DisClose Discovering ColossalClosal Itemsets
from High Dimensional Datasets via a Compact

Row-Tree

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences.

2012

Nurul Fariza Zulkurnain

School of Computer Science



Table of Contents

List of Tables 6
List of Figures 7
Abbreviations & Acronyms 10
Declaration 12
Copyright 13
Chapter: 1 16
Introduction 16
1.1 Research MotiVatioN...........cooouiiiiiiiiiiiccee e 18

1.1.1Challengs in Itemset MiNiNgG.........ccceeeeeeiiiiiiiiiceee e, 19
1.2 AIMS and ODBJECHIVES.........ccooiiiiiiiiiceee e 22
1.3 CONIDULIONS. ...ceiiiiiiiiii ittt rmmee e 23
1.4 Organization Of the ThESIS.......ccooiiiiiiiiii e 24
Chapter: 2 26
Itemset Mining Preliminaries 26
2.1 Frequent Itemset in Association Rule Mining..........cccoeeeeeeeeeiiceeiinnnn. 27
2.2 Alternatives Approaches to Frequent ltemset Mining...............ccccueee 31

2.2.1Maximd Frequent ltemset MiniNg...............coovvviiiiiiemeeeee e 31

2.2.2Closed Frequent ltemset MiNiNg............eeveeeiiiiiiieesiiieiieieeeeeeeeenns 33
2.3 CFlin High-Dimensional Dataset.............cccooveeviiiiiiciiiie et 35

2.3.1Transposition methad..............ccccuiiiiiimeen e 36

2.3.2CFI Mining on Transposed Data............cccceeeiiiivieeneeceeiicee e 37



P YU 01 0 1= 1Y PO 38
Chapter: 3 40
Strategies for Closed Frequent Itemset Mining 40
3.1 Column Enumeaation-based Strategy...........ccoevvviiiiiiiiiccce e 41
3.1.1Apriori-based Bottorup Search............cccceevvvrviiiiiccreeveeeiinnnnn 41
3.1.2Pattern Growth without Candidate Generation...............ccc........ 46
3.1.3Exploring the Vertical Data Format..............ccccovvvvvieeeee e, 52
3.2 Row Enumeratiombased Strategy...........oooeiiiiiiiiiimmmne e 54
3.2.1BOttOMUP SEAICH.......cvviicci e 54
3.2.2TOp-dOWN SEAICK......cceiiiiieiie e 59
3.3 PatternFusion Mining the Colossal Itemsets............cccccceeiiiiiimeennnnnnd 63
3.4 D-Miner: Mining the Constrainbased Concept.............ccccccvvvivinennnnnns 65
G TR SIS YU 010 = Y P 67
Chapter: 4 70
DisClose Mining Colossal Closed Itemsets 70
O R @ Y1 T 71
4.2 Proposed Search Strategies.........uveeiiiieeiicceeeiiiiee e eeeeeveeen e 72
4.2.1Bottomup Rowenumeration Search.............ccccvvviviiieeneiivinnnnee. 72
4.2.2Transposed Table.........ccooeeiiiiiiiieee e 74
4.2.3Minimum Cardinality Thresholdnincard.............c.oovvvvviiiviieennnnn.. 75
4.3 Proposed Closedneshecking Method..............ccccooeiiiiiiceciiiiccceeeeen 78
4.4 CR-Tree (COompPact ROWITEE).......uuuiiiiiiiiiiiiieeiee i 82
4.5 Algorithm DISCIOSE.......ccoviiiiiie e aaaaad 85
4.5.1Major steps ODISCIOSE........cccoviiiiiieiiiiemme e 85
4.5.2Space and time analysisSDISCIoSe..............ccoovviiiiiiiiceen e, 95



O I YU 110010 1= U F S PP 95
Chapter: 5 97
Experimental Evaluation 97
5.1 EXperimental SEtiNG.........couuiiiiiiiiiiiiiieeiee e 98
5.1.1Challenges in COMPANISONS..........uuuuuuuriiiieiieeerrrernnnnaaaaeeeeaeeaaas 99
5.2 SYNthetiC DAtASEIS.........uuuiiiiiiiiiiiiiieemiiii e eeeee e e e e e 100
5.2.1Dimensionality (COIUMNS).........ccccviiiiiiiiiiiieeee e 101
5.2.2NUMDEI Of FTOWS.....eiiiiiiiiiiiiiiie e erenn s 110
5.2.3CardiNality.......ccuueeeiiiiiieee e 117
5.3 Discussions of Results from Synthetic Datasets............cccccvvvvieeenee 124
5.4 Real DAlASEIS.....ccuiiiiiiiiiieiie it 126
5.4.1DISCretiZatiON.........coevveeeieiiiiiiicce et e e e eeerenn e es 126
5.4.2DLBCL DALaA.....cueeiiiiiiiiiiiieei e 127
5.4.3Leukemia Data.........uuiiiiiiiiieeeieiceeeiiieee e 131
5.4.4LUNg CanCer Data..........oovveuiiieiiiiiiceeee e 134
5. 4.5MLL Dat@.....ccceeeiie e eeee e 137
5.4.6Memory CONSUMPLION.......uuuuiiiiieeeeeeeeeceeeiiece e ee e e eeeee s 139
5.5 Discussion on Results on Real Datasetls............ccccevvvvimemeeeeeeeeeeeeennns 143
I SIS YU 01 0 = Y PPN 144
Chapter: 6 145
Conclusions and Future Work 145
6.1 SUMMAIY ...ttt e e e e 145
6.2 Research ContribUtions............oooiiiiiiiiiiiimee e 148
6.2.1Search Strategy for Colossal Closed Itemsets...............cc........ 149
6.2.2Implementation of Constraint Measure.............ccccceeeveeeeeeeeenens 149
6.2.3Closednesghecking Method................cccciiiiiiieen 150
6.2.4Data StruCtUr@ CRTIEE .. ..o it 150



6.2.5Algorithm to Discover Colossal Closeeihsets..............ccceeeeees
6.3 FULUIE WOIK ..o eeeereee e

Bibliography

Word Count =32, 957



List of Tables

2.1 Example of transactional dataseL,.............cceevvvivieeeieiiiiiiiiineee e 28
2.2: Example of discretized microarray datad@t,.........cceeeeeeeeeeeeeerrieeeiiineenn. 36
2.3 Transposed tabl® of microarray dataseTm.........ccoveveeeeeeeeeeeieeeieeenans 37

3.1 Conditional pattern base and conditionattFées for each suffix item.....48

3.2: Example of the verticalata format for transactional dataget,................ 52
3.3: Conditional transposed tablel, 3 4).........covrvevererererireierieiereresereeeenas 56
3.4: Example of the binary representation of dataset............cccccoeviceeennnnnnd 66
4.1: Example of a discretized higlimensional dataset...................ccvvvueeee.. 74
4.2: Example of Transposed Dataset..............uuuvurrrimemiumiiiiiiiiiiiieeeeeeee e 75

5.1: Datasets used in experiments showing the number of instances (rows) and

number of columns (attribUtes).........ccooovviiiiiiiiicce e 126



List of Figures

1.1: Steps Of the KDD PrOCESS.......ccoiiiiiiiiiiiieiie e 17
2.1: Frequent itemsets fONINSUP= 3......oooviiiiiiiiiiiiee e 29
2.2: Maximal frequent itemsets foniNSUP= 3. 32
2.3: Closed frequent itemsSets fOTNSUP= 3........uiiiiiiiiiiiiiiiieee e 34
3.1: Bottomup column enumeration tre...........coocoeeivivimmenseeiveeeeee 41
3.2: Discovering closed itemsets wARClosefor minsup= 3..........ccccccvveeenn. 45
3.3: TheFP-treefrom Table 2.1 fominSup= 3.........cccooiiiirriiiiiiiime e 47
3.4: Bottomup row enumMEration tree............uuuuiiieeieeeceeeeiiiiiiiee e e e e e e eeeeeeeaens 55
3.5: Topdown row enNUMEration treE........cvviiiiiiiieiii i 60
3.6:FR-TreeandIP-LiSt.......cccceeeeeeeeieiiieeeieeee e mmme e 62
3.7: Discovering the concepts USIDEMINET...............oovvvviiiviiiicereeeeeeeeiiinnnnn ) 67
4.1: Colossal Closed Itemset Mining Procedure.............oooooccieeneeeieeeees 71
4.2: Top-down column enumeration tree.............uuvvvueeuiimreeeeeerrere e 73
4.3: Example of olossalitemsetghighlighted in grg) for mincard=7............. 77
4 4: Relationship betweeBRTreeandT .........c.covieiiieeeeee e 83
4.5: Nodes representing the rowsets iN@RTree.........ccceeeeeeveeeeeeeeveceenn, 84
4.6: Itemset stored at level= 0, of theCR-Tree........ovvveiiiiiiiiiiiiiiiiee 87
4.7: Example of Optimization strate@/L...........cccovvvviiieiiiiieeme e 88
4.8: Example on Lemma 4.2........ooiiiiiiiiiii s ceeeie e 89
4.9: Example on Optimization stratedy2..........cooevviiiiiiiiiimeen i Q0
4.10: Example on Lemma 4.3, ... 90
4.11: Example of Pruning Strate@B..........cuvviiiieiiiiiiiiieeeiiie e eeeeviiie e e e e eevvana 91
4.12: Closednesshecking INCR-TIEE........coceiiiiiiiiii it 93
4.13: Colossal closedemsetsvith mincard= 7...........ccccccvvvriiiiiieeerciiiinnnne. %!



5.1: The effect of changing dimensionality withncard....................coeeiinee 102
5.2: Comparison on T100L20M@000with FP-Close CARPENTERndD-
MINET ..o ee e e e 104
5.3: Comparison on T100L20MB000with FP-Close CARPENTERndD-
1oL PR PP TP PUPPPTRUPPIN 105
5.4: Comparison on T100L20RMA0000with FP-Close CARPENTERndD-
1] 1T PR 107
5.5: Comparison on T100L20R@000with TTD-CloSe.........ccovvvvvvvneieenrnnnee 108
5.6: Comparison on T100L20RB000with TTD-ClIoSe........ccovvvvrrrrrnniinnrrnnee 109
5.7: Comparison on T100L20MA0000with TTD-CIOSE.......cuuvuiiiiiieeeeaannn. 111
5.8: The effect of changing the number of tuples on the runtime............. 112
5.9: Comparison om150L2000N4000with FP-Close CARPENTR andD-
11T PP UPPP TR UPPPTRPPIN 114
5.10: Comparison om200L2000N4000with FP-Close CARPENTERandD-
MBI ..o ee e e e e s 115
5.11: Result om150L2000N4000with TTD-CIOSE........ccvvveeiiiiiiiiiiicemeeeens 116
5.12: Result o 200L2000N4000with TTD-CIOSE.......ccevvvvrvrinniniiiimmeeeeens 116
5.13: The effect of changing cardinality on the runtime.................cccvveeeen. 118
5.14: Comparison on T1@A500N4000with FP-Close CARPENTERandD-
MINEIE ..o ee e e e 119
5.15: Comparison on T10@500N4000with FP-Close CARPENTERandD-
1 T PP UPP TR UPPRTRPPIN 121
5.16: Comparison om150L1500N4000with TTD-CloSe........cvvvviiiiieeeeeennn.. 122
5.17: Result oA 150L2500N4000with TTD-CIOSe.......ccvvvvirriiiiiiiiiimeeeeees 123
5.18: Comparison afmincardthresholds on DLBCL witlD-Miner................. 128
5.19: Comparison on DLBCL witRP-Close CARPENTERndD-Miner....... 129
5.20: Comparison on DLBCL WitliTD-CIOSE..........ccooveiiiiiiiiiiiiicee e 130
5.21: Comparison ahincardthresholds on Leukemia witb-Miner.............. 131
5.22: Compason on Leukemia witkP-Close CARPENTERNdD-Miner....132



5.23:
5.24:
5.25:
5.26:
5.27:
5.28:
5.29:
5.30:

Comparison on Leukemia WITITD-CIOSE.........covviiiiiiiiiiiiiiiieaeeieeee. 133

Comparison ahincardthresholds on Lung witB-Miner ..................... 134
Comparison on Lung wiffP-Close CARPENTERindD-Miner........... 135
Comparison onung With TTD-ClOSE...........uuvviiiiiiiiieecccecceee e 136
Comparison ahincardthresholds on MLL wittD-Miner ..................... 137
Comparison on MLL witkP-Close CARPENTERindD-Miner ........... 138
Comparison on MLL WitATD-ClOSE...........ouvveiiiiieiiee e 140
Memory usage comparison usthg maximunmmincardandminsup

=35 a10] (o TR PR 141



Abbreviations & Acronyms

ALL
AML
CClI
CFI
CPU

Acute Lymphoblastic Leukemias
Acute Myeloid

Colossal Closed Itemset

Closed Frequent Itemset

Central Processing Unit

DLBCL Diffuse Large BCell Lymphomas

DNA
FIM
FIMI
FL
GB
GHz
IBM

KDD
MFI
MLL
PC
RAM

Deoxyribonucleic Acid

Frequent Itemset Mining

Frequent Itemset Mining Implementations
Follicular Lymphomas

Gigabyte

Gigahertz

International Business Machines
identity document

Kilo (10%)

Knowledge Discovery in Databases
Maximal Frequent Itemset
Mixed-Lineage Leukemias
Personal Computer

Random Access Memory

10



University Name: The University of Manchester

Candi dat eNursl FaMizadakurnain

Degree Title Doctor of Philosophy

Thesis Title DisClose Discovering Colssal Closed Itemsetsfrom High
Dimensional Datasetda a Compact Rowree CR-Tree

Date: 30-April-2012

Abstract

Data miring is an essential part khowledge discoveryandperforms the extraction
of useful information from a collection of datao as ¢ assist human beings in
making necessary decision$his thesis describes research in the field of itemset
mining, which performs theextraction ofa set of items that occur together in a
datasetbased on a user specified thresh&ecent focusf itemset mining has been
onthediscovery ofclosed itemsets from higlimensional datasetsharacterised by
relatively few rows and eelatively large number ofcolumns A closed itemset is
the maximal set of items common to a set of roBs.exponentially ireasing
running time ashe average row length increases, mingigsed itemsets frorauch
datasets renders mosblumn enumeraticbased algorithmimpractical Existing
row enumeratiofbased algorithmsalso show that they struggle to reaclarge
cardinaity closed itemsetsThis is due to the implementation dhe support
constraint which is basedn thefrequency ofoccurrence of the itemsedtrequent
closeditemsets are usually smallersize and larger in numbefsence taking much
of the memory spac Unfortunately, large cardinality closed itemsets are likely to
be more informative than small cardinality closed itemsets in this type of dataset.

The researchinvestigates the area of large cardinality closed itemset
discovery by examining and analyg the literature and identifying both strength
and weaknesses okisting approaches. Based on this synthesisew algorithm,
termedDisClose has been designed and developediscover large cardinality
(colossal) closed itemsefeom high-dimensioml dataets The algorithm strategy
begins by enumerating large cardinality itemsets fach these builds smaller
itemsets.This is done by applying bottomup searchof the rowenumeration tree.
A minimum cardinality thresholdhas beernproposed toidertify colossal closed
itemsets ando further reduce the search space. A novel closeebstessking
methodhas beermproposed which uses a unique generatamimediately discover
closed itemsets withotdlhe needo check if each new closed itemset has presiip
been found. These apprheshave beencombined using a&ompact RowTree
(CR-Tre@ data structurelesigned tassistin the efficient discovery of the colossal
closed itemsetd-or evaluation purposes four statiethe-art algorithmshave been
selectd for comparison Experimental resultshow that algorithmDisClose is
scalable andcan efficiently extract colossal closed itemsets itne considered
dataset, even for low support thresholds éxasting algorithmgannotfind.
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Chapter: 1

Introduction

Data mining is nothing else than
and if you torture it enough, you can get it to confess to anything

(Fred Menger)

Rapid development in information technology haovided organizationwith the

ability to store, process and retrieve huge amounts of data. Neverthietesss a

need to extract useful information and knowledeféiciently and effectively, from

these massive data storeghis serves to assistusheses scientific and gosrnment
related organization® better plappredict andmakedecisionsThis has led to the
importance of data mining and the need to provide effective and efficient associated
algorithm implementation.

Data mining is the anadys step oknowledge discovery in databa{&DD)
process(Fayyad et aJ.1996. The stepsn the KDD process are showin Figure
1.LDat a mi ni n gthd asalysiseof (dftendatige) alservational akts to
find unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data o@ftéand et al.2007).

16

t

(0]

r



CHAPTER 1. INTRODUCTION

- ™\
(" lnw tpectation / \

2,3

Data Mining

Y

(o Seciion ) Mll / .
\ E ” Patterrss

«

Prepeocessed Data

Figurel.l Steps of the KDD Proceg¢Bayyad et al., 1996

There arenumerous data mining taskshich include the discovery of
association rulesAgrawal et al. 1993, sequential rulesAgrawal and Srikant
1995, correlations Brin et al, 1997, episodes Nlannila et al. 1997), multi-
dimensional patternsLént et al, 1997, maximal patternsBayardg 1998 and
various other discovery tasks (Hark&mber 2001).

This thesis will focuson the task of association rule discovery. Association
rules (Agrawal et al, 1993 aim to describenoteworthy relationships between
variables.Agrawal et al.(1993 introducedthe itemset miningproblem as part of
associatiorof rule discoveryAn itemsetis a collection of related items that occur
together in a given dataset. This initial research was motivated by analysis of market
basket (transactional) dat@iven a transactional dataset, the aéro identify all
items which have been boudiaigether most often. The set itdmsis represented
by the cust oms.rTdesesults chtairddelp tb geoanate association
rules. Thisshouldthen assistcompanies irbetterunderstanithg of the purchasing
behavior of customeysvhich should in turn help to improv@edsion makingabout
marketing activities.

In addition to market basket analysis, discovery of associationhakeen
employed m many other areas. Thes@clude: telecommunications(detecting
intrusion in network or system activities (Zhong and Q2004 Patcha and Park

17



CHAPTER 1. INTRODUCTION

2007 Vaarandi and Poding010), bioinformatics(generating new knowledge

biology and medicine (Creightoend Hanash2003 Pan et al.2003 Guns et al.,
2010) and web usage analysig@iscoverng patterns from the web (Eirinaknd
Vazirgiannis 2003 Youssefi et a].2004 Baraglia and SilvestrR007)).

