

DisClose: Discovering Colossal Closed Itemsets

from High Dimensional Datasets via a Compact

Row-Tree

A thesis submitted to the University of Manchester for the degree of

Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences.

2012

Nurul Fariza Zulkurnain

School of Computer Science

2

Table of Contents

List of Tables 6

List of Figures 7

Abbreviations & Acronyms 10

Declaration 12

Copyright 13

Chapter: 1 16

Introduction 16

1.1 Research Motivation .. 18

1.1.1 Challenges in Itemset Mining ... 19

1.2 Aims and Objectives .. 22

1.3 Contributions .. 23

1.4 Organization of the Thesis ... 24

Chapter: 2 26

Itemset Mining Preliminaries 26

2.1 Frequent Itemset in Association Rule Mining ... 27

2.2 Alternatives Approaches to Frequent Itemset Mining 31

2.2.1 Maximal Frequent Itemset Mining ... 31

2.2.2 Closed Frequent Itemset Mining ... 33

2.3 CFI in High-Dimensional Dataset ... 35

2.3.1 Transposition method .. 36

2.3.2 CFI Mining on Transposed Data... 37

 3

2.4 Summary .. 38

Chapter: 3 40

Strategies for Closed Frequent Itemset Mining 40

3.1 Column Enumeration-based Strategy .. 41

3.1.1 Apriori-based Bottom-up Search .. 41

3.1.2 Pattern Growth without Candidate Generation 46

3.1.3 Exploring the Vertical Data Format .. 52

3.2 Row Enumeration-based Strategy .. 54

3.2.1 Bottom-up Search.. 54

3.2.2 Top-down Search .. 59

3.3 Pattern-Fusion: Mining the Colossal Itemsets .. 63

3.4 D-Miner: Mining the Constraint-based Concept.. 65

3.5 Summary .. 67

Chapter: 4 70

DisClose: Mining Colossal Closed Itemsets 70

4.1 Overview .. 71

4.2 Proposed Search Strategies .. 72

4.2.1 Bottom-up Row-enumeration Search .. 72

4.2.2 Transposed Table .. 74

4.2.3 Minimum Cardinality Threshold, mincard ... 75

4.3 Proposed Closedness-checking Method ... 78

4.4 CR-Tree (Compact Row-Tree) .. 82

4.5 Algorithm DisClose ... 85

4.5.1 Major steps of DisClose .. 85

4.5.2 Space and time analysis of DisClose .. 95

 4

4.6 Summary .. 95

Chapter: 5 97

Experimental Evaluation 97

5.1 Experimental Setting .. 98

5.1.1 Challenges in Comparisons ... 99

5.2 Synthetic Datasets .. 100

5.2.1 Dimensionality (columns) ... 101

5.2.2 Number of rows... 110

5.2.3 Cardinality ... 117

5.3 Discussions of Results from Synthetic Datasets .. 124

5.4 Real Datasets .. 126

5.4.1 Discretization .. 126

5.4.2 DLBCL Data ... 127

5.4.3 Leukemia Data .. 131

5.4.4 Lung Cancer Data ... 134

5.4.5 MLL Data .. 137

5.4.6 Memory consumption ... 139

5.5 Discussion on Results on Real Datasets... 143

5.6 Summary .. 144

Chapter: 6 145

Conclusions and Future Work 145

6.1 Summary .. 145

6.2 Research Contributions .. 148

6.2.1 Search Strategy for Colossal Closed Itemsets 149

6.2.2 Implementation of Constraint Measure ... 149

6.2.3 Closedness-checking Method ... 150

6.2.4 Data Structure ï CR-Tree .. 150

 5

6.2.5 Algorithm to Discover Colossal Closed Itemsets 151

6.3 Future Work ... 151

Bibliography 155

Word Count = 32, 957

 6

List of Tables

2.1: Example of transactional dataset, T.. 28

2.2: Example of discretized microarray dataset, Tm .. 36

2.3: Transposed table T
t
 of microarray dataset, Tm ... 37

3.1: Conditional pattern base and conditional FP-trees for each suffix item 48

3.2: Example of the vertical data format for transactional dataset, T 52

3.3: Conditional transposed table, T
t
|{2, 3, 4} ... 56

3.4: Example of the binary representation of dataset .. 66

4.1: Example of a discretized high-dimensional dataset 74

4.2: Example of Transposed Dataset ... 75

5.1: Datasets used in experiments showing the number of instances (rows) and

number of columns (attributes) .. 126

 7

List of Figures

1.1: Steps of the KDD Process .. 17

2.1: Frequent itemsets for minsup = 3 ... 29

2.2: Maximal frequent itemsets for minsup = 3 .. 32

2.3: Closed frequent itemsets for minsup = 3 .. 34

3.1: Bottom-up column enumeration tree ... 41

3.2: Discovering closed itemsets with A-Close for minsup = 3 45

3.3: The FP-tree from Table 2.1 for minsup = 3 ... 47

3.4: Bottom-up row enumeration tree ... 55

3.5: Top-down row enumeration tree .. 60

3.6: FR-Tree and IP-List ... 62

3.7: Discovering the concepts using D-Miner... 67

4.1: Colossal Closed Itemset Mining Procedure ... 71

4.2: Top-down column enumeration tree .. 73

4.3: Example of colossal itemsets (highlighted in grey) for mincard = 7 77

4.4: Relationship between CR-Tree and T
t
.. 83

4.5: Nodes representing the rowsets in the CR-Tree ... 84

4.6: Itemset stored at level, l = 0, of the CR-Tree ... 87

4.7: Example of Optimization strategy S1 .. 88

4.8: Example on Lemma 4.2 ... 89

4.9: Example on Optimization strategy S2 .. 90

4.10: Example on Lemma 4.3 ... 90

4.11: Example of Pruning strategy S3 ... 91

4.12: Closedness-checking in CR-Tree ... 93

4.13: Colossal closed itemsets with mincard = 7 .. 94

 8

5.1: The effect of changing dimensionality with mincard 102

5.2: Comparison on T100L2000N4000 with FP-Close, CARPENTER and D-

Miner .. 104

5.3: Comparison on T100L2000N6000 with FP-Close, CARPENTER and D-

Miner .. 105

5.4: Comparison on T100L2000N10000 with FP-Close, CARPENTER and D-

Miner .. 107

5.5: Comparison on T100L2000N4000 with TTD-Close 108

5.6: Comparison on T100L2000N6000 with TTD-Close 109

5.7: Comparison on T100L2000N10000 with TTD-Close 111

5.8: The effect of changing the number of tuples on the runtime 112

5.9: Comparison on T150L2000N4000 with FP-Close, CARPENTER and D-

Miner .. 114

5.10: Comparison on T200L2000N4000 with FP-Close, CARPENTER and D-

Miner .. 115

5.11: Result on T150L2000N4000 with TTD-Close... 116

5.12: Result on T200L2000N4000 with TTD-Close... 116

5.13: The effect of changing cardinality on the runtime 118

5.14: Comparison on T100L1500N4000 with FP-Close, CARPENTER and D-

Miner .. 119

5.15: Comparison on T100L2500N4000 with FP-Close, CARPENTER and D-

Miner .. 121

5.16: Comparison on T150L1500N4000 with TTD-Close 122

5.17: Result on T150L2500N4000 with TTD-Close... 123

5.18: Comparison of mincard thresholds on DLBCL with D-Miner 128

5.19: Comparison on DLBCL with FP-Close, CARPENTER and D-Miner....... 129

5.20: Comparison on DLBCL with TTD-Close .. 130

5.21: Comparison of mincard thresholds on Leukemia with D-Miner 131

5.22: Comparison on Leukemia with FP-Close, CARPENTER and D-Miner 132

 9

5.23: Comparison on Leukemia with TTD-Close ... 133

5.24: Comparison of mincard thresholds on Lung with D-Miner 134

5.25: Comparison on Lung with FP-Close, CARPENTER and D-Miner 135

5.26: Comparison on Lung with TTD-Close ... 136

5.27: Comparison of mincard thresholds on MLL with D-Miner 137

5.28: Comparison on MLL with FP-Close, CARPENTER and D-Miner 138

5.29: Comparison on MLL with TTD-Close ... 140

5.30: Memory usage comparison using the maximum mincard and minsup

threshold ... 141

 10

Abbreviations & Acronyms

ALL Acute Lymphoblastic Leukemias

AML Acute Myeloid

CCI Colossal Closed Itemset

CFI Closed Frequent Itemset

CPU Central Processing Unit

DLBCL Diffuse Large B-Cell Lymphomas

DNA Deoxyribonucleic Acid

FIM Frequent Itemset Mining

FIMI Frequent Itemset Mining Implementations

FL Follicular Lymphomas

GB Gigabyte

GHz Gigahertz

IBM International Business Machines

ID identity document

K Kilo (10
3
)

KDD Knowledge Discovery in Databases

MFI Maximal Frequent Itemset

MLL Mixed-Lineage Leukemias

PC Personal Computer

RAM Random Access Memory

 11

University Name: The University of Manchester

Candidateôs Name: Nurul Fariza Zulkurnain

Degree Title: Doctor of Philosophy

Thesis Title: DisClose: Discovering Colossal Closed Itemsets from High-

Dimensional Datasets via a Compact Row-Tree (CR-Tree)

Date: 30-April -2012

Abstract

Data mining is an essential part of knowledge discovery, and performs the extraction

of useful information from a collection of data, so as to assist human beings in

making necessary decisions. This thesis describes research in the field of itemset

mining, which performs the extraction of a set of items that occur together in a

dataset, based on a user specified threshold. Recent focus of itemset mining has been

on the discovery of closed itemsets from high-dimensional datasets, characterised by

relatively few rows and a relatively larger number of columns. A closed itemset is

the maximal set of items common to a set of rows. By exponentially increasing

running time as the average row length increases, mining closed itemsets from such

datasets renders most column enumeration-based algorithm impractical. Existing

row enumeration-based algorithms also show that they struggle to reach large

cardinality closed itemsets. This is due to the implementation of the support

constraint, which is based on the frequency of occurrence of the itemset. Frequent

closed itemsets are usually smaller in size and larger in numbers, hence taking much

of the memory space. Unfortunately, large cardinality closed itemsets are likely to

be more informative than small cardinality closed itemsets in this type of dataset.

 The research investigates the area of large cardinality closed itemset

discovery by examining and analysing the literature and identifying both strengths

and weaknesses of existing approaches. Based on this synthesis, a new algorithm,

termed DisClose, has been designed and developed to discover large cardinality

(colossal) closed itemsets from high-dimensional datasets. The algorithm strategy

begins by enumerating large cardinality itemsets and from these, builds smaller

itemsets. This is done by applying a bottom-up search of the row-enumeration tree.

A minimum cardinality threshold has been proposed to identify colossal closed

itemsets and to further reduce the search space. A novel closedness-checking

method has been proposed which uses a unique generator to immediately discover

closed itemsets without the need to check if each new closed itemset has previously

been found. These approaches have been combined using a Compact Row-Tree

(CR-Tree) data structure designed to assist in the efficient discovery of the colossal

closed itemsets. For evaluation purposes four state-of-the-art algorithms have been

selected for comparison. Experimental results show that algorithm DisClose is

scalable and can efficiently extract colossal closed itemsets in the considered

dataset, even for low support thresholds that existing algorithms cannot find.

 12

Declaration

No portion of the work referred to in this dissertation has been submitted in

support of an application for another degree or qualification of this or any other

university or other institute of learning

 13

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the ñCopyrightò) and s/he

has given The University of Manchester certain rights to use such Copyright,

including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1998 (as amended) and regulations issued under it or , where appropriate, in

accordance with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the ñIntellectual Propertyò) and any reproductions of

copyright works in the thesis, for example graphs and tables (ñReproductionsò),

which may be described in this thesis, may not be owned by the author and may

be owned by third parties. Such Intellectual Property and Reproductions cannot

and must be made available for use without the prior written permission of the

owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the

University IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/

policies/intellectual property.pdf), in any relevant Thesis restriction declarations

deposited in the University Library, The University Libraryôs regulations (see

http://www/manchester.ac.uk/library/aboutus/regulations) and in The

Universityôs policy on presentation of Theses.

http://www.campus.manchester.ac.uk/medialibrary/%20policies/intellectual%20property.pdf
http://www.campus.manchester.ac.uk/medialibrary/%20policies/intellectual%20property.pdf
http://www/manchester.ac.uk/library/aboutus/regulations

 14

To my husband, Khairul Fadli,

for the love and sacrifices

To my children, Nabil Iman and Nadwa Iman,

for the constant hugs and kisses

 15

Acknowledgements

Thank you God Almighty for giving me all the guidance and strength throughout

this initial journey of my research. To my parents, Zulkurnain Awang and Wan

Norasiah Che Jaafar, for the never ending love and support.

I would like to express my greatest appreciation and gratitude to my

supervisor, Professor John A. Keane whom guidance, advice and support have

enabled this thesis to be completed successfully. A special thanks to Professor David

J. Haglin from Pacific Northwest National Laboratory, United States, for his idea that

initiated this research.

I am truly grateful to the data mining research community for their

knowledge and suggestions especially those who have provided the executable

codes in order to substantially improve the research work. A special thanks to

Mohammed Saree from the University of Salford for providing the IBM Data

Generator executable.

It was a pleasure to work with my colleagues and the many people in the

University of Manchester, especially from the School of Computer Science. Their

supports and ideas in many occasions have helped me progress. I am also indebted

to my Malaysian friends in Manchester, for their friendship and support in making

mine and my familyôs lives here vibrant and memorable. I would like to

acknowledge my employer, International Islamic University Malaysia and the

Government of Malaysia for the financial funding in which without it I would not be

able to make it here in the first place. Not willing to miss anyone, I would like to

express my gratitude to every single individual who has contributed directly and

indirectly, towards completing my studies.

Finally, I honour the sacrifice of my beloved family who has continuosly

without doubt provided me with ample moral support and consistently encouraged

me to complete this thesis.

 16

Chapter: 1

Introduction

Data mining is nothing else than torturing the data until it confessesé

and if you torture it enough, you can get it to confess to anything

(Fred Menger)

Rapid development in information technology has provided organizations with the

ability to store, process and retrieve huge amounts of data. Nevertheless, there is a

need to extract useful information and knowledge, efficiently and effectively, from

these massive data stores. This serves to assist businesses, scientific and government

related organizations to better plan, predict, and make decisions. This has led to the

importance of data mining and the need to provide effective and efficient associated

algorithm implementation.

Data mining is the analysis step of knowledge discovery in databases (KDD)

process (Fayyad et al., 1996). The steps in the KDD process are shown in Figure

1.1. Data mining is defined as óthe analysis of (often large) observational datasets to

find unsuspected relationships and to summarize the data in novel ways that are

both understandable and useful to the data ownerô (Hand et al., 2001).

CHAPTER 1. INTRODUCTION

17

 There are numerous data mining tasks, which include the discovery of

association rules (Agrawal et al., 1993), sequential rules (Agrawal and Srikant,

1995), correlations (Brin et al., 1997), episodes (Mannila et al., 1997), multi-

dimensional patterns (Lent et al., 1997), maximal patterns (Bayardo, 1998) and

various other discovery tasks (Han & Kamber, 2001).

This thesis will focus on the task of association rule discovery. Association

rules (Agrawal et al., 1993) aim to describe noteworthy relationships between

variables. Agrawal et al. (1993) introduced the itemset mining problem as part of

association of rule discovery. An itemset is a collection of related items that occur

together in a given dataset. This initial research was motivated by analysis of market

basket (transactional) data. Given a transactional dataset, the aim is to identify all

items which have been bought together most often. The set of items is represented

by the customerôs transaction IDs. The results obtained help to generate association

rules. This should then assists companies in better understanding of the purchasing

behavior of customers, which should in turn help to improve decision making about

marketing activities.

In addition to market basket analysis, discovery of association rules has been

employed in many other areas. These include: telecommunications (detecting

intrusion in networks or system activities (Zhong and Qin, 2004; Patcha and Park,

Figure 1.1: Steps of the KDD Process (Fayyad et al., 1996)

CHAPTER 1. INTRODUCTION

 18

2007; Vaarandi and Podins, 2010)), bioinformatics (generating new knowledge in

biology and medicine (Creighton and Hanash, 2003; Pan et al., 2003; Guns et al.,

2010)) and web usage analysis (discovering patterns from the web (Eirinaki and

Vazirgiannis, 2003; Youssefi et al., 2004; Baraglia and Silvestri, 2007)).

Generating association rules is a rather straightforward, computationally

inexpensive part of the discovery task. Since the area was initially proposed, the

focus of researchers and scientist has mostly been on optimizing the itemset mining

process. In this thesis, a new method has been developed to efficiently mine large

cardinality itemsets that exist in very large datasets. It is anticipated that the method

will assist the discovery of association rules from large cardinality itemsets in this

type of dataset.

1.1 Research Motivation

A typical business transaction dataset for market basket analysis contains a

relatively large number of rows (transactions) compared to a relatively small number

of columns (dimensions). However, other application areas such as gene expression

matrices analysis in bioinformatics (Creighton and Hanash, 2003; Cong et al.,

2004b; Borgelt et al., 2011) and text processing (Nahm and Mooney, 2001; He et al.,

2011; Nassem, 2012) involve another kind of dataset, one which is characterized by

a relatively small number of rows compared with a relatively large number of

columns (or dimensions). Due to these features, this is known as a high-dimensional

dataset.

The opportunities created by high-dimensional datasets are significant. Such

datasets have also attracted interest from researchers to devise new methods to

effectively extract significant information. The amount of information that can be

revealed is potentially huge, but extracting information, and ultimately knowledge,

from these datasets is a non-trivial task.

Applications that deal with high-dimensional datasets include:

CHAPTER 1. INTRODUCTION

 19

¶ Discovering relationships between the data values within gene

expression matrices or microarray datasets, in order to assist in

understanding the cause and effect of biological processes. For

instance, such relationships can help in predicting gene function for

uncharacterized genes based on the similarity of their expression

profiles to those of known genes (Brown et al., 2000); identifying

genes that are important in specific cellular processes, diseases, or in

cell differentiations (Segal et al., 2003); learning about gene

regulation by finding and studying groups of regulated genes

(Carmona-Saez et al., 2006); and finding how cells respond to

various compounds, and then classifying predictions of responses by

new compounds (Huang et al., 2009).

¶ Sorting a set of documents automatically into categories from a pre-

defined set in order to increase connectivity and availability of the

documents at all levels of the information chain. This is also known

as text categorization (Sebastiani, 2002). Text categorization can be

used to identify document genre (Bhattacharya et al., 2008),

automated population of hierarchical catalogues of web resources

(Golub and Lykke, 2009), indexing scientific articles according to

predefined thesauri of technical terms (Renear and Palmer, 2009),

and authorship attribution (Stamatatos, 2009).

1.1.1 Challenges in Itemset Mining

The primary issue in itemset mining is to efficiently and effectively discover the

complete set of itemsets in a dataset with respect to a given user-defined threshold.

However, the presence of an itemset of length k also implies the presence of 2
k
-2

additional itemsets. It is to be noted that given the number of itemsets with a large k,

enumerating the entire collection of itemsets has been demonstrated to be unfeasible

for most algorithms. This is true especially when dealing with real-life datasets,

CHAPTER 1. INTRODUCTION

 20

where the dataset size may be very large (Pan et al., 2003; Zhu et al., 2007; Liu et

al., 2009). The physical limitation of real memory space results in an inability to

store all the itemsets discovered. Further, enumerating the entire collection of

itemsets also has an effect on processing costs.

