A MODULAR ANALOGUE OF MOROZOV’S THEOREM ON MAXIMAL SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

ALEXANDER PREMET

Abstract. Let G be a simple algebraic group over an algebraically closed field of characteristic $p > 0$ and suppose that p is a very good prime for G. In this paper we prove that any maximal Lie subalgebra M of $g = \text{Lie}(G)$ with $\text{rad}(M) \neq 0$ has the form $M = \text{Lie}(P)$ for some maximal parabolic subgroup P of G. This means that Morozov’s theorem on maximal subalgebras is valid under mild assumptions on G. We show that such assumptions are necessary by providing a counterexample to Morozov’s theorem for groups of type E_8 over fields of characteristic 5. Our proof relies on the main results and methods of the classification theory of finite dimensional simple Lie algebras over fields of prime characteristic.

1. Introduction

Let k be an algebraically closed field of characteristic $p > 0$ and let G be a simple algebraic group over k. Let Π be a basis of simple roots of the root system Φ of G. Recall that p is said to be very good for G if Φ is not of type A_{kp-1} for some $k \in \mathbb{Z}_{>0}$ and all coefficients n_α of the highest root $\tilde{\alpha} = \sum_{\alpha \in \Pi} n_\alpha \alpha \in \Phi^+(\Pi)$ are less than p. It is well known that if p is very good for g then the Lie algebra $g = \text{Lie}(G)$ is simple and the centraliser of any semisimple element of g is a Levi subalgebra of g. The goal of this paper is to show that an analogue of Morozov’s theorem on non-semisimple maximal subalgebras holds for the Lie algebra g. Over complex numbers, Morozov’s theorem is the starting point of Dynkin’s classification of the maximal subalgebras of simple Lie algebras [Dyn52] and one hopes that the theorem stated below will play a similar role in the modular setting.

Theorem 1.1. Let G be a simple algebraic k-group, where $p = \text{char}(k)$ is a very good prime for G, and let M be a maximal Lie subalgebra of $g = \text{Lie}(G)$ with $\text{rad}(M) \neq 0$. Then $M = \text{Lie}(P)$ for some maximal parabolic subgroup P of G.

In good characteristic, it follows from the description of maximal closed subsystems of irreducible root systems that if P is a maximal parabolic subgroup of G then $\text{Lie}(P)$ is a maximal subalgebra of G; see Lemma 2.4 for detail. Thus Theorem 1.1 characterises the class of non-semisimple maximal subalgebras of g.

If G is one of the classical groups $\text{SL}(V)$, $\text{SO}(V)$ or $\text{Sp}(V)$ and p is a very good prime for G then Theorem 1.1 can be proved very quickly by using Lemma 2.1 (which holds when p is very good for G) and the reducibility of the action of M on the G-module V; see [HS15a, § 7] for a detailed argument. Therefore, in what follows we assume that G is an exceptional algebraic group. No good substitute for V is available in this case and our proof of Theorem 1.1 relies on completely different methods coming from the classification theory of finite dimensional simple Lie algebras over fields of characteristic $p > 3$. We shall see later that if p is not very good for G then Theorem 1.1 breaks

2010 Mathematics Subject Classification. 17B45.

Supported by the Leverhulme Trust (Grant RPG-2013-293).
down very badly for many simple algebraic groups G (classical and exceptional). For $\mathfrak{g} = \mathfrak{sl}(V)$ with $p | \dim V$ this is due to the fact that any maximal subalgebra of \mathfrak{g} acting irreducibly on V is neither semisimple nor parabolic because it has to contain the scalar endomorphisms of V.

In characteristic zero, Theorem 1.1 is a classical result of Lie Theory and it has a long history. It was first proved by Morozov in his doctoral dissertation published by Kazan State University in 1943. This text to which Dynkin refers in his seminal article [Dyn52] is hard to find nowadays. Nevertheless, Panyushev and Vinberg managed to do this and reported that Morozov’s original proof was quite long and relied on case-by-case considerations; see [PV10]. Morozov was probably aware of that because in the short note [Mor56] he has simplified his original arguments. His shorter (ingenious) proof is easily accessible and is essentially reproduced in [Bou75, Ch. VIII, §10]. It relies on some results and observations which are no longer valid in prime characteristic.