Generating association rules is a rather straightforward, computationally
inexpensive part of the discovery taSince the areawas initially proposed, the
focus of researchers asdientist has mostlgeenon optimizing the itemset mining
process. In this thesia new method has been developed to efficiently mine large
cardinality itemsets that exist in very large datadets.anticipated thathee method
will assistthe discovey of associatia rulesfrom large cardinality itemseti& this

type of dataset

1.1 Research Motivation

A typical business transaction dataset for market basket analysis contains a
relatively largenumber of rows (transactisncompared to a relativelgmall rumber

of columns (dimensions). However, other application areas such as gene expression
matrices analysis in bioinformatics (Creightand Hanash2003 Cong et al.

2004; Borgel et al, 2011) and text processing (Nahm and Mooy2§01, He et al,

2011 Nassem2012 involve another kind of datasetne which ischaracterized by

a relatively small number of rowsompared witha relatively large number of
columns (or dimensionsRue tothesefeatures, this is known ashigh-dimensional
dataset.

The opportunities created by higimensional datasets asggnificant Such
datasets havealso attractedinterest fromresearcherso devise new methods to
effectively extract significant information. The amount of information that can be
revealed is potentially hugéut extracting information and ultimately knowledge
from these dataseis a nontrivial task

Applicaions that deal with higkdimensional datasets include:

18



CHAPTER 1. INTRODUCTION

1 Discovering relationships between the data valwethin gene
expression matrice®r microarray datasgtin order to assisin
understanding the cause and effect of biological processes. For
instance such relationshipsan help in predicting gene function for
uncharacterized genes based on the similarity of their expression
profiles to those of known genéBrown et al, 2000; identifying
geneshat areimportant in specific cellular processes, diseases, or in
cell differentiations (Segal et a). 2003; learning about gene
regulation by finding and studying groups of regulated genes
(CarmonaSaez et al. 2009; and finding how cells respond to
various compoundsnd then classifying predictisof responses by
new compounds (Huang et,&009.

1 Sorting a set of documents automatically into categories from-a pre
defined set in order to increasennectivity and availability othe
documentsat all levels of the information chain. This is also known
astext categorization (Sebaatii, 2002. Text categorization can be
used to identify document genre (Bhattacharyet al, 2008,
automated population of hierarchical catalogues of web resources
(Golub and Lykke 2009, indexing scientific articles according to
predefined thesauri of technical termsefiear and Palmef009),
and authorship attributiofbtamatatos2009.

1.1.1 Challenges in Itemset Mining

The primary issuein itemset mining is to efficienthand effectivelydiscover the
complete set oftemsets in a dataset with respect to a giserdefined threshold.
However, he presence of an itemset of lengitalsoimplies the presence of-2
additional itemsetdt is to benoted thagiventhe numberof itemsetswith a largek,
enumerating thentirecollection ofitemsetshas beemlemonstrated to banfeasible

for most algorithms This is true especially whetiealing with realife datasets,
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CHAPTER 1. INTRODUCTION

wherethe datasesizemay bevery large(Pan et al.2003 Zhu et al, 2007 Liu et

al., 2009. The physicallimitation of real memory space results am inability to

store all the itemsets discoveredurther enumerating theentire collection of
itemsetsalsohasan effect on processing costs

Besides scalability (or lack thereof), due to sheer size, discoiteragets
are difficult to interpret. This is called theformation overloagroblem whichhas
several side effectsFor example, large itemsets increase the time and space
complexity of the mining task. Theomplexily of the mining taskis exponential
with respect to the number of dimension (coluin@gause of the notoriogsirse of
dimensionalityeffect (Wang ad Yarg, 201Q. Moreover,it is likely thatthereis a
considerablamount ofoverlap between itemsets.

Most strategies proposed to overcomeséhehallenges haveanvolved
reducing the amount of output. These include finding omhaximal itemsets
(Bayardg 1998 or findingonly closed itemset@asquier et 811999. An itemset is
a maximal itemset if there is no immediate supecsghe itemset. On the other
hand, an itemset is a closed itemset if there is no proper superset with the same row
(transaction) valuesviore formal definitios and exanples of these two terms will
be given in the next chapter. Depending on the dataset, maximal or closed itemsets
can offer significant compression. Neverthelessstradgorithms opt to discover
closed itemsetgue to theiability to provide a compact vsion ofitemsets without
information loss(Pasquier et gl.1999. However, fora high-dimensional dataset,
the size of the solutions (i.e. collection of extracted closed itemsets) is still too large
to deal with the threshold valgRioult et al, 2003.

Numerous algorithms have been propotedmine closed itemsets on
transactional datéBayardq 1998 Wang et al.2003 Zaki and Gouda2003. These
algorithms usually search the itemset space of the dataset; therefore, tteegnace
column enumeraticbasedalgorithms. The method works well for datassevith

small average row lengttgs if i is the maximum row size, there could bel2
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CHAPTER 1. INTRODUCTION

potential itemsets usuallyi < 100.On the contrarya high-dimensional dataset
contains a large numbef items (columns). The run time forcalumnenumeration
basedsearch strategy increases exponentially aitincreasing average row length
which results in poor performanceAs a consequence search over thentire
itemset space is impractical.

There are a group of related algorithms that attempt to overchme t
limitation of columnbased search by enumerating the datasatrowwise manner
(Pan et a].2003 Cong et al.200b; Liu et al, 2009. These kinds of algorithms are
termed row enumeratiorbased algorithms. However,the majority of these
algorithms begin their search fotoseditemsets that occuirom the largest row
(transaction) values. The number of closed itemsets that exigte larger end of
the row values tend® be smht in size and bigger in numbeAs a result, itakes
much memory space to store these many smialied frequent itemsetshus
making the proposed algorithms computationally infeasible to reach theclasgel
frequent itemsetsThis is true especially for large and dense sitsuchas high
dimensionabnes It could face the risks of overseeirigrsficant patterns.

In association mining tasks, itemsets that laiggerin size are usuallyf
greater impognce, especially in domains such as bioinformaticbjggeritemsets
tend to be more informative compared to small ones (Zhu €047 Han et al.,
2007). Closed itemsets that ardigger in size can also bereferred toas large
cardinality cl| oscardinalityp e meétess fThether measul
number of elementgitems) that contain in a sefThese large cardinality closed
itemsetsare calledcolossal itemsejsin order to distinguisthem from closed
itemsets withalargenumber of rowgZhu et al., 2007)

Section 2.3 othe survey paper by Han et §007)also conteds that the
main challenge in mining closed itensét to ensure whether a pattern mined is

closed. Several existing closed itemset mining algorithms require the dataset to be

1 In mathematics, given a sgtthepowersetof S(2%), is the set of all subsets 8f
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CHAPTER 1. INTRODUCTION

checked repeatedly to see if an itemset is closed. Repeated checking for closed
itemsets witin the dataset or the ressktlead toanincreasan processing time.

1.2 Aims and Objectives

Existing algorithms do not addredke challengesstatedto find useful large
cardinality itemsets yet relatively large (colossal) closed itemsets high
dimensional datasets can provide valuabtghtsinto the meaning of the datasets
(Zhu et al.,2007 Han et al., 2007)The main hypothesisf our researciks that such
itemsets can be derivedficiently by using a strategy that begins the search from
the largest itemset angdrogressivelybuilds smaller itemsetThis approachis
supported by applying an effective closedresscking method as well as a
compact data structure.

The aim of thisthesis is to efficiently discover all large cardinality closed
itemsets that exist in higliimensional datasgtbased on a usetefinedcardinality
threshold.

To achieve this aim, the following objectives are identifigd means of
several research quists:

1 The rowenumeration search strategy hasldressedthe problem of
discovering closed itemsets from highmensional dataset. Howevehe
majority of approachesdentify the closed itemsets beginning from the
most frequent. Fequent itemsets gendyatendto be smaller in size.

To bypass these small frequent itemsets, can the séagin with the

largest cardinality itemse?

1 By using the support thresholtie existing closed itemset mining algorithms
limit the search spaceébased on the occumee of closed itemsgtin the
dataset.

To identify large cardinality itemsets, it possible to identify a method that

can acquire and utilise an alternative threshold other than the support

threshold?
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1 To reduce the memory space and processing timetheaclosed itemsgbe
identified during the searchhus avoidng the necessity dfiaving to check
whetherthe closed itemsgthave already been discovered?

1 Generating candidates in order to discover large cardinality closed itemset
can necessitatausageof more memory space anthcreased computation
time. This adds up if #e candidates are not closed itemsets in the original
dataset.

Are there ways to avoid generatingnnecessarycandidate itemsetghus
reducing memory space usage and computatiortime

1 Existing algorithms begin their search from the most frequent itemsets.
Large cardinality itemsets usually exatthe infrequent end of the support
spectrum.

Is there an efficient way to represent the results in order to compare and

demonstrate thetrengths and weaknessesaoly proposed new methdd

1.3 Contributions

This thesisstudiesitemset mining particularly the mining of closed itemsets from
high dimensionatiata In particular, the following contributions are made.
1 Direct extracton of large cadinality closed itemsets by avoiding the
search for small cardinality closed itemsets in fdghensional data.
1 An alternative thresholds introducedto reducethe search space and
identify the large closed itemsets basedtwogir cardinality.
1 A closedmesschecking method to check whether an itemset is closed.
The method identifielrgeclosed itemsets without the need for repeated
checking from the result set.
1 A compact rowtree basedCR-Tree data structurewhichintegrates the
proposedtechniquesd providea compact representation of the dataset

and search space
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1 Two effective optimization strategies to reduce the generation of
candidate itemsetsn order to speed up the search process inCiRe
Tree

1 An algorithm to discoverlarge cardinality cleed itemsetsvhich also
represents sufficient suppovilues of the closed itemsetthat other
algorithms were not able to reaithm high-dimensional datasets

1 An experimental studyon both synthetic and real world datasets to
compare the performance dfetproposedalgorithm with selected state

of-the-art algorithms.

Part of the work presented in this thesis has been pubkshed
Zulkurnain, N. F., and Keane, J. A., (201R)jsClose Discovering Colossal
Closed Itemsets via a Memory Efficient CompaciRIree. Proceedings of
the 2 Doct or al Symposi um on inDPadifieAsidMi ni ng
Conference on Knowledge Discovery and Data Mining (PAKDD 204i2)
417 52.

1.4 Organization of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Itemset Mining Preliminaries presents a systematic overview of
itemset mining in relation to association rule discovége chapter begins by
defining frequent itemsets in association rule mining. The types of frequent itemsets

and the context of itaset mining in highdimensional datasetsepresented.
Chapter 3: Strategies for Closed Itemset Miningoegins byidentifying limitations

of generalitemset miningwhen applied to higldimensional dataset$-ollowing

this, work specifically developed fanining closed itemsstin high-dimensional
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datasetsis considered Advantages andlisadvantagesn existing closed itemset
mining approaches fanigh-dimensional datasetse discussed.

Chapter 4: DisClose Mining Colossal Closed Itemset describes the delopment
of closed itemset mining in higimensional datasetthrough the proposed
algorithm, DisClose It also addressasanyof the research questioasticulatedin
Section 1.2. A detalddescription of the mining processgivenwhich includes the
proposed search strategy, the search threshold, closadhmeessng method and data

structure.

Chapter 5. Experimental Evaluation presené a performance study othe
DisClose algorithm. The chapter begins by providing the experimentation
environment ad the datasets chosen. It also presents the test rebtdisiedby
comparingDisClosewith selected statef-the-art algorithms. This is followed bgn
analysisdiscussion of the results &ssesshe capability oDisCloseand provide the

basis for futue work.
Chapter 6: Conclusions and Future Workdiscusses and summarizes the research

contributions andheir limitations. Suggestions arngroposalsfor future workare

alsoprovided
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Chapter: 2

ltemset Mining Preliminaries

In this chapter, a systematiwerview of itemset mining in relation to association
rule discoverywill be provided;with the aim ofunderstanthg the conceptThis
includes the terms and definitions that will provide the foundation foreimaining
part of theresearch presented img thesis.

The chapter begins with Section Andhich introducesssociation rule mining
and its role. This is followed by the definitimf a frequent itemseby providing
examples fromsimple transactional dat. An illustration of frequent itemsets
discovered frontransactional data is alpoesented.

Section 2.2 presentsnd defineswo alternative approaches that have been
proposed in order to overcome the problem of mining all frequent itemsets
maximal frequent itemsandclosed frequent itemset

Section 2.3 provides the notion of dimensionality in the context of datasets
and in particular high-dimensional data. The transposition methsdpresented,
which was proposed in order to reduce the complexity of the search for closed
frequent itemsets high-dimensional data

Section 2.4 summarizes the chapter.

26



CHAPTER 2. ITEMSET MINING PRELIMINARIES

2.1 Frequent Itemset in Association Rule Mining

The application of association rule mining has been widely used in order to discover
interesting relationships between variables in large datagetsociation rule
mining, as first propcsed by Agrawal et al(1993, examines the behaviour of
customers in terms of the produciterfng they often purchase together in a shop
visit (transactior). The collection of data stored is known d@saasactional dataset

Let T be a datasahblethat consists of a collection obws (transactions)

R={r,r,,...,r,} and a list of items,| ={0,,0,,...,0,}. This set of transactions

representdhe number of rowsnf) and the set of items signifies the number of
columns Q) in T.

A nonempty subset 1 | is caled anitemset An itemset\J,, which consists
of k items, is described askatemset Each transaction is represented by a unique
identifier. Lett (r;) denote the itemset at rowof the table Within a datasetall of
the row identifieramust be unige, but there may be dupdi® rowitemsets That is

forry i ry, it may be that (r1) =t (r2). A set of rows is termedrawset

Example 2.1(TableT) Table 2.1lillustrates an example of a transactional datdset

that contains six rows and five items, Be={1,2,34,5,6 and| ={a,b,c,d,€}.

Definition 2.1 (Support SétFor any itemset), thesupport sets represented as the
set ofrows in the dataseT,, that containgl. This is represented as:
r@) ={rlal t(r)} 2.1

Example 2.2(Support Sétin Table 2.1, for an itemséi= {a, b, d, €}, the support
setry={1, 3, 5}.

Definition 2.2 (Suppor} Thesupportof an itemsetlis the number of rows in which
Uoccurs inT i denoted asrl|.
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Table2.1: Example of transactional datasgt,

Transaction id Items
1 abde
2 bce
3 abde
4 abce
5 abcde
6 bcd

Example 2.3(Suppot) From Example 2.2, the support for itembkt {a, b, d, e},
Ir, F{133 |5 3.

Definition 2.3 (Frequent ltemsg¢tGiven a datasef and a minimum support

thresholdminsup an itemseUis frequent if fy| Ominsup

Example 2.4(Frequent Itemdg Suppose the user would like to identify items that
occur in at least three of the transactions. A total of 19 frequent itemsets were found
from Table 2.1 fominsup= 3, this is presented in Figure 2.1 where each itemset is

shown along with itsowset.

An association rule is an implication of the fasmY a,, whereU and U
are itemsets aral /Ea, =/ . The strength of an association rule is mainly measured

by supportandconfidence
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Support Itemset {rowset
6 b{1,2 3, 4,5 F
5 e{l, 2, 3,4,5}pe{l, 2, 3,4, 5}
4 a{l,3,4,%c{2,4,5,6,d{1,3,5, 6,

ab{1, 3,4,5% ae{l, 3,4,% bc{2,4,5, 6,
bd {1, 3,5, 6,abe {1, 3,4, %

3 ad{1,3,8,ce{2,4,58,de{1, 3,5,
abd {1, 3, 8, ade {1, 3, 8, bce {2, 4, 5,
bde {1, 3, §, abde {1, 3, §

Figure2.1: Frequent itemsets foninsup= 3

Definition 2.4 (Support of a rulg The rule a, Y a, holds in a dataset with
support sup where:

_Ir@Cay| -

sup(a, Y a,) R

Example 2.5(Support of a rulgin Table 2.1, the support for the ruébY de:

¢ [r(abCdg|_3
abY dg =———"—""7"—"=—-=05
sup( 9 IR| 5

Definition 2.5 (Confidence of a ruleThe rule a, Y a, holds in the datasek

with confidence, confyhere:

conf(a, Y a,) = w 2.3
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Example 2.6 (Confidence of a rule The confidence for a ruleabY de in
Example 2.5:

conf(ab¥ de) = Ir@@¢cdg|_3_ 0.75
r

The aim of association rule mining is to finddomplete set of rules thaas
support and confidencef no less thanthe usesspecified threshokl Frequent
ltemset Mning (FIM) consists of the first part of association rule discovesy
identifying a set of items equal to or above a user specified minimum support
threshold,minsup Following this, the confidence oflalules that can be formed
from the frequent itemsetsn becalculated.

Therefore, association rule discovergay be divided into two parts
(Agrawal et al, 1993:

1. Mining of all frequent itemsets in datas€tthat have supporthat is
greater than or equal to the user specified minimum support threshold,
minsup

2. Generating ssociation rules from each of the frequent itemsets
discoveredwith a confidence greater than or equal to the user specified

minimum confidence thresholdhinconf

Various methods have been introduced which focus on the efficient
discovery of frequenttémsets. The@roblem of mining frequent itemsessto find
the complete set of frequent itemsets in a datdsetjth respect to a given support
thresholdminsup Extracting frequent itemsets is the most costly task of association
rule mining; this is da to the fact that it requires enumerating all possible
combinations of itemset. Once all frequent itemsets and their support are known, the
association rule generation is straightforward.

However, the difficultyof mining the entireset offrequent itemsis is that

the amount of frequent itemsets occurring in a dataset may be very large. Algorithms
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developed in order to discover frequent itemsets have been shown to be inadequate
when discovering frequent itemsets at the lower minimum support threstiotis
dataset that @ntains long frequent itemse#&grawal et al. 1993 Han et al.200Q
Zaki, 200(). This is because the presence of a frequent itemset of lkmyiblies
the presence of‘2 additional frequent itemsets as well. Therefore, generating and
counting the supports of all frequent itemsets in the dataset cannot be achieved
within a reasonablertie. In addition, storing the complete set of frequent itemsets
requires higher memory cost. Studies have shown that frequent itemseis conta
muchredundant informatiorBayardg 1998 Pasquier et g§11999.

The next section discusses the two alternative approaches to frequent itemset
mining that have been proposed to address these prolilemaximal frequent

itemset(Bayardq 1998 andclosed frequent items@asquier et 311999.

2.2 Alternatives Approaches to Frequent Itemset Mining

2.2.1 Maximal Frequent Itemset Mining

Maximal frequent itemsetMFI) mining was first proposethrough an algorithm
called MaxMiner (Bayardg 1998. The advantage of mining arimal frequent
itemset is that it has the ability to discover long frequent itemsets by prowding

compact set of items from the dataset.