Besides scalability (or lack thereof), due to sheer size, discovered itemsets

are difficult to interpret. This is called the information overload problem which has

several side effects. For example, large itemsets increase the time and space

complexity of the mining task. The complexity of the mining task is exponential

with respect to the number of dimension (column) because of the notorious curse of

dimensionality effect (Wang and Yang, 2010). Moreover, it is likely that there is a

considerable amount of overlap between itemsets.

Most strategies proposed to overcome these challenges have involved

reducing the amount of output. These include finding only maximal itemsets

(Bayardo, 1998) or finding only closed itemsets (Pasquier et al., 1999). An itemset is

a maximal itemset if there is no immediate superset of the itemset. On the other

hand, an itemset is a closed itemset if there is no proper superset with the same row

(transaction) values. More formal definitions and examples of these two terms will

be given in the next chapter. Depending on the dataset, maximal or closed itemsets

can offer significant compression. Nevertheless, most algorithms opt to discover

closed itemsets, due to their ability to provide a compact version of itemsets without

information loss (Pasquier et al., 1999). However, for a high-dimensional dataset,

the size of the solutions (i.e. collection of extracted closed itemsets) is still too large

to deal with the threshold value (Rioult et al., 2003).

Numerous algorithms have been proposed to mine closed itemsets on

transactional data (Bayardo, 1998; Wang et al., 2003; Zaki and Gouda, 2003). These

algorithms usually search the itemset space of the dataset; therefore, they are termed

column enumeration-based algorithms. The method works well for datasets with

small average row length, as if i is the maximum row size, there could be 2
i
-1

CHAPTER 1. INTRODUCTION

 21

potential itemsets1; usually i < 100. On the contrary, a high-dimensional dataset

contains a large number of items (columns). The run time for a column-enumeration

based search strategy increases exponentially with an increasing average row length,

which results in poor performance. As a consequence, a search over the entire

itemset space is impractical.

There are a group of related algorithms that attempt to overcome the

limitation of column-based search by enumerating the dataset in a row-wise manner

(Pan et al., 2003; Cong et al., 2004b; Liu et al., 2009). These kinds of algorithms are

termed row enumeration-based algorithms. However, the majority of these

algorithms begin their search for closed itemsets that occur from the largest row

(transaction) values. The number of closed itemsets that exists at the larger end of

the row values tends to be small in size and bigger in number. As a result, it takes

much memory space to store these many small closed frequent itemsets, thus

making the proposed algorithms computationally infeasible to reach the large closed

frequent itemsets. This is true especially for large and dense datasets such as high-

dimensional ones. It could face the risks of overseeing significant patterns.

In association mining tasks, itemsets that are bigger in size are usually of

greater importance, especially in domains such as bioinformatics, as bigger itemsets

tend to be more informative compared to small ones (Zhu et al., 2007; Han et al.,

2007). Closed itemsets that are bigger in size can also be referred to as large

cardinality closed itemsets. The term ócardinalityô refers to the measurement of the

number of elements (items) that contain in a set. These large cardinality closed

itemsets are called colossal itemsets, in order to distinguish them from closed

itemsets with a large number of rows (Zhu et al., 2007).

Section 2.3 of the survey paper by Han et al. (2007) also contends that the

main challenge in mining closed itemsets is to ensure whether a pattern mined is

closed. Several existing closed itemset mining algorithms require the dataset to be

1 In mathematics, given a set S, the powerset of S (2

S
), is the set of all subsets of S.

CHAPTER 1. INTRODUCTION

 22

checked repeatedly to see if an itemset is closed. Repeated checking for closed

itemsets within the dataset or the result set lead to an increase in processing time.

1.2 Aims and Objectives

Existing algorithms do not address the challenges stated to find useful large

cardinality itemsets; yet relatively large (colossal) closed itemsets in high-

dimensional datasets can provide valuable insights into the meaning of the datasets

(Zhu et al., 2007; Han et al., 2007). The main hypothesis of our research is that such

itemsets can be derived efficiently by using a strategy that begins the search from

the largest itemset and progressively builds smaller itemset. This approach is

supported by applying an effective closedness-checking method as well as a

compact data structure.

The aim of this thesis is to efficiently discover all large cardinality closed

itemsets that exist in high-dimensional datasets, based on a user-defined cardinality

threshold.

 To achieve this aim, the following objectives are identified by means of

several research questions:

¶ The row-enumeration search strategy has addressed the problem of

discovering closed itemsets from high-dimensional dataset. However, the

majority of approaches identify the closed itemsets as beginning from the

most frequent. Frequent itemsets generally tend to be smaller in size.

To bypass these small frequent itemsets, can the search begin with the

largest cardinality itemsets?

¶ By using the support threshold, the existing closed itemset mining algorithms

limit the search space, based on the occurrence of closed itemsets in the

dataset.

To identify large cardinality itemsets, is it possible to identify a method that

can acquire and utilise an alternative threshold other than the support

threshold?

CHAPTER 1. INTRODUCTION

 23

¶ To reduce the memory space and processing time, can the closed itemsets be

identified during the search thus avoiding the necessity of having to check

whether the closed itemsets have already been discovered?

¶ Generating candidates in order to discover large cardinality closed itemsets

can necessitate usage of more memory space and increased computation

time. This adds up if these candidates are not closed itemsets in the original

dataset.

Are there ways to avoid generating unnecessary candidate itemsets thus

reducing memory space usage and computation time?

¶ Existing algorithms begin their search from the most frequent itemsets.

Large cardinality itemsets usually exist at the infrequent end of the support

spectrum.

Is there an efficient way to represent the results in order to compare and

demonstrate the strengths and weaknesses of any proposed new method?

1.3 Contributions

This thesis studies itemset mining, particularly the mining of closed itemsets from

high dimensional data. In particular, the following contributions are made.

¶ Direct extraction of large cardinality closed itemsets by avoiding the

search for small cardinality closed itemsets in high-dimensional data.

¶ An alternative threshold is introduced to reduce the search space and

identify the large closed itemsets based on their cardinality.

¶ A closedness-checking method to check whether an itemset is closed.

The method identifies large closed itemsets without the need for repeated

checking from the result set.

¶ A compact row-tree based (CR-Tree) data structure, which integrates the

proposed techniques to provide a compact representation of the dataset

and search space.

CHAPTER 1. INTRODUCTION

 24

¶ Two effective optimization strategies to reduce the generation of

candidate itemsets, in order to speed up the search process in the CR-

Tree.

¶ An algorithm to discover large cardinality closed itemsets which also

represents sufficient support values of the closed itemsets that other

algorithms were not able to reach from high-dimensional datasets.

¶ An experimental study on both synthetic and real world datasets to

compare the performance of the proposed algorithm with selected state-

of-the-art algorithms.

Part of the work presented in this thesis has been published as:

Zulkurnain, N. F., and Keane, J. A., (2012). DisClose: Discovering Colossal

Closed Itemsets via a Memory Efficient Compact Row-Tree. Proceedings of

the 2
nd

 Doctoral Symposium on Data Mining (DSDMô12), in Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD 2012), pp.

41ï52.

1.4 Organization of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Itemset Mining Preliminaries presents a systematic overview of

itemset mining in relation to association rule discovery. The chapter begins by

defining frequent itemsets in association rule mining. The types of frequent itemsets

and the context of itemset mining in high-dimensional datasets are presented.

Chapter 3: Strategies for Closed Itemset Mining begins by identifying limitations

of general itemset mining when applied to high-dimensional datasets. Following

this, work specifically developed for mining closed itemsets in high-dimensional

CHAPTER 1. INTRODUCTION

 25

datasets is considered. Advantages and disadvantages in existing closed itemset

mining approaches for high-dimensional datasets are discussed.

Chapter 4: DisClose: Mining Colossal Closed Itemsets describes the development

of closed itemset mining in high-dimensional datasets through the proposed

algorithm, DisClose. It also addresses many of the research questions articulated in

Section 1.2. A detailed description of the mining process is given which includes the

proposed search strategy, the search threshold, closedness-checking method and data

structure.

Chapter 5: Experimental Evaluation presents a performance study of the

DisClose algorithm. The chapter begins by providing the experimentation

environment and the datasets chosen. It also presents the test results obtained by

comparing DisClose with selected state-of-the-art algorithms. This is followed by an

analysis discussion of the results to assess the capability of DisClose and provide the

basis for future work.

Chapter 6: Conclusions and Future Work discusses and summarizes the research

contributions and their limitations. Suggestions and proposals for future work are

also provided.

26

Chapter: 2

Itemset Mining Preliminaries

In this chapter, a systematic overview of itemset mining in relation to association

rule discovery will be provided; with the aim of understanding the concept. This

includes the terms and definitions that will provide the foundation for the remaining

part of the research presented in this thesis.

The chapter begins with Section 2.1, which introduces association rule mining

and its role. This is followed by the definition of a frequent itemset by providing

examples from simple transactional data. An illustration of frequent itemsets

discovered from transactional data is also presented.

Section 2.2 presents and defines two alternative approaches that have been

proposed in order to overcome the problem of mining all frequent itemsets -

maximal frequent itemset and closed frequent itemset.

Section 2.3 provides the notion of dimensionality in the context of datasets,

and in particular, high-dimensional data. The transposition method is presented,

which was proposed in order to reduce the complexity of the search for closed

frequent itemsets in high-dimensional data.

Section 2.4 summarizes the chapter.

CHAPTER 2. ITEMSET MINING PRELIMINARIES

27

2.1 Frequent Itemset in Association Rule Mining

The application of association rule mining has been widely used in order to discover

interesting relationships between variables in large datasets. Association rule

mining, as first proposed by Agrawal et al. (1993), examines the behaviour of

customers in terms of the products (items) they often purchase together in a shop

visit (transaction). The collection of data stored is known as a transactional dataset.

Let T be a dataset table that consists of a collection of rows (transactions),

},...,,{ 21 mrrrR= and a list of items, },...,,{ 21 noooI = . This set of transactions

represents the number of rows (m) and the set of items signifies the number of

columns (n) in T.

A nonempty subset IÌa is called an itemset. An itemset, Ŭk, which consists

of k items, is described as a k-itemset. Each transaction r i is represented by a unique

identifier. Let t (r i) denote the itemset at row i of the table. Within a dataset, all of

the row identifiers must be unique, but there may be duplicate row itemsets. That is,

for r1 Í r2, it may be that t (r1) = t (r2). A set of rows is termed a rowset.

Example 2.1 (Table T) Table 2.1 illustrates an example of a transactional dataset, T,

that contains six rows and five items, so }6,5,4,3,2,1{=R and },,,,{ edcbaI = .

Definition 2.1 (Support Set) For any itemset Ŭ, the support set is represented as the

set of rows in the dataset, T, that contains Ŭ. This is represented as:

)}(|{)(ii rtrr Ì= aa

2.1

Example 2.2 (Support Set) In Table 2.1, for an itemset Ŭ = {a, b, d, e}, the support

set rŬ = {1, 3, 5}.

Definition 2.2 (Support) The support of an itemset Ŭ is the number of rows in which

Ŭ occurs in T ï denoted as | rŬ |.

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 28

Example 2.3 (Support) From Example 2.2, the support for itemset Ŭ = {a, b, d, e},

3|}5,3,1{||| ==ar .

Definition 2.3 (Frequent Itemset) Given a dataset T and a minimum support

threshold minsup, an itemset Ŭ is frequent if | rŬ | Ó minsup.

Example 2.4 (Frequent Itemset) Suppose the user would like to identify items that

occur in at least three of the transactions. A total of 19 frequent itemsets were found

from Table 2.1 for minsup = 3, this is presented in Figure 2.1 where each itemset is

shown along with its rowset.

An association rule is an implication of the form 21 aa Ý , where Ŭ1 and Ŭ2

are itemsets and faa =Æ 21 . The strength of an association rule is mainly measured

by support and confidence.

Table 2.1: Example of transactional dataset, T

Transaction id Items

1 a b d e

2 b c e

3 a b d e

4 a b c e

5 a b c d e

6 b c d

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 29

Support Itemset {rowset}

6 b {1, 2, 3, 4, 5, 6}

5 e {1, 2, 3, 4, 5 }, be {1, 2, 3, 4, 5}

4 a{1, 3, 4, 5}, c { 2, 4, 5, 6}, d { 1, 3, 5, 6},

ab {1, 3, 4, 5}, ae {1, 3, 4, 5}, bc {2, 4, 5, 6},

bd {1, 3, 5, 6}, abe {1, 3, 4, 5}

3 ad {1, 3, 5}, ce {2, 4, 5}, de {1, 3, 5},

abd {1, 3, 5}, ade {1, 3, 5}, bce {2, 4, 5},

 bde {1, 3, 5}, abde {1, 3, 5}

Figure 2.1: Frequent itemsets for minsup = 3

Definition 2.4 (Support of a rule) The rule 21 aa Ý holds in a dataset T with

support, sup, where:

sup
||

|)(|
)(21

21
R

r aa
aa

Ç
=Ý 2.2

Example 2.5 (Support of a rule) In Table 2.1, the support for the rule deabÝ :

sup 5.0
6

3

||

|)(|
)(==

Ç
=Ý

R

deabr
deab

Definition 2.5 (Confidence of a rule) The rule 21 aa Ý holds in the dataset T

with confidence, conf, where:

||

|)(|
)(

1

21
21

a

aa
aa

r

r
conf

Ç
=Ý 2.3

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 30

Example 2.6 (Confidence of a rule) The confidence for a rule deabÝ in

Example 2.5:

75.0
4

3

||

|)(|
)(==

Ç
=Ý

abr

deabr
deabconf

The aim of association rule mining is to find a complete set of rules that has

support and confidence of no less than the user-specified thresholds. Frequent

Itemset Mining (FIM) consists of the first part of association rule discovery, by

identifying a set of items equal to or above a user specified minimum support

threshold, minsup. Following this, the confidence of all rules that can be formed

from the frequent itemsets can be calculated.

Therefore, association rule discovery may be divided into two parts

(Agrawal et al., 1993):

1. Mining of all frequent itemsets in dataset T that have support that is

greater than or equal to the user specified minimum support threshold,

minsup.

2. Generating association rules from each of the frequent itemsets

discovered, with a confidence greater than or equal to the user specified

minimum confidence threshold, minconf.

Various methods have been introduced which focus on the efficient

discovery of frequent itemsets. The problem of mining frequent itemsets is to find

the complete set of frequent itemsets in a dataset, T, with respect to a given support

threshold minsup. Extracting frequent itemsets is the most costly task of association

rule mining; this is due to the fact that it requires enumerating all possible

combinations of itemset. Once all frequent itemsets and their support are known, the

association rule generation is straightforward.

However, the difficulty of mining the entire set of frequent itemsets is that

the amount of frequent itemsets occurring in a dataset may be very large. Algorithms

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 31

developed in order to discover frequent itemsets have been shown to be inadequate

when discovering frequent itemsets at the lower minimum support thresholds, or on

datasets that contains long frequent itemsets (Agrawal et al., 1993; Han et al., 2000;

Zaki, 2000a). This is because the presence of a frequent itemset of length k implies

the presence of 2
k
-2 additional frequent itemsets as well. Therefore, generating and

counting the supports of all frequent itemsets in the dataset cannot be achieved

within a reasonable time. In addition, storing the complete set of frequent itemsets

requires higher memory cost. Studies have shown that frequent itemsets contain

much redundant information (Bayardo, 1998; Pasquier et al., 1999).

The next section discusses the two alternative approaches to frequent itemset

mining that have been proposed to address these problems ï maximal frequent

itemset (Bayardo, 1998) and closed frequent itemset (Pasquier et al., 1999).

2.2 Alternatives Approaches to Frequent Itemset Mining

2.2.1 Maximal Frequent Itemset Mining

Maximal frequent itemset (MFI) mining was first proposed through an algorithm

called MaxMiner (Bayardo, 1998). The advantage of mining maximal frequent

itemset is that it has the ability to discover long frequent itemsets by providing a

compact set of items from the dataset.

Definition 2.6 (Maximal Itemset) An itemset Ŭ is a maximal itemset in T if there

exists no immediate supersets Ŭô where TÍ'a , such that 'aaË .

Definition 2.7 (Maximal Frequent Itemset) An itemset is a maximal frequent

itemset if none of its immediate supersets has support value equal or greater than

minsup.

Example 2.7 (Maximal Frequent Itemset) Figure 2.2 shows the maximal frequent

itemsets (highlighted in bold). bce and abde are the largest itemsets with no other

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 32

supersets discovered with minsup = 3, hence, they are the maximal frequent

itemsets.

Support Itemset {rowset}

6 b {1, 2, 3, 4, 5, 6}

5 e {1, 2, 3, 4, 5 }, be {1, 2, 3, 4, 5}

4 a{1, 3, 4, 5}, c { 2, 4, 5, 6}, d { 1, 3, 5, 6},

ab {1, 3, 4, 5}, ae {1, 3, 4, 5}, bc {2, 4, 5, 6},

bd {1, 3, 5, 6}, abe {1, 3, 4, 5}

3 ad {1, 3, 5}, ce {2, 4, 5}, de {1, 3, 5},

abd {1, 3, 5}, ade {1, 3, 5}, bce {2, 4, 5},

 bde {1, 3, 5}, abde {1, 3, 5}

Figure 2.2: Maximal frequent itemsets (highlighted in bold) for minsup =3

The number of maximal frequent itemsets is typically orders of magnitude

fewer than the number of frequent itemsets. Hence, mining them is computationally

less complex than mining all frequent itemsets (Bayardo, 1998; Lin and Kedem,

2002; Gouda and Zaki, 2001; Burdick et al., 2005). However, maximal frequent

itemsets do not provide the complete subset frequency for generating association

rules. As an example, taking the maximal itemset abde { 1, 3, 5}, based on the

Definition 2.4, the support for the rule deabÝ can be obtained since the

frequency of occurrence for this itemset is known to be 3. Hence, the support of this

rule is equal to (3/6) or 0.5. On the other hand, this is not true for rule eabÝ .

Based on Figure 2.2 the support of this rule does not equal to (3/6) since the

frequency of occurrence for this itemset is 4. Mining for maximal frequent itemsets

does not produce abe { 1, 3, 4, 5} given that abdeabeË , therefore it is unable to

generate the rule.

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 33

Given that the consequences of mining maximal itemsets result in loss of

information, further discussion on maximum frequent itemset mining will not be

elaborated on further in the thesis (interested readers can refer to Bayardo (1998),

Agarwal et al. (2000), Gouda and Zaki (2001), Lin and Kedem (2002), Burdick et

al. (2005), Grahne and Zhu (2005) for further details).

2.2.2 Closed Frequent Itemset Mining

Closed Frequent Itemset (CFI) mining was proposed in order to overcome the

problems of mining frequent itemsets and maximal frequent itemsets by removing

itemsets that are not needed, and at the same time, being able to generate the

complete set of association rules (Pasquier et al., 1999).

Definition 2.8 (Closed Itemset) An itemset Ŭ is a closed itemset in dataset T if there

is no proper superset Ŭô (ŬËŬô) such that the support of Ŭ is the same as the support

of Ŭô.

Closed itemsets are also the maximal set of items common to a rowset

(Pasquier et al., 1999).

Definition 2.9 (Closed Frequent Itemset) An itemset Ŭ is a closed frequent itemset

in dataset T if | rŬ | Ó minsup.