It should be stressed at this point that a group analogue of Theorem 1.1 holds without any restriction on p. More precisely, it was proved by Weisfeiler [Weis66] and independently by Borel–Tits [BT71, Corollaire 3.3] that if G is a connected reductive algebraic group defined over an algebraically closed field of arbitrary characteristic and H is a maximal subgroup of G then either H is reductive or H is a maximal parabolic subgroup of G (there are a couple of minor glitches in Weisfeiler’s argument and it only works over perfect fields). Although this result implies Morozov’s theorem in the characteristic zero case, it cannot be applied for proving Theorem 1.1 in full generality. Indeed, a priori it is not clear that $M = \text{Lie}(H)$ for some Zariski closed subgroup H of G as all modular substitutes for exponentiation become feeble when p is small.

In the last section of the paper we exhibit two bizarre examples where the equality $M = \text{Lie}(H)$ breaks down in bad characteristic (it would be interesting to determine all such instances). More precisely, in the case where G is of type E_8 and $p = 5$ we construct a 74-dimensional maximal Lie subalgebra \mathfrak{w} of $\text{Lie}(G)$ which resides in the middle of a short exact sequence

$$0 \to A \to \mathfrak{w} \to W(2; \frac{1}{1}) \to 0$$

where $A = \text{nil}(\mathfrak{w})$ is an abelian ideal of \mathfrak{w} isomorphic to $(O(2; \frac{1}{1})/k_1)^*$ as $W(2; \frac{1}{1})$-modules. Here $O(2; \frac{1}{1}) = k[X, Y]/(X^5, Y^5)$, a truncated polynomial ring in two variables, and $W(2; \frac{1}{1}) = \text{Der}(O(2; \frac{1}{1}))$, a Witt–Jacobson Lie algebra. Our second example occurs in the case where G is a group of type G_2 and $p = 2$. It is more straightforward and has to do with the fact that in characteristic 2 the Lie algebra $\text{Lie}(G)$ forgets its identity and becomes isomorphic to \mathfrak{psl}_4. Several examples of similar nature can be found in other exceptional Lie algebras over fields of bad characteristic. This was recently discovered by Thomas Purslow who also observed that some very exotic simple Lie algebras appear as subquotients of exceptional Lie algebras over fields of characteristic 2 and 3. One such example in type F_4 is explicitly described in [Pur16].

Theorem 1.1 is the starting point of the joint project with David Stewart which aims to extend Dynkin’s classification of maximal subalgebras to the case of reductive Lie algebras over fields of characteristic $p > 3$. At the end of the paper we put forward a conjecture on non-semisimple maximal subalgebras of Lie algebras of type E_8 over fields of characteristic 5.

Acknowledgement. I would like to thank Jim Humphreys for useful comments on an earlier version of this paper and Tom Purslow for using GAP to verify some crucial properties of the subalgebra \mathfrak{w}. I am very grateful to David Stewart who has read the whole proof, suggested several improvements, pointed out a gap in an earlier version of (3.20) and sent me a long list of typos. I am also thankful to Floriana Amicone who spotted a missing case (in type F_4) in my list of
Throughout this paper G is an exceptional algebraic k-group and $p = \text{char}(k)$ is a good prime for G. It is well known that in this case the Lie algebra $\mathfrak{g} = \text{Lie}(G)$ is simple and its Killing form κ is non-degenerate. Being the Lie algebra of an affine algebraic group, \mathfrak{g} carries a canonical $[p]$-th power map $\mathfrak{g} \ni x \mapsto x^{[p]} \in \mathfrak{g}$ equivariant under the adjoint action of G. An element $h \in \mathfrak{g}$ is called toral if $h^{[p]} = h$. The adjoint endomorphism of any toral element of \mathfrak{g} is semisimple and its eigenvalues lie in \mathbb{F}_p. Therefore, any such element is contained in a maximal toral subalgebra of \mathfrak{g}. Given $x \in \mathfrak{g}$ we write \mathfrak{g}_x for the centraliser of x in \mathfrak{g}. If V is a vector space over k of dimension rp, where r is a positive integer, then we denote by $\mathfrak{psl}(V)$, \mathfrak{psl}_{rp} and \mathfrak{pgl}_{rp} the (restricted) Lie algebras $\mathfrak{sl}(V)/k\text{Id}_V$, $\mathfrak{sl}_{rp}(k)/k1$, and $\mathfrak{gl}_{rp}(k)/k1$, respectively. It is well known (and easily seen) that $\mathfrak{psl}_{rp} = [\mathfrak{pgl}_{rp}, \mathfrak{pgl}_{rp}]$ has codimension 1 in \mathfrak{pgl}_{rp} and $\mathfrak{pgl}_{rp} = \text{Lie}(\text{PGL}_{rp})$. If $(p,r) \neq (2,1)$ then $\mathfrak{psl}_{rp} \cong \mathfrak{psl}(V)$ is a simple Lie algebra.