Definition 2.6 (Maximal ItemsétAn itemsetU is a maximal itemset i if there

exists no immediate supersétdvherea'l T, such thata E a'.

Definition 2.7 (Maximal Frequent ItemsetAn itemset is a maximal frequent
itemset if none of its immediate superskés spport valueequal or greater than

minsup

Example 2.7 (Maximal Frequent ItemsgFigure 2.2shows the maximal frequent

itemsets (highlighted in boldphce andabde are the largest itemsets with no other
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supersets discovered witminsup = 3, hence, they ar the maximal frequent

itemsets.
Support Itemset {rowset
6 b{1,2 3,4,5F
5 e{1,2,3,4,3,be{1,2,3,4,%
4 a{l1,3,4,%c{2,4,5,6,d{1, 3,5, 6,

ab{1, 3,4,5% ae{l, 3,4,% bc{2,4,5, 6,
bd {1, 3, 5, §, abe {1, 3,4, 5

3 ad{1,3,53,ce{2,4,53,de{1, 3, 3,
abd {1, 3,3, ade {1, 3, 3, bce £, 4, 3,
bde {1, 3, 3, abde {1, 3, §

Figure2.2 Maximal frequent itemsets (highlighted in bold) foinsup=3

The number of raximal frequent #msetsis typically orders of magnitude
fewer thanthe number ofrequent itemsetdHence mining themis computationally
less complex thamining all frequent itemsetsBayardg 1998 Lin and Kedem
2002 Gouda and Zaki2001; Burdick et al, 2005. However, maximal frequent
itemsets do not provide the complete subset frequency for geneaatingiation
rules. As an example, taking the maximal itemelede {1, 3, 3, based on the
Definition 2.4, the spport for the rule abY de can be obtained since the
frequency of occurrence for this itemset is known to be 3. Hence, the support of this
rule is equal to (3/6) or 0.5. On the other hand, this is not true foraié e.
Based on Figure 2.2 the support of this rule does not equal to (3/6) since the
frequency of occurrence for this itemset is 4. Mining for maximal frequent itemsets
does notproduceabe{1, 3, 4, 5} given that abeE abde, therefore it is unable to

generate the rule.
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Given that the consequences of mining maximal itemsets result in loss of
information, further discussion omaximum frequent itemset mining will not be
elaboratedon further in the thesis (interested readers can refer to Baydr@@d),
Agarwal et al.(2000, Gouda and Zakj20031), Lin and Kedem (2002, Burdick et
al. (2005, Grahne and Zh(2005 for furtherdetails).

2.2.2 Closed Frequent Itemset Mining

Closed Frequenttémset CFI) mining was proposed in order to overcome the
problems of mining frequent itemsets and maximal frequent itemsets by removing
itemsets that are not needexhd at the same timéeing abé to generate the
conplete set of association ruld3gsquier et 311999.

Definition 2.8 (Closed ItemsgtAn itemsetUis aclosed itemsdn datasef if there
is no proper supersét $UE U Ysuch that the support bfis the same as the support
of U6

Closed itemsets are also the maximal set of items common rbwset
(Pasquier et g11999.

Definition 2.9 (Closed Frequent Iltemgefn itemsetUis aclosed frequent itemset

in dataseT if | rg] miDsup

Example 2.8(Closed Frequent Itemgeln Figure 23, there are 7 closed frequent
itemsets discovered from Table 2.1 wmtinsup= 3:b {1, 2, 3, 4, 5, B be {1, 2, 3,
4,5,bc{2,4,5, 6,bd {1, 3,5, ,abe {1, 3, 4, 3, bce {2, 4, 3,andabde {1, 3, 3.

As can be observed, tldbosed itemsets discovered are the maximal set of itemsets

amongst the itemsets of the saroeset value.

The closed itemset lattice is defined by employinglaswre mechanism,

based on th&alois connectiona theory of order and lattices (Davey and Priestley
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1994). The closed itemset lattice is a suber of the itemset lattice; hentee

search spads much smaller.

Support Itemset {rowset
6 b{1,2,34,5,6
5 e{l,2,3,4,3, be{1,2,3,4,5%
4 af1,3,4,%¢c{2,4,5,6,d{1, 3,5, §,

ab{1,3,4,5% ae{l, 3,4,5% bc{2, 4,5, 6,
bd {1, 3,5, 6,abe {l, 3,4, 5%

3 ad{1,3,8,ce{2,4,58,de{1, 3,5,
abd {1, 3,3, ade {1, 3, 3, bce £, 4, 3,
bde {1, 3, §, abde {1, 3, §

Figure2.3 Closed frequent itemsets (highlighted in bold)rfonsup=3

The closed itemset lattice is used as a formal framework for discovering

closed frequent itemsets, based on the following@rtiesPasquier et §l1999:

All subsets of a frequent itemset are frequent.

All supersets of an infrequent itemset are infrequent.

All subsets of a closed itemset of a frequent closed itemset are
frequent.

All supersets of a closed itemset of an infrequent closed iteneset ar
infrequent.

The set of maximal frequent itemset is identical to the set of maximal

frequent closed itemsets.
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vi.  The support of a frequent itemdgivhich is not closed is equal to the
support of the smallest frequent closed itemset contaldifig. the

closure of a frequent itemset is frequent).

Given that mining closed frequent itemsets Igtite search space based on
the closed itemset lattice, both the number of dataset passes and the CPU overhead
incurred by frguent itemsesearcing decrease (Pasgier et al, 1999 Pei ¢ al.,
200Q Wang et al.2003 Grahne and Zhi2005 Zaki and Hsiap2005. In addition,
closed frequent itemsets are lossl@sghe sense that they can produceanplete
set of association rules from a much smaller set of frequent itemsets. Thus, the
frequent itemset mining problem is reduced to the problem of determining closed

frequent itemsets and their support.

2.3 CFI in High-Dimensional Dataset

As washighlighted in Chaptet, a typical business transaction dat#s represented
with the characteristics of having a relatively large number of rows (transactions)
and a relatively small number of columns (itenigcent interest hded toapplying
association rule mining toigh-dimensional datasetén example of such a dateais

is the gene expression matri@gsmicroarray datavhereassociation rule mining is
applied to discover significant relationships among different gebased on
expression leveléruzhilin and Adomaicius, 2002.

Contrary to a transactional dataset, hitjimensional datasetmicroarray
data) usually contains a relatively large number of columns (genes) and a relatively
small nuniber of rows (biological samples). Tabl& 2hows a simple example of a
discretized microarray datasét,. Thetransaction IDs represenésset of patients
and the items denote a set of gerideere are altogether 5 patients (rows) and nine
groupsof gene (items) in Table 2.ZThereforeR = {1, 2, 3, 4, 5} and = {a;, &,
by, €1, &, th, tb, €1, &}

35



CHAPTER 2. ITEMSET MINING PRELIMINARIES

Table 2.2: Example of discretized microarray dataike

Transaction id ltems (Genes)
(Patients) & | @ b c d d a e
1 1 011/ 0012|001
2 o/1/1,0]1 0|1 0]1
3 1 01011 0|01
4 o/ 1/1 010 1 01
5 1 01|01 10|10

2.3.1 Transposition method

The advantages of the closkdsed technique, designed to handle pattern
redundancy, have made it relatively common place in applgsspciation rule
discovery on highdimensional datase{Pan et al.2003 Pan et a].2004 Liu et al,
2006 Zhuet al, 2007 Liu et al, 2009.

Due to the complexity of searching for closed frequent itemisated on the
number of columns in higbimensional data, the transpositionethod was
propased(Rioult et al, 2003. The study states that bging the Galois connection
(Davey and Priestley1 994, the same result®aybe extracted from theansposed
table by associating the sets of rows with the sets of columsperthe original
table whichassociates sets of columns with sets of rowscEletne original dataset
is transposedso that each item (with different level of expressions) is now
represented ag row value and therowset relatedd each row is represented as a

column value.
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Table2.3 Transposed tabl€ of microarray dataséty

ltems Tidset
& {1, 3, 5}
& {2, 4}
(o} {1, 2, 3, 4,5}
C1 {1}

C {2, 3, 4, 5}

dy {3, 5}
d> {1,2, 4
{5}
{1,2,3, 4}

Definition 2.10 (Transposed Table')TGiven a tablel = (R, 1), the transposed table

T'of T consists of a set dfiples Each tuple corresponds to an itapl |1 and a

rowset If tuple ox containsrj in T', it means itenoy is included in row; in tableT.

Example 2.9(Transposed Table')TTable 2.3 represents the transposed version of
Table 22, denotedr'. As an example, {2, 4} is the set of rowsWset) that contain

item a, in T, which is the second tuple .

2.3.2 CFI Mining on Transposed Data

The transposition method enablesduction & the complexity of the search on
datasets that contairelatively few rows andrelatively manycolumns. As the
smaller dimension concerns the number of rowsckheed frequent itemsets can be

discovered by searching fatarge closedowset from transpsed tabld™.
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Definition 2.11 (Closed Rowse) Given the transposed table, a rowsetb is a
closedrowset if nd aproper supersdi @xists(bE b Yo such that the support bfis

the same as the supportfob

Example 2.10(ClosedRowse) From Table 2.3, for aowset {1, 2}, thecommon
itemset that occur in {1, 2is b;d.e,. However, bdye, occurs also in roset {4}.
Thereforebidze; = {1, 2, 4}. Based on Definition 2.11, {1, 2} is not a closenvset
as{12 E{1,2,4} . Hene, {1, 2, 4} is a closedowset.

Definition 2.12 (Closurg Given a list of items, | ={o,,0,,...,0,}, an itemset

al | andarowset b1 R, itis defined that:
R@) ={r,1 R["o,1 I:r, 0 o}, 2.4
L(B)={o; 1 I'|"r [ b:o, I t(r)}- 2.5

By this definition C (U) can be defined as the closure of items$anhdC (b)

as the closure abwsetb, as follows:
C(a) = | (R@a)) 2.6
C(b) = R(I (b)) 2.7

Hence, an itemsélis a closed itemset = C (U) andb is a closedowset if
b=C ().

2.4 Summary

This chaptethas providedan oveview and dehitions of association rule mining
beginning from frequent itemset mining in transactional dataseind then
considering miningclosed frequent itemsets in higimensonal data. This will
provide abasic understandingn the types of itemsets that camrinel, especially

closed itemsetsn relation to the forthcoming chapters.
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Mining closed frequent itemsets has bsbhovn to be the best alternative
whencompared to mining only frequent itemsets or maximal frequent itemsets. The
ability to provide a coplete and reduced set of answers shows that closed itemset
mining is computationally less costly in the association rule discovery.

The next chapter wiltonsiderthe search strategies that have been proposed
as a means ofdiscovering closed frequentemsets in particular for high
dimensional dataset§his includesclosednesshecking methods proposed by the
algorithms to identify the closed itemsets. The advantages and disadvantages of

these approaches are analyzed and discussed.
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Strategies forClosed Frequent Itemset Mining

This chapter providea reviewof the literatures on various search strategies that
have been proposed in order to discover closed frequent itemseexaByning
these sea&h strategiesan understanding of tleadvantges and disadvantages will
be provided, and the gaps in current methaeilisbe identified.

The chapter begins with Section 3.Which describesthe historical
development ofsearch strategie®or mining closed frequent itemsets atfueir
drawbacks.

Secton 3.2 presents the current approaochdiscovering closed frequent
itemsets from highdimensional data.

Section 3.3 givesmexampe of an algorithm that proposéke search for
large cardinality closed itemsets in highmensional datasets

Section 3#4 considers aralgorithm that searchedosed itemsetsising more
than one constraint.

Finally, Section & summarizes the chaptend concludes by poing out the

gaps in thditerature that will be addressed in thisesis.
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3.1 Column Enumeration-based $rategy

3.1.1 Apriori-based Bottomup Search

The ewumeratiorbased strategy delivers numerical information in the form of
counts for indivdual items or events retrieve@Brown, 1995). A column set
enumeratiorbased strategy explores dataset according to itdsem value. The
earliest frequent itemset mining algorithm that employed this strategy was the
Apriori (Agrawal et al.,1993. The Apriori algorithm enumerates the frequent
itemsets in ascending order of size. Thsireeration approach is termadbottom

up search. Figure 3.lllustrates an exampl®f the bottomup column (item)
enumeration treesshowing all the item combinats of the dataset in ke 2.1from
Chapter 2.

ab abc i: abcd —>» abcde

abe
a abd — abde
abe
ac Y acd — acde
ace
ad —» ade
{} .
b bc Y bcd — bcde
bce
bd — bde
be
c Y cd — cde
ce

d —> de

e

Figure3.1 Bottomup column enumeration tree
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Apriori traverses the column enumeratimee usinga bottomup searchn
breadthfirst order. This means that each level of ttee must be fully explored to
discover frguent itemsets before movingtorthe next level. The algorithm implies
that frequent itemsets are mined through an iterative-igisel approachbased on
candidate generatiorCandidate itemsetsefer to the itensets generated whose
supports are counted during the process of discovering frequent itemsets. Therefore,
to identify entire frequent itemsets, all possible candidate itemsets must be tested.

However,as in realitthe number of existing candidate iterssean be huge
and thereforgidentifying all candidates for these itemsetsbisth challengng and
time consuming, anduns into the problem of achievirggalability. To reduc¢he
search space for candidate&priori applies theanti-monotonic or downwad
closureproperty, which defines an itemsat frequentf andonly if all of its sub
itemsets are frequefgrawal et al..1993. This means that all of the supersets of

an infrequent itemset fourdb not have to beonsidered.

Definition 3.1 (Anti-monotonic)Given a dataseT;, with itemsl, let U, andU, be two

itemsets such that,,a, I |, then

a,Ea,Y 21T, 31

T,

The Apriori algorithm, as presented in Algorithm 3.1, begins by first
scanning the dataset to find the frequentefinsets. It then uses the frequent 1
itemsets to generate candigldrequent Atemsets, and checkhieseagainst the
dataset to obtain the frequenit@msets, and so on. The algorithm iterates until no
more frequenk-itemsets can be generated for sdme

Apriori is a levelby-level candidatgeneratiorandtest algothm where, to
discover frequent itemset of simethe algorithm has to scan the datasetnes and
requires the checking of™A candidate itemsetSeveral frequent iteset mining

algorithms havédoeen proposed that exteAgriori in various wayswhich includes
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Algorithm 3.1:Apriori algorithm

Input : D = Datasetminsup= minimum support
Output: Fq, Fo, By, a set of frequent itemsets

F1 = {Frequent litemsets};
for (k=2, Fal Ok#++) do begin
Ck = New candidate generation frdf
forall transactiong | D do begin
C: = Candidate contained tn
forall candidatesi C,do

c.count++;
end
F={ci C,lc. count O minsup}

end

implementingthe hashing technique to reduce the number of candidate itemsets
(Park et al., 198). There are methods that attempt tduee the number of dataset
searcles by dividing the dataset into nesverlapping partition{Savasere et al.,
1995 and dynamically counting candidate itemsets of varying le(Btim et al.,
1997. Another method, proposed Bastide et al(2000 performs pattern counting
inference based on the coptef key patterns. A key pattern is the smallest itemset
that represents a group of itemsets with equivalent supportleBuisto a reduction
in the number of patterns countexs well as a reduction in dataset scaks the
focus of thisresearchis on discoveringclosed itemsets, further details of these
algorithms will not be discussed.

An example of a welknown algorithm that discovers closed frequent

itemsets usingnApriori-based search 5-CLOSE
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Algorithm 32: A-CLOSEalgorithm

Input : Datasetminsup= minimum support
Output: CFl, a set of closed frequent itemsets

Gy = {1-itemsets genetars};
support = count,)
forall generatorspi G, do begin

if (supportp) < minsup then deletg from Gy;

end
level=0;
for (i = 1;G.generato | i++) do begin

Gi+1 = Generateif1)-generators of;

if (level= 0) then level =; /I lteration number of the first prun
end
if (level > 2)then begin

G= 8{Gj | j <level- 1; I/l Those generators are all closed

forall generatorspi G do begin

p.closure =p.generator;
end
end
if (levell N begin
G'=8 {G, | ]2 level- 1; ; /I Some generators that are not close

G & Closure of generatd@s 6
end
CFI = {c.closurec.supportlci GCG'};

A-CLOSE(Pasquier et al., 199%9see Algorithm 3.2, was thdirst algorithm
to discoverclosed frequent itemsets usiagApriori-based framework. An example
of the application of thealgorithmis illustrated in Figure 3,2ased on the dataset

from Tade 2.1 The algorithm constructa s& of generators to identifglosed
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Figure3.2: Discovering losed itemsets witA-Closefor minsup=3

frequent itemsets. These generators are the smallest itehetetandetermine the
closed itemsetdased on the properties of the closed itemset lattice

During the search process, generators that have the sanwtsappne of
their subset and therefore have the same closas¢he subset are pruned. At the

end of the search, the closure of all the generators identified is obtained by

2 Properties of the closed itemset lattice have been outlined in Chapter 2.
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intersecting all the transactions that contain the generator as a subsetat®uplic
closures ar¢ghenremoved.

Apriori-based algorithms have shown good performanben applied to
sparse datasets where the frequent itemsets or closed frequent itemsdidiaed/
short. However, with dense datasets, these algorithems been shawto scale
poorly andareimpractical] because ohigh-computational costBrin et al., 1997
Pasquier et al., 199Bastide et al., 2000)This drawback isbecause of (i)
generatiornof a huge number of candidate itemsets (or generators in the case of th
A-CLOSE algorithm) and (ii) repeated scanning of the dataset and checking the
candidates by pattern matching.

3.1.2 Pattern Growth without Candidate Generation

To overcome the limitations of thApriori-based approach, Han et #2000
proposed the discovery of frequent itemsets without candidate generation through an
algorithm called FP-growth (Frequent Patterngrowth). The main idea of this
algorithm relies on @&ompact treedatastructure calledhe FP-tree which stores
only information related to the mining of frequent itemsktse. the number of
itemsets and its frequency of occurrence.

