in the number of closed frequent 

itemsets, thus limiting the search for large cardinality (or exceptional) closed 

itemsets. 

In this particular study, as the objective is to focus on the discovery of large 

closed itemsets, the search process is stopped upon reaching a threshold parameter 

value for the minimum itemset cardinality, mincard.  

 

Definition 4.1 (Cardinality) The cardinality of an itemset Ŭ refers to the number of 

items in Ŭ. This is denoted as | Ŭ |. 

 

Example 4.1 (Cardinality) The cardinality of the itemset {b1, e2, i2, j2, k2, l2, m2} in 

Table 4.1 is | { b1, e2, i2, j2, k2, l2, m2} | = 7. 

 

Definition 4.2 (Colossal itemset) Given a minimum cardinality threshold, mincard, 

an itemset Ŭ is colossal if | Ŭ | Ó mincard. 

 

The search space of the dataset can be safely pruned by using the cardinality 

constraint, because of its anti-monotone property.  

 

Property 4.1 (anti-monotone) If a rowset ɓ has its associated itemset, Ŭ = I (ɓ), such 

that <a mincard, then for any bbÉ' it must be that | I (ɓô) | < mincard. 

 

Combining the anti-monotone property with the definition of closure 

(Definition 2.12) ensures the following property. 

 

Property 4.2 (at-threshold) If a rowset ɓ has its associated itemset, Ŭ = I (ɓ), such 

that | Ŭ | == mincard, then for any bbÉ' it must be that | I (ɓô) | < mincard. 
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Figure 4.3 shows all frequent itemsets obtained from Table 4.1 and the 

colossal itemsets discovered (highlighted in grey) using the bottom-up search order 

of the row enumeration tree. The size of the itemset is indicated in parentheses for 

each row value and the itemset that it represents. By applying the mincard threshold, 

1Ý (14): a1, b1, c1, d2, e2, f1, g2, h1, i2, j2, k2, l2, m2, n1 

       12Ý (7): b1, d2, e2, g2, j2, k2, l2 

                123Ý (5): b1, e2, g2, k2, l2 

                           1234Ý (4): b1, e2, k2, l2 

                                        12345Ý (2): b1, k2 

                           1235Ý (3): b1, g2, k2 

                124Ý (5): b1, e2, j2, k2, l2 

                           1245Ý (2): b1, k2 

                125Ý (3): b1, g2, k2 

       13Ý (8): a1, b1, e2, g2, i2, k2, l2, m2 

134Ý (6): b1, e2, i2, k2, l2, m2 

                           1345Ý (4): b1, i2, k2, m2 

      135Ý (6): a1, b1, g2, i2, k2, m2 

       14Ý (7): b1, e2, i2, j2, k2, l2, m2 

                145Ý (4): b1, i2, k2, m2 

       15Ý (6): a1, b1, g2, i2, k2, m2 

2Ý (14): a2, b1, c2, d2, e2, f2, g2, h2, i1, j2, k2, l2, m1, n2 

       23Ý (9): b1, c2, e2, f2, g2, h2, k2, l2, n2 

                234Ý (8): b1, c2, e2, f2, h2, k2, l2, n2 

                           2345Ý (6): b1, c2, f2, h2, k2, n2 

                235Ý (7): b1, c2, f2, g2, h2, k2, n2 

       24Ý (10): a2, b1, c2, e2, f2, h2, j2, k2, l2, n2 

               245Ý (6): b1, c2, f2, h2, k2, n2 

       25Ý (7): b1, c2, f2, g2, h2, k2, n2 

3Ý (14): a1, b1, c2, d1, e2, f2, g2, h2, i2, j1, k2, l2, m2, n2 

       34Ý (11): b1, c2, d1, e2, f2, h2, i2, k2, l2, m2, n2 

                345Ý (9): b1, c2, d1, f2, h2, i2, k2, m2, n2 

       35Ý (12): a1, b1, c2, d1, f2, g2, h2, i2, j1, k2, m2, n2 

4Ý (14): a2, b1, c2, d1, e2, f2, g1, h2, i2, j2, k2, l2, m2, n2 

       45Ý (9): b1, c2, d1, f2, h2, i2, k2, m2, n2 

5Ý (14): a1, b1, c2, d1, e1, f2, g2, h2, i2, j1, k2, l1, m2, n2 

 

 Figure 4.3: Example of colossal itemsets (highlighted in grey) for 

mincard = 7 
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the branch exploration is stopped once the cardinality of the associated itemset falls 

below the threshold value. This is described in the following example. 

 

Example 4.2 (Colossal Itemset) Suppose a user defines the minimum cardinality 

threshold value, mincard = 7. In Figure 4.3, the search space is explored beginning 

from the largest cardinality itemset, | Ŭ | = 14 and it will stop when | Ŭ | < 7. A total 

of 17 colossal itemsets are discovered. 

4.3 Proposed Closedness-checking Method 

Mining for colossal closed itemsets has two restrictions: firstly, the need to check if 

an itemset is a colossal itemset and secondly, the need to check if it is closed. Using 

the minimum cardinality threshold in a bottom-up row enumeration search takes 

advantage of the first constraint. However, discovering only the colossal itemsets 

may lead to the production of several identical colossal itemsets. This can be 

observed in Figure 4.3, where the same colossal itemsets are discovered in rowsets 

{2, 5} with {2, 3, 5} and rowsets {4, 5} with {3, 4, 5}. Producing duplicate colossal 

itemsets leads to redundancy. Although in this example, only a small number of 

colossal itemsets discovered are redundant, in real life datasets such redundant 

itemsets can occur in very large numbers, which leads to a commensurate decrease 

in performance.  

Therefore, when a colossal itemset is found, the next step is to develop a 

method to efficiently identify whether it is a closed itemset. The method of 

identifying whether the itemsets discovered are closed is related closely to the search 

strategy proposed. Several closedness-checking methods have been discussed in 

Chapter 3, for example in the studies made by Grahne and Zhu (2003), Pan et al., 

(2003), Zaki and Hsiao (2005), and Liu et al., (2006).  

To take advantage of the second restriction in making the mining of colossal 

itemsets more efficient, in this study, a method which is based on a unique 
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generator is developed. To define the unique generator, the study begins by 

providing the definition for itemset generator and tidset generator as follows: 

 

Definition 4.3 (Itemset Generator) Given a dataset T, an itemset Ŭ is an itemset 

generator if no proper subset aaË' exists such that the support of Ŭ is the same as 

the support of Ŭô. 

 

Example 4.3 (Itemset Generator) In Figure 4.3, itemset {b1, e2, j2, k2, l2} for rowset 

{1, 2, 4}, with support = 3, is an itemset generator as there are no itemsets that are a 

subset of { b1, e2, j2, k2, l2} with the same support. Itemset {b1, e2, g2, k2, l2} for 

rowset {1, 2, 3} is not an itemset generator as a subset of {b1, e2, g2, k2, l2}È{b1, g2, 

k2} exists at rowset {1, 2, 5} with the equivalent support.  

 

The equivalence class of itemsets with the same support set consists of 

exactly one closed itemset, potentially many itemset generators and potentially 

many itemsets that are neither closed nor generators.  

 

Definition 4.4 (Rowset Generator) Given a dataset T, a rowset ɓ is a rowset 

generator if no proper subset bbË' exists such that the itemset of ɓ is the same as 

the itemset of ɓô. 

 

Example 4.4 (Rowset Generator) In Figure 4.3, rowset {1, 2, 3, 5} is not a rowset 

generator as rowset {1, 2, 5}Ë{1, 2, 3, 5} also contains the itemset {b1, g2, k2}. 