Let $\mathcal{N}(\mathfrak{g})$ denote the nilpotent cone of $\mathfrak{g} = \text{Lie}(G)$, the set of all $x \in \mathfrak{g}$ with $x^{[p]e} = 0$ for $e \gg 0$. The group G acts on $\mathcal{N}(\mathfrak{g})$ with finitely many orbits which are labelled by their weighted Dynkin diagrams exactly as in the characteristic 0 case; see [Pre03], for example. The dimensions of nilpotent orbits can be found in [Car93, pp. 401–407]. Let $\mathcal{N}_p(\mathfrak{g}) = \{ x \in \mathfrak{g} \mid x^{[p]} = 0 \}$, the restricted nullcone of \mathfrak{g}. By [CLNP], the variety $\mathcal{N}_p(\mathfrak{g})$ coincides with the Zariski closure of a single nilpotent G-orbit; in particular, it is always irreducible.

Let L be a Lie subalgebra of \mathfrak{g}. The nilradical of L, denoted nil(L), is the maximal ideal of L consisting of nilpotent elements of \mathfrak{g}.

Lemma 2.1. If M is a maximal Lie subalgebra of \mathfrak{g} with rad(M) $\neq 0$ then nil(M) $\neq 0$.

Proof. Let A be a maximal abelian ideal of M. Since M is maximal in \mathfrak{g}, it is a restricted subalgebra of \mathfrak{g}. Since rad(M) $\neq 0$ is a restricted ideal of M, the ideal $A \neq 0$ is closed under taking $[p]$-powers in \mathfrak{g}. If $A \subseteq \mathcal{N}(\mathfrak{g})$ then $0 \neq A \subseteq \text{nil}(M)$ and we are done. So suppose $A \not\subseteq \mathcal{N}(\mathfrak{g})$. The A must contain a nonzero semisimple element of \mathfrak{g}, say t. Note that t lies in the span of all $t^{[p]^i}$ with $i \geq 1$. As

$$[t^{[p]^i}, M] = (\text{ad } t)^{[p]^i}(M) \subseteq (\text{ad } t)^{[p]^i+2}(M) \subseteq [t, A] = 0$$

for all $i \geq 1$, this yields $t \in z(M)$. Therefore, $M = \mathfrak{g}_t$ by the maximality of M. Since \mathfrak{g} is simple and p is a good prime for G, the centraliser \mathfrak{g}_t is a proper Levi subalgebra of \mathfrak{g}. However, such a subalgebra cannot be maximal as it normalises the nilradical of a proper parabolic subalgebra of \mathfrak{g}. This contradiction shows that nil(M) $\neq 0$ as stated. \hfill \square

2.3. A connected reductive k-group G is called standard if the derived subgroup of G is simply connected, p is a good prime for G, and the Lie algebra $\mathfrak{g} = \text{Lie}(G)$ admits a non-degenerate G-invariant symmetric bilinear form. Note that if G is standard then so is any Levi subgroup of G. The following lemma is a straightforward generalisation of the main result of [LMT09].

Lemma 2.2. Let G be a standard reductive k-group and let L be a Lie subalgebra of \mathfrak{g} such that $[L, L]$ consists of nilpotent elements of \mathfrak{g}. Then L is contained in a Borel subalgebra of \mathfrak{g}.