An example of thé&-P-treethat isconstructed from Table 2fbr minsyp = 3
Is given in Figure 3. The dataset is initially scanned to derive a list of frequent

items which are then ordered in frequency descending orderaéhg6), (e: 5), (a:
4), (c: 4), (d: 49. These items arstored in the header tablEhe dataset is then

scanned for the second time to build Bietree Only frequent ditemsets are stored
as nodesn order to ensurthe compactness dfie tree The nodes are arranged
frequencydescending orderso that fequently occurring nodes will haveetter
chancesn prefix sharing than otherwise. If twaatrsactions share a common prefix
node, these nodes are merged as one prefix struetulethe count of each node
associated witthe prefix is incremented his helps to preventepeated scanning of

the dataset.
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Heade table
item head of
nodelinks
b ---z2170
e o
a e
C -
d C

Figure3.3: TheFP-treefrom Table 2.1 fominsup= 3

The FP-growth algorithm is given in Algorithm 3.3The method searches
for the frequent itemsets by recursivepartitioning the FP-tree into non
overlapping subsets based on the item list. Following tlequency ascending order

Algorithm 3.3 FP-growthalgorithm

Input : Tree= FP-treeconstructed from datasBt minsup= minimum support
Output: F, a set of frequent itemsets

if Treecontains a single pat?
then for eachcombination (denoted &3 of the nodes in the pathdo
generate itemset C F with support= minsupof nodes inJ ;
else for eachtemiy in the headefreedo {
generate itemset =i, C F with support = {.support;

constructb s conditional Upattenditbeas
Tree;

if Treesl 1

then call FRgrowth (Tree; U }
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of the item list, the algorithm begins with each frequent ledgtemset as theuffix
item It then traverses thEP-tree by following the link of each frequent item that
co-occurs with the suffix item. The collection of &lequent itemsetso-occurring
with the suffix itemforms the conditional pattern baseThe FP-tree constructed
from the conditional pattern base is called tbeditional FRtree

FP-growth is achieved by concatenating the suffix item with the frequent
itemsets generated from the conditioRBHree The suffix item of lengtl itemset
will then be used to continuously generate those ajldngth equal to 2, and so,on
until the conditionalFP-tree contains only one single pathom which frequent
itemsets can be directly generat@able 3.1shows the conditional pattern base and
conditionalFP-tree of Figure 33 for every suffix item.

As an examplejn Figure 33, (d: 4) is the suffix item with the smallest
number of support after item ordering. Thare 3 branches that-@zcur with item
d. These branches are the conditional-database related to suffix iteth The
conditionalFP-treefor itemd consists ofa(b: 4), (e: 4), (a: 3), (b, e: 3), (b, a: 3), (a,
e: 3), (b, e, a: 3, and all the combinations of frequent itemsets that consistasf

its component are {(d : 4), (bd : 4), (ed : 3), (ad : 3), (bed : 3), (bad : 3), (aed : 3),

Table3.1 Conditional pattern base and conditionattFdes for each suffix item

item conditionalpatternbase conditional FPtree

d {(b,e,ac:1), (be,a:2),(b,c:}l) {(b:4),(e:3),(a:?3),
(b,e:3),(b,a:3),(ae:3

(b, e, a: 3)d
C {(b,e,a?2),(b,e:1),(b:3 {(b:4), (e:3),(b,e:3)}c
a {(b, e: 4} {(be:4)}a
e {(b:5) {b:5)}e
b @ %]
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(bead : 3)}.Several closed frequent itemset mining algorithms have baesedeas
extensions tahe FP-growth method that maintaithe discovered itemsets using the
FP-tree structure or in a patterinee similar toan FP-tree These include (i)
CLOSET (ii) CLOSETH (iii) FP-Close (iv) AFOPT.

(a) CLOSET (Pei et al., 2000identifies the closed frequent itemsets by
performing a deptifirst search on thEP-tree. The algorithm appliethe
single prefix path compressiadechnique which searches for a single
prefix path in theFP-tree in which closed itemsets can be directly
extractel from the conditional pattern base. As an example, afor
conditional database in Tablel3its correspondingP-treehas only one

branch:((b: 6),(e: 5)), hence the closed frequent itemsets, (abe : 4) can

be directly enumerated. The discovery loised frequent itemsets is then
continued byrecursively buildinghe conditionalFP-tree andidentifying
the supersetof the remaining itermets that appeain every transaction
before checking the subset of the particular itenGEOSEThas shown
to be nuch faster than Apriofbased A-CLOSE algorithm on dense
dataset when the minimum support threshold is(leai et al., 2000

(b) CLOSET+ (Wang et al.,2003 introducesa hybrid treeprojection
method which builds the conditional pattern beepenéhg on whether
the dataset is sparse or dengbe algorithmalso proposed twasubset
checkingtechniqus to determine if a discovered iteshs a subset of an
already found closed itemset candidate with the same support. For dense
datasets, wo-level haskhindexed result trees applied where each level
usesthe ID of the last item and the support of the current itemset as the
hash key. Eeh closed itemset discovered is inserted into the result tree
and the length of its path is recordéd contrasto theFP-tree structure,
the support of a node is replaced tne maximum valueamong the
support of closed itemsets sharing the common prefror sparse

datasets, the subsetecking is applied on the global prefree because
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the result tree is not very spaeHicient. All the nodes of the tree and
their corresponding prefipath can be traced by followirtge sidelink
pointer recorded ints header table. Therefore, a closed itemset is
obtained using the upward subsbecking to see whethdrappears in
each prefix pathvith respect tdhe prefix itemsetCLOSET+shows that

it is an order of magnitudegaster and consumes less memory rtha
CLOSETat lower support threshold€LOSET+is alsomore scalable
than CLOSETas the number of rows increas@¥ang et al., 2003
CLOSET+has the advantage of applyidgferent methodologies prior
to the characteristics of the dataset whether it issspar dense.

(c) Grahne and Zhu2003 introducedthe algorithmFP-Closeto discover
closed itemsets by constructingGFl-tree (Closed Frequent ltemset
tree). LikeCLOSET+ during the insertion of a closed frequent itemset,
the supportcount of the nodes ithe CFl-tree is replaced by the current
maximal supportcountfor the related itemseEFP-Closealsoperforms a
similar subsethecking technique t€LOSET+with the differencethat
the algorithm also considers thepportcount of the itemset. Theuppot
count of each item in the list mube equal tQ or greater thanthe
supportcount of the itemsetefore ensuring that it is not a subset of
another itemset with the same support vakie-Close shows similar
performance at lower support thresholdscampared to the algdhims
selected in Grahne and Z2003) The reason for this is th&P-Close
generates more naslosed frequent itemsets hence increases the amount
of time needed to check for closed itemsets. HowdwiCloserequires
less amount omemory due to the compactness of the constructéd
tree

(d) Liu et al. (2003) introducedthe algorithm AFOPT, which stores closed
frequent itemsets in a tree structure call€tbadensed Frequent Pattern

treeor CFP-tree The algorithntraverses the tre@a bothatop-down and
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bottomup manner. Each node of théP-treeis a variabldength array

in which items in the same node are sorted in frequency ascending order.
The CFP-tree has two properties: (Ihe left containmenproperty that
ensureghe itemsof an itemsetanonly appear in the subtrees pointed

by the itemset ofrom previousitemses in the treg (2) the Apriori
propertyensureghatthe support ofany child nodes of &FP-treefor a
particular itemsetcannot be greater than the suppdittiat itemset.
AFOPT performs supersathecking of theCFP-tree based on these two
properties. Superseheckingensureghatan itemset is a closed itemset

if all of its superset havea lower support threshaldhe algorithm also
performs subsetheckirg by applying a twdayer hash map similar to
CLOSET+to check whether the itemset is closed before searching the
CFP-tree The hash map contains the item and the maximal length of the
itemset mapped to iA closed itemseis discoveredf any of the iters it
mapped to contain a lower value than its len@fROPT shows that the
algorithm scales well as the average transaction length increases as
compared to the algorithms selected in Grahne and (Z2803) The
algorithm demonstrates better performanceemmns of running timeon
dense datasettue to its adaptive nature and the efficiency of the subset
checking technigue AFOPT is also memory efficient due to the

construction of the compaCi-I-tree

The high compression ratio of tk®-treehas contribute tothe reduction of
the seares space for discovering closed frequent itemsetgpecially in dense
datasets. In addition to the breaditist order applied in thédpriori-based approach,
the search for frequent itemsets from tHe-tree can be made ira depthfirst
manner. This means that the supports of all descendant itemsets of a node are
determined before determining the frequent extensions of other nodes in the column

enumeration tree. Thus, the defitlst search strategy quickly tends to find the
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longer itemsets first in the search process and the branches of a node is searched
only if the itemset is frequent. Hence, the strategy is able to reduce the processing
time by cutting down the search space that contains itembetls donot satisfy the

desired threshold. However;P-tree based algorithms are unable to give good
compression for long itemsets. Building tRE-tree will require a larger amount of

time and memory spacespecially for datasets with large number of columns

(items).

3.1.3 Exploring the Vertical Data Format

Datasets for mining frequent itemsets are generally represented in a horizontal
format with each row correspondirig a list of items (i.e.,fd:itemse}), whererid

is therow-id anditemsetis the set of items imow rid. A study by Zaki (200Qa)
proposed an leernatively representation of the datasghich shows thathe row
information can also be recorded in a vertical data fariifa vertical data format

IS an inverted representation of the original dataset. It is gendrmatechnning the
datasetand builds theowsetof each single item where the identities of tbess
containing the item are listed (i.eifgntrowset). Table 32 shows an example of

the vertical representation of the transactional datem®tTable 2.1 Theadvantage

of applying the vertical data layout is that there is no need to scan the dataset to find

Table 3.2: Example of the vertical data format for transactional datase

ltems Tidset

a 1345

b 123456

(o 2456

d 1356

e 12345

52



CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

the support of K + 1)itemsets for k2 1). This is because th@wsetof eachk-
itemset carries the complete information requiradcfunting such support. Hence,
computing the supports is simpler and faster.

An example of the algorithm thatilizes the vertical data format to discover
closed frequent itemsets iICHARM (Zaki and Hsiao, 20%). CHARM
simultaneously explores both themset andowsetspacein a depthfirst manner
on a dual itemseidset search tredT(-tre€). In addition to the itemset valueach
node inthe IT-tree also represents it®wset value. Theowsetof the corresponding
(k + 1)itemsets is obtained by ersecting theowsetof the frequenk-itemsets. The
process reps, until no frequent arandidate itemsets can be found.

The closed itemsets are identified using tlepair (ItemsetTidset pair)
properties proposed in the stuayade by Zaki and Hsia@0b). In addition, a hash
function is appliedo the rowset value by performing the sums of rids in the rowset
to quickly identify the closed itemsets.

The drawbackof the vertical data formaarethat it consumes a lot memory
to store large cardinajitrowsets and increasingiumber of rowset intersectisn
CHARMattemptgo reduce the size dfieintermediate rowsdhroughdiffsetwhich
keers track of the differences in rids of the candidate itemsets from its parent
frequent itemsetsThis hadedtoani ncr ease i n the alegoori thmos
the less number of rowset intersection

CHARMhas shown that it performs better thaatterngrowth basedlosed
itemset mining algorithmssuch asA-CLOSEand CLOSET It is several orders of
magnitude fater thanA-CLOSEand CLOSETat low support threshadd CHARM
also scales well, having linear increase in running time with increasing number of
transactions. One of the advantage€bBfARMis that thediffsetformat is resilient
to sparsity.However,if the dataset contains many short itemsetstittsetdiffsets
operation iINCHARM can be expensive. Als&HARM is a columrenumeration
based algorithm thagerformsthe search usintipe Apriori-basedapproachwhichis

known togenerate lagge number of candate itemsets.
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3.2 Row Enumeration-based Strategy

In contrastto the transactional data, higimensional datasetsay containl0 K i
100 K columns or tems but usually have only 100 1®00 rows or transactions
(typically a difference of a fewerdersof magntude) Column enumeratichased
mining algorithms described above typically betiie search for closed frequent
itemsetswith small itemsets that appear frequently and uses these intermediate
results to build larger and larger itemsets. This strategyemerally effective for
datasets with the characteristic of havegelatively large nhumber of rows arad
relativelysmallernumber of columnshence the term colurrenumeration search.
Datasets with relatively many more columns than rows presf@intency
challenges fomlgorithms that sarchbased on the column valu€ghis is because
the number of possible column combinations is extremely, hagid hence
correspondinglyncreaseshe search space size. For ttdasona high-dimensional
dataset is a@nsideredto be dense. Therefore, enumerating the closed frequent
itemsets by considering the respace €.g. experiments) rather than the column

space €.g.itemg should bamore effective.

3.2.1 Bottom-up Search
CARPENTERwas the first algorithm to adopt ttegproach of mining the closed

frequent itemsets in higlimensional datasets using the row enumeration space in
bottomup manner(Pan et al.2003. The bottorup search strategy of the row
enumeration space implies that the dataset is seasthethgfrom the smallest
rowset value and builds largerrowset valuesduring the process. Figure 3.4
illustrates an example of the row enumeration tree that lists abbwset values in
bottomup order. Unlike the column enumeratibased search tree, the nodes of the
row enumeration tree are now viewed as a set of row valoesdt) as opposed to
a setof column (itemset) value.

The algorithmintegrates the adntage of vertical data formatdki, 200@)

by transposing the datag®ioult et al.,2003 so that theowset is viewed as a set
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12 123 1234 —> 12345
~ 1235
1 124 —> 1245
125
13 i: 134 —> 1345
135
14 —> 145
{} 15
2 23 i: 234 ——> 2345
235
24 —> 245
25
3 34 —> 345
35

4 — 45

Figure 3.4: Bottorrup row enumeration tree

of rows. In contrastto the column enumeratidmased method which performs
intersection on theowset values of the transposed table, row enunoerbised is
driven by intersecting the itemsets in order to discover the closed frequent itemsets.
CARPENTERappliesa depthfirst search of the row enumeration tree. The
algorithm recursively constructs conditional transposed tables where each computed
conditional transposed table represents a node in the row enumeration tree. Each
conditional transposed table contaibsms that exist in the conditionalowset
along with rds of theitems that are larger than any of the conditiamaset.
The advantag of the conditional transposed table is that once a closed
itemset is discovered for that particutawset, further checking on the node for the

rowset valueis unnecessaryAn example of a conditional transposed tabit,
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Table 3.3: Conditional transposed taﬂﬁhg, 3,4}

Item | Rowset
by 5
Co 5

wherex = {2, 3, 4}, from Tale 32is as shown in Table3.Asrid 5 occurs in each
tuple of T'}2.3.45, 1C2 = {2, 3, 4, 5}is a closed itemset.
Study shows thaEARPENTERerforms bettewith respect to rutime than
CHARMandCLOSET as the minimum support threshold varies (Etal.,2003.
This is due to the fact that the increase in the column enumeration space tbads to
decrease in the performance of the coleenomeration based algorithm such as
CHARM and CLOSET CARPENTERalso is 100 times faster thadHARM and
1000 times faster tha€LOSET as the number of length ratio of the dataset
increases.
There are severalgorithms that have their basis@ARPENTERdeas, and
these include: (IFARMER (ii) TopKGRS(iii) COBBLER
(&) FARMER (Cong et al.,20048) was particularly designed to findall
associatiorbased classification rulelsy row enumerationThe algorithm
searches the row enumeration tineelepthfirst order to build @&ssifiers of
the formXY C, whereC is a class label andis a set of attribute Hence it
requires aluplicate othedatasetin order to classifythe | assesd i nf or ma
prior to mining. The method is supported through the transposed,tables
taking into account class infoiation. Thus, each itemset in the transposed
table is enumerated according to @ositive and negative clas$n this
particular algorithm, the association rules discovemetrequiredo satisfy
more than one constraint suchsagport confidenceand chi-square(Cong
et al.,20048). FARMERshows that it is 2 to 3 orders of magnitude faster
than ColumnE(Bayardo and Agrawal, 1999) ailtHARM as the minimum
support threshold decreases (Cong et28l04n). This is becaus&ARMER
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depends on the number of row combination of the-digiensional dataset
as compared tthe number of column combinationgade byColumnEand
CHARM

(b) RERII(Cong et al., 2004) extracts all closed frequent itemsets by searching
the rowenumeration space depth firshe algorithmbegins by removing all
infrequent litemsets from the dataset. Each row value of the sibling nodes
in the enumeration tree is then intersected with one another, iteratively
generating sulitemsets of greater pport. If the subtemset is equal to the
parent itemset, the support of the parent itemset increases. This continues
recursively until no smaller itemsets can be formed or the branch of the sub
itemset is equivalent to the parent itemset. All the closeguent itemset
that donot satisfy theminsupthreshold are prune®ERIIhasbeenshown to
be fasteiin terms of runtimehanthe column enumeratichasedalgorithns
CLOSEF and CHARM at low support threshoddfor similar reasog as
with  FARMER The aborithm also performs -2 times faster than
CARPENTERonN the test datasetince it does not require building the
conditional transpose@dbles(Cong et al., 2003).

(c) Similar toFARMER TopKGRSwas designed to discover a set of rule groups
(Cong et al., 200). The algorithmuses a preference selection specifythe
number of top covering rule groups (tkp in orderto reduce the number of
rule set. By implementing the tdp TopKGRSas shown to be 2 to 3 orders
of magnitude faster thaRARMERespeciallyat low minsupthreshold. This
is becaus&ARMERdiscovers a large number of rule groups at foimsup
as compared to the restricted number of rule groups obtain@d@¢GRS
Theruntime of TopKGRSmonotonously increase with increasing valudk.of
The impovement in the runtime is alstueto the implementatiorf the
compact prefixtreein the algorithm(Cong et al., 2005)

(d) COBBLER(Pan et al.2004 employs dynamic evaluation of closed frequent

itemsets by combining both the bottamp rowenumeration and bottcump
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columnrenumeration approachdepending on the dataset characteristics.
Similar to CARPENTERCOBBLERperforms a depthfirst traversal search

of both trees by recursively constructing several conditional tabded
conditional transposed tables. Each caooddl table represents a column
enumerated nodevhile each conditional transposed table representsva ro
enumerated noddhe changdérom row enumeration to feature enumeration

or vice versa is decided through evaluating a switching condition. The
objective is to estimatthe enumeration costs for the smbes and selecting

the smallest one from both stiees, i.e. column or row based. The
enumeration cost is estimated from two componeftbe treeits size and

the computation cost at each node of the tree. The size of the tree is based on
the estimated number of nodes it contaimkile the computatiortost at a

node is measured using the estimated number of rows (features) that will be
processed at the node. The advantage of this strategy is that each portion of
the dataset can be processed using the most suitable me¢inocd making

the mining more fficient. Experiments show that at highaninsup
threshold, when the dataset needs to consider large nigrdjerows as
compared to the number of columns, column enumeriised algorithms,
CLOSET+and CHARM performs better in terms of runtime in mosttioe
caseslf theminsupthresholds reduced COBBLERperforms better in terms

of runtime. The effectiveness oCOBBLER has been demonstrated in
experiments on a datasetith both a relatively large number of rows and
columns(Pan et al.2004).