However, {1, 2, 4, 5} is a rowset generator as there are no subsets of the rowset 

value that contains {b1, k2}.  

 

Similarly, the equivalence class of rowsets ɓi with the same itemset Ŭ such 

that I (ɓi) = Ŭ consists of exactly one closed rowset, there are potentially many 
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rowset generators and potentially many rowsets that are neither closed nor 

generators. 

It can be observed that unlike the definition of frequent itemsets, the 

definitions of generators and closed sets do not depend upon any threshold 

parameter. 

 As stated at the beginning of Section 4.3, the largest closed itemsets could 

exist in an entire transaction unless duplicate rows exist. To construct smaller closed 

itemsets from larger ones, the following property is used:  

 

Theorem 1 Suppose Ŭ1 and Ŭ2 are closed itemsets, with Ŭ1 Í Ŭ2. Let 21 aaa Æ= . 

If Ŭ Í Ï then Ŭ is a closed itemset. 

 

Proof: There are three cases to consider: 

1. Case 1: [ 21 aaË ]. Observe that in this case Ŭ = Ŭ1, so Ŭ is a closed itemset. 

2. Case 2: [ 12 aa Ë ]. Observe that in this case Ŭ = Ŭ2, so Ŭ is a closed itemset. 

 

For Case 1 and Case 2, in order for Ŭ1 and Ŭ2 to be closed itemsets with one a 

proper subset of the other, it must be the case (by the definition of closed itemset) 

that they have different support. However, it is known that such a situation exists. 

Consider any closed itemset Ŭ1 with support larger than one and select any 

row r i containing Ŭ1 (i.e. )(1 irtËa ). Now consider Ŭ2 = t (r i). Note that by definition 

all full-rowsets are closed. Clearly, this satisfies the conditions of Case 1. The rest of 

the case is fundamental set theory, so the result holds. 

 

3. Case 3: [Ŭ1 and Ŭ2 are incomparable]. Observe that 1aaË  and 2aaË . 

In this particular case, it is demonstrated that Ŭ is a closed itemset by 

contradiction. Assuming Ŭ is not a closed itemset, there then exists some item i 

such that }{ ii Ç=aa
 
has the same support as Ŭ. If 1aÎi , then all transactions 
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in 
aa TT -

1
 are not in 

i
Ta , but they are in TŬ. Thus i must be in Ŭ1. However, if 

1aÍi  (and not in Ŭ) then 2aÎi and the same contradiction argument applies. 

Thus the assumption that Ŭ is not a closed itemset must be incorrect. 

An example can be seen in Figure 4.3, let Ŭ1 = {b1, c2, e2, f2, h2, k2, l2, n2} 

which occurs at rowset {2, 3, 4} and Ŭ2 = {b1, c2, f2, g2, h2, k2, n2} which occurs 

at rowset {2, 3, 5}. Ŭ = {b1, c2, f2, h2, k2, n2} at rowset {2, 3, 4, 5} is a closed 

itemset in whereby 1aaË  and 2aaË . 

 

Every closed itemset that is not one of the transactions can be produced by 

the intersection of a collection of closed itemsets. Consider a closed itemset Ŭ and its 

corresponding rowset ɓ = TŬ. As Ŭ is a closed itemset, 
iti
aa bÍ=1 , where 

Tt ii Í),( a . However, there may be many subsets of ɓ for which I (ɓ) = Ŭ. If the 

rowset enumeration were to perform as the control strategy for the search process, it 

is likely that the same closed itemsets would be found many times.  

The following observation enables the proposed closedness-checking method 

of this study to discover a closed itemset using only one of the rowsets. According 

to the definition of closure (Definition 2.12), for every closed itemset Ŭ, there is a 

unique rowset ɓ that is a closed rowset.   

 

Definition 4.5 (Unique Generator) Given the closed rowset ɓ = { t1, t2,é,tk}, with 

ji tt <  for all i < j, the smallest index j for which ɓj = { t1, t2,é, tj} is a generator of ɓ 

is a unique rowset generator for the itemset Ŭ. 

 

 It is simple to determine if a rowset ɓô is the unique generator. Let ɓ = T (I 

(ɓô)). If ɓô = ɓ, then the answer is that ɓô is the unique generator. If bbË' , ɓô is 

determined whether it is a prefix of ɓ when the rowsets are written as lists in 

ascending order. If ɓô is not a prefix of ɓ, then ɓô can be ignored and this branch of 

the search space is pruned. 
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Example 4.5 (Unique Generator) From Figure 4.3, ɓô = {2, 3} is a unique generator 

as the closed rowset for {b1, c2, e2, f2, g2, h2, k2, l2, n2} = {2, 3}. However, ɓô = {2, 

5} is not a unique generator. This is because the closed rowset for {b1, c2, f2, g2, h2, 

k2, n2} = {2, 3, 5} and {2, 5} is not a prefix of {2, 3, 5}. 

 

 The search for the unique generator will require relatively little computation 

when the number of rows is small; and this is the typical situation for high-

dimensional datasets. 

4.4 CR-Tree (Compact Row-Tree) 

To assists the efficiency of the search, a compact tree data structure is built to store 

the itemsets from T
t
. The CR-Tree is initially generated by building a set of nodes at 

the first level (l = 0) of the tree which represents each column value of the 

transposed table, T
t
. These sets of nodes are connected to each column of the 

transposed table through a set of pointers that link the node to the transposed table. 

The construction of the CR-Tree continues by adding the child nodes at each level of 

the tree. As the level of the tree increases, the number of child nodes decreases as 

the lowest node value from the previous level of the tree is discarded. A child 

pointer is then built to link between the nodes. In addition to the child pointer, an 

additional node link is made from the parent node to the child node that contains the 

same node value. The purpose of this node link is to assist in checking effectively 

for closed itemsets, as will be further discussed in the following section.  

Figure 4.4 shows the relationship between the CR-Tree and the transposed 

table T
t
. The structure of the CR-Tree is similar to the FR-Tree (Liu et al., 2009). 

The CR-Tree is different in that instead of representing each branch of the tree to a 

rowset value, each node of the CR-Tree represents a group of rowset values. In this 

way, the CR-Tree becomes more compact as one node is shared by many rowset 

values. Each rowset value represents an itemset. Figure 4.5 shows an example of the 

nodes in the CR-Tree, representing the rowset values for Table 4.2. 
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Lemma 4.1 The CR-Tree nodes represent all the rowset, ɓ, values of a complete 

row-enumeration tree. 

 

Proof Let N = {ni, ni+1, é,nk} be the set of nodes where i = 1 and k is the largest 

rid value from the dataset. Let M = {mj, mj+1, é,mk} be the set of child nodes where 

j = i + 1 and k is the largest rid value of the dataset. Each mj = niÇni+l  where l = {1, 

{ }  

3 l = 0 

l = 1 

l= 2 

l= 3 

l= 4 

a1 1  3  5 

a2  2  4  

b1 1 2 3 4 5 

c1 1     

c2  2 3 4 5 

d1   3 4 5 

d2 1 2    

e1     5 

e2 1 2 3 4  

f1 1     

f2  2 3 4 5 

g1    4  

g2 1 2 3  5 

h1 1     

h2  2 3 4 5 

i1  2    

i2 1  3 4 5 

j1   3  5 

j2 1 2  4  

k2 1 2 3 4 5 

l1     5 

l2 1 2 3 4  

m1  2    

m2 1  3 4 5 

n1 1     

n2  2 3 4 5 

 

3 

3 

1 2 

2 

4 

4 

4 

4 

5 

5 

5 

5 

5 

Figure 4.4: Relationship between CR-Tree and T
t
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2, é, k-1}. Therefore all ɓ values are traversed until j = k for the maximum tree 

level of k-1. 