3
Proof. Replacing L by its p-closure in \mathfrak{g} if need be we may assume that L is a restricted subalgebra of \mathfrak{g}. We use induction on the dimension of G. Suppose the statement holds for all standard reductive k-groups of dimension $\leq n$ (this is obviously true when $n = 1$). Now suppose $\dim(G) = n + 1$. By Engel’s theorem, the Lie algebra $[L, L]$ is nilpotent. If $[L, L] \neq 0$ then $\text{nil}(L) \neq 0$. If $[L, L] = 0$ then $L = L_s \oplus L_n$ where L_s is a toral subalgebra of \mathfrak{g} and $L_n = \text{nil}(L)$. If $L = L_s$ then $L \subseteq \text{Lie}(T)$ for some maximal torus T of G; see [Hum67, Theorem 13.3]. So we are done in this case.

Thus we may assume that $\mathfrak{n} := \text{nil}(L) \neq 0$. Then $3(\mathfrak{n}) \neq 0$. As $[L, L] \subseteq \text{nil}(L)$ by our assumption on L, the adjoint action of L induces a representation of the abelian Lie algebra $L/[L, L]$ on $3(\mathfrak{n})$. So there exists a nonzero $e \in 3(\mathfrak{n})$ such that $[L, e] \subseteq k\mathfrak{e}$. As e is a nilpotent element of \mathfrak{g} it admits a cocharacter λ: $k^\times \to G$ optimal in the sense of the Kempf–Rousseau theory. Let P be the parabolic subgroup associated with λ and $\mathfrak{p} = \text{Lie}(P)$. Then $\mathfrak{p} = \bigoplus_{i \geq 0} \mathfrak{g}(\lambda, i)$. By [Pre03, Theorem 2.3], one can choose λ in such a way that $e \in \mathfrak{g}(\lambda, 2)$ and $\mathfrak{g}_e \subseteq \mathfrak{p}$. Furthermore, $[\mathfrak{g}(\lambda, i), e] = \mathfrak{g}(\lambda, i + 2)$ for all $i \geq 0$. Taking $i = 0$ we find $h_0 \in \mathfrak{g}(\lambda, 0)$ with $[h_0, e] = e$. This implies that

$$L \subseteq \mathfrak{n}_0(k\mathfrak{e}) = k\mathfrak{h}_0 + \mathfrak{g}_e \subseteq \mathfrak{p}.$$

By our induction assumption, the image of L in the Levi subalgebra $\mathfrak{g}(\lambda, 0) \cong \mathfrak{p}/\text{nil}(\mathfrak{p})$ of \mathfrak{g} is contained in a Borel subalgebra of $\mathfrak{g}(\lambda, 0)$, say \mathfrak{b}. Since the inverse image of \mathfrak{b} under the canonical homomorphism $\mathfrak{p} \to \mathfrak{g}(\lambda, 0)$ is a Borel subalgebra of \mathfrak{g}, this accomplishes the induction step of our proof.

2.4. We denote by \mathcal{O}_{min} the minimal nonzero nilpotent orbit in \mathfrak{g}. It consists of all nonzero $e \in \mathfrak{g}$ with the property that $[e, [e, \mathfrak{g}]] = k\mathfrak{e}$.

Corollary 2.3. Let M be a maximal Lie subalgebra of \mathfrak{g} and denote by N the nilradical of M. Suppose $N \neq 0$ and let R be any Lie subalgebra of M whose derived ideal $[R, R]$ consists of nilpotent elements of \mathfrak{g}. Then the centraliser $\mathfrak{c}_\mathfrak{g}(N)$ is an ideal of M and there exists $e \in \mathfrak{c}_\mathfrak{g}(N) \cap \mathcal{O}_{\text{min}}$ such that $[R, e] \subseteq k\mathfrak{e}$.