Example 2.8 (Closed Frequent Itemset) In Figure 2.3, there are 7 closed frequent

itemsets discovered from Table 2.1 with minsup = 3: b {1, 2, 3, 4, 5, 6}, be {1, 2, 3,

4, 5}, bc {2, 4, 5, 6}, bd {1, 3, 5, 6}, abe {1, 3, 4, 5}, bce {2, 4, 5},and abde {1, 3, 5}.

As can be observed, the closed itemsets discovered are the maximal set of itemsets

amongst the itemsets of the same rowset value.

The closed itemset lattice is defined by employing a closure mechanism,

based on the Galois connection, a theory of order and lattices (Davey and Priestley,

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 34

1994). The closed itemset lattice is a sub-order of the itemset lattice; hence the

search space is much smaller.

Support Itemset {rowset}

6 b {1, 2, 3, 4, 5, 6}

5 e {1, 2, 3, 4, 5 }, be {1, 2, 3, 4, 5}

4 a{1, 3, 4, 5}, c { 2, 4, 5, 6}, d { 1, 3, 5, 6},

ab {1, 3, 4, 5}, ae {1, 3, 4, 5}, bc {2, 4, 5, 6},

bd {1, 3, 5, 6}, abe {1, 3, 4, 5}

3 ad {1, 3, 5}, ce {2, 4, 5}, de {1, 3, 5},

abd {1, 3, 5}, ade {1, 3, 5}, bce {2, 4, 5},

 bde {1, 3, 5}, abde {1, 3, 5}

Figure 2.3: Closed frequent itemsets (highlighted in bold) for minsup =3

The closed itemset lattice is used as a formal framework for discovering

closed frequent itemsets, based on the following properties (Pasquier et al., 1999):

i. All subsets of a frequent itemset are frequent.

ii. All supersets of an infrequent itemset are infrequent.

iii. All subsets of a closed itemset of a frequent closed itemset are

frequent.

iv. All supersets of a closed itemset of an infrequent closed itemset are

infrequent.

v. The set of maximal frequent itemset is identical to the set of maximal

frequent closed itemsets.

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 35

vi. The support of a frequent itemset Ŭ which is not closed is equal to the

support of the smallest frequent closed itemset containing Ŭ (i.e. the

closure of a frequent itemset is frequent).

Given that mining closed frequent itemsets limits the search space based on

the closed itemset lattice, both the number of dataset passes and the CPU overhead

incurred by frequent itemset searching decreases (Pasquier et al., 1999; Pei et al.,

2000; Wang et al., 2003; Grahne and Zhu, 2005; Zaki and Hsiao, 2005). In addition,

closed frequent itemsets are lossless, in the sense that they can produce a complete

set of association rules from a much smaller set of frequent itemsets. Thus, the

frequent itemset mining problem is reduced to the problem of determining closed

frequent itemsets and their support.

2.3 CFI in High-Dimensional Dataset

As was highlighted in Chapter 1, a typical business transaction dataset is represented

with the characteristics of having a relatively large number of rows (transactions)

and a relatively small number of columns (items). Recent interest has led to applying

association rule mining to high-dimensional datasets. An example of such a dataset

is the gene expression matrices or microarray data, where association rule mining is

applied to discover significant relationships among different genes, based on

expression levels (Tuzhilin and Adomavicius, 2002).

Contrary to a transactional dataset, high-dimensional datasets (microarray

data) usually contains a relatively large number of columns (genes) and a relatively

small number of rows (biological samples). Table 2.2 shows a simple example of a

discretized microarray dataset, Tm. The transaction IDs represents a set of patients

and the items denote a set of genes. There are altogether 5 patients (rows) and nine

groups of genes (items) in Table 2.2. Therefore, R = {1, 2, 3, 4, 5} and I = {a1, a2,

b1, c1, c2, d1, d2, e1, e2}.

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 36

2.3.1 Transposition method

The advantages of the closed-based technique, designed to handle pattern

redundancy, have made it relatively common place in applying association rule

discovery on high-dimensional datasets (Pan et al., 2003; Pan et al., 2004; Liu et al.,

2006; Zhu et al., 2007; Liu et al., 2009).

Due to the complexity of searching for closed frequent itemsets, based on the

number of columns in high-dimensional data, the transposition method was

proposed (Rioult et al., 2003). The study states that by using the Galois connection

(Davey and Priestley, 1994), the same results may be extracted from the transposed

table by associating the sets of rows with the sets of columns, as per the original

table, which associates sets of columns with sets of rows. Hence, the original dataset

is transposed, so that each item (with different level of expressions) is now

represented as a row value, and the rowset related to each row is represented as a

column value.

Table 2.2: Example of discretized microarray dataset, Tm

Transaction id

(Patients)

Items (Genes)

a1 a2 b1 c1 c2 d1 d2 e1 e2

1 1 0 1 1 0 0 1 0 1

2 0 1 1 0 1 0 1 0 1

3 1 0 1 0 1 1 0 0 1

4 0 1 1 0 1 0 1 0 1

5 1 0 1 0 1 1 0 1 0

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 37

Definition 2.10 (Transposed Table T
t
) Given a table T = (R, I), the transposed table

T
t
of T consists of a set of tuples. Each tuple corresponds to an item IokÍ and a

rowset. If tuple ok contains r j in T
t
, it means item ok is included in row r j in table T.

Example 2.9 (Transposed Table T
t
) Table 2.3 represents the transposed version of

Table 2.2, denoted T
t
. As an example, {2, 4} is the set of rows (rowset) that contain

item a2 in Tm which is the second tuple in T
t
.

2.3.2 CFI Mining on Transposed Data

The transposition method enables reduction of the complexity of the search on

datasets that contain relatively few rows and relatively many columns. As the

smaller dimension concerns the number of rows, the closed frequent itemsets can be

discovered by searching for a large closed rowset from transposed table T
t
.

Table 2.3: Transposed table T
t
 of microarray dataset Tm

Items Tidset

a1 {1, 3, 5}

a2 {2, 4}

b1 {1, 2, 3, 4, 5}

c1 {1}

c2 {2, 3, 4, 5}

d1 {3, 5}

d2 {1, 2, 4}

e1 {5}

e2 {1, 2, 3, 4}

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 38

Definition 2.11 (Closed Rowset) Given the transposed table T
t
, a rowset ɓ is a

closed rowset if not a proper superset ɓô exists (ɓËɓô), such that the support of ɓ is

the same as the support of ɓô.

Example 2.10 (Closed Rowset) From Table 2.3, for a rowset {1, 2}, the common

itemset that occur in {1, 2} is b1d2e2. However, b1d2e2 occurs also in rowset {4}.

Therefore b1d2e2 = {1, 2, 4}. Based on Definition 2.11, {1, 2} is not a closed rowset

as }4,2,1{}2,1{ Ë . Hence, {1, 2, 4} is a closed rowset.

Definition 2.12 (Closure) Given a list of items, },...,,{ 21 noooI = , an itemset

IÌa and a rowset RÌb , it is defined that:

}:|{)(jkjk orIoRrR ÍÍ"Í=a , 2.4

)}(:|{)(kjkj rtorIoI ÍÍ"Í= bb . 2.5

By this definition, C (Ŭ) can be defined as the closure of itemset Ŭ and C (ɓ)

as the closure of rowset ɓ, as follows:

))(()(aa RIC = 2.6

))(()(bb IRC = 2.7

Hence, an itemset Ŭ is a closed itemset if Ŭ = C (Ŭ) and ɓ is a closed rowset if

ɓ = C (ɓ).

2.4 Summary

This chapter has provided an overview and definitions of association rule mining,

beginning from frequent itemset mining in transactional datasets and then

considering mining closed frequent itemsets in high-dimensional data. This will

provide a basic understanding on the types of itemsets that can be mined, especially

closed itemsets, in relation to the forthcoming chapters.

CHAPTER 2. ITEMSET MINING PRELIMINARIES

 39

Mining closed frequent itemsets has been shown to be the best alternative

when compared to mining only frequent itemsets or maximal frequent itemsets. The

ability to provide a complete and reduced set of answers shows that closed itemset

mining is computationally less costly in the association rule discovery.

 The next chapter will consider the search strategies that have been proposed

as a means of discovering closed frequent itemsets, in particular for high-

dimensional datasets. This includes closedness-checking methods proposed by the

algorithms to identify the closed itemsets. The advantages and disadvantages of

these approaches are analyzed and discussed.

 40

Chapter: 3

Strategies for Closed Frequent Itemset Mining

This chapter provides a review of the literatures on various search strategies that

have been proposed in order to discover closed frequent itemsets. By examining

these search strategies, an understanding of their advantages and disadvantages will

be provided, and the gaps in current methods will be identified.

The chapter begins with Section 3.1, which describes the historical

development of search strategies for mining closed frequent itemsets and their

drawbacks.

Section 3.2 presents the current approach to discovering closed frequent

itemsets from high-dimensional data.

Section 3.3 gives an example of an algorithm that proposes the search for

large cardinality closed itemsets in high-dimensional datasets.

Section 3.4 considers an algorithm that searches closed itemsets using more

than one constraint.

Finally, Section 3.5 summarizes the chapter, and concludes by pointing out the

gaps in the literature that will be addressed in this thesis.

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 41

3.1 Column Enumeration-based Strategy

3.1.1 Apriori -based Bottom-up Search

The enumeration-based strategy delivers numerical information in the form of

counts for individual items or events retrieved (Brown, 1995). A column set

enumeration-based strategy explores a dataset according to its item value. The

earliest frequent itemset mining algorithm that employed this strategy was the

Apriori (Agrawal et al., 1993). The Apriori algorithm enumerates the frequent

itemsets in ascending order of size. This enumeration approach is termed a bottom-

up search. Figure 3.1 illustrates an example of the bottom-up column (item)

enumeration tree, showing all the item combinations of the dataset in Table 2.1 from

Chapter 2.

{}

a

b

c

d

e

ab

ac

ad

ae

bc

bd

be

cd

ce

de

abc

abd

abe

acd

ace

ade

bcd

bce

bde

cde

abcd

abce

abde

acde

bcde

abcde

Figure 3.1: Bottom-up column enumeration tree

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 42

Apriori traverses the column enumeration tree using a bottom-up search in

breadth-first order. This means that each level of the tree must be fully explored to

discover frequent itemsets before moving onto the next level. The algorithm implies

that frequent itemsets are mined through an iterative level-wise approach, based on

candidate generation. Candidate itemsets refer to the itemsets generated whose

supports are counted during the process of discovering frequent itemsets. Therefore,

to identify entire frequent itemsets, all possible candidate itemsets must be tested.

However, as in reality the number of existing candidate itemsets can be huge,

and therefore, identifying all candidates for these itemsets is both challenging and

time consuming, and runs into the problem of achieving scalability. To reduce the

search space for candidates, Apriori applies the anti-monotonic or downward

closure property, which defines an itemset as frequent if and only if all of its sub-

itemsets are frequent (Agrawal et al., 1993). This means that all of the supersets of

an infrequent itemset found do not have to be considered.

Definition 3.1 (Anti-monotonic) Given a dataset, T, with items I, let Ŭ1 and Ŭ2 be two

itemsets such that IÌ21,aa , then:

2121 aaaa TT ²ÝË

3.1

The Apriori algorithm, as presented in Algorithm 3.1, begins by first

scanning the dataset to find the frequent 1-itemsets. It then uses the frequent 1-

itemsets to generate candidate frequent 2-itemsets, and checks these against the

dataset to obtain the frequent 2-itemsets, and so on. The algorithm iterates until no

more frequent k-itemsets can be generated for some k.

Apriori is a level-by-level candidate-generation-and-test algorithm where, to

discover frequent itemset of size n, the algorithm has to scan the dataset n times and

requires the checking of 2
n
-1 candidate itemsets. Several frequent itemset mining

algorithms have been proposed that extend Apriori in various ways, which includes

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 43

implementing the hashing technique to reduce the number of candidate itemsets

(Park et al., 1995). There are methods that attempt to reduce the number of dataset

searches by dividing the dataset into non-overlapping partitions (Savasere et al.,

1995) and dynamically counting candidate itemsets of varying length (Brin et al.,

1997). Another method, proposed by Bastide et al. (2000) performs pattern counting

inference based on the concept of key patterns. A key pattern is the smallest itemset

that represents a group of itemsets with equivalent support. This leads to a reduction

in the number of patterns counted, as well as a reduction in dataset scans. As the

focus of this research is on discovering closed itemsets, further details of these

algorithms will not be discussed.

An example of a well-known algorithm that discovers closed frequent

itemsets using an Apriori-based search is A-CLOSE.

Algorithm 3.1: Apriori algorithm

Input : D = Dataset, minsup = minimum support

Output : F1, F2, é, Fk, a set of frequent itemsets

F1 = {Frequent 1-itemsets};

for (k=2, Fk-1Í0, k++) do begin

 Ck = New candidate generation from Fk-1

 forall transactions DtÍ do begin

 Ct = Candidate contained in t

 forall candidates
tCcÍ do

 c.count++;

 end

 Fk={ kCcÍ | c.count Ó minsup}

 end

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 44

A-CLOSE (Pasquier et al., 1999) (see Algorithm 3.2), was the first algorithm

to discover closed frequent itemsets using an Apriori-based framework. An example

of the application of the algorithm is illustrated in Figure 3.2, based on the dataset

from Table 2.1. The algorithm constructs a set of generators to identify closed

Algorithm 3.2: A-CLOSE algorithm

Input : Dataset, minsup = minimum support

Output : CFI, a set of closed frequent itemsets

 G1 = {1-itemsets generators};

 support = count (G1)

 forall generators 1GpÍ do begin

 if (support(p) < minsup) then delete p from G1;

 end

 level = 0;

 for (i = 1; Gi.generator Í Ï; i++) do begin

 Gi+1 = Generate (i+1)-generators of Gi

 if (level = 0) then level = i; // Iteration number of the first prune

 end

 if (level > 2) then begin

 };1|{ -<= leveljGG j8 // Those generators are all closed

 forall generators GpÍ do begin

 p.closure = p.generator;

 end

 end

 if (level Í 0) then begin

};1|{' -²= leveljGG j8

; // Some generators that are not closed

 Gô = Closure of generator Gô

 end

 CFI = {c.closure, c.support| 'GGc ÇÍ };

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 45

frequent itemsets. These generators are the smallest itemsets that can determine the

closed itemsets, based on the properties of the closed itemset lattice2.

During the search process, generators that have the same support as one of

their subsets and therefore have the same closure as the subset are pruned. At the

end of the search, the closure of all the generators identified is obtained by

2 Properties of the closed itemset lattice have been outlined in Chapter 2.

Generator Support

a

b

c

d

e

4

6

4

4

5

G1 G1

G2

Generator Support

ab

ac

ad

ae

bc

bd

be

cd

ce

de

4

2

3

4

4

4

5

2

3

3

G2

Generator Closure Support

{a}

{b}

{c}

{d}

{e}

{ad}

{ce}

{de}

abe
b

bc

bd

be

abde

bce

abde

4

6

4

4

5

3

3

3

Generator Support

ad

ce

de

3

3

3

Gô

Closure Support

abe
b

bc

bd

be

abde

bce

4

6

4

4

5

3

3

Support

count

Pruning

infrequent

generators

Pruning

Closure

checking

of

generators

Pruning

Answer: CFI

Generator Support

a

b

c

d

e

4

6

4

4

5

Generating

(i+1)-

generators

Figure 3.2: Discovering closed itemsets with A-Close for minsup =3

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 46

intersecting all the transactions that contain the generator as a subset. Duplicate

closures are then removed.

Apriori-based algorithms have shown good performance when applied to

sparse datasets where the frequent itemsets or closed frequent itemsets are relatively

short. However, with dense datasets, these algorithms have been shown to scale

poorly and are impractical, because of high-computational costs (Brin et al., 1997;

Pasquier et al., 1999; Bastide et al., 2000). This drawback is because of: (i)

generation of a huge number of candidate itemsets (or generators in the case of the

A-CLOSE algorithm) and (ii) repeated scanning of the dataset and checking the

candidates by pattern matching.

3.1.2 Pattern Growth without Candidate Generation

To overcome the limitations of the Apriori-based approach, Han et al. (2000)

proposed the discovery of frequent itemsets without candidate generation through an

algorithm called FP-growth (Frequent Pattern-growth). The main idea of this

algorithm relies on a compact tree data structure called the FP-tree, which stores

only information related to the mining of frequent itemsets ï i.e. the number of

itemsets and its frequency of occurrence.

An example of the FP-tree that is constructed from Table 2.1 for minsup = 3

is given in Figure 3.3. The dataset is initially scanned to derive a list of frequent

items, which are then ordered in frequency descending order, e.g. à(b: 6), (e: 5), (a:

4), (c: 4), (d: 4)ð. These items are stored in the header table. The dataset is then

scanned for the second time to build the FP-tree. Only frequent 1-itemsets are stored

as nodes in order to ensure the compactness of the tree. The nodes are arranged in

frequency descending order, so that frequently occurring nodes will have better

chances in prefix sharing than otherwise. If two transactions share a common prefix

node, these nodes are merged as one prefix structure, and the count of each node

associated with the prefix is incremented. This helps to prevent repeated scanning of

the dataset.

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 47

The FP-growth algorithm is given in Algorithm 3.3. The method searches

for the frequent itemsets by recursively partitioning the FP-tree into non-

overlapping subsets based on the item list. Following the frequency ascending order

Algorithm 3.3: FP-growth algorithm

Input : Tree = FP-tree constructed from dataset D, minsup = minimum support

Output : F, a set of frequent itemsets

if Tree contains a single path P;

then for each combination (denoted as Ŭ) of the nodes in the path P do

 generate itemset FÇa with support = minsup of nodes in Ŭ;

 else for each item ik in the header Tree do {

 generate itemset FikÇ=a with support = ik.support;

 construct Ŭôs conditional pattern base and then Ŭôs conditional FP- tree

 TreeŬ;

 if TreeŬ Í Ï

 then call FP-growth (TreeŬ, Ŭ) }

item head of

node-links

b

e

a

c

d

root

b:6

c:1 e:5

d:1 a:4

d:2

d:1

c:2

c:1

Header table

Figure 3.3: The FP-tree from Table 2.1 for minsup = 3

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 48

of the item list, the algorithm begins with each frequent length-1 itemset as the suffix

item. It then traverses the FP-tree by following the link of each frequent item that

co-occurs with the suffix item. The collection of all frequent itemsets co-occurring

with the suffix item forms the conditional pattern base. The FP-tree constructed

from the conditional pattern base is called the conditional FP-tree.

FP-growth is achieved by concatenating the suffix item with the frequent

itemsets generated from the conditional FP-tree. The suffix item of length-1 itemset

will then be used to continuously generate those with a length equal to 2, and so on,

until the conditional FP-tree contains only one single path from which frequent

itemsets can be directly generated. Table 3.1 shows the conditional pattern base and

conditional FP-tree of Figure 3.3 for every suffix item.