 

However, only one rowset value will be stored in each node of the CR-Tree 

during the search process. This is to ensure that a relatively small amount of 

memory is utilized during the process of mining the colossal closed itemset. Several 

optimization strategies are also proposed in order to guarantee that the CR-Tree will 

not miss any itemsets during the process and at the same time that it will discard 

those that it deems redundant. These strategies will act as a proof of correctness on 

the data structure proposed and will be described in detail in the next section.  

{ }  

1 

{1}  

2 

{2}  

3 

{3}  

4 

{4}  

5 

{5}  

2 

{1, 2}  
3 

{1, 3}  

{2, 3}  

4 

{1, 4}  

{2, 4}  

{3, 4}  

 

5 

{1, 5}  

{2, 5}  

{3, 5}  

{4, 5}  

 
3 

{1, 2, 3} 

4 

{1, 2, 4} 

{1, 3, 4} 

{2, 3, 4} 

 

5 

{1, 2, 5} 

{1, 3, 5} 

{1, 4, 5} 

{2, 3, 5} 

{2, 4, 5} 

{3, 4, 5} 

 

4 

{1, 2, 3, 4} 

 

5 

{1, 2, 3, 5} 

{1, 2, 4, 5} 

{1, 3, 4, 5} 

{2, 3, 4, 5} 

 
5 

{1, 2, 3, 4, 5} 

 

l = 0 

l = 1 

l = 2 

l = 3 

l = 4 

Figure 4.5: Nodes representing the rowsets in the CR-Tree 
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4.5 Algorithm DisClose 

To show the effectiveness of the search strategy, the closedness-checking method 

and the data structure proposed, a colossal closed itemset mining algorithm called 

DisClose has been designed to mine all colossal closed itemsets from the transposed 

table T
t 

of table T. DisClose, shown in Algorithm 4.1, will search the row 

enumeration space and, for each rowset, ɓ, check whether it is the unique generator 

in the equivalence class of rowsets for I (ɓ). It is to be noted that using a depth-first 

order in a serial implementation would result in the most aggressive pruning of the 

search space and requires the least the amount of memory (Han et al., 2000; Pan et 

al., 2003; Zaki and Hsiao, 2005; Liu et al., 2006). For this reason, the general 

processing order for the rowsets is equivalent to the depth-first search of the row 

enumeration tree. 

4.5.1 Major steps of DisClose 

Algorithm 4.1 shows the main steps of the algorithm DisClose. The example input 

dataset in Table 4.1 is used to demonstrate DisClose in the following discussions.  

The algorithm begins with the transposition operation that transforms table T 

to the transposed table T
t 

as shown in Table 4.2. Then, the CR-Tree (Compact 

Rowset Tree) is built, as demonstrated in Figure 4.4.  

After initialization of the set of colossal closed itemsets CCI to be empty, the 

subroutine Colossal is called to deal with the transposed table T
t
 using the CR-Tree 

and find all colossal itemsets. Following the bottom-up row enumeration as the 

search order in step 5, the subroutine Colossal takes the transposed table, T
t
 and the 

minimum cardinality threshold, mincard, as the parameter and performs the search 

for colossal closed itemsets.  

 There are seven sections in the subroutine Colossal, which will be explained 

one by one. Assume this example uses the mincard threshold value of 7.  

The first section is steps 6 - step 7. Each node at the first level of the CR-

Tree attempts to store the itemset from the transposed table T
t
 into the node by 
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ensuring that the itemset in each column value of the transposed table T
t 
satisfies the 

mincard threshold.  An itemset that satisfy the mincard threshold is then stored in 

each node; otherwise, it is not stored in the node as it will not contribute to obtaining 

Algorithm 4.1: DisClose algorithm 

 

Input : Table T, and minimum cardinality threshold, mincard 

Output : A complete set of colossal closed itemsets, CCI 

Method: 

1. Transform T into transposed table T
t
 

2. Build CR-Tree 

3. Initialize CCI = Ø 

4. Call Subroutine Colossal (T
t
, mincard) 

 

Subroutine Colossal (T
t
, mincard) 

Method: 

5. for  each node in the row enumeration space do 

6. If | node [1][j] |.T
t
 | Ó mincard 

7.     Store itemset at node [1][j] 

8.  Let ɓ be the set of rows under consideration 

9.      node [l][ j] Ÿ node [l+1][p]            // pointing to child node 

10.         )(21 baaa I=Æ= , 21 bbb Ç=  

11.    Optimization S1: If | Ŭ | <mincard, discard Ŭ 

12.    Optimization S2: If | ɓ | > current node level, discard ɓ 

13.    Optimization S3: If 'aaÌ , discard Ŭ 

14.    Store Ŭ in node [l+1][p] 

15.    Call Subroutine Closed (mincard) 

 

Subroutine Closed (mincard) 

Method: 

16.    If node [l][ j] == node [l+1][p]         // checking for unique generator 

17.     Call Subroutine Colossal (mincard) 

18.    Store itemset in CCI 

19.     Call Subroutine Colossal (mincard) 
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larger itemsets. The advantage of this is that the algorithm does not require further 

access to the dataset, and hence, reduces the time required for repeated checking of 

the dataset. Note that this is the only role the transposed table T
t
 plays in the search 

process.  

Figure 4.6 shows the CR-Tree which contains the itemsets stored for the 

nodes at level, l = 0, after applying steps 6 - step 7 from Figure 4.3. 

The second section is steps 8 - step 10. For each node in the CR-Tree, an 

itemset intersection is performed. By using a depth-first search, DisClose produces 

the sequence of ɓ Ý  I (ɓ) shown in Figure 4.3. However, three optimization 

strategies are applied before the result of the intersection is stored in each child 

nodes. 

At step 11, an optimization strategy S1 is applied to stop further processing 

of the itemset if the size of the itemset does not satisfy the mincard constraint 

defined.  

Optimization strategy S1: If the size of the itemset is less than the 

minimum cardinality threshold, | Ŭ | < mincard, then there is no need to perform any 

further operation on the itemset. If the itemset size is less than the specified 

threshold, then a further intersection should lead to a much smaller or equivalent 

{ }  

3 l = 0 

l = 1 3 

1 2 

2 

4 

4 

5 

5 

{a1b1c1d2e2f1g2h1i2j2k2l2m2n1} 

{1} 

 

{a2b1c2d2e2f2g2h2i1j2k2l2m1n2}  

{2} 

 

{a1b1c2d1e2f2g2h2i2j1k2l2m2n2} 

{3} 

 

{a2b1c2d1e2f2g1h2i2j2k2l2m2n2}  

{4} 

 

{a1b1c2d1e1f2g2h2i2j1k2l1m2n2}

{5} 

 

Figure 4.6: Itemset stored at level l = 0, of the CR-Tree 
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itemset size.  

 

Example 4.5 (Optimization Strategy S1) Figure 4.7 shows an example of a node in 

the CR-Tree that contains an itemset with cardinality is less than the specified 

threshold. Node 3 at level l = 2 contains itemset {b1, e2, g2, k2, l2} where | {b1, e2, g2, 

k2, l2}  | = 5. As the cardinality of the itemset is less than the mincard threshold, 

further intersection between Node 3 and Node 4 at level l = 2, {b1, e2, g2, k2, 

l2}Æ{b1, e2, j2, k2, l2} = {b 1, e2, k2, l2}, leads to a smaller cardinality itemset, | {b1, 

e2, k2, l2} | = 4, which is stored in Node 4 at level l = 3. Therefore, optimization 

strategy S1 is required to prevent storage of itemsets that do not satisfy the desired 

threshold, which in turn should lead to a reduction in memory space and processing 

time.  