Proof. Since N is nilpotent we have that $0 \neq 3(N) \subseteq \mathfrak{c}_\mathfrak{g}(N)$. Therefore, $\mathfrak{c}_\mathfrak{g}(N)$ is a nonzero Lie subalgebra of \mathfrak{g}. If $x \in M$, $c \in \mathfrak{c}_\mathfrak{g}(N)$ and $n \in N$ then $[[x, c], n] = [x, [c, n]] - [c, [x, n]] = 0$. So $[M, \mathfrak{c}_\mathfrak{g}(N)] \subseteq \mathfrak{c}_\mathfrak{g}(N)$ which implies that $\tilde{M} := M + \mathfrak{c}_\mathfrak{g}(N)$ is a Lie subalgebra of \mathfrak{g}. Since \mathfrak{g} is a simple Lie algebra and \tilde{M} normalises N, it must be that $\tilde{M} \neq \mathfrak{g}$. As a result, $\tilde{M} = M$ forcing $\mathfrak{c}_\mathfrak{g}(N) \subseteq M$.

Let $\tilde{R} = R + N$. Then it is immediate from Jacobson’s formula for p-th powers that $[\tilde{R}, \tilde{R}] \subseteq [R, R] + N$ consists of nilpotent elements of \mathfrak{g}. By Lemma 2.2, there exists a Borel subalgebra \mathfrak{b} of \mathfrak{g} containing \tilde{R}. Let $B = T \cdot R_u(B)$ be the Borel subgroup of G such that $\mathfrak{b} = \text{Lie}(B)$. The maximal torus T of B preserves the central $3(\mathfrak{n}_+) = \text{Lie}(R_u(B))$. This implies that $3(\mathfrak{n}_+)$ is spanned by root vectors relative to T. Since p is a good prime for G and \mathfrak{n}_+ contains all simple root vectors with respect to T, this yields that $3(\mathfrak{n}_+) = k\mathfrak{e}$ where e is a highest root vector of \mathfrak{n}_+.

It is well known (and easily seen) that the latter belongs to \mathcal{O}_{min}. As $R \subseteq \tilde{R} \subseteq \mathfrak{b}$ and \mathfrak{b} normalises $3(\mathfrak{n}_+)$ it must be that $[R, e] \subseteq k\mathfrak{e}$. Since $N \subseteq \mathfrak{n}_+$ we also have that $e \in \mathfrak{c}_\mathfrak{g}(N)$. This completes the proof.

2.5. A Lie subalgebra of \mathfrak{g} is called **regular** if it contains a maximal toral subalgebra of the restricted Lie algebra \mathfrak{g}.

Lemma 2.4. Let M be a maximal subalgebra of \mathfrak{g} with $\text{nil}(M) \neq 0$. If M is regular then it is a parabolic subalgebra of \mathfrak{g}.

Proof. Let \(\mathfrak{t} \) be a maximal toral subalgebra of \(\mathfrak{g} \) contained in \(M \). It follows from [Bor91, 11.8] that there exists a maximal torus \(T \) in \(G \) such that \(\mathfrak{t} = \text{Lie}(T) \) (see also [Hum67, Theorem 13.3]). Since \(p > 3 \), the toral subalgebra \(\mathfrak{t} \) is a classical Cartan subalgebra of \(\mathfrak{g} \) in the sense of Seligman and the Lie algebra \(\mathfrak{g} \) satisfies the Seligman–Mills axioms; see [Sel67, Ch. II, §3]. In particular, this means that all root spaces of \(\mathfrak{g} \) with respect to \(\mathfrak{t} \) are 1-dimensional. As a consequence, \(M \) is \((\text{Ad } T)\)-stable.

Let \(\Phi \) be the root system of \(G \) with respect to \(T \). Given \(\alpha \in \Phi \) we denote by \(\mathfrak{g}_{\alpha} \) the root subspace of \(\mathfrak{g} \) with respect to \(T \). Then \(\mathfrak{g}_{\alpha} = k e_{\alpha} \) for some root element \(e_{\alpha} \in \mathfrak{g} \). The preceding remark entails that there exists a subset \(\Psi \) of \(\Phi \) such that \(M = \mathfrak{t} \oplus \sum_{\alpha \in \Psi} k e_{\alpha} \). Moreover, it follows from [Sel67, Ch. II, §4], for example, that if \(\alpha, \beta \in \Psi \) and \(\alpha + \beta \in \Phi \) then \(\alpha + \beta \in \Psi \). In other words, \(\Psi \) is a closed subset of \(\Phi \) in the sense of [Bou68, Ch. VI, §1, Sect. 7].