As an example, in Figure 3.3, (d: 4) is the suffix item with the smallest

number of support after item ordering. There are 3 branches that co-occur with item

d. These branches are the conditional sub-database related to suffix item d. The

conditional FP-tree for item d consists of à(b: 4), (e: 4), (a: 3), (b, e: 3), (b, a: 3), (a,

e: 3), (b, e, a: 3)ð, and all the combinations of frequent itemsets that consists of d as

its component are {(d : 4), (bd : 4), (ed : 3), (ad : 3), (bed : 3), (bad : 3), (aed : 3),

Table 3.1: Conditional pattern base and conditional FP-trees for each suffix item

item conditional pattern base conditional FP-tree

d {(b, e, a, c : 1), (b, e, a : 2), (b, c : 1)} { (b : 4), (e : 3), (a : 3),

(b, e : 3), (b, a : 3), (a, e : 3),

 (b, e, a : 3)}|d

c {(b, e, a : 2), (b, e : 1), (b : 1)} {(b: 4), (e : 3), (b, e : 3)}| c

a {(b, e : 4)} {(b , e : 4)}| a

e {(b : 5)} {(b : 5)}| e

b Ø Ø

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 49

(bead : 3)}. Several closed frequent itemset mining algorithms have been devised as

extensions to the FP-growth method that maintain the discovered itemsets using the

FP-tree structure or in a pattern-tree similar to an FP-tree. These include: (i)

CLOSET, (ii) CLOSET+, (iii) FP-Close, (iv) AFOPT.

(a) CLOSET (Pei et al., 2000) identifies the closed frequent itemsets by

performing a depth-first search on the FP-tree. The algorithm applies the

single prefix path compression technique which searches for a single

prefix path in the FP-tree in which closed itemsets can be directly

extracted from the conditional pattern base. As an example, for a-

conditional database in Table 3.1, its corresponding FP-tree has only one

branch:)5:(),6:(eb , hence the closed frequent itemsets, (abe : 4) can

be directly enumerated. The discovery of closed frequent itemsets is then

continued by recursively building the conditional FP-tree and identifying

the superset of the remaining itemsets that appear in every transaction

before checking the subset of the particular itemset. CLOSET has shown

to be much faster than Apriori-based A-CLOSE algorithm on dense

dataset when the minimum support threshold is low (Pei et al., 2000).

(b) CLOSET+ (Wang et al., 2003) introduces a hybrid tree-projection

method which builds the conditional pattern base depending on whether

the dataset is sparse or dense. The algorithm also proposed two subset-

checking techniques to determine if a discovered itemset is a subset of an

already found closed itemset candidate with the same support. For dense

datasets, a two-level hash-indexed result tree is applied, where each level

uses the ID of the last item and the support of the current itemset as the

hash key. Each closed itemset discovered is inserted into the result tree

and the length of its path is recorded. In contrast to the FP-tree structure,

the support of a node is replaced by the maximum value among the

support of closed itemsets sharing the common prefix. For sparse

datasets, the subset-checking is applied on the global prefix-tree because

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 50

the result tree is not very space-efficient. All the nodes of the tree and

their corresponding prefix path can be traced by following the side-link

pointer recorded in its header table. Therefore, a closed itemset is

obtained using the upward subset-checking to see whether it appears in

each prefix path with respect to the prefix itemset. CLOSET+ shows that

it is an order of magnitude faster and consumes less memory than

CLOSET at lower support thresholds. CLOSET+ is also more scalable

than CLOSET as the number of rows increases (Wang et al., 2003).

CLOSET+ has the advantage of applying different methodologies prior

to the characteristics of the dataset whether it is sparse or dense.

(c) Grahne and Zhu (2003) introduced the algorithm FP-Close to discover

closed itemsets by constructing a CFI-tree (Closed Frequent Itemset-

tree). Like CLOSET+, during the insertion of a closed frequent itemset,

the support count of the nodes in the CFI-tree is replaced by the current

maximal support count for the related itemset. FP-Close also performs a

similar subset-checking technique to CLOSET+ with the difference that

the algorithm also considers the support count of the itemset. The support

count of each item in the list must be equal to, or greater than, the

support count of the itemset, before ensuring that it is not a subset of

another itemset with the same support value. FP-Close shows similar

performance at lower support thresholds as compared to the algorithms

selected in Grahne and Zhu (2003). The reason for this is that FP-Close

generates more non-closed frequent itemsets hence increases the amount

of time needed to check for closed itemsets. However, FP-Close requires

less amount of memory due to the compactness of the constructed CFI-

tree.

(d) Liu et al. (2003) introduced the algorithm AFOPT, which stores closed

frequent itemsets in a tree structure called a Condensed Frequent Pattern

tree or CFP-tree. The algorithm traverses the tree in both a top-down and

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 51

bottom-up manner. Each node of the CFP-tree is a variable-length array,

in which items in the same node are sorted in frequency ascending order.

The CFP-tree has two properties: (1) the left containment property that

ensures the items of an itemset can only appear in the subtrees pointed to

by the itemset or from previous itemsets in the tree; (2) the Apriori

property ensures that the support of any child nodes of a CFP-tree for a

particular itemset cannot be greater than the support of that itemset.

AFOPT performs superset-checking of the CFP-tree based on these two

properties. Superset-checking ensures that an itemset is a closed itemset

if all of its supersets have a lower support threshold. The algorithm also

performs subset-checking by applying a two-layer hash map similar to

CLOSET+ to check whether the itemset is closed before searching the

CFP-tree. The hash map contains the item and the maximal length of the

itemset mapped to it. A closed itemset is discovered if any of the items it

mapped to contain a lower value than its length. AFOPT shows that the

algorithm scales well as the average transaction length increases as

compared to the algorithms selected in Grahne and Zhu (2003). The

algorithm demonstrates better performance in terms of running time on

dense datasets due to its adaptive nature and the efficiency of the subset

checking technique. AFOPT is also memory efficient due to the

construction of the compact CFI-tree.

The high compression ratio of the FP-tree has contributed to the reduction of

the search space for discovering closed frequent itemsets, especially in dense

datasets. In addition to the breadth-first order applied in the Apriori-based approach,

the search for frequent itemsets from the FP-tree can be made in a depth-first

manner. This means that the supports of all descendant itemsets of a node are

determined before determining the frequent extensions of other nodes in the column

enumeration tree. Thus, the depth-first search strategy quickly tends to find the

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 52

longer itemsets first in the search process and the branches of a node is searched

only if the itemset is frequent. Hence, the strategy is able to reduce the processing

time by cutting down the search space that contains itemsets which do not satisfy the

desired threshold. However, FP-tree based algorithms are unable to give good

compression for long itemsets. Building the FP-tree will require a larger amount of

time and memory space, especially for datasets with large number of columns

(items).

3.1.3 Exploring t he Vertical Data Format

Datasets for mining frequent itemsets are generally represented in a horizontal

format, with each row corresponding to a list of items (i.e., {rid:itemset}), where rid

is the row-id and itemset is the set of items in row rid. A study by Zaki (2000a)

proposed an alternatively representation of the dataset which shows that the row

information can also be recorded in a vertical data format. The vertical data format

is an inverted representation of the original dataset. It is generated by scanning the

dataset, and builds the rowset of each single item where the identities of the rows

containing the item are listed (i.e., {item:rowset}). Table 3.2 shows an example of

the vertical representation of the transactional dataset from Table 2.1. The advantage

of applying the vertical data layout is that there is no need to scan the dataset to find

Table 3.2: Example of the vertical data format for transactional dataset, T

Items Tidset

a 1 3 4 5

b 1 2 3 4 5 6

c 2 4 5 6

d 1 3 5 6

e 1 2 3 4 5

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 53

the support of (k + 1)-itemsets (for 1²k). This is because the rowset of each k-

itemset carries the complete information required for counting such support. Hence,

computing the supports is simpler and faster.

An example of the algorithm that utilizes the vertical data format to discover

closed frequent itemsets is CHARM (Zaki and Hsiao, 2005). CHARM

simultaneously explores both the itemset and rowset space in a depth-first manner

on a dual itemset-tidset search tree (IT-tree). In addition to the itemset value, each

node in the IT-tree also represents its rowset value. The rowset of the corresponding

(k + 1)-itemsets is obtained by intersecting the rowset of the frequent k-itemsets. The

process repeats, until no frequent or candidate itemsets can be found.

The closed itemsets are identified using the IT-pair (Itemset-Tidset pair)

properties proposed in the study made by Zaki and Hsiao (2005). In addition, a hash

function is applied to the rowset value by performing the sums of rids in the rowset

to quickly identify the closed itemsets.

The drawbacks of the vertical data format are that it consumes a lot memory

to store large cardinality rowsets, and increasing number of rowset intersections.

CHARM attempts to reduce the size of the intermediate rowset through diffset which

keeps track of the differences in rids of the candidate itemsets from its parent

frequent itemsets. This has led to an increase in the algorithmôs performance due to

the less number of rowset intersection.

CHARM has shown that it performs better than pattern-growth based closed

itemset mining algorithms, such as A-CLOSE and CLOSET. It is several orders of

magnitude faster than A-CLOSE and CLOSET at low support thresholds. CHARM

also scales well, having linear increase in running time with increasing number of

transactions. One of the advantages of CHARM is that the diffset format is resilient

to sparsity. However, if the dataset contains many short itemsets, the tidset/diffsets

operation in CHARM can be expensive. Also, CHARM is a column-enumeration

based algorithm that performs the search using the Apriori-based approach, which is

known to generate large number of candidate itemsets.

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 54

3.2 Row Enumeration-based Strategy

In contrast to the transactional data, high-dimensional datasets may contain 10 K ï

100 K columns or items but usually have only 100 to 1000 rows or transactions

(typically a difference of a few orders of magnitude). Column enumeration-based

mining algorithms described above typically begin the search for closed frequent

itemsets with small itemsets that appear frequently and uses these intermediate

results to build larger and larger itemsets. This strategy is generally effective for

datasets with the characteristic of having a relatively large number of rows and a

relatively smaller number of columns, hence the term column-enumeration search.

Datasets with relatively many more columns than rows present efficiency

challenges for algorithms that search based on the column values. This is because

the number of possible column combinations is extremely high, and hence,

correspondingly increases the search space size. For this reason, a high-dimensional

dataset is considered to be dense. Therefore, enumerating the closed frequent

itemsets by considering the row-space (e.g. experiments) rather than the column-

space (e.g. items) should be more effective.

3.2.1 Bottom-up Search

CARPENTER was the first algorithm to adopt the approach of mining the closed

frequent itemsets in high-dimensional datasets using the row enumeration space in a

bottom-up manner (Pan et al., 2003). The bottom-up search strategy of the row

enumeration space implies that the dataset is searched starting from the smallest

rowset value, and builds larger rowset values during the process. Figure 3.4

ill ustrates an example of the row enumeration tree that lists all the rowset values in

bottom-up order. Unlike the column enumeration-based search tree, the nodes of the

row enumeration tree are now viewed as a set of row values (rowset), as opposed to

a set of column (itemset) value.

The algorithm integrates the advantage of vertical data format (Zaki, 2000a)

by transposing the dataset (Rioult et al., 2003) so that the rowset is viewed as a set

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 55

of rows. In contrast to the column enumeration-based method which performs

intersection on the rowset values of the transposed table, row enumeration-based is

driven by intersecting the itemsets in order to discover the closed frequent itemsets.

CARPENTER applies a depth-first search of the row enumeration tree. The

algorithm recursively constructs conditional transposed tables where each computed

conditional transposed table represents a node in the row enumeration tree. Each

conditional transposed table contains items that exist in the conditional rowset,

along with rids of the items that are larger than any of the conditional rowset.

The advantage of the conditional transposed table is that once a closed

itemset is discovered for that particular rowset, further checking on the node for the

rowset value is unnecessary. An example of a conditional transposed table, T
t
|x,

{}

1

2

3

4

5

12

13

14

15

23

24

25

34

35

45

123

124

125

134

135

145

234

235

245

345

1234

1235

1245

1345

2345

12345

Figure 3.4: Bottom-up row enumeration tree

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 56

where x = {2, 3, 4}, from Table 3.2 is as shown in Table 3.3. As rid 5 occurs in each

tuple of T
t
|{2,3,4}, b1c2 = {2, 3, 4, 5} is a closed itemset.

Study shows that CARPENTER performs better with respect to run time than

CHARM and CLOSET, as the minimum support threshold varies (Pan et al., 2003).

This is due to the fact that the increase in the column enumeration space leads to the

decrease in the performance of the column-enumeration based algorithm such as

CHARM and CLOSET. CARPENTER also is 100 times faster than CHARM and

1000 times faster than CLOSET as the number of length ratio of the dataset

increases.

There are several algorithms that have their basis in CARPENTER ideas, and

these include: (i) FARMER, (ii) TopKGRS, (iii) COBBLER.

(a) FARMER (Cong et al., 2004a) was particularly designed to find all

association-based classification rules by row enumeration. The algorithm

searches the row enumeration tree in depth-first order to build classifiers of

the form X Ÿ C, where C is a class label and X is a set of attributes. Hence, it

requires a duplicate of the dataset in order to classify the classesô information

prior to mining. The method is supported through the transposed tables,

taking into account class information. Thus, each itemset in the transposed

table is enumerated according to a positive and negative class. In this

particular algorithm, the association rules discovered are required to satisfy

more than one constraint such as support, confidence and chi-square (Cong

et al., 2004a). FARMER shows that it is 2 to 3 orders of magnitude faster

than ColumnE (Bayardo and Agrawal, 1999) and CHARM as the minimum

support threshold decreases (Cong et al., 2004a). This is because FARMER

Table 3.3: Conditional transposed table, T
t
|{2, 3, 4}

Item Rowset

b1 5

c2 5

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 57

depends on the number of row combination of the high-dimensional dataset

as compared to the number of column combinations made by ColumnE and

CHARM.

(b) RERII (Cong et al., 2004b) extracts all closed frequent itemsets by searching

the row-enumeration space depth first. The algorithm begins by removing all

infrequent 1-itemsets from the dataset. Each row value of the sibling nodes

in the enumeration tree is then intersected with one another, iteratively

generating sub-itemsets of greater support. If the sub-itemset is equal to the

parent itemset, the support of the parent itemset increases. This continues

recursively until no smaller itemsets can be formed or the branch of the sub-

itemset is equivalent to the parent itemset. All the closed frequent itemsets

that do not satisfy the minsup threshold are pruned. RERII has been shown to

be faster in terms of runtime than the column enumeration-based algorithms

CLOSET+ and CHARM at low support thresholds for similar reasons, as

with FARMER. The algorithm also performs 2-4 times faster than

CARPENTER on the test datasets since it does not require building the

conditional transposed tables (Cong et al., 2004b).

(c) Similar to FARMER, TopKGRS was designed to discover a set of rule groups

(Cong et al., 2005). The algorithm uses a preference selection to specify the

number of top covering rule groups (top-k), in order to reduce the number of

rule set. By implementing the top-k, TopKGRS has shown to be 2 to 3 orders

of magnitude faster than FARMER especially at low minsup threshold. This

is because FARMER discovers a large number of rule groups at low minsup

as compared to the restricted number of rule groups obtained by TopKGRS.

The runtime of TopKGRS monotonously increase with increasing value of k.

The improvement in the runtime is also due to the implementation of the

compact prefix-tree in the algorithm (Cong et al., 2005).

(d) COBBLER (Pan et al., 2004) employs dynamic evaluation of closed frequent

itemsets by combining both the bottom-up row-enumeration and bottom-up

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 58

column-enumeration approach, depending on the dataset characteristics.

Similar to CARPENTER, COBBLER performs a depth-first traversal search

of both trees, by recursively constructing several conditional tables and

conditional transposed tables. Each conditional table represents a column-

enumerated node, while each conditional transposed table represents a row

enumerated node. The change from row enumeration to feature enumeration

or vice versa is decided through evaluating a switching condition. The

objective is to estimate the enumeration costs for the sub-trees and selecting

the smallest one from both sub-trees, i.e. column or row based. The

enumeration cost is estimated from two components of the tree, its size and

the computation cost at each node of the tree. The size of the tree is based on

the estimated number of nodes it contains, while the computation cost at a

node is measured using the estimated number of rows (features) that will be

processed at the node. The advantage of this strategy is that each portion of

the dataset can be processed using the most suitable method, hence making

the mining more efficient. Experiments show that at higher minsup

thresholds, when the dataset needs to consider large numbers of rows as

compared to the number of columns, column enumeration-based algorithms,

CLOSET+ and CHARM performs better in terms of runtime in most of the

cases. If the minsup threshold is reduced, COBBLER performs better in terms

of run-time. The effectiveness of COBBLER has been demonstrated in

experiments on a dataset, with both a relatively large number of rows and

columns (Pan et al., 2004).

(e) MAXCONF (McIntosh and Chawla, 2007) applied the row enumeration-

based bottom-up search to discover closed itemsets using the confidence

measures. This algorithm arose from the observation that implementing the

support threshold has lead to the pruning of many interesting unknown

itemsets that could provide high confidence rules. The algorithm proposed

two confidence pruning methods, which results in MAXCONF to scale well

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 59

with the changes in the confidence threshold. It also shows that it could

discover interesting rule groups with high confidence as compared to the

support-based algorithm, RERII (McIntosh and Chawla, 2007).

As stated in the previous chapters, mining closed frequent itemsets based on

the support constraint as the search threshold means discovering closed itemsets that

contain large rowsets. Therefore, the main restriction of the bottom-up approach is

the size of the rowset. As it is monotonic in terms of the bottom-up search order, it is

hard to prune the row enumeration search space early. For example, suppose the

minsup is set to 3, although all the nodes in the first two levels from the root

obviously cannot satisfy this constraint, these nodes still need to be checked (Pan et

al., 2003; Cong et al., 2004a; Cong et al., 2004b). Hence, as minsup increases, the

time needed to complete the mining process does not decrease correspondingly or

rapidly. This limits the application of this kind of algorithm in real situations. In

addition, the inability to prune the search space earlier adds to the increase in

memory cost. For example, the CARPENTER algorithm needs to save many x-

conditional transposed tables in memory during the mining process. For a table with

n rows, the maximum number of different levels of transposed tables in memory is

n, although among these, the first (minsup-1) levels will not contribute to the final

result.

3.2.2 Top-down Search

To take advantage of the support constraint, Liu et al. (2006) proposed that the row

enumeration-tree is traversed in a top-down manner. A top-down search implies that

along each path of the tree, the rowsets are check from large to small ones. Given a

minsup threshold, for a dataset with n-rows, the search for closed frequent itemsets

ends for levels greater than (n-minsup) in the row enumeration tree.

Figure 3.5 shows an example of the top-down row enumeration for 5 rows

from Table 2.3. Each node of the tree represents a rowset value. The level of root

node is defined as 0, and the highest level for a dataset with n rows is (n-1). Suppose

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 60

the minsup = 2, a further search is stopped at level 3, because the rowsets

represented by nodes at level 3 and 4 will not contribute to the set of closed frequent

itemsets.

Two examples of the algorithms that apply the top-down approach are: (i) TD-

Close and (ii) TTD-Close.