 

Lemma 4.2 Each node of the CR-Tree only stores one value at a time for rowset, 

ɓ, with | ɓ | = node level. 

 

Proof In Figure 4.8, suppose at level l = 2, the rowsets stored at node n4 = {1, 2, 4} 

and node n5 = {1, 3, 5}. To obtain rowset, ɓ, for child node m5 at level l = 3, the 

union of the parent ɓ values will produce, n4Çn5 = {1, 2, 4} Ç{1, 3, 5} = {1, 2, 3, 

4, 5}. However, the rowset {1, 2, 3, 4, 5} is not represented by node m5. This is 

3 4 

4 

5 

5 

{b1e2j2k2l2} 

{124}  

 

{b1e2 g2k2l2} 

{123}  

 

l= 2 

l= 3 

{b1e2k2l2} 

{1234}  

 
Figure 4.7: Example of Optimization strategy S1 



CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS 

 

 89 

because based on the depth-first strategy, the itemset for ɓ = {1, 2, 3, 4, 5} have 

been discovered at l = 4. 

 

Based on Lemma 4.2, step 12 performs the Optimization strategy S2 to 

prevent storage of itemsets with rowset values larger than the node level of the CR-

Tree. 

Optimization strategy S2: If the size of the rowset | ɓ | is greater than the 

level where the node is present, then there is no need to store the itemset Ŭ obtained. 

This is explained in the following example. 

 

Example 4.6 (Optimization Strategy S2) As DisClose performs a depth-first search 

of the CR-Tree, rowsets of larger cardinality have been obtained earlier and further 

steps will only lead to a repetition of the itemset with the same rowset value. Figure 

4.9 shows an example in which Optimization strategy S2 is applied. Suppose at level 

l = 2, node 4 contains the itemset {b1, e2, j2, k2, l2}  with the rowset value of {1, 2, 4} 

and node 5 contains the itemset {a1, b1, g2, i2, k2, m2}  with the rowset value of {1, 3, 

5}. The intersection between these nodes will produce the itemset {b1k2}  with a 

rowset value of {1, 2, 3, 4, 5}. However, | {1, 2, 3, 4, 5} | = 5 is greater than the 

node level value, l = 3. Therefore the itemset will not be stored at node 5 where l = 

3 4 5 

4 5 

5 

l= 2 

l= 3 

l= 4 

{1, 2, 3} {1, 2, 4} {1, 3, 5} 

{1, 2, 3, 4} 

{1, 2, 3, 4, 5} 

{1, 2, 4} Ç{1, 3, 5} 

= {1, 2, 3, 4, 5} 

Figure 4.8: Example on Lemma 4.2 
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3. As observed, the itemset with the same rowset value has already been stored at 

node 5 where l = 4.  

 

Lemma 4.3 If discovered itemset, Ŭ1ÌŬ2 where Ŭ2 is the existing itemset in the 

node, the itemset Ŭ1 will not replace Ŭ2 although ɓ1 Í ɓ2.  

 

Proof In Figure 4.10, suppose Ŭ2 = {ɓ1} = {1, 2, 4} and Ŭ1 = {ɓ2} = {1, 3, 4} at 

level l = 2, where | ɓ1 | = | ɓ2 |. If Ŭ1ÌŬ2, this means that Ŭ1 also exists in {ɓ2}. 

Therefore, Ŭ1 = ɓ1Çɓ2 = ɓ, where | ɓ | > | ɓ1 |, | ɓ2 |. Thus Ŭ1 will exists in ɓ = {1, 2, 

3, 4} stored in node m4 at level, l = 3 of the CR-Tree.  

3 4 

4 

5 

5 

5 

{b1e2j2k2l2} 

{124}  

 

{a1b1g2i2k2m2} 

{135}  

 

l= 2 

l= 3 

l= 4 

{b1k2} 

{12345}  

 

{b1k2} 

{12345}  

 

Figure 4.9: Example of Optimization strategy S2 

3 4 

4 
{1, 2, 3, 4} 

Ŭ2 = {1, 2, 4} 

Ŭ1 = {1, 3, 4} 
l= 2 

l= 3 

Figure 4.10: Example on Lemma 4.3 
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At step 13, Optimization strategy S3 is applied based on Lemma 4.3 in order 

to ensure that the itemset obtained is not a subset of an already existing itemset in 

the child node. 

Optimization strategy S3: If the current itemset Ŭ obtained is a subset of an 

already existing itemset Ŭô, 'aaÌ , for the particular child node in the CR-Tree, 

then itemset Ŭ can be discarded.  

 

Example 4.7 (Optimization Strategy S3) Figure 4.11 shows an example in which 

Optimization strategy S3 is applied. Suppose Node 5 at level l = 1 already contains 

an itemset from the earlier iteration. The result of the intersection between Node 4 

and Node 5 at level l = 0 produces an itemset which is a subset of the already stored 

itemset in the child node, {b1, c2, d1, f2, h2, i2, k2, m2, n2}Ì{a1, b1, c2, d1, f2, g2, h2, 

i2, j1, k2, m2, n2} . Although itemset {a1, b1, c2, d1, f2, g2, h2, i2, j1, k2, m2, n2} occurs 

in rowset {3, 5} and {b1, c2, d1, f2, h2, i2, k2, m2, n2}  in rowset {4, 5}, {b1, c2, d1, f2, 

h2, i2, k2, m2, n2}Ì{a1, b1, c2, d1, f2, g2, h2, i2, j1, k2, m2, n2} shows that {b1, c2, d1, f2, 

h2, i2, k2, m2, n2} also occurs in {3, 5}. The result of the intersection between the two 

4 

4 

5 

5 

5 

l= 0 

l= 1 

l= 2 

{b1c2d1f2h2i2k2m2n2} 

{345}  

 

{a1b1c2d1f2g2h2i2j1k2m2n2} 

{35}  

 

{b1c2d1f2h2i2k2m2n2} 

{45}  

 

{a2b1c2d1e2f2g1h2i2j2k2l2m2n2}  

{4} 

 

{a1b1c2d1e1f2g2h2i2j1k2l1m2n2}

{5} 

 

Figure 4.11: Example of Pruning strategy S3 
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rowsets has already been produced at the higher level node during the earlier 

iteration, due to the depth-first search strategy. This is shown in Figure 4.11 where 

Node 5 at level l = 2 contains the itemset {b1, c2, d1, f2, h2, i2, k2, m2, n2} with rowset 

value {3, 4, 5}. Therefore, Optimization strategy S3 is applied on itemset {b1, c2, d1, 

f2, h2, i2, k2, m2, n2} with rowset value {4, 5}. 

 

 Step 14 then stores an itemset that does not satisfy any of the three 

optimization strategies at the particular child node. The new itemset will replace the 

itemset that already exists in the node. 

 At step 15, the subroutine Closed is called when all the colossal itemsets of 

the child nodes have been discovered, in order to check whether the parent node is a 

closed itemset. 

The subroutine Closed performs the closedness-checking method on the 

itemset. There are four main steps to this subroutine. 

Step 16 sequentially compares the itemset Ŭ that exists in the parent node 

with the itemsets of its child nodes in order to identify the unique generator, based 

on a depth-first search of the rowset value in the row enumeration tree. Here, the 

node-link, which connects the parent and child node that contain the same node 

value, is used to perform the closedness-checking method. This is to ensure that it 

does not overlook existing child nodes with rowset ɓ that contains a rid value that 

does not exist in rowset ɓô of the parent node. 