Let \(\mathfrak{g}_{\mathbb{Z}} \) be the Chevalley \(\mathbb{Z} \)-form of \(\mathfrak{g} \) associated with the root system \(\Phi \). The above discussion shows that \(M \) is obtained by base change from the \(\mathbb{Z} \)-subalgebra \(\mathfrak{g}_{\mathbb{Z}}(\Psi) \) of \(\mathfrak{g}_{\mathbb{Z}} \) spanned by all root vectors \(E_{\alpha} \in \mathfrak{g}_{\mathbb{Z}} \) with \(\alpha \in \Psi \) and all commutators \([E_{\beta}, E_{-\beta}] \) with \(\beta \in \Phi \). The maximality of \(M \) in \(\mathfrak{g} \) now implies that \(\mathfrak{g}_{\mathbb{Z}}(\Psi) \otimes_{\mathbb{Z}} \mathbb{C} \) is a maximal subalgebra of \(\mathfrak{g}_{\mathbb{C}} := \mathfrak{g}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} \). Then Morozov’s theorem on maximal subalgebras of \(\mathfrak{g}_{\mathbb{C}} \) yields that the closed subset \(\Psi \) of \(\Phi \) is either symmetric or parabolic. If \(\Psi \) is symmetric then it is not hard to see that the restriction of the Killing form of \(\mathfrak{g} \) to \(M = \mathfrak{g}_{\mathbb{Z}}(\Psi) \otimes_{\mathbb{Z}} k \) is non-degenerate. This, however, contradicts our assumption that \(\text{nil}(M) \neq 0 \). Therefore, \(\Psi \) must be a parabolic subset of \(\Phi \). This completes the proof. \(\square \)

2.6. Given a finite dimensional semisimple Lie algebra \(L \) we write \(L_p \) for the \(p \)-closure of \(L \equiv \text{ad } L \) in \(\text{Der}(L) \). This semisimple restricted Lie algebra is often referred to as the \textit{minimal} \(p \)-\textit{envelope} of \(L \). To ease notation we shall often identify \(L \) with \(\text{ad } L \subseteq \text{Der}(L) \). If \(L = \bigoplus_{i \in \mathbb{Z}} L_i \) is a graded Lie algebra then \(\text{Der}(L) \) has a natural grading, too, and Jacobson’s formula for \(p \)-th powers implies that \(L_p \) is spanned by the \(p \)-closure of \(L_0 \) in \(\text{Der}(L) \) and all \(L_i^p \) with \(i \neq 0 \) and \(j \in \mathbb{Z}_{\geq 0} \). Recall that an \(L \)-module \(V = \bigoplus_{i \in \mathbb{Z}} V_i \) is called \textit{graded} if \(L_i \cdot V_j \subseteq V_{i+j} \) for all \(i, j \in \mathbb{Z} \). We say that \(V \) is \textit{restrictable} if there exists a restricted representation \(\rho: L_p \to \mathfrak{g}(V) \) such that \((\rho(x))(v) = x.v \) for all \(x \in L \) and \(v \in V \).

Lemma 2.5. Let \(L \) be a finite dimensional semisimple graded Lie algebra over \(k \) and suppose that its zero component \(L_0 \) is a restricted subalgebra of \(L_p \). Let \(V \) be a finite dimensional graded \(L \)-module, write \(\pi \) for the corresponding representation of \(L \), and suppose that \(\pi|_{L_0} \) is a restricted representation of \(L_0 \). Then all composition factors of the \(L \)-module \(V \) are graded and restrictable.