(a) TD-Close (Liu et al., 2006) was the first algorithm to implement the top-

down approach of the row enumeration tree. Similar to CARPENTER, TD-

Close employs an array-based data structure by performing sub-division of

the itemsets using conditional transposed tables. Each sub-table

corresponds to a node in the row enumeration tree. The conditional

transposed table is called an x-excluded transposed table, where x is a

rowset, excluded from the table. The algorithm finds all the items from the

transposed table that contain the rowset id, rids, greater than the specified

12345

1234

1235

1245

1345

2345

123

124

134

234

125

135

235

145

245

345

12

13

23

14

24

34

15

25

35

45

1

2

3

4

5

Figure 3.5: Top-down row enumeration tree

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 61

rowset value, x, but only items which contain rids less than x are retained in

the x-excluded transposed table. During this process, items that do not

satisfy the minsup constraint are discarded. Based on Definition 2.11, a

rowset is closed if a larger rowset value containing the same itemset does

not exist. To satisfy this condition, TD-Close performs a trace-based

closedness-checking method by keeping track of the rids excluded during

the intersection of the itemset. Hence, to facilitate the search for closed

rowsets, a column value is added to the x-excluded transposed table called

skip-rowset. The itemsets that occur in the same rowset are merged and at

the same time, the intersection of the skip-rowset values is performed. The

itemset which produces an empty skip-rowset during the merge is a closed

itemset. Experimental results demonstrate that TD-Close is faster than FP-

Close and CARPENTER in terms of runtime as the minsup threshold

decreases. The ability of the top-down search of the row enumeration tree

to prune the search space that does not satisfy the minsup threshold earlier

adds siginificantly to the running time of the algorithm. Because of this,

TD-Close consumes less memory as compared to a bottom-up approach in

CARPENTER. On the other hand, FP-Close is a column enumeration-based

algorithm which requires an explosive number of frequent itemsets that

need to be checked.

(b) The TTD-Close (Liu et al., 2009) algorithm, a development of TD-Close,

represents the dataset using a tree data structure, as opposed to the flat table

in TD-Close to perform the search for closed frequent itemsets. The main

advantage of using this approach is that the tree structure provides a more

compact representation of the dataset. The tree structure, termed FR-tree

(Frequent Rowset-tree), is similar to the representation of the FP-tree (Han

et al., 2000). The differences between the trees are that instead of

representing the nodes with the item value (FP-tree), each node of the FR-

tree is represented with the rid value and the nodes in the FR-tree are

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 62

linked through a parent pointer instead of a child pointer (FP-tree). An

additional structure, termed IP-List (Itemset Pointer List), is added to the

FR-tree, and contains information that assists in the discovery of closed

frequent itemsets. An example of the FR-Tree and the IP-List for the

transposed table T
t
 of Table 2.3 is shown in Figure 3.6. IP-List is similar to

the x-excluded transposed table in TD-Close. The difference is that instead

of using the excluded rowset x during recursion, the algorithm uses the

rowsets which do not contain x. The IP-List consists of four parts: (i) a set

of pointers each of which represents an itemset and points to a node in the

1 2 3

3 4 2 3 5

4 5 3 4

5 4

5

IP-List

itemsets (pointer)

explicit rowset

implicit rowset

cMinsup

a1 a2 b1 c2 d1 d2 e2

{1, 2, 3, 4, 5}

ū

2

FR-Tree

Figure 3.6: FR-Tree and IP-List

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 63

FR-Tree; (ii) an explicit rowset which contains several rids that may

represent the itemset; (iii) an implicit rowset which represents rids that exist

for the particular itemset and (iv) the current minimum support threshold,

cMinsup. The recursion path of TTD-Close follows the changes in the

explicit rowset. Experiments conducted by Liu et al. (2009) demonstrate

that TTD-Close provides the least runtime as compared to the algorithms,

TD-Close, FP-Close and CARPENTER. TTD-Close also consumes the least

amount memory during mining for closed itemsets. This is because TD-

Close needs to build several x-excluded transposed tables, CARPENTER

needs to deal with rowsets that are smaller than the minsup threshold and

FP-Close needs to build more FP-trees.

However, due to the density of high-dimensional datasets, the row

enumeration based strategy still encounters exponential space size with respect to

the number of itemsets. As the frequency threshold gets smaller, the time required to

find closed frequent itemsets dramatically increases (Liu et al., 2009). Even with the

various search strategies proposed, these algorithms still encounter challenges

mining relatively large itemsets. This is because the previous search processes

require the generation of an explosive number of small frequent itemsets, hence

taking much of the memory space to store large frequent ones.

3.3 Pattern-Fusion: Mining the Colossal Itemsets

Association mining tasks usually give greater importance to itemsets that are bigger

in size, especially in areas such as bioinformatics. These long cardinality itemsets

are termed colossal itemsets (Zhu et al., 2007).

The concept of colossal itemsets was first introduced by Zhu et al. (2007) in

an algorithm based on pattern-fusion for finding a measurably good approximation

to the enumeration of all colossal closed itemsets in high-dimensional datasets. The

algorithm traverses the tree according to the column (item) enumeration. However,

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 64

instead of traversing each node of the tree, it randomly discovers large cardinality

itemsets by merging the small cardinality candidate frequent itemsets selected.

These small cardinality candidate itemsets are known as core-patterns.

Definition 3.2 (Core Pattern) For a pattern Ŭ, an itemset abÌ is said to be Ű-core

pattern of Ŭ if t
b

a
²

T

T
, 0 < Ű Ò 1. Ű is called the core ratio and T is the transaction

dataset.

Pattern-Fusion begins by generating a desired set of small frequent itemsets.

Based on the user-specified maximum number of itemsets to be mined, random

selections of core-patterns are made from the generated small frequent itemsets. All

the itemsets that satisfy the core ratio for each core patterns are then combined to

produce larger cardinality itemsets.

The concept of a core pattern was proposed in order to provide the ability for

the algorithm to skip a large number of frequent itemsets whenever possible. This is

because the growth of each itemset is not performed by adding one item each time,

but by an agglomeration of selected multiple itemsets. Hence, Pattern-Fusion is able

to traverse down the search tree much more rapidly toward the colossal itemsets.

Zhu et al. (2007) also stated that colossal itemsets exhibit robustness, in the sense

that if a small number of items are removed from the itemset, the resulting itemset

will have a similar support set. This is based on the relationship between the support

set of a colossal itemset and those of its sub-itemsets: the larger the itemset size, the

more prominent the robustness observed.

Definition 3.3 ((d, Ű)-Robustness) A pattern Ŭ is (d, Ű)-robust if d is the maximum

number of items that can be removed from Ŭ for the resulting pattern to remain a Ű-

core pattern of Ŭ.

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 65

 As the number of colossal itemsets discovered is an approximation of a

complete solution, Zhu et al. (2007) also proposed an evaluation model to assess the

quality of mining results against the complete set. This model provides a way to

measure the goodness of an approximate solution against a complete solution by

measuring the distance between two arbitrary itemsets.

Several studies conducted on both synthetic and real datasets have

demonstrated that Pattern-Fusion is able to provide a good approximation for

discovering colossal itemsets in datasets. Unlike existing frequent itemset mining

algorithms, Pattern-Fusion skips the need to examine a large number of mid-sized

ones. Interestingly, their experimental results were presented with a minimum

support threshold as the x-axis whereby the running time for Pattern-Fusion is 10

times faster at lower support threshold as compared to the selected algorithms.

3.4 D-Miner: Mining the Constraint -based Concept

Another approach in mining a high-dimensional dataset is to find a formal concept

(FC) (Dong et al., 2005). Given a 0/1 matrix, a formal concept is a subset of k rows

and l columns, such that all the matrix entries in one of the k rows and l columns

contain a 1. Such a row and column subset is called a 1-rectangle. If the rows were

rearranged so that all of the k subset rows appeared first (i.e., in rows 1 through k)

and all columns were rearranged so that l columns of the subset appeared in columns

1 through l, the upper-left k by l rectangle of the matrix would contain all 1 entries.

A closed itemset may be considered as column subsets and the collection of support

as a row subset.

Besson et al. (2005) have applied the mining of (formal) concepts using

constraints on high-dimensional datasets with the D-Miner algorithm. The high-

dimensional dataset is initially transposed and is represented using a binary format

(Table 3.4) where the values in the dataset are represented as 0 or 1. The algorithm

begins with the largest cardinality itemset and the largest cardinality rowset that

represents the dataset. This set of itemsets and rowsets are called a bi-set. D-Miner

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 66

performs a depth-first search of concepts by recursively splitting the initial bi-set

into smaller bi-sets that do not contain ñ0ò values. The division of the bi-sets is

made using the elements that are found in the dataset which represents the ñ0ò value.

These elements are called cutters. The result of each divided bi-sets contains a

concept of an itemset without a rowset value of ñ0ò and a concept of a rowset

without an itemset value of ñ0ò.

Figure 3.7 shows an example of how D-Miner discovers the concepts using

the binary representation of the dataset shown in Table 3.4. The search begins with

the largest itemset (a b c d) and rowset (t1 t2 t3) value. The first cutter, (a, t2), which

is represented in a box, is identified from the dataset as it is represented with a ñ0ò

value. The cutter is then used to divide the first bi-sets into further sub-bi-sets. The

method repeats until there are no more cutters which leave the concepts representing

a 1-rectangle. All the discovered concepts are shown in the last line of Figure 3.7.

However, bi-set (cd, t1) (highlighted in bold) is not a concept as it is a subset of the

bi-set (acd, t1). This is done through comparison with the existing concepts

discovered.

As stated previously, entire concepts (or closed itemsets) that exist in the high-

dimensional dataset are unlikely to be discovered. Therefore, to reduce the search

space, D-Miner attempts to discover concepts that satisfy two constraints, based on

the length of the rowsets, as well as the length of the itemsets discovered. The

performance of D-Miner has been compared to CLOSET and CHARM, using the

Table 3.4: Example of the binary representation of dataset

 t1 t2 t3

a 1 0 1

b 0 1 1

c 1 1 1

d 1 0 0

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 67

support threshold. Unsurprisingly, D-Miner performs better than these two

algorithms on high-dimensional datasets especially at lower minimum support

threshold (Besson et al., 2005). The results of the study also show that D-Miner has

gain significant decrease (as high as 97%) in the total closed itemsets discovered

when applying more than one constraint. Hence, this shows that the algorithm is

useful for the discovery of a particular group of closed itemsets satisfying specified

constraints.

3.5 Summary

This chapter outlines the strategies to discover closed frequent itemsets, with

examples of the algorithms as well as quantitative comparison and discussions of the

drawbacks of the methods when applied to high-dimensional datasets.

From the foregoing, it can be concluded that:

(abcd, t1t2t3)

(a, t2)

(bcd, t1t2t3) (abcd, t1t3)

(b, t1) (b, t1)

(cd, t1t2t3) (bcd, t2t3) (acd, t1t3) (abcd, t3)

(d, t2t3)

(c, t1t2t3) (cd, t1) (bc, t2t3) (bcd, Ø) (acd, t1) (ac, t1t3) (abc, t3)

(d, t2t3) (d, t2t3) (d, t2t3)

(abcd, Ø)

Figure 3.7: Discovering the concepts using D-Miner

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 68

¶ A column enumeration-based search strategy is suitable for datasets that

contains a relatively smaller number of columns or items. There are three

basic methodologies described under this strategy: (i) Apriori-based

generation that produces candidate itemsets in a level-wise manner. An

example of the algorithm using this generation method is A-Close; (ii) the

Pattern-growth method that mines the complete set of frequent itemsets

without candidate generation. Examples of this type of algorithm include

CLOSET, CLOSET+, FP-Close and AFOPT; and (iii) Vertical dataset

representation in which each item in the dataset is represented with a set of

row values. An example of the algorithm using the vertical data

representation is CHARM.

All these methods adopt a bottom-up search of the column

enumeration tree. For high-dimensional dataset, the characteristics of the

dataset of having a relatively smaller number of rows and a relatively large

number of columns means that the column-enumeration based methods

require a considerable amount of resource to search the itemset space.

¶ A row enumeration-based search strategy is suited to mining itemsets in

high-dimensional datasets due to the fact that it searches the rowset space.

o The initial approach of the search was to traverse the row

enumeration tree in a bottom-up manner. By using the support

threshold, traversing the row enumeration tree bottom-up does not

take advantage of the constraint. This is because the method has to go

through all the nodes in the levels of the tree that do not satisfy the

constraint and discard them. Examples of algorithms using the

bottom-up row enumeration search are CARPENTER, FARMER,

RERII, TopKGRS, COBBLER and MAXCONF.

o The top-down search strategy takes advantage of the support

threshold by discovering itemsets beginning from the largest rowset

value (the most frequent). However, by applying the support

CHAPTER 3. STRATEGIES FOR CLOSED FREQUENT ITEMSET MINING

 69

constraint the strategy struggles to reach the large cardinality itemsets

that exist at the lower end of the support threshold. Examples of

algorithms within this category are TD-Close and TTD-Close.

¶ The Pattern-Fusion algorithm is an example of an algorithm that attempts to

discover large cardinality (colossal) closed itemsets by approximating the

number of colossal closed itemsets generated. However, approximating the

number of colossal closed itemsets discovered might lead to missing some of

the colossal closed itemsets that are of value. In addition, experimental

results show that using the minimum support threshold, raises the question -

ñWhat is the maximum ócolossalô value of the itemsets that the algorithm can

discover?ò

¶ D-Miner applies more than one constraint to discover the closed itemsets in

high-dimensional datasets. However, the objective of the algorithm was to

discover only a group of closed itemsets that are of interest.

In the next chapter (Chapter 4), the limitations of the approaches as stated

above, will be address through a new proposed algorithm.

 70

Chapter: 4

DisClose: Mining Colossal Closed Itemsets

This chapter presents the proposed algorithm which has been developed to

efficiently discover the colossal closed itemsets from high-dimensional datasets.

Section 4.1 provides an overview of the steps taken in order to efficiently

discover the colossal closed itemsets from high-dimensional datasets.

Section 4.2 introduces the approach to discovering large cardinality closed

itemsets from high-dimensional datasets. The section continues by describing the

implementation of the transposition operation on the original dataset. An example of

the input dataset, as well as its transposed version, is also given. In addition, the

proposed user defined threshold is described, including the definitions and examples

of colossal closed itemsets.

Section 4.3 introduces and defines the closedness-checking approach

proposed. This section includes examples and proofs that demonstrate the

correctness of the method.

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 71

Section 4.4 introduces the proposed data structure that enables efficient search

for colossal closed itemsets. An illustration of the structure and its relationship with

the dataset is also presented.

Section 4.5 introduces the algorithm DisClose, developed on the basis of the

search strategies, the closeness-checking approach and the data structure proposed.

Examples and proofs of the search process are presented. Space and time analysis of

DisClose is also discussed.

Finally Section 4.6 summarizes the chapter.

4.1 Overview

Figure 4.1 shows the overall steps undertaken in mining the colossal closed itemset

proposed in this thesis. Mining for colossal closed itemsets from high dimensional

High Dimensional

Dataset

1. Discovering

Colossal Itemsets

Bottom-up

Row

Enumeration

Search

Strategy

Minimum

Cardinality

Threshold -

mincard

2. Identifying

Closed Itemsets

Unique

Generator

Colossal Closed

Itemsets

Compact Row-

Tree (CR-Tree)

Figure 4.1: Colossal Closed Itemset Mining Procedures

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 72

dataset requires 2 major steps: (i) discovering the colossal itemsets; and (ii)

identifying the closed itemsets. Several strategies shown in Figure 4.1 were

proposed in order to accomplish these two main steps. These proposed strategies are

discussed in detail in the subsequent sections.

4.2 Proposed Search Strategies

Finding the most common itemsets in high-dimensional data leads to the likelihood

of finding itemsets common to most situations (rids - row ids) but which contain

only a few of the items (columns). The computational complexity of having to

obtain all closed frequent itemsets, usually results in algorithms that struggle to find

larger itemsets. It may be that itemsets common to only a few situations (rids),

which contain a larger number of items (columns), may provide interesting insights

into the nature of the dataset. Therefore, to discover these large closed itemsets,

rather than generating candidate itemsets and checking for the closure property, this

study proposes an approach which begins with closed itemsets (entire transactions)

that exist in the dataset, which may have very small support (usually only one,

unless duplicate transactions exist). From this collection of closed itemsets, smaller

itemsets are built with higher support.

4.2.1 Bottom-up Row-enumeration Search

Extracting large itemsets involves determining the column (attribute) that has the

highest cardinality of values associated with it in the dataset. This implies that the

search strategy can be based on a top-down column enumeration. Figure 4.2 shows

an example of a top-down column enumeration tree for a dataset which contains five

items, {a, b, c, d, e}.

However, it can be observed that for a dataset with m number of columns

(items), there will also be m number of levels for a top-down column enumeration

tree. In addition, the maximum number of nodes (itemsets) that will exist in the top-

down column enumeration will equal 2
m
-1. For a high-dimensional dataset, the

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 73

value of m is very large (i.e. hundreds of thousands); hence, enumerating the

itemsets based on the number of columns is unfeasible.

It makes sense to search for closed itemsets based on the number of rows

because, as previously stated, it is relatively small compared to the number of

columns in high-dimensional datasets (Pan et al., 2003; Cong et al., 2004; Liu et al.,

2009). The largest cardinality itemset initially exists in every single row of the high-

dimensional dataset (unless duplicate rows occur). Therefore, most large closed

itemsets begin from the infrequent end of the support spectrum. As a result, using

the bottom-up row enumeration tree as the basis of the search strategy would appear

to be more appropriate.

abcde

abcd

abce

abde

acde

bcde

abc

abd

acd

bcd

abe

ace

bce

ade

bde

cde

ab

ac

bc

ad

bd

cd

ae

be

ce

de

a

b

c

d

e

Figure 4.2: Top-down column enumeration tree

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 74

4.2.2 Transposed Table

Since the proposal of the method by Rioult et al. (2003), transposition has been

widely used by algorithms that discover closed itemsets from high-dimensional

datasets (Pan et al., 2003; Cong et al., 2004a; Liu et al., 2009). High-dimensional

datasets in domain such as biomedical engineering, telecommunications, geospatial

data, and climate data are known to be dense (Han et al., 2002). A dataset tend to be

dense in that they have any or all of the following properties: (i) many frequently

occurring items; (ii) strong correlation between several items; (iii) many items in

each record (Bayardo et al., 1999). Table 4.1 shows an example of a discretized

high-dimensional dataset. Mining the closed itemsets directly from the original

dataset can be complicated. Therefore, applying the method of transposition to the

original dataset helps to simplify the extraction of closed itemsets in high-

dimensional data. This is because when the original dataset is transposed, each

column (item) value of the original dataset will become a row value in the

transposed table, and will be represented by a set of rows (rowset) where that

particular item occurs.

Table 4.2 represents the transposed version of Table 4.1. It can be observed

that the transposed dataset provides a sparser representation of the original input

Table 4.1: Example of a discretized high-dimensional dataset

tid Item

a b c d e f g h i j k l m n

1 1 1 1 2 2 1 2 1 2 2 2 2 2 1

2 2 1 2 2 2 2 2 2 1 2 2 2 1 2

3 1 1 2 1 2 2 2 2 2 1 2 2 2 2

4 2 1 2 1 2 2 1 2 2 2 2 2 2 2

5 1 1 2 1 1 2 2 2 2 1 2 2 2 2

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 75

dataset. As a result of this simplification, the method of transposition is utilised in

the algorithm proposed here.

4.2.3 Minimum Cardinality Threshold, mincard

As highlighted in Chapter 3, it is impractical to mine all closed itemsets from high-

dimensional datasets, due to their cardinality. Various types of threshold have thus

been proposed in order to reduce the search space. The most common of these

thresholds is the minimum support threshold, minsup, which assists in reducing the

search space based on the frequency of occurrence. Essentially, a low support

Table 4.2: Example of Transposed Dataset

Item Tidset

a1 1 3 5

a2 2 4

b1 1 2 3 4 5

c1 1

c2 2 3 4 5

d1 3 4 5

d2 1 2

e1 5

e2 1 2 3 4

f1 1

f2 2 3 4 5

g1 4

g2 1 2 3 5

h1 1

h2 2 3 4 5

i1 2

i2 1 3 4 5

j1 3 5

j2 1 2 4

k2 1 2 3 4 5

l1 5

l2 1 2 3 4

m1 2

m2 1 3 4 5

n1 1

n2 2 3 4 5

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 76

threshold may incur a combinatorial explosion in the number of closed frequent

itemsets, thus limiting the search for large cardinality (or exceptional) closed

itemsets.