(e) MAXCONF (McIntosh and Chawla, 20D applied the row enumeration
based bottorup search to discover closed itemsetsgigdhe confidence
measures. This algorithm arose from the observdahiahimplementing the
support threshold has lead to the pruning of many interesting unknown
itemsets that could provide high confidence sulehe algorithmproposed

two confidence pruning ntieods,which resultsin MAXCONFto scale well
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with the changes in the confidence threshold. It also shows that it could
discover interesting rule groups with high confidence as compared to the
supportbased algorithmRERII (MclIntosh and Chawla, 20

As stated in the previous chaptensining closed frequent itemsdiased on
the support constraint as the search thresimaldnsdiscoveringclosed itemsetthat
containlarge rovsets.Thereforethe mainrestrictionof the bottoraup approach is
the size otherowset.As it is monotonic in terms of the botteap search order, it is
hard to prune the row enumeration search space early. For example, suppose the
minsupis setto 3, although all the nodes in the first two levels from the root
obviouslycannot atisfy this constraint, thesedes still need to be checked (Pan et
al., 2003 Cong et al.2004a Cong et al., 2004bHence, asninsupincreases, the
time needed to complete the mining processs notdecreaseorrespondingly or
rapidly. This limits the application of this kind of algorithm in real situations. In
addition, the inability to prum the search space earlier addsthe increase in
memory cost For examplethe CARPENTERalgorithm need to save many-
conditionaltransposed tables in memory during the mining process. For a table with
n rows, the maximum number of different levels of transposed tables in memory is
n, although amonghese the first minsupl) levek will not contribute o the final

result.

3.2.2 Top-down Search
To take advantage of the support constrdint,et al. (2006 proposed that the row

enumeratiortree is traversed in a tegpwn mannerA top-down search implies that
along each path of the tree, tteavsets are check from large to small ones. Given a
minsupthreshold, for a dataset witlhirows, the search for closed frequent itemsets
endsfor levels greater tham{minsup in the row enumeration tree.

Figure 3.5shows an example of the tolown row enumet&on for 5 rows
from Table 2.3 Each node of the tree represent®aset value. The level of root

node is defined as 0, and the highest level for a datasenhwaths is (-1). Suppose
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1
123 12 < ,
1234 13 —» 3
23
124 Y: 14 —> 4
24
134 — 34
12345 2‘;’4
1235 125 15 — 5
N 25
135 — 35
235
1245 145 —» 45
245
1345 —> 345
2345

Figure 3.5: Topdown row enumeration tree

the minsup = 2, a further search is stopped at level 3, becathse rowsets
represented by nodes at level 3 and 4 will not contribute to the slesefl frequent
itemsets
Two examples of the algorithms that apply the-dogvn approach are:)(TD-
Closeand (i) TTD-Close
(a) TD-Close(Liu et al.,2006 was the first algorithm to implement the top
down approach of the row enumeration tree. Simila&CARPENTER TD-
Closeemploys an arrapased data structure by performing-slivsion of
the itemsets using conditional transposed tables. Eachtablé
corresponds to a node in the row enumeration tree. The conditional
transposed table is called arexcludedtransposed tablewherex is a
rowset,excluded from the tabl@he algorithm finds lathe items from tle

transposed table that contdhre rowsetid, rids, greater than the specified
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rowset valuey, but only items which containds less thax areretainedin

the x-excluded transposed tabl®uring this process, items that do not
satisfy theminsupconstraint are discarde®ased on Definition 2.11, a
rowset is closed if a larger rowset value containing the same itemset does
not exist. To satisfy thicondition, TD-Close performs a tracéased
closednesshecking methody keeping track of the rids excluded during
the intersection of the itemsdtlence, to facilitate the search for closed
rowsets, a column value is added to thexcluded transposed fabcalled
skiprowset The itemsetthat occur in the sanm®wset are merged and at
the same timgthe intersection of the skipwset valusis performed. The
itemset which producesn empty skiprowset during the merge is a closed
itemset.Experimental esults demonstratiaat TD-Closeis faster thark-P-
Close and CARPENTERIn terms of runtime as theninsup threshold
decreasesThe ability of the topdown search of the row enumeration tree
to prune the search space that does not satisfyitmsupthreshodl earlier
adds siginificantly to the running time of the algorithm. Because of this,
TD-Closeconsumes lessiemory as compared tobottomup approach in
CARPENTERON the other hand;P-Closeis a column enumeratielmased
algorithm which requires an expliwe number of frequent itemsets that
need to be checked.

(b) The TTD-Close(Liu et al.,2009 algorithm a developmenof TD-Close
representshe dataset using a tree data stitetas opposed to the flat table
in TD-Closeto perform the search for closed frequent itemsEt® main
advantage of using this approach is ti&ttree structure provides a more
compact representation of the dataset. The tree strutéuneedFR-tree
(Frequent Rowsedree) is similar to the representation of th-tree (Han
et al, 2000). The differences between the trees are that instead of
representing the nodes with the item valbB-tre€), each node of thER-

tree is represented with thed vdue and the nodes in tHeR-tree are
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linked through a parent pointer instead @ child pointer (FP-tree). An
additional structuretermedIP-List (Itemset Pointer Lisf)is addedto the
FR-tree and contains information that assists in the discovery lo$ed
frequent itemsetsAn example of theFR-Tree and thelP-List for the
transposed tabl€ of Table 2.3 is shown in Figure 31@-List is similar to
the xexcluded transposed tabte TD-Close The difference is thahstead
of using the excludedowset x during recursion, the algorithm uses the
rowsets which danot containx. The IP-List consists of four partgi) a set

of pointers each of which represents an itemset and points to a node in the

FR-Tree

IP-List
itemsets (pointer)l a; | & | by | ¢ | di | dh | &

explicit rowset| {1, 2, 3, 4, 5}

implicit rowset u

cMinsup 2

Figure 3.6.FR-TreeandIP-List
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FR-Tree (i) an explicit rowsetwhich contains severalids that may
represent the itemsdtii) animplicit rowsetwhich representsds that exist

for the particular itemset an@/) the current minimum support threshold
cMinsup The recursion path of TD-Close follows the changes in the
explicit rowset. Kperiments conductelly Liu et al. (2009 demonstrate
that TTD-Closeprovides the least runtime as compared to the algorithms,
TD-Close FP-Closeand CARPENTERTTD-Closealso ®nsumes the least
amount memory during mining for closed itemsets. This is becaDse
Close needs to build severatexcluded transposed tabléeSARPENTER
needs to deal with rowsets trae smaller than theninsupthreshold and

FP-Closeneeds to build meFP-trees.

However due to the density of highimensional datasgt the row
enumeration based strategy sélicaintersexponential space size with respect to
the number oftemsets As the frequency threshold gets smaller, the time required to
find closed frequentémsets dramatically increases (Liu et 2009. Even with the
various search strategies proposed, these algorithms still encounter challenges
mining relatively large itemsets. This is becauiee previous search processes
require the generation ofan explosive number of small frequent itemséisnce

taking much of the memory space to store large frequent ones.

3.3 PatternFusion: Mining the Colossal Itemsets

Assogation mining tasks usually give greater importance to itemsets thhigger
in size especially in areasuch adioinformatics.These long cardinality itemsets
aretermedcolossal itemset&Zhu et al. 2007).

The concept of@ossal itemseatwasfirst introduced byZhu et al.(2007) in
an algorithmbased orpatternfusionfor finding a measurablygood approximation
to the enumeratiorof all colossalcloseditemsets in highdimensional dataset¥he

algorithmtraverses the treaccording to theolumn (item) enumeration. However,
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instead of traversing each node of the tree, it rarmigaliscovers large cardinality
itemsets by merging the small cardinality candidate frequent itemsets selected.

These small cardinality candidate itemsets are knovwor@spatterns

Definition 3.2 (Core Pattern)For a patter, an itemsetb | a is said to beJcore

. T o . . :
pattern ofU if |_I_—"*| 2 t,0<UO Uis called the core ratiandT is the transaction
b

dataset

PatternFusionbegins by generating a desired set of small frequent itemsets.
Based onthe userspecified maximum number of itemsets to be minamdom
selections otorepatternsaremadefrom the generated small frequent itemsats
the itemsets thadatisfythe core ratio for each core patterns are then combined to
produce larger candality itemsets.

The concept o core patterrwas proposed in order to provitlee ability for
the algorithmto skip alarge number of frequent itemsetienever possiblehisis
becausehte growth of eacltemsetis not performedy adding one item ehdime
butby an agglomeration cdelectednultiple itemses. Hence PatternFusionis able
to traversedown the search tree much more rapidly toward the colossal itemsets.
Zhu et al.(2007) alsostated thatolossal itemsets exhibit robustnessthe sense
that if a small number of items are removed from the itemset, the resulting itemset
will have a similar support set. This is based on the relationship betweenb#& sup
set of a colossal itemset and those of itsigeinses: the larger the itemset size, the

more prominent theobustness observed.
Definition 3.3 (( d rRobustnessA patternUis (d, J-robust ifd is the maximum

number of items that can be removed froifor the resulting pattern to remairCa

core pattern o€l
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As the number of colossal itemsets discoveredarmsapproximation of a
complete soltion, Zhu et al.(2007) also proposedraevaluation model to assess the
quality of mining results against trmplete setThis modelprovidesa way to
measure the goodss of an approximate solution against a complete solbion
measuring the distance between two arbitrary itemsets.

Several studies conducted on both synthetic and real dathssts
demonstrated thaPatternFusion is able toprovide a good approximatiorior
discovering colossal itemsets in datasets. Unlike existing frequent itemset mining
algorithms,PatternFusion skips the need to examine a large number ofsmadd
ones. Interestingly, their experimental results were presend a minimum
support hresholdas thex-axis whereby the running time fératternFusionis 10

times faster at lower support threshold as compared to the selected algorithms.

3.4 D-Miner: Mining the Constraint-based Concept

Another approach in mining high-dimensional datases to find a formal concept
(FC) (Dong et al., 2005). Given a 0/1 matrix, a formal concept is a subseb\ws
and| columns such that all the matrix entries in one of theows andl columns
contain a 1. Such a row and column subset is calledeatangk. If the rows were
rearranged so that all of tlkesubset rows appeardidst (i.e., in rows 1 througlk)

and all columns were rearranged so ttatlumns of the subset appeared in columns
1 throughl, the uppeteft k by | rectangle of the matrix woulcbntain all 1 entries.

A closed itemset may be considerextalumn subsets and the collection of support
asa row subset.

Besson et al(2009 have applied the mining of (formal) conceptssing
constraintson highdimensional datasetwith the D-Miner algorithm The high
dimensional datases initially tranposed and is represented usaginary format
(Table 3.4)where the values in the dataset are represented as Tloe Algorithm
begins with thelargest cardinalityitemset and the largest cardinalityowset that

represents the dataset. This seiterihsets androwsets are calleda bi-set D-Miner
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Table3.4 Example of the binary representation of dataset

tl1 | t2 | 3
all1]0]1
b| 0] 1]1
c|1]1]1
d| 1]0]0

perfoms a deptHirst search of concepts by recursively splittithg initial biset

into smallerbi-s et s t hat d ovalues.The divisiont o then beeisOiso

made usinghte elemers t hat are found in the dataset
Theseelements arecalled cutters The result of each divided Bets contains a
conceptof an itemset withoutar o ws et val ue ofofé@mlwsetand a
withoutani t ems et value of A0O.

Figure 37 shows an example of hof@-Miner discovers the conceptsing
the binary representation of the dataset shown in TaBlerhe search begins with
the largest itemset (a b ¢ d) and rowset (t1 t2 t3) valoe first cutter, (a, t2), which
is represented in a box, is identifitdm the datasedsit is representedvi t h a A 00
value. The cutteis thenused to divide thdirst bi-ses into further sukbi-ses. The
methodrepeats until there are no more cutters which leave the concepts representing
a Irectangle All the discovered concepts are shown in the lagt dinFigure 37.
However,bi-set (cd t1) (highlighted in bold)s not a concepasit is a subset of the
bi-set (acd, t1).This is done through comparison with the existing concepts
discovered.

As stated previouslyentire conceptéor closeditemsets}thatexist in thehigh-
dimensionaldatasetare unlikely to be discoveredThereforeto reduce the search
spaceD-Miner attemps to discover concepts that satigfyo constraintsbased on
the length of the rowsetas well as the length of the itemsets disred. The
performance oD-Miner has beercompared tocCLOSETand CHARM using the
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(abcd, t1t2t3)

|

(a, t2)

(bcd, t1t2t3) (abcd, t1t3)
(b, t1) (b,~ t1)
(cd, t1t2t3) (bcd, t2t3) (acd, t1t3) (abcd, t3)
d, 12t3) d, 12t3) d, 12t3) d, 12t3)

(c, t1t2t3) (cd, t1) (bc, t2t3) (bcd,@) (ac, t1t3) (acd, tl) (abc, t3) (abcd,Q)
Figure3.7: Discovering the concepusingD-Miner

support threshold. kburprisingly D-Miner performs better than these two
algorithms on highdimensional datasetsspecially at lower minimum support
threshold(Besson etlg 20095. The resultof the studyalso show thabD-Miner has
gain significant decrease (as high as 97%dhm total closed itemsets discovered
when applying more than one constraint. Herthes shows that the algorithm is
useful forthe discovery of particular group of closed itemsets satisfying specified

constraints.

3.5 Summary

This chapteroutlines the streegies to discover closed frequent itemsetih
examples of the algorithnas well as quantitative comparisand discussionsfahe
drawbacks of the methodghenapplied tohigh-dimensional datasets.

From the foregoing, it can be concluded that:
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1 A column enumeratioiibased search strategy is suitable for dasaibett
containsa relativelysmaller number of columns or items. There are three
basic methodologies described under this strate@y Apriori-based
generationthat produces candidate itemsetsanlevetwise manner.An
example of the algorithm using this generation method-@lose (ii) the
Patterngrowth methodthat mines the complete set of frequent itemsets
without candidate generatioExamples of this type of algorithm include
CLOSET CLOETH+, FP-Close and AFOPT, and (iii) Vertical dataset
representatiomn which each item in the dataset is represented with a set of
row values An example of the algorithm using the vertical data
representation iEHARM

All these methods dapt a bottomup search of the column
enumeration tree. For highimensional dataset, the characteristics of the
dataset of havin@ relatively smallernumber of rows and relatively large
number of columnsmeans thatthe columrenumeration based methods
require a considable amount of resourte search the itemset space.

1 A row enumeationbased sarch strategy is suited to mininigmsetsin
high-dimensional datasgtlue to the fact that it searches the rowset space.

o The initial approach of the search was to travetse row
enumeration tree ira bottomup manner. By using the support
threshold, traversing the row enumeration tree botipndoes not
take advantage of the constraint. This is because the method has to go
through all the nodes ithe levels of the tree & donot satisfy the
constraint and discardthem Examples of algorithms using the
bottomup row enumeration search a@ARPENTER FARMER
RERIL TopKGRSCOBBLERandMAXCONFE

o The topdown search strategy takes advantage of the support
thresholdby discoering itemsets beginning from the largest rowset

value (the most frequent)However, by applying the support

68



CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

constraint the strategy struggles to reach the large cardinality itemsets
that exist at the lower end of the support thresh&kamples of
algorithms within this category afED-Closeand TTD-Close
1 ThePatternFusionalgorithm isan example of an algorithm that attemiats
discover large cardinality (colossal) closed itemsets by approximating the
number of colossal closed itemsets generated. Hawaperoximating the
number of colossal closetémsets discovered might lesdmissing some of
the colossal closed itemsetisat are of value. In addition, experimental
resultsshow thatusingthe minimum support threshgldhisesthe question
i Watist he maxi mum Oc ol os sttatthé algordhheae of t he
discoveP 0
1 D-Miner applies more than one constraint to discover the closed itemsets in
high-dimensional datasets. However, the objective of the algorithm was to
discover only a group ofl@seditemsets that are of interest
In the next chapter (Chapter 4he limitations of the approaches as stated

above, will be address through a new proposed algorithm.
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Chapter: 4

DisClose Mining Colossal Closed Itemsets

This chapter presents the propdsalgorithm which has been developed to
efficiently discover the colossal closed itemsets from-diighensional dataset

Section 4.1 providean overview of the steps taken in order efficiently
discover the colossal closed itemsets from ‘dghensioml datasets.

Section 42 introduces the approadio discovering large cardinality closed
itemsets from higldimensional datasetThe section continues by describing the
implementation of the transposition operation on the original dataset. An example of
the input datasetas well as its transposed versias also given. In addition, the
proposed user defined threshold is describeudingthe definitions and examples
of colossal closed itemsets.

Section 43 introduces and defines the closednessckng approach
proposed. This section includes examples and proofs that demonstrate the
correctness of the method.
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Section 4 introduces the proposed data structure that enables efficient search
for colossal closed itemsets. An illustration of the stmgctaind its relationship with
the dataset is also presented.

Section 45 introduces the algorithisClose developedon the basis ofhe
search strategies, the closerelsscking approach and the data structure proposed.
Examples and proofsf the searclprocess areresented. Space and time analysis of
DisCloseis also discussed.

Finally Section 4 summarizes the chapter.

4.1 Overview

Figure 4.1 shows the overall steps undertaken in mining the colossal closed itemset
proposed in this thesi$lining for cdossal closed itemsets from high dimensional

High Dimensionh
Dataset

Minimum
Cardinalit
Colossal Itemsets <:| Threshold)-/

: Search mincard

Bottomup
Row
Enumeration

1. Discovering

Strategy l

2. Identifyin Unique
yng — Generator

Closed ltemsets

Compact Row

Colossal Closed
Tree CR-Treg

ltemsets

Figure4.1: Colossal Closed Itemset Mining Procedures
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dataset requires 2 major steps: (i) discovering the colassalsets;and (ii)
identifying the closed itemsetsSeveral strategieshown in Figure 4.lwere
proposed in order to accomplish these two main siépsse proposed strategies are

discussed in detail in the subsequent sections.

4.2 Proposed Search Strategies

Finding the most common itemsets in hidjimensional datéeads to the likelihood

of finding itemsets common to most situatiom&lg - row idsg) but which contain

only a few of the items (columnsThe computational complexity of having to
obtainall closed frequent itemsets, usually results in algorittimas struggleo find

larger itemsets It may be that itemsets common to only a few situatioms)(
which containa larger number of items (columnshay provide interesting insight

into the nature of the dataset. Therefai® discover these large closed itemsets,
rather than generating candidate itemsets and checking for the glospeety, this
study proposean approach which begins with closed itemsets (entire transactions)
that exist in the datasetvhich mayhave very small support (usually only one,
unless duplicate transactions exist). From this collection of closed itemsets, smaller

itemsets are built with higher support.