Proof. (a) We first show by induction on the composition length \(l \) of \(V \) that all composition factors of \(V \) are graded. If \(V \) is irreducible then, of course, there is nothing to prove. So suppose \(V \) is reducible and let \(L_{\pm} = \bigoplus_{i > 0} L_{\pm i} \). These graded Lie subalgebras of \(L \) are \((\text{ad } L_0)\)-stable and act nilpotently on \(V \). It follows that \(V_+ := \{ v \in V \mid L_+ \cdot v = 0 \} \) is a nonzero graded subspace of \(V \) and each graded component of \(V_+ \) is invariant under the action of \(L_0 \). Let \(r \) be the smallest integer such that \(V_r \cap V_r^0 \neq 0 \) and put \(W := U(L_-) \cdot (V_+ \cap V_r) \). It is straightforward to see that \(W \) is a graded subspace of \(V \) invariant under the action of \(L_0 \) and \(L_0 \). Our choice of \(r \) then implies that \(W \) is an irreducible \(L \)-submodule of \(V \). As a consequence, the quotient module \(V/W \) has a natural structure of a graded \(L \)-module. Since the length of \(V/W \) is smaller than that of \(V \) and the composition factors of \(V \) are independent of the choice of a composition series (up to isomorphism), the statement follows by induction on \(l \).

(b) Next we show that each composition factor of \(V \) is restrictable. In view of part (a) no generality will be lost by assuming that \(V \) is an irreducible \(L \)-module. Let \(L \) be the \(p \)-envelope of \(L \) in the
universal enveloping algebra $U(L)$. This is an infinite dimensional restricted Lie algebra with an enormous centre $z(L)$. The action of $U(L)$ gives V a natural structure of a restricted L-module. Let $\rho: L \to \mathfrak{gl}(V)$ denote the corresponding representation of L. Since V is an irreducible L-module, $z(L)$ acts on V by scalar linear operators. Now define $z'(L) := z(L) \cap (ker \rho)$ and put $\hat{L}_p := L/z'(L)$. As L is semisimple, \hat{L}_p is a p-envelope of L and its centre $\check{z} = z(L)/z'(L)$ has dimension ≤ 1. Moreover, V is a restricted \hat{L}_p-module and $L/z(L) \cong L_p$ as restricted Lie algebras; see [Str04, Theorem 1.1.7].

We write $x \mapsto x^{[p]}$ for the $[p]$-power map of L. The grading of L induces that on $U(L)$ and its Lie subalgebra $L = \sum_{i\in \mathbb{Z}} \sum_{j \geq 0} L_i^{[p]}$. We stress that each $L_i^{[p]}$ consists of graded elements of degree ip. It is straightforward to check that $z(L)$ is a graded subspace of L. Since V is a graded $U(L)$-module the subspace $z'(L)$ must be graded as well. As all graded components $z(L)$, with $i \neq 0$ act on V by nilpotent transformations they lie in $z'(L)$ due to the irreducibility of V. This yields that $z = k\rho(z)$ for some $z \in z(L)_0$. The above description of $z(L)_0 \subseteq \sum_{j \geq 0} L_0^{[p]}$ then shows that $z = z_0 + z_1^{[p]} + \cdots + z_k^{[p]}$ for some $z_0, z_1, \ldots, z_k \in L_0$. Since L_0 is a restricted Lie subalgebra of L_p and V is a restricted L_0-module we have that $\rho(z_i^{[p]}) = \rho(z_i')$ for all $0 \leq i \leq k$ where $x \mapsto x^p$ stands for the p-th power map of L_p. As each element $z_i^{[p]} - z_i' \in L$ is central, it lies in $z'(L)$. As z is a central element of L, so too is $z' := \sum_{i=0}^k z_i^{[p]}$. Since $z' \in L$ and L is semisimple this forces $z' = 0$. But then $\rho(z) = \rho(z') = 0$ implying $z'(L) = z(L)$. As a result $\hat{L}_p \cong L_p$ as restricted Lie algebras. This completes the proof.

2.7. In order to deal with Hamiltonian Lie algebras which will come to complicate things in the next section we must look very closely at the G-orbits of certain special toral elements of \mathfrak{g}.

Definition 2.6. Let d be a positive integer. A toral element $h \in \mathfrak{g}$ is said to be d-balanced if $\dim \mathfrak{g}(h,i) = \dim \mathfrak{g}(h,j)$ for all $i, j \in \mathbb{F}_p^\times$ and all eigenspaces $\mathfrak{g}(h,i)$ with $i \neq 0$ have dimension divisible by d.