In this particular study, as the objective is to focus on the discovery of large

closed itemsets, the search process is stopped upon reaching a threshold parameter

value for the minimum itemset cardinality, mincard.

Definition 4.1 (Cardinality) The cardinality of an itemset Ŭ refers to the number of

items in Ŭ. This is denoted as | Ŭ |.

Example 4.1 (Cardinality) The cardinality of the itemset {b1, e2, i2, j2, k2, l2, m2} in

Table 4.1 is | { b1, e2, i2, j2, k2, l2, m2} | = 7.

Definition 4.2 (Colossal itemset) Given a minimum cardinality threshold, mincard,

an itemset Ŭ is colossal if | Ŭ | Ó mincard.

The search space of the dataset can be safely pruned by using the cardinality

constraint, because of its anti-monotone property.

Property 4.1 (anti-monotone) If a rowset ɓ has its associated itemset, Ŭ = I (ɓ), such

that <a mincard, then for any bbÉ' it must be that | I (ɓô) | < mincard.

Combining the anti-monotone property with the definition of closure

(Definition 2.12) ensures the following property.

Property 4.2 (at-threshold) If a rowset ɓ has its associated itemset, Ŭ = I (ɓ), such

that | Ŭ | == mincard, then for any bbÉ' it must be that | I (ɓô) | < mincard.

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 77

Figure 4.3 shows all frequent itemsets obtained from Table 4.1 and the

colossal itemsets discovered (highlighted in grey) using the bottom-up search order

of the row enumeration tree. The size of the itemset is indicated in parentheses for

each row value and the itemset that it represents. By applying the mincard threshold,

1Ý (14): a1, b1, c1, d2, e2, f1, g2, h1, i2, j2, k2, l2, m2, n1

 12Ý (7): b1, d2, e2, g2, j2, k2, l2

 123Ý (5): b1, e2, g2, k2, l2

 1234Ý (4): b1, e2, k2, l2

 12345Ý (2): b1, k2

 1235Ý (3): b1, g2, k2

 124Ý (5): b1, e2, j2, k2, l2

 1245Ý (2): b1, k2

 125Ý (3): b1, g2, k2

 13Ý (8): a1, b1, e2, g2, i2, k2, l2, m2

134Ý (6): b1, e2, i2, k2, l2, m2

 1345Ý (4): b1, i2, k2, m2

 135Ý (6): a1, b1, g2, i2, k2, m2

 14Ý (7): b1, e2, i2, j2, k2, l2, m2

 145Ý (4): b1, i2, k2, m2

 15Ý (6): a1, b1, g2, i2, k2, m2

2Ý (14): a2, b1, c2, d2, e2, f2, g2, h2, i1, j2, k2, l2, m1, n2

 23Ý (9): b1, c2, e2, f2, g2, h2, k2, l2, n2

 234Ý (8): b1, c2, e2, f2, h2, k2, l2, n2

 2345Ý (6): b1, c2, f2, h2, k2, n2

 235Ý (7): b1, c2, f2, g2, h2, k2, n2

 24Ý (10): a2, b1, c2, e2, f2, h2, j2, k2, l2, n2

 245Ý (6): b1, c2, f2, h2, k2, n2

 25Ý (7): b1, c2, f2, g2, h2, k2, n2

3Ý (14): a1, b1, c2, d1, e2, f2, g2, h2, i2, j1, k2, l2, m2, n2

 34Ý (11): b1, c2, d1, e2, f2, h2, i2, k2, l2, m2, n2

 345Ý (9): b1, c2, d1, f2, h2, i2, k2, m2, n2

 35Ý (12): a1, b1, c2, d1, f2, g2, h2, i2, j1, k2, m2, n2

4Ý (14): a2, b1, c2, d1, e2, f2, g1, h2, i2, j2, k2, l2, m2, n2

 45Ý (9): b1, c2, d1, f2, h2, i2, k2, m2, n2

5Ý (14): a1, b1, c2, d1, e1, f2, g2, h2, i2, j1, k2, l1, m2, n2

 Figure 4.3: Example of colossal itemsets (highlighted in grey) for

mincard = 7

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 78

the branch exploration is stopped once the cardinality of the associated itemset falls

below the threshold value. This is described in the following example.

Example 4.2 (Colossal Itemset) Suppose a user defines the minimum cardinality

threshold value, mincard = 7. In Figure 4.3, the search space is explored beginning

from the largest cardinality itemset, | Ŭ | = 14 and it will stop when | Ŭ | < 7. A total

of 17 colossal itemsets are discovered.

4.3 Proposed Closedness-checking Method

Mining for colossal closed itemsets has two restrictions: firstly, the need to check if

an itemset is a colossal itemset and secondly, the need to check if it is closed. Using

the minimum cardinality threshold in a bottom-up row enumeration search takes

advantage of the first constraint. However, discovering only the colossal itemsets

may lead to the production of several identical colossal itemsets. This can be

observed in Figure 4.3, where the same colossal itemsets are discovered in rowsets

{2, 5} with {2, 3, 5} and rowsets {4, 5} with {3, 4, 5}. Producing duplicate colossal

itemsets leads to redundancy. Although in this example, only a small number of

colossal itemsets discovered are redundant, in real life datasets such redundant

itemsets can occur in very large numbers, which leads to a commensurate decrease

in performance.

Therefore, when a colossal itemset is found, the next step is to develop a

method to efficiently identify whether it is a closed itemset. The method of

identifying whether the itemsets discovered are closed is related closely to the search

strategy proposed. Several closedness-checking methods have been discussed in

Chapter 3, for example in the studies made by Grahne and Zhu (2003), Pan et al.,

(2003), Zaki and Hsiao (2005), and Liu et al., (2006).

To take advantage of the second restriction in making the mining of colossal

itemsets more efficient, in this study, a method which is based on a unique

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 79

generator is developed. To define the unique generator, the study begins by

providing the definition for itemset generator and tidset generator as follows:

Definition 4.3 (Itemset Generator) Given a dataset T, an itemset Ŭ is an itemset

generator if no proper subset aaË' exists such that the support of Ŭ is the same as

the support of Ŭô.

Example 4.3 (Itemset Generator) In Figure 4.3, itemset {b1, e2, j2, k2, l2} for rowset

{1, 2, 4}, with support = 3, is an itemset generator as there are no itemsets that are a

subset of { b1, e2, j2, k2, l2} with the same support. Itemset {b1, e2, g2, k2, l2} for

rowset {1, 2, 3} is not an itemset generator as a subset of {b1, e2, g2, k2, l2}È{b1, g2,

k2} exists at rowset {1, 2, 5} with the equivalent support.

The equivalence class of itemsets with the same support set consists of

exactly one closed itemset, potentially many itemset generators and potentially

many itemsets that are neither closed nor generators.

Definition 4.4 (Rowset Generator) Given a dataset T, a rowset ɓ is a rowset

generator if no proper subset bbË' exists such that the itemset of ɓ is the same as

the itemset of ɓô.

Example 4.4 (Rowset Generator) In Figure 4.3, rowset {1, 2, 3, 5} is not a rowset

generator as rowset {1, 2, 5}Ë{1, 2, 3, 5} also contains the itemset {b1, g2, k2}.

However, {1, 2, 4, 5} is a rowset generator as there are no subsets of the rowset

value that contains {b1, k2}.

Similarly, the equivalence class of rowsets ɓi with the same itemset Ŭ such

that I (ɓi) = Ŭ consists of exactly one closed rowset, there are potentially many

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 80

rowset generators and potentially many rowsets that are neither closed nor

generators.

It can be observed that unlike the definition of frequent itemsets, the

definitions of generators and closed sets do not depend upon any threshold

parameter.

 As stated at the beginning of Section 4.3, the largest closed itemsets could

exist in an entire transaction unless duplicate rows exist. To construct smaller closed

itemsets from larger ones, the following property is used:

Theorem 1 Suppose Ŭ1 and Ŭ2 are closed itemsets, with Ŭ1 Í Ŭ2. Let 21 aaa Æ= .

If Ŭ Í Ï then Ŭ is a closed itemset.

Proof: There are three cases to consider:

1. Case 1: [21 aaË]. Observe that in this case Ŭ = Ŭ1, so Ŭ is a closed itemset.

2. Case 2: [12 aa Ë]. Observe that in this case Ŭ = Ŭ2, so Ŭ is a closed itemset.

For Case 1 and Case 2, in order for Ŭ1 and Ŭ2 to be closed itemsets with one a

proper subset of the other, it must be the case (by the definition of closed itemset)

that they have different support. However, it is known that such a situation exists.

Consider any closed itemset Ŭ1 with support larger than one and select any

row r i containing Ŭ1 (i.e.)(1 irtËa). Now consider Ŭ2 = t (r i). Note that by definition

all full-rowsets are closed. Clearly, this satisfies the conditions of Case 1. The rest of

the case is fundamental set theory, so the result holds.

3. Case 3: [Ŭ1 and Ŭ2 are incomparable]. Observe that 1aaË and 2aaË .

In this particular case, it is demonstrated that Ŭ is a closed itemset by

contradiction. Assuming Ŭ is not a closed itemset, there then exists some item i

such that }{ ii Ç=aa

has the same support as Ŭ. If 1aÎi , then all transactions

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 81

in
aa TT -

1
 are not in

i
Ta , but they are in TŬ. Thus i must be in Ŭ1. However, if

1aÍi (and not in Ŭ) then 2aÎi and the same contradiction argument applies.

Thus the assumption that Ŭ is not a closed itemset must be incorrect.

An example can be seen in Figure 4.3, let Ŭ1 = {b1, c2, e2, f2, h2, k2, l2, n2}

which occurs at rowset {2, 3, 4} and Ŭ2 = {b1, c2, f2, g2, h2, k2, n2} which occurs

at rowset {2, 3, 5}. Ŭ = {b1, c2, f2, h2, k2, n2} at rowset {2, 3, 4, 5} is a closed

itemset in whereby 1aaË and 2aaË .

Every closed itemset that is not one of the transactions can be produced by

the intersection of a collection of closed itemsets. Consider a closed itemset Ŭ and its

corresponding rowset ɓ = TŬ. As Ŭ is a closed itemset,
iti
aa bÍ=1 , where

Tt ii Í),(a . However, there may be many subsets of ɓ for which I (ɓ) = Ŭ. If the

rowset enumeration were to perform as the control strategy for the search process, it

is likely that the same closed itemsets would be found many times.

The following observation enables the proposed closedness-checking method

of this study to discover a closed itemset using only one of the rowsets. According

to the definition of closure (Definition 2.12), for every closed itemset Ŭ, there is a

unique rowset ɓ that is a closed rowset.

Definition 4.5 (Unique Generator) Given the closed rowset ɓ = { t1, t2,é,tk}, with

ji tt < for all i < j, the smallest index j for which ɓj = { t1, t2,é, tj} is a generator of ɓ

is a unique rowset generator for the itemset Ŭ.

 It is simple to determine if a rowset ɓô is the unique generator. Let ɓ = T (I

(ɓô)). If ɓô = ɓ, then the answer is that ɓô is the unique generator. If bbË' , ɓô is

determined whether it is a prefix of ɓ when the rowsets are written as lists in

ascending order. If ɓô is not a prefix of ɓ, then ɓô can be ignored and this branch of

the search space is pruned.

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 82

Example 4.5 (Unique Generator) From Figure 4.3, ɓô = {2, 3} is a unique generator

as the closed rowset for {b1, c2, e2, f2, g2, h2, k2, l2, n2} = {2, 3}. However, ɓô = {2,

5} is not a unique generator. This is because the closed rowset for {b1, c2, f2, g2, h2,

k2, n2} = {2, 3, 5} and {2, 5} is not a prefix of {2, 3, 5}.

 The search for the unique generator will require relatively little computation

when the number of rows is small; and this is the typical situation for high-

dimensional datasets.

4.4 CR-Tree (Compact Row-Tree)

To assists the efficiency of the search, a compact tree data structure is built to store

the itemsets from T
t
. The CR-Tree is initially generated by building a set of nodes at

the first level (l = 0) of the tree which represents each column value of the

transposed table, T
t
. These sets of nodes are connected to each column of the

transposed table through a set of pointers that link the node to the transposed table.

The construction of the CR-Tree continues by adding the child nodes at each level of

the tree. As the level of the tree increases, the number of child nodes decreases as

the lowest node value from the previous level of the tree is discarded. A child

pointer is then built to link between the nodes. In addition to the child pointer, an

additional node link is made from the parent node to the child node that contains the

same node value. The purpose of this node link is to assist in checking effectively

for closed itemsets, as will be further discussed in the following section.

Figure 4.4 shows the relationship between the CR-Tree and the transposed

table T
t
. The structure of the CR-Tree is similar to the FR-Tree (Liu et al., 2009).

The CR-Tree is different in that instead of representing each branch of the tree to a

rowset value, each node of the CR-Tree represents a group of rowset values. In this

way, the CR-Tree becomes more compact as one node is shared by many rowset

values. Each rowset value represents an itemset. Figure 4.5 shows an example of the

nodes in the CR-Tree, representing the rowset values for Table 4.2.

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 83

Lemma 4.1 The CR-Tree nodes represent all the rowset, ɓ, values of a complete

row-enumeration tree.

Proof Let N = {ni, ni+1, é,nk} be the set of nodes where i = 1 and k is the largest

rid value from the dataset. Let M = {mj, mj+1, é,mk} be the set of child nodes where

j = i + 1 and k is the largest rid value of the dataset. Each mj = niÇni+l where l = {1,

{ }

3 l = 0

l = 1

l= 2

l= 3

l= 4

a1 1 3 5

a2 2 4

b1 1 2 3 4 5

c1 1

c2 2 3 4 5

d1 3 4 5

d2 1 2

e1 5

e2 1 2 3 4

f1 1

f2 2 3 4 5

g1 4

g2 1 2 3 5

h1 1

h2 2 3 4 5

i1 2

i2 1 3 4 5

j1 3 5

j2 1 2 4

k2 1 2 3 4 5

l1 5

l2 1 2 3 4

m1 2

m2 1 3 4 5

n1 1

n2 2 3 4 5

3

3

1 2

2

4

4

4

4

5

5

5

5

5

Figure 4.4: Relationship between CR-Tree and T
t

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 84

2, é, k-1}. Therefore all ɓ values are traversed until j = k for the maximum tree

level of k-1.

However, only one rowset value will be stored in each node of the CR-Tree

during the search process. This is to ensure that a relatively small amount of

memory is utilized during the process of mining the colossal closed itemset. Several

optimization strategies are also proposed in order to guarantee that the CR-Tree will

not miss any itemsets during the process and at the same time that it will discard

those that it deems redundant. These strategies will act as a proof of correctness on

the data structure proposed and will be described in detail in the next section.

{ }

1

{1}

2

{2}

3

{3}

4

{4}

5

{5}

2

{1, 2}
3

{1, 3}

{2, 3}

4

{1, 4}

{2, 4}

{3, 4}

5

{1, 5}

{2, 5}

{3, 5}

{4, 5}

3

{1, 2, 3}

4

{1, 2, 4}

{1, 3, 4}

{2, 3, 4}

5

{1, 2, 5}

{1, 3, 5}

{1, 4, 5}

{2, 3, 5}

{2, 4, 5}

{3, 4, 5}

4

{1, 2, 3, 4}

5

{1, 2, 3, 5}

{1, 2, 4, 5}

{1, 3, 4, 5}

{2, 3, 4, 5}

5

{1, 2, 3, 4, 5}

l = 0

l = 1

l = 2

l = 3

l = 4

Figure 4.5: Nodes representing the rowsets in the CR-Tree

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 85

4.5 Algorithm DisClose

To show the effectiveness of the search strategy, the closedness-checking method

and the data structure proposed, a colossal closed itemset mining algorithm called

DisClose has been designed to mine all colossal closed itemsets from the transposed

table T
t

of table T. DisClose, shown in Algorithm 4.1, will search the row

enumeration space and, for each rowset, ɓ, check whether it is the unique generator

in the equivalence class of rowsets for I (ɓ). It is to be noted that using a depth-first

order in a serial implementation would result in the most aggressive pruning of the

search space and requires the least the amount of memory (Han et al., 2000; Pan et

al., 2003; Zaki and Hsiao, 2005; Liu et al., 2006). For this reason, the general

processing order for the rowsets is equivalent to the depth-first search of the row

enumeration tree.

4.5.1 Major steps of DisClose

Algorithm 4.1 shows the main steps of the algorithm DisClose. The example input

dataset in Table 4.1 is used to demonstrate DisClose in the following discussions.

The algorithm begins with the transposition operation that transforms table T

to the transposed table T
t

as shown in Table 4.2. Then, the CR-Tree (Compact

Rowset Tree) is built, as demonstrated in Figure 4.4.

After initialization of the set of colossal closed itemsets CCI to be empty, the

subroutine Colossal is called to deal with the transposed table T
t
 using the CR-Tree

and find all colossal itemsets. Following the bottom-up row enumeration as the

search order in step 5, the subroutine Colossal takes the transposed table, T
t
 and the

minimum cardinality threshold, mincard, as the parameter and performs the search

for colossal closed itemsets.

 There are seven sections in the subroutine Colossal, which will be explained

one by one. Assume this example uses the mincard threshold value of 7.

The first section is steps 6 - step 7. Each node at the first level of the CR-

Tree attempts to store the itemset from the transposed table T
t
 into the node by

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 86

ensuring that the itemset in each column value of the transposed table T
t
satisfies the

mincard threshold. An itemset that satisfy the mincard threshold is then stored in

each node; otherwise, it is not stored in the node as it will not contribute to obtaining

Algorithm 4.1: DisClose algorithm

Input : Table T, and minimum cardinality threshold, mincard

Output : A complete set of colossal closed itemsets, CCI

Method:

1. Transform T into transposed table T
t

2. Build CR-Tree

3. Initialize CCI = Ø

4. Call Subroutine Colossal (T
t
, mincard)

Subroutine Colossal (T
t
, mincard)

Method:

5. for each node in the row enumeration space do

6. If | node [1][j] |.T
t
 | Ó mincard

7. Store itemset at node [1][j]

8. Let ɓ be the set of rows under consideration

9. node [l][j] Ÿ node [l+1][p] // pointing to child node

10.)(21 baaa I=Æ= , 21 bbb Ç=

11. Optimization S1: If | Ŭ | <mincard, discard Ŭ

12. Optimization S2: If | ɓ | > current node level, discard ɓ

13. Optimization S3: If 'aaÌ , discard Ŭ

14. Store Ŭ in node [l+1][p]

15. Call Subroutine Closed (mincard)

Subroutine Closed (mincard)

Method:

16. If node [l][j] == node [l+1][p] // checking for unique generator

17. Call Subroutine Colossal (mincard)

18. Store itemset in CCI

19. Call Subroutine Colossal (mincard)

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 87

larger itemsets. The advantage of this is that the algorithm does not require further

access to the dataset, and hence, reduces the time required for repeated checking of

the dataset. Note that this is the only role the transposed table T
t
 plays in the search

process.

Figure 4.6 shows the CR-Tree which contains the itemsets stored for the

nodes at level, l = 0, after applying steps 6 - step 7 from Figure 4.3.