 

Example 4.8 (Closedness-checking in CR-Tree) Figure 4.12 shows an example of 

checking whether the itemset Ŭ stored at node 3 of level l = 1 is a closed itemset. As 

Ŭ occurs in rowset {2, 3}, it needs to be compared with all the itemsets in the child 

nodes to which it points, in order to check whether it also occurs in another rid 

value. This check whether Ŭ occurs at rid 1, rid 4 or rid 5. Each child node at level l 

= 2 contains the itemset with the rowset values containing one of the rids. In this 
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example, { b1, c2, e2, f2, g2, h2, k2, l2, n2} at rowset {2, 3} is a closed itemset as the 

equivalent itemset does not exists at any of the child nodes. 

 

By applying the proposed closedness-checking method proposed, an itemset 

Ŭ is not closed if it also occurs in another rid value that is not already in ɓô. As soon 

as a rowset holding a copy of Ŭ is found, further comparison with other child nodes 

is unnecessary.  

As stated previously, the use of the unique generator requires only a small 

amount of computation based on the number of rows; hence this algorithm can run 

with very little memory. Another advantage is that the method allows the algorithm 

DisClose to simply write each encountered closed itemset, and not keep a copy in 

memory for later comparison. 

At step 17 the subroutine Colossal is activated if the itemset is found to not 

be closed. A further search for colossal itemsets is then continued at the next node 

level. 

Step 18 outputs the itemset that is found to be closed into the set of colossal 

closed itemsets, CCI. 

At step 19 the subroutine Colossal is called to further continue the search 

until all potential node values of the CR-Tree have been traversed.  

3 

3 4 

{b1c2e2f2g2h2k2l2n2} 

{23}  

 

l= 1 

l= 2 

{b1c2e2f2h2k2l2n2} 

{234}  

 

5 

{b1d2e2g2j2k2l2} 

{123}  

 

{b1c2f2g2h2k2n2} 

{235}  

 
Figure 4.12: Closedness-checking in CR-Tree 
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There are a total of 15 colossal closed itemsets found for the dataset in Table 

4.1 with mincard = 7, as shown in Figure 4.13. 

1Ý (14): a1, b1, c1, d2, e2, f1, g2, h1, i2, j2, k2, l2, m2, n1 

       12Ý (7): b1, d2, e2, g2, j2, k2, l2 

                123Ý (5): b1, e2, g2, k2, l2 

                           1234Ý (4): b1, e2, k2, l2 

12345Ý (2): b1, k2 

                           1235Ý (3): b1, g2, k2 

                124Ý (5): b1, e2, j2, k2, l2 

                           1245Ý (2): b1, k2 

                125Ý (3): b1, g2, k2 

       13Ý (8): a1, b1, e2, g2, i2, k2, l2, m2 

134Ý (6): b1, e2, i2, k2, l2, m2 

                           1345Ý (4): b1, i2, k2, m2 

      135Ý (6): a1, b1, g2, i2, k2, m2 

       14Ý (7): b1, e2, i2, j2, k2, l2, m2 

                145Ý (4): b1, i2, k2, m2 

       15Ý (6): a1, b1, g2, i2, k2, m2 

2Ý (14): a2, b1, c2, d2, e2, f2, g2, h2, i1, j2, k2, l2, m1, n2 

       23Ý (9): b1, c2, e2, f2, g2, h2, k2, l2, n2 

                234Ý (8): b1, c2, e2, f2, h2, k2, l2, n2 

                           2345Ý (6): b1, c2, f2, h2, k2, n2 

                235Ý (7): b1, c2, f2, g2, h2, k2, n2 

       24Ý (10): a2, b1, c2, e2, f2, h2, j2, k2, l2, n2 

               245Ý (6): b1, c2, f2, h2, k2, n2 

       25Ý (7): b1, c2, f2, g2, h2, k2, n2 

3Ý (14): a1, b1, c2, d1, e2, f2, g2, h2, i2, j1, k2, l2, m2, n2 

       34Ý (11): b1, c2, d1, e2, f2, h2, i2, k2, l2, m2, n2 

                345Ý (9): b1, c2, d1, f2, h2, i2, k2, m2, n2 

       35Ý (12): a1, b1, c2, d1, f2, g2, h2, i2, j1, k2, m2, n2 

4Ý (14): a2, b1, c2, d1, e2, f2, g1, h2, i2, j2, k2, l2, m2, n2 

       45Ý (9): b1, c2, d1, f2, h2, i2, k2, m2, n2 

5Ý (14): a1, b1, c2, d1, e1, f2, g2, h2, i2, j1, k2, l1, m2, n2 

 

Figure 4.13: Colossal Closed Itemsets  

 

Figure 4.13: Colossal closed itemsets with mincard = 7 



CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS 

 

 95 

4.5.2 Space and time analysis of DisClose 

For a table T with n rows and m dimensions where each dimension has a maximum 

of k distinct items (attribute values), without considering the rowset values, the 

space complexity of the transposed table, T
t
 is O(mn). Using the cardinality 

threshold, mincard, means that further memory space is not required for all itemsets 

with a size of less than the specified constraint. This means that for a transposed 

table, T
t
 with km rows, additional memory does not need to be used for nodes that 

contain itemsets of less than (km-mincard) because the search will stop at an itemset 

with size (km-mincard). The space complexity of the CR-tree depends on the 

column value of the transposed table. For a transposed table, T
t 
with m dimensions, 

the CR-tree requires ù
ú

ø
é
ê

è +

2

)1(nn
O  as the number of nodes for each level decreases by 

1 as the level of the tree increases. 

 For time complexity, the transformation from table T to T
t
 requires O(kmn) 

time to collect the rids for each distinct item. The process of building the CR-Tree 

involves, time complexity of at most O[n(n-1)] because there are at most n rids in T
t
 

and each rid in the CR-Tree has at most (n-1) children to be searched. At each node, 

DisClose needs to process each itemset with O(1) time, thus a total of O(km) at 

most. 

4.6 Summary 

This chapter presents the proposed colossal closed itemset mining algorithm, 

DisClose, which implements the data structure that has been proposed in order to 

efficiently discover colossal closed itemsets based on the proposed search strategy 

and closedness-checking method. The used of the method is explained through 

illustrative examples. 

The following chapter analyses the performance of DisClose on several 

synthetic and real high-dimensional datasets. The effectiveness of the algorithm will 
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be compared to several state-of-the art algorithms by adapting similar requirements 

to enable a fair comparison. 
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Chapter: 5  

Experimental Evaluation 

 

 

This chapter presents the results of the performance study of DisClose and confirms 

that the program design has been realized.  

This chapter begins with Section 5.1, which introduces the environment in 

which algorithm DisClose was implemented. This includes the programming 

language applied and the specification of the machine on which the algorithm was 

tested. This section also provides a list of state-of-the art algorithms selected for 

comparison purposes and the datasets that were selected for evaluation use. 

Section 5.2 provides an evaluation of the performance of DisClose on 

synthetic datasets from different points of view such as the effect of the change of 

mincard, the number of dimensions, the number of rows and the cardinality of each 

dimension.  

Section 5.3 provides an evaluation of the performance of DisClose on real 

datasets. Descriptions of the selected real datasets are also provided. This section 

also provides the discretization method that has been applied to the real application 

datasets.  