4.2.1 Bottom-up Row-enumeration Search

Extracting large itemsets involves determining the column (attribute) that has the
highest cardinality of values associated with it in the datd$e$ implies that the
search strategyan be based on a tegiown column enumeration. Figure2dshows
an example of a tedown column enumeration tree for a dataset which contains five
items {a, b, c, d, e}

However, itcan be observed that for a dataset withnumber of columns
(items), thee will also bem number of levels for a tedown column enumeration
tree. In addition, the maximum number of nodes (itemsets) that will exist in the top

down column enumeration will equal™2. For a high-dimensional dataset, the
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a
abc X ab <: ]
abcd ac — ¢
bc
abd i ad — d
bd
acd — cd
bcd
abcde abce abe i ae —> e
be
K ace —» ce
bce
abde Y ade —» de
acde ~ de
bcde cde

Figure4.2 Top-down column enumeration tree

value of m is very large i(e. hundreds of thousandd)ence enumerating the
itemsets based on the number of columns is unfeasible.

It makes sense to search for closed itemsets based owriftger ofrows
because, as previously stated, it is relatively small compared to theenuwhb
columnsin high-dimensional datase{Pan et al., 2003Cong et al.2004 Liu et al.,
2009. The largest cardinality itemset initially exists in every single row of the high
dimensional dataset (unless duplicate rows occur). Therefore, largst cbsed
itemsets begifrom the infrequent end of the support spectrum. As a result, using
the bottoraup row enumeration tree as the basighe search strategyould appear
to bemore appropriate.
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Table4.1: Example of a disctzed highdimensional dataset

tid ltem

G G =2

G L I L R =1

N (P INNIN K

N OININ PN S

g |~ (W N P
= N PN
NI NN P
= ININN N
NI NN P
NI ININ T
NN N (PN
=N PN DN
NN INdN NN
NN NN N
NN NN P

4.2.2 Transposed Table

Sincethe proposalof the methodby Rioult et al. (2003, transposition has been
widely used byalgorithms that discover closed itemsets from tdghensional
dataset (Pan et al., 2003Cong et al.2004a; Liu et al., 2009. High-dimensional
datasetsn domain such as biomedical engineering, telecommunications, geospatial
data, and climate dataesknown to be densgHan et al., 2002)A dataset tend to be
dense in that they have any or all of the following properties: (i) many frequently
occurring items; (ii) strong correlation between several items; (i) many items in
each recordRayardo et al.1999) Table 4.1shows an example of a discretized
high-dimensional dataset. Mining the closed itemsets directly from the original
dataset can be complicated. Therefore, apglyire method of transposition tbe
original dataset helps to simplify the teaction of closed itemsets in high
dimensional data. This is because when the original dataset is transposed, each
column (item) value of the original dataset will becomeow value in the
transposed tableand will be represented by a set of rowswsd) where that
particular item occurs.

Table 42 represents theansposed version of Table 4l can beobserved

that the transposed dataset provides a sparser representation of the original input
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Table 4.2: Example of Transposed Dataset

ltem Tidset
a1 1 3 5
& 2 4
by 112 ,3]4)|5
C1 1
Co 2 3 4 5
ds 3,14]5
d, 1|2
e S
e 12|34
f1 1
fo 2134|565
01 4
[07) 1 2 3 5
hy 1
h, 2134|565
11 2
i2 1 314|5
i 3 5
i 12 4
) 112,3]4|5
l1 5
I 112 |3]|4
mq 2
mo 1 314|5
n 1
n, 2134|565

dataset. As a result of this simplification, the metbbdranspositions utilised in

thealgorithmproposed hete

4.2.3 Minimum Cardinality Threshold, mincard

As highlighted in Chapter 3, it is impractical to miaéclosed itemsets from high
dimensional datasetdueto their cardinality Various types of thehold havethus

been proposed in order to reduce the search space. The most common of these
thresholds is the minimum support threshefdnsup which assists in reducing the
search space based on the frequency of occurrés=sentially, a low support
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threshold may incula combinatorial explosion in the number of closed frequent
itemsets thus limiting the search for large cardinality (or exceptional) closed
itemsets.

In this particular studyasthe objective is to focus on the discovery of large
closed temsets, the search process is stopped upon reaching a threshold parameter

value for the minimum itemset cardinalityjncard

Definition 4.1 (Cardinality) The cardinality of an itemsétrefers to the number of
items inU This is denoted ag]|.

Example 4.1(Cardinality) The cardinality of the itemseb{, &, iz, j2, ko, |2, Mp} in
Table 4.1is |{by, &, iz, j2, Ko, |2, M} | = 7.

Definition 4.2 (Colossal itemsgtGiven a minimumcardinality thresholdmincard

an itemsebis colossal if |J| midcard

The search space of the dataset can be safely pruned by using the cardinality
constraintbecause of its anthonotone property.

Property 4.1 (anti-monotong If a rowsetb hasits associateitemset,U= | (b), such

that |a| < mincard then for anyb'E & it must be thatl| (b )| <mincard

Combining the antmonotone property with the definition of closure

(Definition 2.12) ensures the followgrproperty.

Property 4.2 (at-threshold If a rowsetb has it associatedtemset,U= | (b), such
that| U mincard then for anyb'E b it must be thatl| (b }3| <mincard

76



CHAPTER 4. DisClose: MINING COLOSSAL CLOSED I'HEMIS

1Y (14):ay, by, ¢, &, &, f1, @, Iy, iz, o, ko, 12, b, 1y
12Y (7): by, G, &, G2, J2, ko, |2
123Y (5): by, &, &, ko, |2
1234Y (4): by, &, k, I
12345Y (2): by, ke
1235Y (3): by, o, ke
124Y (5): by, &, j2, ke, |2
1245Y (2):by, ko
125Y (3): by, o, ko
13Y (8):ay, bu, &, o, iz, ko, |2, e
134Y (6) bl, ©, iz, kz, |2, m
1345Y (4) bl, i2, kz, m
135Y (6): ay, by, O, iz, ko, M
14Y (7): by, €, 2, 2, ke, l2, M
145Y (4): by, iz, ke, mp
15Y (6): ay, by, @, iz, ko, Mp
2Y (14):ap, by, &, th, &, b, B, p, s, Jo, ko, I, MU,
23Y (9) bll G, &, f2’ &, hZ: kZ; |2; np
234Y (8): by, G, €, o, g, ko, I,
2345Y (6) b]_, C, fz, hz, kz, 7]
235Y (7) b1, C, fz, b, hz, kz, 17]
24Y (10): @, by, &, &, T2, y, 2, ko, o, M
245Y (6) bl, C, fz, hz, kz, 1)
25Y (7): by, &, T2, @, hp, ko, M
3Y (14):3'1’ bl, G, dli &, f2’ 92, hZ: i2; jl: k2: |2; np, p
34Y (11):by, &, i, &, fo, Iy, iz, ko, |2, My,
345Y (9): by, &, i, T, My, o, ko, M, My
35Y (12) a, bll G, dl, f21 &, hZ! i21 jl! k2; nm, Iy
4Y (14):ap, by, &, Oh, &, f2, o, My, iz, o, ke, |2, M, 12
45Y (9): by, &, dy, T2, by, g, ko, My,
5Y (14):3'1’ bl, C, dli €, f2’ @, hZ: i2’ jl: k2: |1; nmp, p

Figure 4.3: Example of colossal itemsets (highlighted in grey) fc
mincard= 7

Figure 43 showsall frequent iemsets obtained from Tablel4and the
colossal itemsstdiscovered (highlighted in grey) using the bottamsearch order
of the row enumeration tree. The size of the itemset is indicated in parentheses for

each row value and the itemset that it represents. By applyimgiticardthreshold,
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the branch exploration is stopped once the cardinality of the associated itemset falls
below the threshold value. This is described in the following example.

Example 4.2 (Colossal ItemsgtSuppose a user defines the minimum cardinality
threshotl value,mincard= 7. In Figure 43, the search space is explored beginning
from the largest cardinality itemsetJ| = 14 andt will stop when [J| < 7. A total

of 17 colossal itemsets are discovered.

4.3 Proposed Closednesshecking Method

Mining for colossal closed itemsets has two restrictions:lyirshe needo check if
an itemset i| colossal itemset and secondhe needo check if it is closed. Using
the minimum cardinality threshold in a bottarp row enumeration search takes
advantage of thérst constraint. However, discovering gnihe colossal itemsets
may leadto the production ofseveral identical colossal itemsets. This can be
observed in Figure 3, wherethe same colossal itemsetie discovered irrowses
{2, 5} with {2, 3, 5} and owsets {4, 5} with {3, 4, 5}. Producing duplicate colossal
itemsets leaslto redundancy. Although in this examplenly a small number of
colossal itemsets discovered are redundant, in real life datsehtsedundant
itemsets can occur in very large nuerd) which leads taa commensuratéelecreas
in performance

Therefore, when a colossal itemset is found, the next step is to develop a
method to efficiently identify whether it is a closed itemset. The method of
identifying whether the itemsets discoverd closed is related closely to the search
strategy proposed. Several closedresscking methods have been discussed in
Chapter 3 for example in the studies made Byahne and Zh(2003, Pan et al.,
(2003, Zzaki and Hsiaq2005, andLiu et al.,(20086.

To take advantage of the second restriciiomakingthe mining of colossal

itemsetsmore efficient, in this study a method which is based on umique
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generator is developed. To definghe unique generator, the studyegins by
providing the definitio for itemset generataandtidset generatoas follows:

Definition 4.3 (Itemset GeneratdrGiven a dataseT, an itemsetU is an itemset
generator if no proper subsatE a exists such that the supportdfs the same as
the support ot

Example 4.3(Itemset Generatdrin Figure 43, itemset P, &, j2, ko, 12} for rowset
{1, 2, 4}, with support = 3, is an itemset generatsthere are no itemsets that are a
subset off by, &, j2, ko, |2} with the same support. Itemset {le, @, ko, |2} for
rowset {1, 2, 3} is not an itemset generatsa subset of {b &, &, ko, I} E {b1, o,

ko} exists atrowset {1, 2, 5} with the equivalent support.

The equivalence class of itemsets with the same support set consists of
exactly one closed itemset, potally many itemset generato@nd potentially

many itemsets that are neither closed nor generators.

Definition 4.4 (Rowset Generatgr Given a datase®, a rowset b is a rovset

generator if no proper subs#&tE b exists such that the itemsetffs the same as

the itemset ob 6

Example 4.4(Rowset GeneratorIn Figure 43, rowset {1, 2, 3, 5} is not aowset
generatoras rowset {1, 2, 5}E{1, 2, 3, 5} also contains the itemseti{tp, ko}.
However, {1, 2, 4, 5} is aowset generatoasthere are no subsetf the rowset

value that contains §b ko}.

Similarly, the equivalence class mfwsetsh; with the same itemséi such

that | (B) = U consists of exactly one closedwset, there are potentially many
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rowset generatorsand potentially manyrowsets that are neither closed nor
generators.

It can be observed thatinlike the definition of frequent itemsetthe
definitions of generators and closed sets do not depend upon any threshold
parameter.

As stated at the beginning of Sectio,4he largest closed itemsets could
exist in an entire transaction unless duplicate rows exist. To construct smaller closed

itemsets from larger ones, the following property is used:

Theorem 1  Supposé} and(, are closed itemsets, with | U.. Let a = a, £a, .

If Uil T Widhaeclosed itemset.

Proof. There are three cases to consider:

1. Casel: g, Ea,].Observe that inseohUsi £aseclUosed i

2. Case2[a,Ea]. Observe that i nsohUsi £asecllosed i

For Case 1 and Case 2, in orderipandU, to be closed itemsets with oae
proper subset of the other, it must be the casah@yefinition of closed itemset)
thatthey have different support. However, it is known that such a situation exists.

Consider any closed itemset with support larger than one asdlectany
row r; containingl (i.e.a, E t(r)). Now considet} =t (r;}). Note that by definition
all full-rowsets are closed. Clearthis satisfies the conditions of Case 1. The rest of

the case is fundamental set theory, so the result holds.

3. Case 3]0 and(, are incomparablePDbserve thata E a, anda E a,.

In this particular case, it is demonstrated thhis a closed itemset by
contradiction. Assumingis not a closed itemsehere therexists some item

such thata, =a C{i} has the same support@slf iT a,, then all transactits
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in T, - T, are not inT,, but they are iflg. Thusi must be inJi. However, if

il a, (and not inUJ) thenil a,and the same contradiction argument applies.
Thus the assumption thiis not a closed itemset must be incorrect.

An example can bseenin Figure 43, let U, = {b1, &, &, fa, hp, ko, lo, o}
which occurs atowset {2, 3, 4} and} = {b1, &, f2, &, hb, ka, N} Which occurs
atrowset {2, 3, 5}.U= {by, &, T2, hp, ko, M} at rowset {2, 3, 4, 5} is a closed

itemset in whereby E a, anda E a,.

Every closed itemset that is not one of the transactions can be produced by
the intersection o collection of closed itemsets. Consider a closeahsetUand its

correspondingrowset b = Ty As U is a closed itemseta =1,,4,, Where
(t.,a,)I T. However, there may be many subset® ébr which 1 (b) = U If the

rowset enumeration were to perform as the control strategy for ainehsgrocess, it
is likely thatthe same closed itemsetsuld be foundnany times.

The following observatioenabls the proposed closednegdsecking method
of this study to discover a closed itemset using only one ofotheets. According
to the definiion of closue (Definition 2.12, for every closed itemséd there is a

uniquerowsetb that is a closedowset.

Definition 4.5 (Unique GeneratgrGiven the closedowsetb = {t;, t;, éty}, with
t; <t; for alli <j, the smallest indejfor whichb; = {ty, t>, €t} is a generator ob

is a uriquerowset generator for the itemdat

It is simpleto determine if aowsetb @& the unique generator. LBt= T (I
(6. If b & b, then the answer is thét ds the unique generator. #fE b, b s
determined whether it is a prefiof b when therowsets are written as lists in
ascending order. b & not a prefix ofb, thenb @an be ignored and this branch of

the search space is pruned.

81



CHAPTER 4. DisClose: MINING COLOSSAL CLOSED I'HEMIS

Example 4.5(Unique GeneratogrFrom Figure 8,66 = {2, 3} 1is a uniq
asthe clogdrowset for {1, ¢, &, f2, &, hp, ko, |2, i} = {2, 3}. However,b6 = { 2,

5} is not a unique generator. This is because the claseskt for {b, ¢, f2, &, M,

ko, i} ={2, 3, 5} and {2, 5} is not a prefix of {2, 3, 5}.

The search for the uniquenerator will requirgelatively little computation
when the number of rows is small; and this is the typical situation for- high

dimensional datasets.

4.4 CR-Tree (Compact RowTree)

To assists the efficiency of the search, a compactsestructure is bilt to store
the itemsets frorT'. TheCR-Treeis initially generated by building a set of nodes at
the first level [ = 0) of the tree which represents each column value of the
transposed tableT'. These satof nodes are connected to each column of the
transposed table through a set of pointkes link the node to the transposed table.
The construction of th€R-Treecontinuesby adding the child nodes at each level of
the tree. As the level of the tree increases, the number of child nodes decreases as
the lowest node value from the previous level of the tree is discarded. A child
pointer is then built to link between the nodes. In addition to the child pointer, an
additional node link isnadefrom the parent node to the child node that contains the
same node value. The purpose of this node link is to assist in cheeKegively
for closed itemsetsswill be further discussed in the following section.

Figure 44 shows the relationship between tB& Tree and the transposed
table T'. The structure 6 the CRTreeis similar tothe FR-Tree (Liu et al., 2009.
The CR-Treeis different inthat instead of representing each branch of the tree to a
rowset value, each node of tdR-Treerepresents a group odwset valuesin this
way, theCR-Tree becomes mre compact as one node is shared by nramget
values. Eachowset value req@sents an itemset. Figuré4hows an example of the

nodes in th&€CR-Tree representing theowset values for Table 4.2
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1] 2 3

4

5

Figure4.4: Relationship betweeBR-TreeandT!

Lemma 4.1 The CRTree nodes represent all thewset,b , val ues of

row-enumeration tree

Proof Let N = {n;, ni1,

rid value from the dataset. Lt = {m, mu,

g} ,be the set of nodes where= 1 andk is the largest

iy, be the set of child nodes where

J =1+ 1 andkis the largestid valueof the dataset. Eaaly = n; C niy; wherel = {1,
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_________ SR C R

: |:0 ! 1 2 ’ 3 7 4 4 5
R R . R R C

: 1=1 : 2 3 4 5
I {1, 2} L’ {1, 3} {1, 4} {11 5}
2.3 7 {24 , {25
s ’ {31 4}’/ {3' 5}
. , , {4, 5}
SRR : :
P {]_, 2, 3} {1, 2, 4} {l, 2, 5}
,,’ {1, 3, 4} {1, 3, 5}
) {2,3,4} - {1,4,5}
/ - {2,3,5)
R . . 5 {2, 4, 5}
1230 n2s a4 @wassy o
. {1,2,4,5}
W-- {1345
R . 5 {2, 3, 4,5}

v =4 11 2 3 45}

Figure 4.5: Nodes representing the rowsets irCiRd ree

2 , kél}. Therefore allb values are traversed unjil= k for the maximum tree

level ofk-1.

However, only oneowset value will be stored in each node of @R Tree
during the se&h process This is to ensure tha relatively smallamount of
memoryis utilized during the process of mining the colossal closed itemset. Several
optimization strategies asdsoproposed in order to guarantee that@rRTreewill
not miss any itemsetduring the process and at the same tina¢ it will discard
those thait deems redundant. These strategies will a@ @®of of correctness on

the data structure proposed and will be described in detail in the next section.

84



CHAPTER 4. DisClose: MINING COLOSSAL CLOSED I'HEMIS

4.5 Algorithm DisClose

To shav the effectiveness of the search strategy, the closedhesking method

and the data structure proposed, a colossal closed itemset mining algorithm called
DisClosehas been designed to mine all colossal closed itemsets from the transposed
table T' of table T. DisClose shown in Algorithm 4.1 will search the row
enumeration space and, for eaolwset,b, check whether it is the unique generator

in the equivalence class miwsets forl (b). It is to benoted that using a depfinst

order in a serial implementation would result in the most aggressive pruning of the
search space and requires the leastatimount of memoryHan et al. 2000, Pan et

al., 2003 Zaki and Hsiao, 20Q5Liu et al., 2008. For this reason, the general
processing order for theowsets is equivalent to the degdttst search of the row

enumeration tree.

4.5.1 Major steps of DisClose

Algorithm 4.1 shows the main steps of the algoritbisClose The exarple input
dataset in Table 4i% used to demonstraf#sClosein the following discussions.