The second section is steps 8 - step 10. For each node in the CR-Tree, an

itemset intersection is performed. By using a depth-first search, DisClose produces

the sequence of ɓ Ý I (ɓ) shown in Figure 4.3. However, three optimization

strategies are applied before the result of the intersection is stored in each child

nodes.

At step 11, an optimization strategy S1 is applied to stop further processing

of the itemset if the size of the itemset does not satisfy the mincard constraint

defined.

Optimization strategy S1: If the size of the itemset is less than the

minimum cardinality threshold, | Ŭ | < mincard, then there is no need to perform any

further operation on the itemset. If the itemset size is less than the specified

threshold, then a further intersection should lead to a much smaller or equivalent

{ }

3 l = 0

l = 1 3

1 2

2

4

4

5

5

{a1b1c1d2e2f1g2h1i2j2k2l2m2n1}

{1}

{a2b1c2d2e2f2g2h2i1j2k2l2m1n2}

{2}

{a1b1c2d1e2f2g2h2i2j1k2l2m2n2}

{3}

{a2b1c2d1e2f2g1h2i2j2k2l2m2n2}

{4}

{a1b1c2d1e1f2g2h2i2j1k2l1m2n2}

{5}

Figure 4.6: Itemset stored at level l = 0, of the CR-Tree

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 88

itemset size.

Example 4.5 (Optimization Strategy S1) Figure 4.7 shows an example of a node in

the CR-Tree that contains an itemset with cardinality is less than the specified

threshold. Node 3 at level l = 2 contains itemset {b1, e2, g2, k2, l2} where | {b1, e2, g2,

k2, l2} | = 5. As the cardinality of the itemset is less than the mincard threshold,

further intersection between Node 3 and Node 4 at level l = 2, {b1, e2, g2, k2,

l2}Æ{b1, e2, j2, k2, l2} = {b 1, e2, k2, l2}, leads to a smaller cardinality itemset, | {b1,

e2, k2, l2} | = 4, which is stored in Node 4 at level l = 3. Therefore, optimization

strategy S1 is required to prevent storage of itemsets that do not satisfy the desired

threshold, which in turn should lead to a reduction in memory space and processing

time.

Lemma 4.2 Each node of the CR-Tree only stores one value at a time for rowset,

ɓ, with | ɓ | = node level.

Proof In Figure 4.8, suppose at level l = 2, the rowsets stored at node n4 = {1, 2, 4}

and node n5 = {1, 3, 5}. To obtain rowset, ɓ, for child node m5 at level l = 3, the

union of the parent ɓ values will produce, n4Çn5 = {1, 2, 4} Ç{1, 3, 5} = {1, 2, 3,

4, 5}. However, the rowset {1, 2, 3, 4, 5} is not represented by node m5. This is

3 4

4

5

5

{b1e2j2k2l2}

{124}

{b1e2 g2k2l2}

{123}

l= 2

l= 3

{b1e2k2l2}

{1234}

Figure 4.7: Example of Optimization strategy S1

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 89

because based on the depth-first strategy, the itemset for ɓ = {1, 2, 3, 4, 5} have

been discovered at l = 4.

Based on Lemma 4.2, step 12 performs the Optimization strategy S2 to

prevent storage of itemsets with rowset values larger than the node level of the CR-

Tree.

Optimization strategy S2: If the size of the rowset | ɓ | is greater than the

level where the node is present, then there is no need to store the itemset Ŭ obtained.

This is explained in the following example.

Example 4.6 (Optimization Strategy S2) As DisClose performs a depth-first search

of the CR-Tree, rowsets of larger cardinality have been obtained earlier and further

steps will only lead to a repetition of the itemset with the same rowset value. Figure

4.9 shows an example in which Optimization strategy S2 is applied. Suppose at level

l = 2, node 4 contains the itemset {b1, e2, j2, k2, l2} with the rowset value of {1, 2, 4}

and node 5 contains the itemset {a1, b1, g2, i2, k2, m2} with the rowset value of {1, 3,

5}. The intersection between these nodes will produce the itemset {b1k2} with a

rowset value of {1, 2, 3, 4, 5}. However, | {1, 2, 3, 4, 5} | = 5 is greater than the

node level value, l = 3. Therefore the itemset will not be stored at node 5 where l =

3 4 5

4 5

5

l= 2

l= 3

l= 4

{1, 2, 3} {1, 2, 4} {1, 3, 5}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2, 4} Ç{1, 3, 5}

= {1, 2, 3, 4, 5}

Figure 4.8: Example on Lemma 4.2

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 90

3. As observed, the itemset with the same rowset value has already been stored at

node 5 where l = 4.

Lemma 4.3 If discovered itemset, Ŭ1ÌŬ2 where Ŭ2 is the existing itemset in the

node, the itemset Ŭ1 will not replace Ŭ2 although ɓ1 Í ɓ2.

Proof In Figure 4.10, suppose Ŭ2 = {ɓ1} = {1, 2, 4} and Ŭ1 = {ɓ2} = {1, 3, 4} at

level l = 2, where | ɓ1 | = | ɓ2 |. If Ŭ1ÌŬ2, this means that Ŭ1 also exists in {ɓ2}.

Therefore, Ŭ1 = ɓ1Çɓ2 = ɓ, where | ɓ | > | ɓ1 |, | ɓ2 |. Thus Ŭ1 will exists in ɓ = {1, 2,

3, 4} stored in node m4 at level, l = 3 of the CR-Tree.

3 4

4

5

5

5

{b1e2j2k2l2}

{124}

{a1b1g2i2k2m2}

{135}

l= 2

l= 3

l= 4

{b1k2}

{12345}

{b1k2}

{12345}

Figure 4.9: Example of Optimization strategy S2

3 4

4
{1, 2, 3, 4}

Ŭ2 = {1, 2, 4}

Ŭ1 = {1, 3, 4}
l= 2

l= 3

Figure 4.10: Example on Lemma 4.3

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 91

At step 13, Optimization strategy S3 is applied based on Lemma 4.3 in order

to ensure that the itemset obtained is not a subset of an already existing itemset in

the child node.

Optimization strategy S3: If the current itemset Ŭ obtained is a subset of an

already existing itemset Ŭô, 'aaÌ , for the particular child node in the CR-Tree,

then itemset Ŭ can be discarded.

Example 4.7 (Optimization Strategy S3) Figure 4.11 shows an example in which

Optimization strategy S3 is applied. Suppose Node 5 at level l = 1 already contains

an itemset from the earlier iteration. The result of the intersection between Node 4

and Node 5 at level l = 0 produces an itemset which is a subset of the already stored

itemset in the child node, {b1, c2, d1, f2, h2, i2, k2, m2, n2}Ì{a1, b1, c2, d1, f2, g2, h2,

i2, j1, k2, m2, n2} . Although itemset {a1, b1, c2, d1, f2, g2, h2, i2, j1, k2, m2, n2} occurs

in rowset {3, 5} and {b1, c2, d1, f2, h2, i2, k2, m2, n2} in rowset {4, 5}, {b1, c2, d1, f2,

h2, i2, k2, m2, n2}Ì{a1, b1, c2, d1, f2, g2, h2, i2, j1, k2, m2, n2} shows that {b1, c2, d1, f2,

h2, i2, k2, m2, n2} also occurs in {3, 5}. The result of the intersection between the two

4

4

5

5

5

l= 0

l= 1

l= 2

{b1c2d1f2h2i2k2m2n2}

{345}

{a1b1c2d1f2g2h2i2j1k2m2n2}

{35}

{b1c2d1f2h2i2k2m2n2}

{45}

{a2b1c2d1e2f2g1h2i2j2k2l2m2n2}

{4}

{a1b1c2d1e1f2g2h2i2j1k2l1m2n2}

{5}

Figure 4.11: Example of Pruning strategy S3

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 92

rowsets has already been produced at the higher level node during the earlier

iteration, due to the depth-first search strategy. This is shown in Figure 4.11 where

Node 5 at level l = 2 contains the itemset {b1, c2, d1, f2, h2, i2, k2, m2, n2} with rowset

value {3, 4, 5}. Therefore, Optimization strategy S3 is applied on itemset {b1, c2, d1,

f2, h2, i2, k2, m2, n2} with rowset value {4, 5}.

 Step 14 then stores an itemset that does not satisfy any of the three

optimization strategies at the particular child node. The new itemset will replace the

itemset that already exists in the node.

 At step 15, the subroutine Closed is called when all the colossal itemsets of

the child nodes have been discovered, in order to check whether the parent node is a

closed itemset.

The subroutine Closed performs the closedness-checking method on the

itemset. There are four main steps to this subroutine.

Step 16 sequentially compares the itemset Ŭ that exists in the parent node

with the itemsets of its child nodes in order to identify the unique generator, based

on a depth-first search of the rowset value in the row enumeration tree. Here, the

node-link, which connects the parent and child node that contain the same node

value, is used to perform the closedness-checking method. This is to ensure that it

does not overlook existing child nodes with rowset ɓ that contains a rid value that

does not exist in rowset ɓô of the parent node.

Example 4.8 (Closedness-checking in CR-Tree) Figure 4.12 shows an example of

checking whether the itemset Ŭ stored at node 3 of level l = 1 is a closed itemset. As

Ŭ occurs in rowset {2, 3}, it needs to be compared with all the itemsets in the child

nodes to which it points, in order to check whether it also occurs in another rid

value. This check whether Ŭ occurs at rid 1, rid 4 or rid 5. Each child node at level l

= 2 contains the itemset with the rowset values containing one of the rids. In this

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 93

example, { b1, c2, e2, f2, g2, h2, k2, l2, n2} at rowset {2, 3} is a closed itemset as the

equivalent itemset does not exists at any of the child nodes.

By applying the proposed closedness-checking method proposed, an itemset

Ŭ is not closed if it also occurs in another rid value that is not already in ɓô. As soon

as a rowset holding a copy of Ŭ is found, further comparison with other child nodes

is unnecessary.

As stated previously, the use of the unique generator requires only a small

amount of computation based on the number of rows; hence this algorithm can run

with very little memory. Another advantage is that the method allows the algorithm

DisClose to simply write each encountered closed itemset, and not keep a copy in

memory for later comparison.

At step 17 the subroutine Colossal is activated if the itemset is found to not

be closed. A further search for colossal itemsets is then continued at the next node

level.

Step 18 outputs the itemset that is found to be closed into the set of colossal

closed itemsets, CCI.

At step 19 the subroutine Colossal is called to further continue the search

until all potential node values of the CR-Tree have been traversed.

3

3 4

{b1c2e2f2g2h2k2l2n2}

{23}

l= 1

l= 2

{b1c2e2f2h2k2l2n2}

{234}

5

{b1d2e2g2j2k2l2}

{123}

{b1c2f2g2h2k2n2}

{235}

Figure 4.12: Closedness-checking in CR-Tree

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 94

There are a total of 15 colossal closed itemsets found for the dataset in Table

4.1 with mincard = 7, as shown in Figure 4.13.

1Ý (14): a1, b1, c1, d2, e2, f1, g2, h1, i2, j2, k2, l2, m2, n1

 12Ý (7): b1, d2, e2, g2, j2, k2, l2

 123Ý (5): b1, e2, g2, k2, l2

 1234Ý (4): b1, e2, k2, l2

12345Ý (2): b1, k2

 1235Ý (3): b1, g2, k2

 124Ý (5): b1, e2, j2, k2, l2

 1245Ý (2): b1, k2

 125Ý (3): b1, g2, k2

 13Ý (8): a1, b1, e2, g2, i2, k2, l2, m2

134Ý (6): b1, e2, i2, k2, l2, m2

 1345Ý (4): b1, i2, k2, m2

 135Ý (6): a1, b1, g2, i2, k2, m2

 14Ý (7): b1, e2, i2, j2, k2, l2, m2

 145Ý (4): b1, i2, k2, m2

 15Ý (6): a1, b1, g2, i2, k2, m2

2Ý (14): a2, b1, c2, d2, e2, f2, g2, h2, i1, j2, k2, l2, m1, n2

 23Ý (9): b1, c2, e2, f2, g2, h2, k2, l2, n2

 234Ý (8): b1, c2, e2, f2, h2, k2, l2, n2

 2345Ý (6): b1, c2, f2, h2, k2, n2

 235Ý (7): b1, c2, f2, g2, h2, k2, n2

 24Ý (10): a2, b1, c2, e2, f2, h2, j2, k2, l2, n2

 245Ý (6): b1, c2, f2, h2, k2, n2

 25Ý (7): b1, c2, f2, g2, h2, k2, n2

3Ý (14): a1, b1, c2, d1, e2, f2, g2, h2, i2, j1, k2, l2, m2, n2

 34Ý (11): b1, c2, d1, e2, f2, h2, i2, k2, l2, m2, n2

 345Ý (9): b1, c2, d1, f2, h2, i2, k2, m2, n2

 35Ý (12): a1, b1, c2, d1, f2, g2, h2, i2, j1, k2, m2, n2

4Ý (14): a2, b1, c2, d1, e2, f2, g1, h2, i2, j2, k2, l2, m2, n2

 45Ý (9): b1, c2, d1, f2, h2, i2, k2, m2, n2

5Ý (14): a1, b1, c2, d1, e1, f2, g2, h2, i2, j1, k2, l1, m2, n2

Figure 4.13: Colossal Closed Itemsets

Figure 4.13: Colossal closed itemsets with mincard = 7

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 95

4.5.2 Space and time analysis of DisClose

For a table T with n rows and m dimensions where each dimension has a maximum

of k distinct items (attribute values), without considering the rowset values, the

space complexity of the transposed table, T
t
 is O(mn). Using the cardinality

threshold, mincard, means that further memory space is not required for all itemsets

with a size of less than the specified constraint. This means that for a transposed

table, T
t
 with km rows, additional memory does not need to be used for nodes that

contain itemsets of less than (km-mincard) because the search will stop at an itemset

with size (km-mincard). The space complexity of the CR-tree depends on the

column value of the transposed table. For a transposed table, T
t
with m dimensions,

the CR-tree requires ù
ú

ø
é
ê

è +

2

)1(nn
O as the number of nodes for each level decreases by

1 as the level of the tree increases.

 For time complexity, the transformation from table T to T
t
 requires O(kmn)

time to collect the rids for each distinct item. The process of building the CR-Tree

involves, time complexity of at most O[n(n-1)] because there are at most n rids in T
t

and each rid in the CR-Tree has at most (n-1) children to be searched. At each node,

DisClose needs to process each itemset with O(1) time, thus a total of O(km) at

most.

4.6 Summary

This chapter presents the proposed colossal closed itemset mining algorithm,

DisClose, which implements the data structure that has been proposed in order to

efficiently discover colossal closed itemsets based on the proposed search strategy

and closedness-checking method. The used of the method is explained through

illustrative examples.

The following chapter analyses the performance of DisClose on several

synthetic and real high-dimensional datasets. The effectiveness of the algorithm will

CHAPTER 4. DisClose: MINING COLOSSAL CLOSED ITEMSETS

 96

be compared to several state-of-the art algorithms by adapting similar requirements

to enable a fair comparison.

97

Chapter: 5

Experimental Evaluation

This chapter presents the results of the performance study of DisClose and confirms

that the program design has been realized.

This chapter begins with Section 5.1, which introduces the environment in

which algorithm DisClose was implemented. This includes the programming

language applied and the specification of the machine on which the algorithm was

tested. This section also provides a list of state-of-the art algorithms selected for

comparison purposes and the datasets that were selected for evaluation use.

Section 5.2 provides an evaluation of the performance of DisClose on

synthetic datasets from different points of view such as the effect of the change of

mincard, the number of dimensions, the number of rows and the cardinality of each

dimension.

Section 5.3 provides an evaluation of the performance of DisClose on real

datasets. Descriptions of the selected real datasets are also provided. This section

also provides the discretization method that has been applied to the real application

datasets.

Finally Section 5.4 summarizes the chapter.

CHAPTER 5. EXPERIMENTAL EVALUATION

 98

5.1 Experimental Setting

Algorithm DisClose was implemented using C++. The set of experiments was

performed on a PC with a 2.66 GHz Intel Core 2 Quad CPU Q9400 with 4.00 GB

RAM and 150 GB hard disk.

The performance of DisClose was studied by comparing it with other state-of-

the art algorithms. Each algorithm was selected to represent the different search

strategies discussed in the previous chapter. These algorithms are:

(i) FP-Close (Grahne and Zhu, 2003). This is a representative of the

column enumeration-based algorithms, which won the FIMIô03 best

implementation award. The implementation of FP-Close was obtained

from the developer Christian Borgeltôs website through his

implementation of FP-Growth, which has the option to discover closed

frequent itemsets (Borgelt, 2005).

(ii) CARPENTER (Pan et al., 2003): This is a representative of bottom-up

row enumeration-based algorithms. Carpenter searches the tree from

the smallest rowset and builds larger rowset values. The source of

implementation was also downloaded from Christian Borgeltôs website

(Borgelt, 2011).

(iii) D-Miner (Besson et al., 2005): This is a representative of constraint-

based mining algorithms, which use the minimum cardinality threshold

as one of the constraints for their search strategy. For the algorithm D-

Miner, the source of the implementation was downloaded from the

authorôs website (Besson et al., 2005).

(iv) TTD-Close (Liu et al., 2009): This algorithm is a representative of the

top-down row enumeration search based set of algorithms. The search

begins from the largest rowset value and moves its way down the

search tree. For algorithm TTD-Close, the source of the

implementation was obtained from its authors.

CHAPTER 5. EXPERIMENTAL EVALUATION

 99

All of the selected algorithms have been implemented in C++. Note: all of

runtimes plotted in the figures in this chapter include both computation time and I/O

time.

5.1.1 Challenges in Comparisons

Amongst the selected algorithms listed above, only D-Miner has been found to

apply the minimum cardinality threshold, mincard. As stated previously, D-Miner is

a constraint-based algorithm which uses the minimum support, minsup, and the

minimum cardinality, mincard, thresholds to discover concepts (closed itemsets). As

the objective of this study is to discover colossal closed itemsets, direct comparison

can be made with DisClose if the minimum support, minsup threshold is set to 0.

This means that D-Miner will only search the large cardinality (colossal) closed

itemsets.

Other existing itemset mining algorithms ï particularly those that find closed

itemsets, which includes FP-Close, CARPENTER, and TTD-Close ï are routinely

presented with running times given for varying thresholds of support. As DisClose

begins by searching and storing the colossal closed itemsets using the cardinality

threshold, a direct comparison to these previous techniques is difficult . If one of the

previous algorithms were given a support threshold greater than 1, it would certainly

not find many of the largest-cardinality closed itemsets. Similarly, if DisClose were

given a cardinality threshold bigger than 1, it would certainly not find many of the

most frequent closed itemsets. The only way to compare the algorithms is to present

both with a threshold of 1, essentially asking each algorithm to find all closed

itemsets. A strength of DisClose is that it bypasses the huge number of small-

cardinality, high-frequent closed itemsets and focuses almost immediately on

potentially valuable closed itemsets (especially for high-dimensional data). This type

of complete closed itemsets search does not address the true intent of either

DisClose or the existing closed itemset mining algorithms.

CHAPTER 5. EXPERIMENTAL EVALUATION

 100

One approach is to present the experimental results of DisClose with a

secondary x-axis which represents the maximum support of the colossal closed

itemsets discovered. Likewise, a secondary x-axis is also added to the results of

FP-Close, CARPENTER, and TTD-Close which represents the maximum cardinality

of the closed frequent itemsets discovered. Thus, by using this approach, it provides

an observation on the ability and limitation of closed itemset mining algorithms that

uses a support threshold in relation to DisClose, and vice-versa.