Finally Section 5.4 summarizes the chapter. 
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5.1 Experimental Setting 

Algorithm DisClose was implemented using C++. The set of experiments was 

performed on a PC with a 2.66 GHz Intel Core 2 Quad CPU Q9400 with 4.00 GB 

RAM and 150 GB hard disk.  

The performance of DisClose was studied by comparing it with other state-of-

the art algorithms. Each algorithm was selected to represent the different search 

strategies discussed in the previous chapter. These algorithms are: 

(i) FP-Close (Grahne and Zhu, 2003). This is a representative of the 

column enumeration-based algorithms, which won the FIMIô03 best 

implementation award. The implementation of FP-Close was obtained 

from the developer Christian Borgeltôs website through his 

implementation of FP-Growth, which has the option to discover closed 

frequent itemsets (Borgelt, 2005). 

(ii)  CARPENTER (Pan et al., 2003): This is a representative of bottom-up 

row enumeration-based algorithms. Carpenter searches the tree from 

the smallest rowset and builds larger rowset values. The source of 

implementation was also downloaded from Christian Borgeltôs website 

(Borgelt, 2011).   

(iii)  D-Miner (Besson et al., 2005): This is a representative of constraint-

based mining algorithms, which use the minimum cardinality threshold 

as one of the constraints for their search strategy. For the algorithm D-

Miner, the source of the implementation was downloaded from the 

authorôs website (Besson et al., 2005).  

(iv) TTD-Close (Liu et al., 2009): This algorithm is a representative of the 

top-down row enumeration search based set of algorithms. The search 

begins from the largest rowset value and moves its way down the 

search tree. For algorithm TTD-Close, the source of the 

implementation was obtained from its authors. 
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All of the selected algorithms have been implemented in C++. Note: all of 

runtimes plotted in the figures in this chapter include both computation time and I/O 

time.  

5.1.1 Challenges in Comparisons 

Amongst the selected algorithms listed above, only D-Miner has been found to 

apply the minimum cardinality threshold, mincard. As stated previously, D-Miner is 

a constraint-based algorithm which uses the minimum support, minsup, and the 

minimum cardinality, mincard, thresholds to discover concepts (closed itemsets). As 

the objective of this study is to discover colossal closed itemsets, direct comparison 

can be made with DisClose if the minimum support, minsup threshold is set to 0. 

This means that D-Miner will only search the large cardinality (colossal) closed 

itemsets.  

Other existing itemset mining algorithms ï particularly those that find closed 

itemsets, which includes FP-Close, CARPENTER, and TTD-Close ï are routinely 

presented with running times given for varying thresholds of support. As DisClose 

begins by searching and storing the colossal closed itemsets using the cardinality 

threshold, a direct comparison to these previous techniques is difficult . If one of the 

previous algorithms were given a support threshold greater than 1, it would certainly 

not find many of the largest-cardinality closed itemsets. Similarly, if DisClose were 

given a cardinality threshold bigger than 1, it would certainly not find many of the 

most frequent closed itemsets. The only way to compare the algorithms is to present 

both with a threshold of 1, essentially asking each algorithm to find all closed 

itemsets. A strength of DisClose is that it bypasses the huge number of small-

cardinality, high-frequent closed itemsets and focuses almost immediately on 

potentially valuable closed itemsets (especially for high-dimensional data). This type 

of complete closed itemsets search does not address the true intent of either 

DisClose or the existing closed itemset mining algorithms. 
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One approach is to present the experimental results of DisClose with a 

secondary x-axis which represents the maximum support of the colossal closed 

itemsets discovered. Likewise, a secondary x-axis is also added to the results of   

FP-Close, CARPENTER, and TTD-Close which represents the maximum cardinality 

of the closed frequent itemsets discovered. Thus, by using this approach, it provides 

an observation on the ability and limitation of closed itemset mining algorithms that 

uses a support threshold in relation to DisClose, and vice-versa. 

Another challenge in comparing performance of the algorithms is based on 

their implementation in identifying items in the datasets. For FP-Close, 

CARPENTER and D-Miner, the algorithms were designed to identify each item 

based on the value present for each attribute of the dataset. However, for TTD-Close, 

each item in the dataset is read as a value that corresponds to the attribute of the 

data. Hence, DisClose was implemented in two versions that satisfy both conditions, 

in order for fair comparisons to be made. 

5.2 Synthetic Datasets 

The synthetic datasets were specifically constructed based on the implementation of 

the selected algorithms in order to obtain fair comparison between the methods. 

Synthetic datasets were used to test the performance of DisClose with the selected 

algorithms in terms of different aspects such as the effect of the change of mincard, 

the number of dimensions, the number of tuples and the cardinality of each 

dimension. 

 Synthetic datasets have been generated randomly using the IBM Quest 

Synthetic Data Generator based on three main parameters: the number of 

dimensions, the number of rows and the average length of the itemset in the dataset. 

To represent the synthetic dataset, the label T#L#N# is used, where T# is the number 

of rows, L# is average length of the itemset, and N# is the number of dimensions.  
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 In reality, if a synthetic dataset was randomly generated several times with 

the equivalent parameters, this dataset will produce a different set of values every 

time. Hence, this will cause the answer set to be different each time the synthetic 

dataset is analyzed. However, in this thesis, only one dataset is generated for each 

parameter settings. This is because the objective of this thesis is to observe the 

efficiency of the algorithm proposed as compared to other selected algorithms in 

order to discover the colossal closed itemsets as opposed to differences in the 

number of colossal closed itemsets that could be discovered in each dataset. 

5.2.1 Dimensionality (columns) 

To test the performance of the four algorithms with respect to the number of 

dimensions, three datasets were generated with 4 K, 6 K and 10 K dimensions, 

respectively. Each dataset contains the same row value of 100 and an average 

itemset length of 2000. 

5.2.1.1 DISCLOSE VS. D-MINER  

Figure 5.1(a)-(c) shows the effect of changing the dimensionality on the runtime of 

DisClose with D-Miner based on the minimum cardinality threshold, mincard. In 

this set of experiments, DisClose presents better performance than D-Miner for all 

datasets.   

It can be seen from Figure 5.1(a) that at a higher cardinality threshold, the 

differences in the time taken between the two algorithms is very small. However, as 

the mincard value decreases, DisClose largely outperforms D-Miner. Taking the 

maximum processing time of around 300 seconds, DisClose is able to discover 

colossal closed itemsets with mincard = 700. For D-Miner, after mincard = 2100, 

the algorithm took more than 12 hours to discover the colossal closed itemsets. The 

percentage of density of values present in T100L2000N4000 dataset is 50%. With 

the same number of rows and average size value of the itemset, as the number of 

dimensionality increases, the dataset becomes less dense.  
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(a) T100L2000N4000 

(b) T100L2000N6000 

 

(c) T100L2000N10000 

 Figure 5.1: The effect of changing dimensionality with mincard 
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The percentage of density of values present in T100L2000N6000 is 33.36%. 

Similar behaviour can be seen in Figure 5.1(b). Here, DisClose is able to discover 

colossal closed itemsets with mincard = 300. However, D-Miner still requires more 

than 12 hours mining itemsets with cardinality less than 2100 hence values for 

cardinality less than 2100 are not included in the figure.  

For dataset T100L2000N10000, the percentage density of values present is 

20.03%. Therefore, it can be observed in Figure 5.1(c) that DisClose is able to reach 

a much smaller cardinality itemset where mincard = 70. Similar to previous datasets, 

the execution of D-Miner requires more than 12 hours mining itemsets with 

cardinality less than 2100.  

It is observed in Figure 5.1 that, with the changes in dimensionality (and also 

changes in density), DisClose performs better than D-Miner in discovering the 

colossal closed itemsets. DisClose also scales well as the execution time increases 

with the changes in the cardinality threshold for the changes in the dimensionality of 

the datasets. 