The algorithm begins with the transposition operation that transfadote T
to the transposedable T' as shown in Table 2. Then,the CR-Tree (Compact
Rowset Tree) is builas demonstrated in Figured4.

After initialization of the set of colossal closed itemge® to beempty, the
subroutineColossalis called to deal with the transposedi¢gaB using theCR-Tree
and find all colossal itemsets. Following the bottopmrow enumeration as the
search ordein step 5 the subroutin€olossaltakes the transposed tabléand the
minimum cardinality thresholdnincard as the parameter and perfs the search
for colossal closed itemsets.

There are sevesectiongn the subroutin€olossa) which will beexplained
one by oneAssume this example usthe mincardthreshold value of 7.

The firstsectionis steps 6 - step 7 Each node at the fir¢evel of theCR-
Tree attempts to store the itemsbm the transposed tablE into the node by
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Algorithm 4.1: DisClosealgorithm

Input: TableT, and minimum cardinality thresholchincard
Output: A complete set of colossal closed items€G]
Method:

1. TransformT into transposed tablE

2. Build CR-Tree

3. Initialize CCI=@

4. Call Subroutine Colossal{ mincard

Subroutine Colossal(T, mincard
Method:
5. for each node in the row enumeration spdae
6. If| node [1]j] |.T'| midcard
7 Store itemset at node [{]][
8. Letbbe the set of rows under consideration
9 node[][j] Y nridJfpe [ // pointing to child node
10. a=a, fFa,=1(b), b=5bHCb,
11. Optimization S11f | U| <mincard discardU
12. Optimization S21If | b| > current node level, discaibd
13. Optimization S3If a | a', discardJ
14. StoreUin node [+1][p]
15. Call SubroutineClosed(mincard

Subroutine Closed(mincard
Method:
16. If node [[][j] == node [+1][p] /I checking for unique generatt
17. Call SubroutinegColossal(mincard
18. Store itemset ilCCl
19. Call SubroutineColossal(mincard

ensuring thathe itemset in each column value of the transposed Tabégisfiesthe
mincardthreshold. An itemset that satisfy theincard thresholdis then stored in

each node;therwise,it is not stored in the node a@swill not contribute to obtaining
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largeritemsets The advantage of this is that the algorithm does not require further
access to the datasendhence reduces the time required fegpeated checking of
the datasetNote that this is the onlgole the transposed table plays in the search
process.

Figure 46 shows theCR-Tree which contains the itemsets stored for the
nodes at level,= 0, after applying steg6- step 7 from Figte 4.3

The secondsectionis steps 8 - step 10 For eachnodein the CR-Treg an
itemset ineérsectionis performed. By using a deptinst search DisCloseproduces
the sequence ob Y | (b) shown in Figure 8. However, three optimaion
strategies are applied before the result of the intersection is stored in each child
nodes.

At step 11 an @timization strategys1lis applied to stop further processing
of the itemset if the size of the itemset does not satisfymimeard constrairn
defined.

Optimization strategy S1 If the size of the itemsets less than the
minimum cardinality thresho)d U| < mincard then there is no need to perfoamy
further operation on the itemset. If the itemset size is less than the specified

threshold then a further intersectiorshouldlead to a much smaller or equivalent

{22b1Co0,65f 20N 4 Kol oy} {82101 €5F01 i g oKal sMpn}
{2}

W O® @ O ®

{aabi et g2 5j kol g {aub1Coth e 0h00 ) kol b} {aqbyCotherfogahsisj kol ey}
{1} {5}

Figure 4.6: ltemset stored at level 0, of theCR-Tree
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/

{b1e gokal s} {bi&yjokols}

{123 {124
Efoflo
{brekal 2}

{1234

Figure 4.7: Example of Optimization strategy

itemset size.

Example 4.5(Optimizaton Strategy S1Figure 47 shows an example of a node in
the CR-Tree that contains an itemset wittardinality is less than the specified
threshold. Node 3 at levek 2 contains itemsdb 1, €, @, ko, 12} where [{b1, &, ¢,

ko, I} | = 5. As the cardhality of the itemseis less than thenincard threshold,
further intersection between Node 3 and Node 4 at Ievel2, {b1, &, &b, Ko,

I} AE{b1, &, ]2, Ko, 12} = {b 1, &, ks, I}, leads to a smaller cardinality itemset{l,,

e, Ko, I2} | = 4, which is stored in Node 4 at levekE 3. Therefore, optimization
strategyS1lis required to mventstorage oftemsets that doot satisfy the desired
threshold which in turn sbuld lead toa reduction in memory space and processing

time.

Lemma 4.2 Each node of th€R-Treeonly storesonevalueat a timefor rowset,

b, with |b | = node level.

Proof In Figure 48, suppose at levél= 2, therowsets stored at nodg = {1, 2, 4}
and nodens = {1, 3, 5}. To obtainrowset, b, for child nodems at levell = 3, the
union of the parerfh values will producen,C ns = {1, 2, 4} C{1, 3, 5} ={1, 2, 3,
4, 5}. However, thaowset {1, 2, 3, 4, 5} is not represented by nade This is

88



CHAPTER 4. DisClose: MINING COLOSSAL CLOSED I'HEMIS

|:2 e (1,2, 3 ° (1,2, 4} @ {1,3,5)
IEH O IO Ry rers

e | ={1,2,3,4,5)

Figure 4.8: ExampleroLemma 4.2

because based on the defitht strategy, the itemset fdr = {1, 2, 3, 4, 5} have

been discovered &t 4.

Based on Lemma 4.%tep 12 performs the Optimization stratedy? to
preventstorage oftemsets withrowset values larger than the node level of @ke
Tree

Optimization strategy S2 If the size of thaowset |b | is greater than the
level wherethe node is present, then there is no need to store the itéisiined.

Thisis explained in the following example.

Example 4.6(Optimization Strategy $2s DisCloseperforms a deptfirst search
of the CR-Treg rowsets of larger cardinality have dve obtained earlier and further
steps will only lead to a repetition of the itemset with the smwset value. Figure
4.9 shows an example in which Optimization strat&gys applied. Suppose at level
| = 2, node 4 contains the itemg$kt, e, |2, ko, |2} with therowset value of {1, 2, 4}
and node 5 contains the iteméaf, by gy, i2, K2, My} with therowset value of {1, 3,
5}. The intersection between these nodes will produce the itefindeff with a
rowset value of {1, 2, 3, 4, 5}. Howevel {1, 2 3, 4, 5}| = 5 is greater than the

node levelvalue | = 3. Therefore the itemset will not be stored at node 5 whrere
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{b1&y) kol 2} J {a1b192iokomp}
{124 {135

___________

{bako}
{12345

Figure 4.9: Example of Optimization strateg®

3. As observed, the itemset with the sarwset value has already been stored at
node 5 wheré= 4.

Lemma 4.3 If discovered itenmet, 11UJL wh e r, & th&existing itemset in the
node, theiillemoéedlrtdpdiagche B

Proof In Figure 410, supposdl = {bi} = {1, 2, 4} and U, = {by} = {1, 3, 4} at
level | = 2, where Py | = | b, |. If Uil O, this means thall also exists in §y}.
Therefore U = b; C b, = b, where p | > |by], |b2 |. ThusU, will exists inb = {1, 2,
3, 4} stoed in nodam, at level,| = 3 of theCR-Tree

Figure 4.10: Example on Lemma 4.3
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At step 13 Optimizaton strategys3is applied based on Lemma 4.3 in order
to ensure that the itemset obtainisdnot a subset of an already existing itemset in
the child node.

Optimization strategy S3 If the current itemsedtlobtained is a subset of an
already existing itenet U6 A I a', for the particular child node in theR-Treg

then itemsetcan be discarded.

Example 4.7 (Optimization Strategy $3Figure 411 shows an example in which
Optimization strategy3 is applied. Suppose Node 5 at lelel 1 already contains

an itemset from the earlier iteration. The result of the intersection between Node 4
and Node 5 at levél= 0 produces an itemset which is a subset of thedirestored
itemset inthe child node{b, ¢, di, f2, My, iz, ko, My, MR} 1 {ay, by, Co, dy, 2, Go, o,

I2, J1, K2, My, No}. Although itemsefas, by, Cy, di, T2, O2, hy, i2, J1, K2, My, N} OCCUrs

in rowset {3, 5} and{b1, cy, di, f2, hy, iz, Ko, My, N} in rowset {4, 5},{b1, cy, dy, f>,

ho, i2, ko, Mg, N} | {ay, by, o, dy, f2, Go, Dy, iz, j1, K2, My, N2} shows thafby, ¢y, dy, fo,

hy, 12, ko, my, Ny} also occurs in {3, 5}. The result of the intersection between the two

W @ ()

{aobicothexfagihoig) okol ompng}  {a1biCotherfagohiigf 1kol 1mpny}
{4} {5}

S lolon 1
: i , ' {45} |

/, {@a1b1Co0hf2g2hai o 1kompny}
2 {35}

{b1Cabhfohni skompng}
{345

Figure 4.11: Example of Pruning strate®y
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rowsets has already been producadthe higher level node during therker
iteration due to the deptfirst search strategy. This is shown in Figurgldvhere
Node 5 at level = 2 contains the items@b;, C,, dy, f2, hy, iz, ko, My, N2} with rowset
value {3, 4, 5}. Therefore, Optimization strate§yis applied on iterset{b, c;, di,

fa, hy, i2, ko, My, N2} with rowset value {4, 5}.

Step 14 then storesan itemset that does not satisfy any of the three
optimization strategies at the particular child node. The new itemset will replace the
itemset that already existstime node.

At step 15 the subroutin€losedis calledwhenall the colossal itemsets of
the child nodes have been discoveiadrder to check whether the parent node is a
closed itemset.

The subroutineClosed performs the closednesiecking method orthe
itemset. There are four main stepshis subroutine.

Step 16sequentiallycompares the itemsétthat exists in the parent node
with the itemsets of its child nod&s order to identify the unique generatbgsed
on adepthfirst search of theowsd value in the row enumeration tree. Here, the
nodelink, which connects the parent acdild node that contaithe same node
valug is used to perfornthe closednesshecking methodThis is to ensure that it
does not overlook existing child nodes witiwset b that contains aid value that

does notexisnrowsetb6 of t he parent node.

Example 4.8(Closednesshecking in CRIree Figure 412 shows an example of
checking whether the itemséstoredat node 3of levell = 1 is a closed itemseAs
Uoccurs n rowset {2, 3},it needs tde compare with all theitemsets in thehild
nodes to which it points, in orderto checkwhether it also occurs in anothed
value.This checkwhetherUoccurs atid 1, rid 4 orrid 5. Each child nodat levell

= 2 contans the itemset with theowset values containing one of thes. In this
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{b1caeafogohokolono}
{23}

..........

{doexgmjokols}  {biCoesfohokalonp}  {biCafogahokons}
{123 {234 {235

Figure 4.12: Closedneshecking inCR-Tree

example{b, &, &, ©, &, b, k, I, L} at rowset {2, 3} is a closed itemsesthe

equivalent itemset does not exists at any of the child nodes.

By applying theproposedclosednesshecking method proposed, an itemset
Uis not closed if it also occurs in anothigt value that is not already®® . As s oon
asarowsetholding a copy ofJis found, further comparison with other child nodes
iS unnecessary.

As stated previously, the use of the unique generator requilbes@mall
amount of computation based on the number of rows; hence this algorithm can run
with very little memory. Another advantage is that the method allows the algorithm
DisCloseto simply write each encountered closed itemset, and not keep a copy in
memory for later comparison.

At step 17the subroutin€Colossalis activated if the itemset is fourid not
be closedA further search for colossal itemsets is then contiri¢lde next node
level.

Step 18outpus the itemset that is found to be closetbithe set of colossal
closed itemsets;Cl.

At step 19the subroutineColossalis called to further continue the search

until all potential node values of tiiEZR-Treehave been traversed.

93



CHAPTER 4. DisClose: MINING COLOSSAL CLOSED I'HEMIS

1Y (14):a, by, ¢, G, &, 1, B, Py, 12, o, ko, 2, M, 1y
12Y (7): by, &, €, @, J2, ke, 12
123Y (5): by, &, o, k, >
1234Y (4): by, &, k, Io
12345Y (2): by, ko
1235Y (3): by, i, ke
124Y (5): by, &, j2, ke, I2
1245Y (2):by, ko
125Y (3): by, @, ko
13Y (8):ay, by, &, O, iz, ko, |2, M
134Y (6) bl, ©, iz, kz, |2, mp
1345Y (4) bl, iz, kz, m
135Y (6): ay, by, O, iz, ke, My
14Y (7): by, &, iz, J2, ke, |2, mp
145Y (4): by, iz, ke, M
15Y (6): au, by, @, io, ko, My
2Y (14): a, by, &, o, &, fo, @, y, i1, J2, ko, I, My,
23Y (9) bl, G, &, f2! &, hZ; k2; |2; Ny
234Y (8): by, G, €, T2, p, ko, |2,
2345Y (6) b1, C, f2, hz, kz, N
235Y (7) b]_, C, fg, O, hz, kz, 07}
24Y (10): @, by, &, &, T, hy, Jo, ko, 2, M
245Y (6) b1, C, f2, hz, kz, 17)
25Y (7):by, &, 2, @, hp, ko,
3Y (14) ay, bli G, dl, €, fZa 92’ hZ; i2: jl; k2; IZ: mp, 'y
34Y (11):by, &, dh, &, ©, I, iz, ko, o, My, 1
345Y (9): by, &, i, T2, My, o, ko, M, M
35Y (12):31, bl, G, d1, f2’ @, hZ’ i2! jll k2’ My, v
4Y (14):az, by, &, dh, &, f2, O, 2, j2, ko, 12, Mp, 2
45Y (9): by, &, dy, T3, by, ip, ko, My, 1
5Y (14) ay, bli G, dl, €, fz, G, hZ; i2: jl; k2; Il: np, N

Figure 4.13: Colossal closed itemsets wtimcard= 7

There are a total of 15 colossal closed itemsets found for theedan Table

4.1 with mincard= 7, as shown in Figure 43.
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4.5.2 Space and time analysis dDisClose

For a tablel with n rows andm dimensions where each dimension leEasaximum

of k distinct items (attribute values), without considering tbesset values, he
space complexity of the transposed tablé,is Omn). Using the cardinality
thresholdmincard means thaturther memory spacde not required for all itemsets

with a size of less than the specified constraint. This means that for a transposed
table, T' with km rows, additional memorgloes not neetb be used fornodes that
containitemsetsof less thanKmmincard because the search will stopaatitemset

with size kmrmincard. The space complexity of thER-tree depends on the

column value of théransposed table. For a transposed taBiejth m dimensions,

: en(n+1
theCR-tree requwe@e (n+Yo as the number of nodes for each level decreases by

g 2 Y

1 as the level of the tree increases.

For time complexity, the transformation from tafléo T' requires Okmn)
time to collect theids for each distinct itenilhe process of building theéR-Tree
involves,time complexityof at most Ofi(n-1)] because there are at masids in T
and eachid in the CR-Treehas at mostr{1) children to be searche#lt each node,
DisCloseneeds to process each itemset with O(1) time, thus a totalkof) G

Mmost.

4.6 Summary

This chapter presents the proposed colossal closed itemset mining algorithm,
DisClose which implements the data structure that has been projposeder to
efficiently discover colossal closed itemsets based omptbgosedsearch strategy
and closednesshecking method. The used of the method is explained through
illustrative examples.

The following chapteranalyses the performanag# DisClose on several

synthetic and real higimensional datasets. The effectiveness of the algorithm wiill
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be compared to several statethe art algorithms by adapting similar requirements
to enable dair comparison.
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Chapter: 5

Experimental Evaluation

This chapter pesens the resuls of the performance study ddisCloseand confirns
that the program design has been realized.

This chapter beginwith Section 5.1which introduceghe environment in
which algorithm DisClose was implemented. This includes the prograngn
language applied and the specification of the macbimehich the algorithm was
tested This section also provideslist of stateof-the art algorithms selected for
comparison purposemd thedatasetshatwere selectefbr evaluation use.

Section 52 providesan evaluation 6 the performance oDisClose on
synthetic datasetsom different points of viewsuch as the effect of the change of
mincard the number oflimensions, the number of rovasad the cardinality of each
dimension.

Section 5.3 prodesan evaluation 6 the performance obisCloseon real
datasets. Descriptiond the selected real datasets are also provided. This section
also provides the discretizationethodthat hasbeenappliedto the real application
datasets.

Finally Section 54 summarizes the chapter.
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5.1 Experimental Setting

Algorithm DisClose was implemented usin@++ The set of experiments was
performed on #C with a 2.66 GHz Intel Core 2 Quad CPU Q9400 with 4.00 GB
RAM and 150 GB hard disk.

The performance dDisClosewas sudied by comparing with other shteof-

the art algorithms. Each algorithmas selectedo representhe different search
strategies discussed in the previous chaptegse algorithms are:

(1) FP-Close (Grahne and Zhu2003. This is a representative of e¢h
column enumeraticbased algorithms, which won thel M| I6e6t 3
implementation award. The implementationFét-Closewas obtained
from the developer Christian Borgeéltswebsite through his
implementation of-P-Growth which has the option to discover stdl
frequent itemsetorgelt, 2005).

(i) CARPENTERPan et al.2003: Thisis a representative of botteup
row enumeratiotbased algorithmsCarpentersearches the tree from
the smallestrowset and builds largerowset values. The source of
implementatoowas al so downl oaded from Chri s
(Borgelt, 2011)

(i)  D-Miner (Besson et al.2009: Thisis a representative of constraint
based mining algoritheywhich use the minimum cardinality threshold
as one of the constrainisr their search sategy. For the algorithrD-
Miner, the source of the implementation was downloaded from the
aut hor 06 @essoedtal.j2005)

(iv)  TTD-Close(Liu et al.,2009: This algorithm is a representative of the
top-down row enumeration search based of algothms The search
begins from the largest rowset value and nson® way down the
search tree. For algorithmTTD-Close the source of the

implementation was obtained from its authors.
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All of the selected algorithmbave beenmplemented in C++Note: d of
runtimes plotted in the figures this chapter includboth computation time and 1/0

time.

5.1.1 Challenges in Comparisons

Amongst theselectedalgorithms listed above, onlp-Miner has been found to
apply the minimum cardinality thresholehincard As statel previously,D-Miner is

a constrainbased algorithm which uses the minimum suppmisup and the
minimum cardinalitymincard thresholds to discove&oncepts {losed itemsejsAs

the objective othis studyis to discover colossal closégmsets, ttect comparison
can be made witisCloseif the minimum supportminsupthreshold is set to 0.
This means thaD-Miner will only search the large cardinality (colossal) closed
itemsets.