Another challenge in comparing performance of the algorithms is based on

their implementation in identifying items in the datasets. For FP-Close,

CARPENTER and D-Miner, the algorithms were designed to identify each item

based on the value present for each attribute of the dataset. However, for TTD-Close,

each item in the dataset is read as a value that corresponds to the attribute of the

data. Hence, DisClose was implemented in two versions that satisfy both conditions,

in order for fair comparisons to be made.

5.2 Synthetic Datasets

The synthetic datasets were specifically constructed based on the implementation of

the selected algorithms in order to obtain fair comparison between the methods.

Synthetic datasets were used to test the performance of DisClose with the selected

algorithms in terms of different aspects such as the effect of the change of mincard,

the number of dimensions, the number of tuples and the cardinality of each

dimension.

 Synthetic datasets have been generated randomly using the IBM Quest

Synthetic Data Generator based on three main parameters: the number of

dimensions, the number of rows and the average length of the itemset in the dataset.

To represent the synthetic dataset, the label T#L#N# is used, where T# is the number

of rows, L# is average length of the itemset, and N# is the number of dimensions.

CHAPTER 5. EXPERIMENTAL EVALUATION

 101

 In reality, if a synthetic dataset was randomly generated several times with

the equivalent parameters, this dataset will produce a different set of values every

time. Hence, this will cause the answer set to be different each time the synthetic

dataset is analyzed. However, in this thesis, only one dataset is generated for each

parameter settings. This is because the objective of this thesis is to observe the

efficiency of the algorithm proposed as compared to other selected algorithms in

order to discover the colossal closed itemsets as opposed to differences in the

number of colossal closed itemsets that could be discovered in each dataset.

5.2.1 Dimensionality (columns)

To test the performance of the four algorithms with respect to the number of

dimensions, three datasets were generated with 4 K, 6 K and 10 K dimensions,

respectively. Each dataset contains the same row value of 100 and an average

itemset length of 2000.

5.2.1.1 DISCLOSE VS. D-MINER

Figure 5.1(a)-(c) shows the effect of changing the dimensionality on the runtime of

DisClose with D-Miner based on the minimum cardinality threshold, mincard. In

this set of experiments, DisClose presents better performance than D-Miner for all

datasets.

It can be seen from Figure 5.1(a) that at a higher cardinality threshold, the

differences in the time taken between the two algorithms is very small. However, as

the mincard value decreases, DisClose largely outperforms D-Miner. Taking the

maximum processing time of around 300 seconds, DisClose is able to discover

colossal closed itemsets with mincard = 700. For D-Miner, after mincard = 2100,

the algorithm took more than 12 hours to discover the colossal closed itemsets. The

percentage of density of values present in T100L2000N4000 dataset is 50%. With

the same number of rows and average size value of the itemset, as the number of

dimensionality increases, the dataset becomes less dense.

CHAPTER 5. EXPERIMENTAL EVALUATION

 102

(a) T100L2000N4000

(b) T100L2000N6000

(c) T100L2000N10000

 Figure 5.1: The effect of changing dimensionality with mincard

CHAPTER 5. EXPERIMENTAL EVALUATION

 103

The percentage of density of values present in T100L2000N6000 is 33.36%.

Similar behaviour can be seen in Figure 5.1(b). Here, DisClose is able to discover

colossal closed itemsets with mincard = 300. However, D-Miner still requires more

than 12 hours mining itemsets with cardinality less than 2100 hence values for

cardinality less than 2100 are not included in the figure.

For dataset T100L2000N10000, the percentage density of values present is

20.03%. Therefore, it can be observed in Figure 5.1(c) that DisClose is able to reach

a much smaller cardinality itemset where mincard = 70. Similar to previous datasets,

the execution of D-Miner requires more than 12 hours mining itemsets with

cardinality less than 2100.

It is observed in Figure 5.1 that, with the changes in dimensionality (and also

changes in density), DisClose performs better than D-Miner in discovering the

colossal closed itemsets. DisClose also scales well as the execution time increases

with the changes in the cardinality threshold for the changes in the dimensionality of

the datasets.

5.2.1.2 DISCLOSE VS. FP-CLOSE, CARPENTER AND D-M INER

Figures 5.2, 5.3 and 5.4 respectively compare DisClose with FP-Close,

CARPENTER and D-Miner by varying the number of attributes. As shown in Figure

5.2(a), beginning with the largest closed itemsets, DisClose is able to discover the

colossal closed itemsets with a maximum support of 10. The performance of

DisClose sharply increases between mincard = 700 and mincard = 600. This is due

to the large number of closed itemsets that exists between these thresholds. There

are a total of 27,994,019 colossal closed itemsets found when mincard = 600.

Figure 5.2(b) shows that as minsup decreases, the runtime of the three

algorithms increases. However, the algorithms are only able to operate up to minsup

= 95 before running out of memory. CARPENTER has the best execution time

among these algorithms. It is more than twice as fast as FP-Close and more than 13

times faster than D-Miner.

CHAPTER 5. EXPERIMENTAL EVALUATION

 104

This is due to the fact that the dataset is very dense and there exists a huge

number of closed frequent itemsets with large cardinality. There are 4,908,256

closed itemsets discovered when minsup = 95 with the largest cardinality of closed

(a)

(b)

Figure 5.2: Comparison on T100L2000N4000 with FP-Close, CARPENTER and D-

Miner

CHAPTER 5. EXPERIMENTAL EVALUATION

 105

itemsets equal to 120. D-Miner took the most time to discover the closed itemsets at

this threshold.

As expected, Figure 5.3(a) shows a similar result i.e. as the mincard

threshold decreases the execution time required for DisClose to discover the colossal

(a)

(b)

Figure 5.3: Comparison on T100L2000N6000 with FP-Close, CARPENTER and D-

Miner

CHAPTER 5. EXPERIMENTAL EVALUATION

 106

closed itemsets increases. The T100L2000N6000 dataset is less dense, compared to

dataset T100L2000N4000. As a result, DisClose is able to reach a smaller

cardinality threshold of 200 with a maximum support threshold of 10. There are a

total of 56,541,298 closed itemsets discovered at mincard = 200.

Figure 5.3(b) shows that only FP-Close and D-Miner can reach minsup = 81.

FP-Close outperforms both D-Miner and CARPENTER. There are 309,914,567

closed itemsets discovered when minsup = 81 with the largest cardinality of the

closed itemsets being equal to 20. CARPENTER can only reach minsup = 87. As

expected, the time required to discover the closed itemsets increases as the minimum

support decreases.

 The T100L2000N10000 dataset is less dense as compared to the previous

two datasets. This is shown in Figure 5.4(a), where DisClose is able to reach closed

itemsets at a much lower mincard threshold. DisClose discovers a total of

215,610,238 closed itemsets with a lowest value of mincard = 10. The closed

itemsets with mincard = 10 are found to have the maximum support threshold value

of 24. The time required to discover the closed itemsets increases as the mincard

threshold decreases.

For Figure 5.4(b), only FP-Close and D-Miner can reach lower support

thresholds with values of 42 and 46 respectively before running out of memory. FP-

Close performs better than D-Miner as D-Minerôs performance degrades for minsup

values greater than 46. The decrease of the performance of D-Miner can be

explained by the enormous influence of the high number of closed itemsets in this

data. The runtime for CARPENTER could not be displayed as the algorithm can only

reach minsup = 70. There are 1,483,324,975 closed itemsets discovered when

minsup = 42 with the largest cardinality of closed itemsets equal to 13.

5.2.1.3 DISCLOSE VS. TTD-CLOSE

Figure 5.5 shows the results between DisClose and TTD-Close on the dataset

T100L2000N4000. As the nature of TTD-Close is to read each item in the dataset as

CHAPTER 5. EXPERIMENTAL EVALUATION

 107

a value, the largest itemset that exists in the dataset is equivalent to its column value.

Therefore, in this particular case, more colossal closed itemsets are discovered.

Figure 5.5(a) shows that as the mincard value increases, the time required to

discover the colossal closed itemsets also increases. DisClose is able to reach closed

(a)

(b)

Figure 5.4: Comparison on T100L2000N10000 with FP-Close, CARPENTER and

D-Miner

CHAPTER 5. EXPERIMENTAL EVALUATION

 108

itemsets with mincard = 1700. There are a total of 78,717,638 closed itemsets that

exists when mincard = 1700 having the maximum support of 6.

Figure 5.5(b) shows that TTD-Close could only reach minsup = 97 with a

total of closed itemsets of 58,505. TTD-Close runs out of memory probably due to

the existence of larger cardinality itemsets at smaller minsup thresholds. This shows

(a)

(b)

Figure 5.5: Comparison on T100L2000N4000 with TTD-Close

CHAPTER 5. EXPERIMENTAL EVALUATION

 109

that for dense dataset, even at a high minsup threshold, the size of itemsets can

become very large.

Figure 5.6(a) shows that as the number of dimensions increases, by

increasing the mincard value, the time required to discover the colossal closed

itemsets also increases. The number of closed itemsets is 50 times more when

mincard = 2400 than when mincard = 2500, hence the precipitous increase in run

(a)

(b)

Figure 5.6: Comparison on T100L2000N6000 with TTD-Close

CHAPTER 5. EXPERIMENTAL EVALUATION

 110

time. DisClose can reach closed itemsets with mincard = 2400. There are a total of

79,393,410 closed itemsets that exists when mincard = 2400 having a maximum

support of 6.

Figure 5.6(b) shows that TTD-Close could still only reach minsup = 97 with

a total number of closed itemsets of 21,451. This is due to the existence of colossal

closed itemsets at a high support threshold.

Figure 5.7(a) shows similar behaviour as the number of dimension increases.

DisClose is able to reach closed itemsets with mincard = 5200. There are a total of

77,556,906 closed itemsets that exists when mincard = 5200 having a maximum

support of 5.

Figure 5.7(b) shows that TTD-Close may still only reach minsup = 97 with a

total of closed itemsets of 117,251. TTD-Close runs out of memory due the

existence of large cardinality itemsets at smaller minsup thresholds. This shows that

on very dense dataset, even at high minsup threshold, the size of itemsets can

become large.

5.2.2 Number of rows

To test the runtime of these algorithms with respect to the number of rows, two

more datasets have been generated; one containing 150 rows and the other 200 rows,

while the dimension is 4 K and the cardinality is 10. Figure 5.8(a)-(c) shows the

effect on execution time by increasing the number of rows using the mincard

threshold.

To obtain a convenient comparison, the result for T100L2000N4000 is

provided again here. Figure 5.8(b) shows that as the mincard value decreases, the

time required to discover the colossal closed itemsets increases. At the same

mincard value of 600, DisClose requires more time to discover colossal closed

itemsets. There are a total of 227,674,614 closed itemsets that exists at mincard =

600. This shows that as the number of rows increases, the total number of colossal

CHAPTER 5. EXPERIMENTAL EVALUATION

 111

closed itemsets also increases, thereby requiring more time to mine the dataset.

DisClose still outperforms D-Miner when the mincard threshold approaches 2000.

Similar behaviour is also shown in Figure 5.8(c) where, with the increase in

the number of rows, more time is required for DisClose to reach the smaller mincard

threshold. In this case, the algorithm is able to reach mincard = 700. The difference

in the execution time between DisClose and D-Miner is very small at high

cardinality threshold.

 (a)

 (b)

Figure 5.7: Comparison on T100L2000N10000 with TTD-Close

CHAPTER 5. EXPERIMENTAL EVALUATION

 112

However, when the mincard threshold is lowered, DisClose clearly

outperforms D-Miner.

(a) T100L2000N4000

(b) T150L2000N4000

(c) T200L2000N10000

 Figure 5.8: The effect of changing the number of rows on the runtime

CHAPTER 5. EXPERIMENTAL EVALUATION

 113

This set of experiments also shows this trend: as the number of rows

increases, the computation time for both algorithms increases. DisClose also scales

well, as the execution time increases with the changes in the mincard threshold

when increasing the number of rows in the dataset.

5.2.2.1 DISCLOSE VS. FP-CLOSE, CARPENTER AND D-M INER

Figure 5.9 compares DisClose with FP-Close, CARPENTER and D-Miner on

synthetic dataset T150L2000N4000. The percentage of density of values that exist

for this dataset is 50%. Figure 5.9(a) shows that beginning with the largest closed

itemsets, DisClose is able to discover colossal closed itemsets with the maximum

support of 10. There are 227,674,613 colossal closed itemsets found when mincard

= 600.

Figure 5.9(b) shows that as minsup decreases, the runtime of the three

algorithms increases. Apparently, the algorithms can only reach minsup = 96, and

CARPENTER runs the fastest. It is observed that even at lower support threshold the

existence in the number of large cardinality closed frequent itemsets is huge. D-

Miner took the most time to discover the closed itemsets at this support threshold.

There are 4,707,487 closed itemsets discovered at minsup = 97 with the largest

cardinality of closed itemsets being equal to 85.

Figure 5.10 compares DisClose with FP-Close, CARPENTER and D-Miner as

the number of rows increases. With the same percentage density of true values of

50%, DisClose is able to discover 36,297,315 colossal closed itemsets when

mincard = 600, having a maximum support of 8. This is shown in Figure 5.10(a).

As for the other three algorithms, Figure 5.10(b) shows that the algorithms can

only reach minsup = 97, having a maximum cardinality of 68.

CHAPTER 5. EXPERIMENTAL EVALUATION

 114

 (a)

(b)

Figure 5.9: Comparison on T150L2000N4000 with FP-Close, CARPENTER and

D-Miner

CHAPTER 5. EXPERIMENTAL EVALUATION

 115

5.2.2.2 DISCLOSE VS. TTD-CLOSE

The testing of algorithm TTD-Close on both T150L200N4000 and

T200L2000N4000 datasets has taken more than one day in order to obtain the initial

result. Hence, the outcome of the experiments is not displayed. However, the results

(a)

(b)

Figure 5.10: Comparison on T200L2000N4000 with FP-Close, CARPENTER and

D-Miner

CHAPTER 5. EXPERIMENTAL EVALUATION

 116

of DisClose for the same mining situation on both datasets are given in Figure 5.11

and Figure 5.12, respectively.

Both figures show that DisClose is still able to mine the dense datasets. It is

observed that the algorithm scales well, as the time taken to discover the colossal

closed itemsets increases with the increase in the row size of the datasets.

Figure 5.11: Result on T150L2000N4000 with TTD-Close

 5.2-0.1: Result of DisClose on T150L2000N4000

Figure 5.12: Result on T200L2000N4000 with TTD-Close

CHAPTER 5. EXPERIMENTAL EVALUATION

 117

5.2.3 Cardinality

In the previous groups of experiments described above, the average length of each

dataset is set to 2000, which means that each dimension of each dataset has on

average 2 K distinct values. To test the performance of the different cardinalities,

two more datasets have been generated that correspond to 1.5 K distinct values and

2.5 K distinct values. The other parameters remain unchanged: that is to say, the

number of dimension is 4 K and the number of tuples is 100.

Figure 5.13(a)-(c) compares DisClose and D-Miner using the mincard

threshold on synthetic dataset T100L1500N4000. In this set of experiments, the

results show that as the cardinality value of the datasets increases, the value of the

mincard that DisClose could reach also increases. Intuitively, with respect to

cardinality pruning, a lower mincard results in an increase in run time. DisClose also

scales well, as the execution time increases with the changes in the dimensionality of

the datasets. The results show the DisClose still performs better than D-Miner as the

magnitude of the cardinality changes.

In Figure 5.13(a), the T100L1500N4000 dataset contains the percentage

density of true values of 38%. Therefore, by reducing the average length of the

itemset, DisClose is able to reach closed itemsets until mincard = 200. In addition,

D-Miner could reach a much lower cardinality threshold of 1700 when the

cardinality value decreases.

As for Figure 5.13(c), as the number of average length increases, the

percentage density of true values also increases to 64%. Hence, DisClose is able to

reach colossal closed itemsets at a much larger mincard threshold of 1100. As for D-

Miner, the mincard threshold that the algorithm could reach also increases to 2600.

5.2.3.1 DISCLOSE VS. FP-CLOSE, CARPENTER AND D-M INER

Figures 5.14 and 5.15 together demonstrate the effect of changing L. Figure 5.14

compares DisClose with FP-Close, CARPENTER and D-Miner as the average

length (cardinality) decreases.

CHAPTER 5. EXPERIMENTAL EVALUATION

 118

(a) T100L1500N4000

(b) T100L2000N4000

(c) T100L2500N4000

 Figure 5.13: The effect of changing cardinality on the runtime

CHAPTER 5. EXPERIMENTAL EVALUATION

 119

 As compared to Figure 5.2, DisClose is able to operate up to mincard = 200

having a maximum support of 9. This is shown in Figure 5.14(a). Figure 5.14(b)

shows that for the three algorithms, all could reach a lower minsup threshold.

Amongst the three algorithms, FP-Close performs the best with the value of minsup

(a)

(b)

Figure 5.14: Comparison on T100L1500N4000 with FP-Close,

CARPENTER and D-Miner

CHAPTER 5. EXPERIMENTAL EVALUATION

 120

= 86. The maximum cardinality of the closed itemsets discovered at this support

threshold is 22. As for D-Miner, at minsup = 87, the maximum cardinality of the

closed itemsets is also 22. CARPENTER could reach at minsup = 89 with the largest

closed itemset having the maximum cardinality of 20. As the minsup threshold

decreases, the runtime of the three algorithms also increases. This is because the

dataset is very dense, and the number of closed frequent itemsets that require

checking increases substantially. As an example, the difference in the closed

itemsets discovered between minsup = 86 and minsup = 87 is almost 42 million.

 Figure 5.15 shows the results obtained as the number of average length

increases. It is observed that for the T100L2500N4000 dataset, the cardinality of the

closed itemsets is very large. In Figure 5.15(a), D-Miner discovered colossal closed

itemsets until mincard = 1100. At this mincard threshold, the maximum support

value for colossal closed itemsets is 15.

 Figure 5.15(b) shows that for the three algorithms, the lowest minsup value

reached is 95 by D-Miner. This indicates that T100L2500N4000 is relatively denser

than the T100L1500N4000 dataset. It is also observed that the maximum cardinality

of the closed itemsets that exists at this minsup value is 481. CARPENTER and FP-

Close can reach minsup = 96 with maximum cardinality = 477 and minsup = 97 with

maximum cardinality = 472, respectively.

5.2.3.2 DISCLOSE VS. TTD-CLOSE

Figures 5.16 and 5.17 together demonstrate the effect of changing L. Figure 5.16

compares the results of DisClose and TTD-Close on the dataset T100L1500N4000.

With the reduction in the average itemset length, Figure 5.16(a) shows that DisClose

discovers closed itemsets at a lower mincard value of 1500. The maximum support

value at this threshold is 6 which is the same support value for the dataset

T100L2000N4000 shown in Figure 5.2.

Figure 5.16(b) shows that TTD-Close can reach minsup = 96 with a total of

closed itemsets of 292,150. TTD-Close runs out of memory probably due to the

CHAPTER 5. EXPERIMENTAL EVALUATION

 121

existence of larger cardinality itemsets at smaller minsup thresholds. This shows that

for dense dataset, even at high minsup threshold, the size of the itemsets can be

significantly large.

(a)

(b)

Figure 5.15: Comparison on T100L2500N4000 with FP-Close,

CARPENTER and D-Miner