5.2.1.2 DISCLOSE VS. FP-CLOSE, CARPENTER AND D-M INER  

Figures 5.2, 5.3 and 5.4 respectively compare DisClose with FP-Close, 

CARPENTER and D-Miner by varying the number of attributes. As shown in Figure 

5.2(a), beginning with the largest closed itemsets, DisClose is able to discover the 

colossal closed itemsets with a maximum support of 10. The performance of 

DisClose sharply increases between mincard = 700 and mincard = 600. This is due 

to the large number of closed itemsets that exists between these thresholds. There 

are a total of 27,994,019 colossal closed itemsets found when mincard = 600.  

Figure 5.2(b) shows that as minsup decreases, the runtime of the three 

algorithms increases. However, the algorithms are only able to operate up to minsup 

= 95 before running out of memory. CARPENTER has the best execution time 

among these algorithms. It is more than twice as fast as FP-Close and more than 13 

times faster than D-Miner.  
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This is due to the fact that the dataset is very dense and there exists a huge 

number of closed frequent itemsets with large cardinality. There are 4,908,256 

closed itemsets discovered when minsup = 95 with the largest cardinality of closed 

(a)  

(b)  

Figure 5.2: Comparison on T100L2000N4000 with FP-Close, CARPENTER and D-

Miner 
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itemsets equal to 120. D-Miner took the most time to discover the closed itemsets at 

this threshold.  

As expected, Figure 5.3(a) shows a similar result i.e. as the mincard 

threshold decreases the execution time required for DisClose to discover the colossal 

(a) 

(b)  

Figure 5.3: Comparison on T100L2000N6000 with FP-Close, CARPENTER and D-

Miner 
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closed itemsets increases. The T100L2000N6000 dataset is less dense, compared to 

dataset T100L2000N4000. As a result, DisClose is able to reach a smaller 

cardinality threshold of 200 with a maximum support threshold of 10. There are a 

total of 56,541,298 closed itemsets discovered at mincard = 200.  

Figure 5.3(b) shows that only FP-Close and D-Miner can reach minsup = 81. 

FP-Close outperforms both D-Miner and CARPENTER. There are 309,914,567 

closed itemsets discovered when minsup = 81 with the largest cardinality of the 

closed itemsets being equal to 20. CARPENTER can only reach minsup = 87. As 

expected, the time required to discover the closed itemsets increases as the minimum 

support decreases. 

 The T100L2000N10000 dataset is less dense as compared to the previous 

two datasets. This is shown in Figure 5.4(a), where DisClose is able to reach closed 

itemsets at a much lower mincard threshold. DisClose discovers a total of 

215,610,238 closed itemsets with a lowest value of mincard = 10. The closed 

itemsets with mincard = 10 are found to have the maximum support threshold value 

of 24. The time required to discover the closed itemsets increases as the mincard 

threshold decreases. 

For Figure 5.4(b), only FP-Close and D-Miner can reach lower support 

thresholds with values of 42 and 46 respectively before running out of memory. FP-

Close performs better than D-Miner as D-Minerôs performance degrades for minsup 

values greater than 46. The decrease of the performance of D-Miner can be 

explained by the enormous influence of the high number of closed itemsets in this 

data. The runtime for CARPENTER could not be displayed as the algorithm can only 

reach minsup = 70. There are 1,483,324,975 closed itemsets discovered when 

minsup = 42 with the largest cardinality of closed itemsets equal to 13.  

5.2.1.3 DISCLOSE VS. TTD-CLOSE  

Figure 5.5 shows the results between DisClose and TTD-Close on the dataset 

T100L2000N4000. As the nature of TTD-Close is to read each item in the dataset as 
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a value, the largest itemset that exists in the dataset is equivalent to its column value. 

Therefore, in this particular case, more colossal closed itemsets are discovered.   

Figure 5.5(a) shows that as the mincard value increases, the time required to 

discover the colossal closed itemsets also increases. DisClose is able to reach closed 

(a) 

(b)  

Figure 5.4: Comparison on T100L2000N10000 with FP-Close, CARPENTER and 

D-Miner 
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itemsets with mincard = 1700. There are a total of 78,717,638 closed itemsets that 

exists when mincard = 1700 having the maximum support of 6.  

Figure 5.5(b) shows that TTD-Close could only reach minsup = 97 with a 

total of closed itemsets of 58,505. TTD-Close runs out of memory probably due to 

the existence of larger cardinality itemsets at smaller minsup thresholds. This shows 

(a) 

(b)  

Figure 5.5: Comparison on T100L2000N4000 with TTD-Close 
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that for dense dataset, even at a high minsup threshold, the size of itemsets can 

become very large. 

Figure 5.6(a) shows that as the number of dimensions increases, by 

increasing the mincard value, the time required to discover the colossal closed 

itemsets also increases. The number of closed itemsets is 50 times more when 

mincard = 2400 than when mincard = 2500, hence the precipitous increase in run 

(a) 

(b)  

Figure 5.6: Comparison on T100L2000N6000 with TTD-Close 
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time. DisClose can reach closed itemsets with mincard = 2400. There are a total of 

79,393,410 closed itemsets that exists when mincard = 2400 having a maximum 

support of 6.   

Figure 5.6(b) shows that TTD-Close could still only reach minsup = 97 with 

a total number of closed itemsets of 21,451. This is due to the existence of colossal 

closed itemsets at a high support threshold. 

Figure 5.7(a) shows similar behaviour as the number of dimension increases. 

DisClose is able to reach closed itemsets with mincard = 5200. There are a total of 

77,556,906 closed itemsets that exists when mincard = 5200 having a maximum 

support of 5.  

Figure 5.7(b) shows that TTD-Close may still only reach minsup = 97 with a 

total of closed itemsets of 117,251. TTD-Close runs out of memory due the 

existence of large cardinality itemsets at smaller minsup thresholds. This shows that 

on very dense dataset, even at high minsup threshold, the size of itemsets can 

become large. 

5.2.2 Number of rows 

To test the runtime of these algorithms with respect to the number of rows, two 

more datasets have been generated; one containing 150 rows and the other 200 rows, 

while the dimension is 4 K and the cardinality is 10. Figure 5.8(a)-(c) shows the 

effect on execution time by increasing the number of rows using the mincard 

threshold.  

To obtain a convenient comparison, the result for T100L2000N4000 is 

provided again here. Figure 5.8(b) shows that as the mincard value decreases, the 

time required to discover the colossal closed itemsets increases. At the same 

mincard value of 600, DisClose requires more time to discover colossal closed 

itemsets. There are a total of 227,674,614 closed itemsets that exists at mincard = 

600. This shows that as the number of rows increases, the total number of colossal 
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closed itemsets also increases, thereby requiring more time to mine the dataset. 

DisClose still outperforms D-Miner when the mincard threshold approaches 2000.  

Similar behaviour is also shown in Figure 5.8(c) where, with the increase in 

the number of rows, more time is required for DisClose to reach the smaller mincard 

threshold. In this case, the algorithm is able to reach mincard = 700. The difference 

in the execution time between DisClose and D-Miner is very small at high 

cardinality threshold.  

  (a) 

  (b)  

Figure 5.7: Comparison on T100L2000N10000 with TTD-Close 
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However, when the mincard threshold is lowered, DisClose clearly 

outperforms D-Miner.  