Other existing itemset mining algorithmgarticularly those thdtnd closed
itemsets, which includeBP-Close CARPENTERand TTD-Closei are routinely
presented with running times given for varying thresholds of supfeiisClose
begins by searching and storing tta&ossalclosed itemsets using the cardinality
threshold, a direct comparison tteeseprevious techniquss difficult. If one of the
previous algorithrawere given a support threshajceaterthan 1, it would certainly
not find many of the largestardinality closed itemsets. Similarly,DfisClosewere
given a cardinality threshold bigger than 1, it would certainly not find many of the
most frequent closed itemsets. The only way to comip@ralgorithms is to present
both with a threshold of 1, essentially asking each algorithm to find all closed
itemsets. A strength of DisCloseis that it bypasses the huge number of small
cardinality, highfrequent closed itemsets and focuses almost immediately on
potentially valuable closed itemsets (especially for fdghensional data). This type
of complete closedtemsets search does not address the true intent of either

DisCloseor the existing closed itemset mining algorithms.
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One approach is to present the experimental result®islose with a
secondaryx-axis which represents the maximum support of the caloslesed
itemsets discovered. Likewise, a secondagxis is also added to the results of
FP-Close CARPENTERandTTD-Closewhich represents the maximurardinality
of the closed frequent itemsets discovered. Thus, by using this approach, it provides
an observationmthe ability and limitation otlosed itemset mining algorithms that
usesasupport threshold in relation isClose and viceversa.

Another challenge in comparingerformanceof the algorithms is based on
their implementationin identifying items in the datasets. FofP-Close
CARPENTERand D-Miner, the algorithms were designed to identify each item
based on the value present for each attribute of the dataset. HoweVdm{Giose
each item in the dataset is read as a value thatspomds to the attribute of the
data. HenceDisClosewas implemented itwo versions that satisfy bottonditions

in order for fair comparisons to be made.

5.2 Synthetic Datasets

The synthetic datasets were specifically constructed based on the implemegftation
the selected algorithmén order to obtain fair comparison between the methods.
Synthetic datasetwere used to test the performance @sClosewith the selected
algorithms interms ofdifferent aspects such as the effect of the changeirofard

the number of dimensions, the number of tuples and the cardinality of each
dimension.

Synthetic datasetbave beengenerated randomly using the IBM Quest
Synthetic Data Generator based on three main parameters: the number of
dimensions, the number of rowsd the average length of the itemset in the dataset.
To represent the synthetic dataset, the label T#L#N# is used, where T# is the number

of rows, L# is average length of the itemset, and N# is the number of dimensions.
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In reality, if a synthetic datasewvasrandonty generatedseveral times with
the equivalent parameterthis datasewill produce a different set of values eye
time. Hence, this will caus¢éhe answer set to be fiifent each time¢he synthetic
dataset isanalyzel. However, in this thesiggnly one datasds generatedor each
parameter settingsThis is because the objective of this thesis is to observe the
efficiency of the algorithm proposess compared to other selected algorithms
order to discover the colossal closed itemsets gosmul to differences in the

number of colossal closed itemsets ttaild be discovereith eachdataset.

5.2.1 Dimensionality (columns)

To test the performance of the four algorithms with respect to the number of
dimensions, three datasets were generated wih @ K and 10 Kdimensions,
respectively. Each dataset contains the same row value of 100 and an average
itemset length of 2000.

5.2.1.1DI1SCLOSE VvS. D-MINER

Figure 51(a)-(c) shows the effect of changing the dimensionality on the runtime of
DisClosewith D-Miner based on the minimum cardinality threshalincard In

this set of experimentfisClosepresents better performance tHasMiner for all
datasets.

It can be seeffrom Figure 51(a) that ata higher cardinality threshold, the
differences in the time t&k between the two algorithms is very small. However, as
the mincard value decreasedisCloselargely outperformsD-Miner. Taking the
maximum processing time of around 300 secomisCloseis able to discover
colossal closed itemsets withincard = 700. For D-Miner, after mincard = 2100,
the algorithm took more than 12 hours to discover the colossal closed itehgets.
percentagef density of values present THLOOL2000N4000datasetis 50%.With
the same number of remand average size value of the itat) as the number of

dimensionality increases, the dataset becomes less dense.
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Figure 5.1: The effect of changing dimensionality witimcard
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The percentagef density of values present in TL00L2000N6000 is 33.36%.
Similar behaviourcan be seen in Figurelfb). Here, DisCloseis able to discover
colossal closedemsetswith mincard= 300. HoweverD-Miner still requires more
than 12 houramining itemsets with cardinality less than 21@@ncevalues for
cardinality less than 2100 are not included in the figure

For datasefT100L2000N10000, the percentage densityalues present is
20.03%. Thereforet can be observed in Figurel) thatDisCloseis able to reach
a much smaller cardinality itemsg&heremincard= 70. Similar to previoudatasets
the execution ofD-Miner requires more than 12 hours mining is=ts with
cardinality less than 2100.

It is observedn Figure 51 that with the changes in dimensionalitgnd also
changes indensity) DisClose performs better tham-Miner in discoveringthe
colossal closed itemsetBisClosealso scales welhs theexecution time increases
with thechanges in the cardinality threshdut the changes in the dimensionality of

the datasets

5.2.1.2DISCLOSE VvS. FP-CLOSE, CARPENTER AND D-MINER

Figures 5.2, 5.3 and 3! respectively compareDisClose with FP-Close
CARPENTERandD-Miner by varying the number of attribute&s shown inFigure
5.2(a), beginning with the largest closed itemsddssCloseis able to discovethe
colossal closed itemsetsith a maximum support of 10The performance of
DisClosesharply increases betwearincard= 700 andmincard= 600. This is due
to the large number of closed itemsets that exists between these threghetés.
area total 0f27,994,019 colossal closed itemsets foutn@nmincard= 600.

Figure 52(b) shows that asninsup decreases, theuntime of the three
algorithms increase$lowever, the algorithms are ordle to operate up tminsup
= 95 before running out of memor€ ARPENTERhas the best execution time
among these algorithmHi.is more than twice as fast B®-Closeand more thn 13

times faster tha®-Miner.
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Figure5.2 Comparison on T100L2002/000with FP-Close CARPENTERandD-
Miner

This is due to the fact that the dataset is very dense areldkists a huge
number of closed frequenitemsets with large cardinalityThere are 4,908,256
closed itemsets discoverathen minsup= 95 with the largest cdinality of closed
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Figure5.3 Comparison on T100L20086000with FP-Close CARPENTERandD-
Miner

itemsets equab 120.D-Miner took the most time to discover the closed itemsets at
this threshold.
As expected,Figure 5.8a) shows a similar resulti.e. as the mincard

threshold decreases threcutiontime requiredor DisCloseto discover the colossal
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closed itemsets increasdhe T100L2000N6000 dataset is less depsempared to
dataset T100L2000N4000As a result DisClose is able to reach a smaller
cardinality threshold of 20@iith a maximum support threshold aD. There area
total of 56,541,298 closed itemsets discoveradiatard= 200.

Figure 53(b) shows thabnly FP-CloseandD-Miner canreachminsup= 81
FP-Close outperforms bothD-Miner and CARPENTER There are 309,914,567
closed itemsets discoveradhen minsup= 81 with the largest cardinality aothe
closed itemsetbeing equako 20. CARPENTER can only reachminsup= 87. As
expectedthe time required to discover the closed itemsets increases as the minimum
support decreases.

The T100L2000N10000 dataset is lessge as compared to the previous
two datases. This is shown in Figure &4a), whereDisCloseis able to reach closed
itemsets at a much lowemincard threshold DisClose discovers a total of
215,610,238 closed itemsets wighlowest value ofmincard = 10. The closed
itemsetswith mincard= 10arefound to haveahe maximum support thresholdlue
of 24. The time required to discover the closed itemsets increases asntterd
threshold decreases.

For Figure 54(b), only FP-Close and D-Miner can reach lowersupport
thresholdswith values of 42 and 46 respectivélgfore running out of memoriP-
Closeperforms better thaD-Miner asD-Minerd s p e r fdegradedonnoiresup
values greater than 48 he decrease othe performanceof D-Miner can be
explained bythe enormous influence of the high number of closed itemsets in this
data.The runtime folCARPENTER ould not be displayed as the algorithm can only
reach minsup = 70. There are 1,483,324,975 closed itemsets discovetseh
minsup= 42 with the largestardinality of closed itemsets equal 13.

5.2.1.3DISCLOSE vSs. TTD-CLOSE

Figure 55 shows the results betweddsClose and TTD-Close on the dataset
T100L2000N4000As the nature off TD-Closeis to readeach item in the dataset as
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a value the largest itemset #lh exists in the dataset is equivalent to its column value.

Therebre, inthis particular case, more colossal closed itemsets are discovered.

Figure 55(a) shows that as theincardvalue increases, the time required to

discover the colossal closed iteets also increasdlisCloseis able to reach closed
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Figure 5.5: Comparison on T100L2009000with TTD-Close

itemsets withmincard= 1700. There are a total of 78,717,638 closed itemsets that
existswhenmincard= 1700 having the maximum support of 6.

Figure 55(b) shows thafT TD-Close could only reachminsyp = 97 with a
total of closed itemsets of 5. TTD-Closeruns out of memory probably due

the existence of larger cardinality itemsets at smatiasupthresholds. Tis shows
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that for dense datasegven ata high minsupthreshold the size of itemds can
becomeverylarge.

Figure 5.4a) shows that as the number of dimensiancreases, by
increasing themincard value, the time required to discover the colossal closed
itemsets also increases. The number of closed itemsets is 50 timeswvhere
mincad = 2400 tharwhenmincard = 250Q hence the precipitous increase in run
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Figure 5.6: Comparison on T100L2006000with TTD-Close
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time. DisClosecanreach closed itemsets withincard= 2400. There are a total of
79,393,410 closed itemsets that existsen mincard = 2400 havinga maximum
support of 6.

Figure5.6(b) shows thaff TD-Closecould still only reachminsup= 97 with
a totalnumberof closed itemsets of 2451 This is due to the existence of colossal
closed itemsets athigh support threshold.

Figure 57(a) showssimilar behaviour as the number ofrginsion increases
DisCloseis able to reaclkelosed itemsetwith mincard= 5200. There are a total of
77,556,906 closed itemsets that existsen mincard = 5200 havinga maximum
support of 5.

Figure 57(b) shows thaff TD-Closemay still only reachminsup= 97 with a
total of closed itemsets 0117,251 TTD-Close runs out of memory due the
existence of large cardinality itemsets at smati@rsupthresholds. This shows that
on very dense datasegven at highminsupthreshold the size of itemsets can

becanelarge.

5.2.2 Number of rows

To test the runtime of these algorithmstwrespect to the number of remwtwo
more datasetsave been generateshe containing.50 rows and the other 200 rew
while the dimension is & andthe cardinality is 10. Figure &a)-(c) shows the
effect on execution time by increasing the number of rows usingniheard
threshold

To obtain a convenient comparison, the result for T100L2000N4000 is
providedagainhere.Figure 58(b) shows that as thmincardvalue decreases, the
time required to discover the colossal closed itemsets increases. At the same
mincard value of 600,DisCloserequires more time to discover colossal closed
itemsets. There are a total of 227,674,614 closed itemsets that exsteatd =

600. This shows thasthe number of rowicreases, the total number of colossal
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Figure 5.7: Comparison on T100L20000000with TTD-Close

closed itemsets also increas#isereby requiringmore time to mine the dataset.
DisClosestill outperformsD-Miner when themincardthreshold approaches 2000.
Similar behawour is also showin Figure 58(c) where with theincrease in
the number of row, more time is required f@isCloseto reach the smallenincard
threshold. In this case, the algorithm is able to reaicttard= 700.The difference
in the execution time betweeBisClose and D-Miner is very small at high

cardinality threshold.
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Figure 5.8: The effect of changing the number of rows on the runtime

However, when themincard threshold is lowered DisClose clearly

outperformaD-Miner.
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This set of experiments alsshows thistrend: as the number of rew
increases,hte computation time for botdgorithms increasedisClosealso scales
well, as the execution time increases withe changes inthe mincard threshold

whenincreasinghenumber ofrowsin the dataset.

5.2.2.1DISCLOSE VS. FP-CLOSE, CARPENTER AND D-MINER

Figure 59 comparesDisClose with FP-Close CARPENTERand D-Miner on
synthetic dataset Ib0L2000N4000. The percentagé density of valueghat exist
for this dataset is 50%. Figuredfa) shows that beginning with the largest closed
itemsets,DisCloseis able to discover colossal closed isatswith the maximum
support of10. There are227,674,613olossal closed itemsets foundhenmincard

= 600.

Figure 59(b) shows that asminsup decreases, the runtime of the three
algorithms increasesApparently, the algorithmsanonly reachminsup= 96, and
CARPENTERuns the fastesit is observed that even at lower support thresttwad
existence in the numbef large cardinalityclosedfrequent itemsets is hug®-
Miner took the most timeéo discover the closed itemsets at this support threshold.
There are4,707,487closed itemsets discovered minsup= 97 with the largest
cardinality of closed itemseb®ing equato 85.

Figure 510 compare®DisClosewith FP-Close CARPENTERandD-Miner as
the number ofows increases. With the same percentdgesity of true values of
50%, DisClose is able to discover 36,297,315 colossal closed itemeatisn
mincard= 600, havinga maximum support of 8. This is shownFigure 510(a).

As for the otler three algorithms, Figurel®b) shows that the algorithntan

only reachminsup= 97, havinga maximum cardinality of 68.
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5.2.2.2DISCLOSE vS. TTD-CLOSE

The testing of algorithm TTD-Close on both T150L200N4000 and
T200L2000N4000 datasets hakenmore than one day in order to obténe initial

result. Hence, theutcome of theexperiments is not displayed. However, the results
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Figure 5.12: Result ohi200L2000N4000with TTD-Close

of DisClosefor the same mining situation on both datasets are given in Figure 5.11

and Figure 5.12, respectively.

Both figures show thdDisCloseis still able to mine the dense datasétss

observed that the algorithm scales wal the time taken to discover the colossal

closed itemsets increases with the increase in the row size of the datasets.
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5.2.3 Cardinality

In the previousgroups of experimentdescribed abovehe average lengtlof each
dataset is seto 2000, which means that each dimension of each datasebrhas
average? K distinct values. To test the performance of the different cardinalities,
two more datasetsave beemenerated that correspond t® K distinct values and

2.5 K distinct values. The other parameters remain uncharnpetlis to say, the
number of dimension is K and the number of tuples is 100.

Figure 513(a)-(c) comparesDisClose and D-Miner using the mincard
thresholdon synthetic dataset T100L1308000. In this set of experimentshe
resultsshow thatas the cardinality value of the datasets increases, the value of the
mincard that DisClose could reach also increasemtuitively, with respect to
cardinality pruning, a lowemincardresults inan increasén run time.DisClosealso
scales wellas the execution time increaséth the changes in the dimensionality of
the datasetsl he results show thBisClosestill performs better thaB-Miner as the
magnitudeof the cardinality changes.

In Figure 513(a), the T100L1500N4000 dataset contains the percentage
density of true values of 38% herefore, by reducing the average length of the
itemset DisCloseis able to reach closed itemsets umntihcard= 200.In addition,
D-Miner could reach a much lower camdlity threshold of 1700 when the
cardinality value decreases.

As for Figure 513(c), as the number of average length increases, the
percentage density of true values also increases to 64%. HEaCdpseis able to
reach colossal closed itemsets atwcimlargemincardthreshold of 1100As for D-
Miner, themincardthreshold that the algorithm could reach also increases to 2600.

5.2.3.1DISCLOSE VvS. FP-CLOSE, CARPENTER AND D-MINER

Figures 5.14 and 5.15 together demonstrate the effect of changkigure 514
comparesDisClose with FP-Close CARPENTERand D-Miner as the average
length(cardinality) cecreases.
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Figure 5.13: The effect of changing cardinality on the runtime
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Figure 5.14: Comparison arL00L1500N4000with FP-Closg
CARPENTERandD-Miner

As compared td-igure 5.2 DisCloseis able tooperate up tanincard= 200
having a maximum support of 9. This is shown in Figufl(a). Figure 514(b)
shows that for the three algorithms, all could reactower minsup threshold.

Amongst the three algorithmBP-Closeperforms the best with thealue ofminsup
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= 86. The maximum cardinality ofhe closed itemsets discovered at tBigpport
thresholdis 22. As for D-Miner, at minsup= 87, the maximum cardinality othe
closed itemsets is al2. CARPENTERould reach aminsup= 89 with the largest
closed itemset having thmaximum cardinality of20. As the minsup threshold
decreases, the runtime tife three algorithmsalso increases. This ibecausehe
dataset is very densand the numbepf closed frequent itemsets thatequire
checking increases substantialllyAs an example, the difference the closed
itemsets discovered betwemnsup= 86 am minsup= 87 isalmost 42 million.

Figure 515 showsthe results obtained as the number of average length
increases. It is observed that tbe TL00L2500N4000 dataset, the cardinality of the
closed itemsets very large. In Figure 55(a), D-Miner discovered colossal closed
itemsets untilmincard = 1100. At thismincard threshold, the maximum support
value forcolossal closed itemsets is.15

Figure 515(b) shows that for the three algorithms, the lowestsupvalue
reached i95 by D-Miner. Thisindicates that TL00L2500N4000 is relatively denser
thanthe T100L1500N4000 datasédt.is also observed that the maximum cardinality
of the closed itemsets that exists at thissupvalue is 481CARPENTERand FP-
Closecanreachminsup= 96 with maximum carthality = 477 andninsup= 97 with

maximum cardinality = 472, respectively.

5.2.3.2DISCLOSE vS. TTD-CLOSE

Figures 5.16 and 5.17 together demonstrate the effect of changiigure 516
compareshe resultf DisCloseand TTD-Closeon the dataset T100L1500N4M0
With the reduction in the avege itemset length, Figurel®(a) shows thaDisClose
discoves closed itemsets at lowermincardvalue of1500. Themaximum support
value at this threshold is 6 which is the same support value for the dataset
T100L2000ND0O0 shown in Figure 3.

Figure 516(b) shows thafl TD-Closecanreachminsup= 96 with a total of
closed itemsets 0292,150 TTD-Closeruns out of memory probably due the
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Figure 5.15: Comparison arll00L2500N4000with FP-Close
CARPENTERINdD-Miner

existence of larger cardinality itemsets at smati@rsupthresholds. This siws that
for dense datasegven at highminsupthreshold the size of the itemsets cée

significantlylarge.
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