(a) T100L2000N4000 

(b) T150L2000N4000 

 

(c) T200L2000N10000 

 Figure 5.8: The effect of changing the number of rows on the runtime 
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This set of experiments also shows this trend: as the number of rows 

increases, the computation time for both algorithms increases. DisClose also scales 

well, as the execution time increases with the changes in the mincard threshold 

when increasing the number of rows in the dataset. 

5.2.2.1 DISCLOSE VS. FP-CLOSE, CARPENTER AND D-M INER  

Figure 5.9 compares DisClose with FP-Close, CARPENTER and D-Miner on 

synthetic dataset T150L2000N4000. The percentage of density of values that exist 

for this dataset is 50%.  Figure 5.9(a) shows that beginning with the largest closed 

itemsets, DisClose is able to discover colossal closed itemsets with the maximum 

support of 10. There are 227,674,613 colossal closed itemsets found when mincard 

= 600.  

Figure 5.9(b) shows that as minsup decreases, the runtime of the three 

algorithms increases.  Apparently, the algorithms can only reach minsup = 96, and 

CARPENTER runs the fastest. It is observed that even at lower support threshold the 

existence in the number of large cardinality closed frequent itemsets is huge. D-

Miner took the most time to discover the closed itemsets at this support threshold. 

There are 4,707,487 closed itemsets discovered at minsup = 97 with the largest 

cardinality of closed itemsets being equal to 85.  

Figure 5.10 compares DisClose with FP-Close, CARPENTER and D-Miner as 

the number of rows increases. With the same percentage density of true values of 

50%, DisClose is able to discover 36,297,315 colossal closed itemsets when 

mincard = 600, having a maximum support of 8. This is shown in Figure 5.10(a).  

As for the other three algorithms, Figure 5.10(b) shows that the algorithms can 

only reach minsup = 97, having a maximum cardinality of 68. 
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                       (a) 

(b)  

Figure 5.9: Comparison on T150L2000N4000 with FP-Close, CARPENTER and 

D-Miner 
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5.2.2.2 DISCLOSE VS. TTD-CLOSE  

The testing of algorithm TTD-Close on both T150L200N4000 and 

T200L2000N4000 datasets has taken more than one day in order to obtain the initial 

result. Hence, the outcome of the experiments is not displayed. However, the results 

(a) 

(b)  

Figure 5.10: Comparison on T200L2000N4000 with FP-Close, CARPENTER and 

D-Miner 
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of DisClose for the same mining situation on both datasets are given in Figure 5.11 

and Figure 5.12, respectively. 

Both figures show that DisClose is still able to mine the dense datasets. It is 

observed that the algorithm scales well, as the time taken to discover the colossal 

closed itemsets increases with the increase in the row size of the datasets. 

Figure 5.11: Result on T150L2000N4000 with TTD-Close 

 5.2-0.1: Result of DisClose on T150L2000N4000  

 

Figure 5.12: Result on T200L2000N4000 with TTD-Close 
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5.2.3 Cardinality  

In the previous groups of experiments described above, the average length of each 

dataset is set to 2000, which means that each dimension of each dataset has on 

average 2 K distinct values. To test the performance of the different cardinalities, 

two more datasets have been generated that correspond to 1.5 K distinct values and 

2.5 K distinct values. The other parameters remain unchanged: that is to say, the 

number of dimension is 4 K and the number of tuples is 100.  

Figure 5.13(a)-(c) compares DisClose and D-Miner using the mincard 

threshold on synthetic dataset T100L1500N4000. In this set of experiments, the 

results show that as the cardinality value of the datasets increases, the value of the 

mincard that DisClose could reach also increases. Intuitively, with respect to 

cardinality pruning, a lower mincard results in an increase in run time. DisClose also 

scales well, as the execution time increases with the changes in the dimensionality of 

the datasets. The results show the DisClose still performs better than D-Miner as the 

magnitude of the cardinality changes.  

In Figure 5.13(a), the T100L1500N4000 dataset contains the percentage 

density of true values of 38%. Therefore, by reducing the average length of the 

itemset, DisClose is able to reach closed itemsets until mincard = 200. In addition, 

D-Miner could reach a much lower cardinality threshold of 1700 when the 

cardinality value decreases.  

As for Figure 5.13(c), as the number of average length increases, the 

percentage density of true values also increases to 64%. Hence, DisClose is able to 

reach colossal closed itemsets at a much larger mincard threshold of 1100. As for D-

Miner, the mincard threshold that the algorithm could reach also increases to 2600. 

5.2.3.1 DISCLOSE VS. FP-CLOSE, CARPENTER AND D-M INER  

Figures 5.14 and 5.15 together demonstrate the effect of changing L. Figure 5.14 

compares DisClose with FP-Close, CARPENTER and D-Miner as the average 

length (cardinality) decreases. 
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(a) T100L1500N4000 

(b) T100L2000N4000 

 

(c) T100L2500N4000 

 Figure 5.13: The effect of changing cardinality on the runtime 
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  As compared to Figure 5.2, DisClose is able to operate up to mincard = 200 

having a maximum support of 9. This is shown in Figure 5.14(a). Figure 5.14(b) 

shows that for the three algorithms, all could reach a lower minsup threshold. 

Amongst the three algorithms, FP-Close performs the best with the value of minsup 

(a) 

(b)  

Figure 5.14: Comparison on T100L1500N4000 with FP-Close, 

CARPENTER and D-Miner 
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= 86. The maximum cardinality of the closed itemsets discovered at this support 

threshold is 22. As for D-Miner, at minsup = 87, the maximum cardinality of the 

closed itemsets is also 22. CARPENTER could reach at minsup = 89 with the largest 

closed itemset having the maximum cardinality of 20. As the minsup threshold 

decreases, the runtime of the three algorithms also increases. This is because the 

dataset is very dense, and the number of closed frequent itemsets that require 

checking increases substantially. As an example, the difference in the closed 

itemsets discovered between minsup = 86 and minsup = 87 is almost 42 million. 

 Figure 5.15 shows the results obtained as the number of average length 

increases. It is observed that for the T100L2500N4000 dataset, the cardinality of the 

closed itemsets is very large. In Figure 5.15(a), D-Miner discovered colossal closed 

itemsets until mincard = 1100. At this mincard threshold, the maximum support 

value for colossal closed itemsets is 15.   

 Figure 5.15(b) shows that for the three algorithms, the lowest minsup value 

reached is 95 by D-Miner. This indicates that T100L2500N4000 is relatively denser 

than the T100L1500N4000 dataset. It is also observed that the maximum cardinality 

of the closed itemsets that exists at this minsup value is 481. CARPENTER and FP-

Close can reach minsup = 96 with maximum cardinality = 477 and minsup = 97 with 

maximum cardinality = 472, respectively. 

5.2.3.2 DISCLOSE VS. TTD-CLOSE  

Figures 5.16 and 5.17 together demonstrate the effect of changing L. Figure 5.16 

compares the results of DisClose and TTD-Close on the dataset T100L1500N4000. 

With the reduction in the average itemset length, Figure 5.16(a) shows that DisClose 

discovers closed itemsets at a lower mincard value of 1500. The maximum support 

value at this threshold is 6 which is the same support value for the dataset 

T100L2000N4000 shown in Figure 5.2.   

Figure 5.16(b) shows that TTD-Close can reach minsup = 96 with a total of 

closed itemsets of 292,150. TTD-Close runs out of memory probably due to the 
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existence of larger cardinality itemsets at smaller minsup thresholds. This shows that 

for dense dataset, even at high minsup threshold, the size of the itemsets can be 

significantly large. 

  

(a) 

(b)  

Figure 5.15: Comparison on T100L2500N4000 with FP-Close, 

CARPENTER and D-Miner 