If h is a d-balanced toral element of \mathfrak{g} then

(1) \[\kappa(h,h) = \text{tr}(\text{ad} h)^2 = \sum_{i=1}^{p-1} \dim \mathfrak{g}(h,i) \cdot i^2 = \dim \mathfrak{g}(h,1) \cdot (p-1)p(2p-1)/6 = 0. \]

Proposition 2.7. Let G be an exceptional algebraic k-group, where $p = \text{char}(k)$ is a good prime for G, and let h be a nonzero p-balanced toral element of $\mathfrak{g} = \text{Lie}(G)$. Then one of the following cases occurs:

(1) G is of type E_6, $p = 5$, the root system of G_h has type A_3, and $\dim \mathfrak{g}_h = 18$;
(2) G is of type E_7, $p = 5$, the root system of G_h has type D_4A_1, and $\dim \mathfrak{g}_h = 33$;
(3) G is of type E_8, $p = 7$, the root system of G_h has type E_6, and $\dim \mathfrak{g}_h = 80$;
(4) G is of type E_8, $p = 7$, the root system of G_h has type D_4A_2, and $\dim \mathfrak{g}_h = 38$;
(5) G is of type E_8, $p = 11$, the root system of G_h has type A_4, and $\dim \mathfrak{g}_h = 28$;
(6) G is of type F_4, $p = 7$, the root system of G_h has type A_2, and $\dim \mathfrak{g}_h = 10$;
(7) G is of type F_4, $p = 5$, the root system of G_h has type B_2, and $\dim \mathfrak{g}_h = 12$.

Furthermore, in all cases except (vi) the nonzero p-balanced toral elements of \mathfrak{g} are conjugate under the adjoint action of G, whereas in case (vi) there are two p-balanced G-orbits.
Proof. (a) We may assume without loss of generality that G is a group of adjoint type. Let Φ be the root system of G with respect to a maximal torus T of G and let $\Pi = \{\alpha_1, \ldots, \alpha_\ell\}$ be a basis of simple roots of Φ, so that $\ell = \dim T$. Let Φ^+ be the positive system associated with Π. Any root $\gamma \in \Phi^+$ can be uniquely expressed as $\gamma = \sum_{i=1}^\ell \nu_i(\gamma)\alpha_i$ for some $\nu_i(\gamma) \in \mathbb{Z}_{\geq 0}$. In what follows we always use Bourbaki’s numbering of simple roots in Π; see [Bou68, Planches I–IX].

Since h is contained in a maximal toral subalgebra of \mathfrak{g} and all such subalgebras are $(\text{Ad} G)$-conjugate, we may assume that $h \in \text{Lie}(T)$; see [Bor91, 11.8] of [Hum67, Theorem 13.3]. Then \mathfrak{g}_h is $(\text{Ad} T)$-stable. Since p is a good prime for G we may assume further that \mathfrak{g}_h is the standard Levi subalgebra of \mathfrak{g} associated with a subset Π_0 of Π. Furthermore, there exist $t_1, \ldots, t_\ell \in \mathbb{t}$ such that $(d\alpha_1)(t_j) = \delta_{i,j}$ for all $1 \leq i, j \leq \ell$. These elements form a \mathbb{k}-basis of t. As a consequence, the centre of \mathfrak{g}_h has a \mathbb{k}-basis consisting of all t_i with $1 \leq i \leq \ell$ such that $(d\beta)(t_i) = 0$ for all $\beta \in \Pi_0$.

Let Ψ be the root system of \mathfrak{g}_h relative to T and put $\Psi^+ := \Psi \cap \Phi^+$. Then $\dim \mathfrak{g}_h = \ell + 2|\Psi^+|$ and

$$\dim \mathfrak{g} - \dim \mathfrak{g}_h = \sum_{i \in \mathcal{F}_p} \dim (\mathfrak{g}(h, i)) \equiv 0 \mod (p - 1),$$

by our assumption on h. Hence $|\Phi^+| \equiv |\Psi^+| \mod (p - 1)/2$.

(b) Let G_C be the complex group of adjoint type with root system Φ. We may assume without loss of generality that T is obtained by base change from a maximal torus T_C in G_C. In what follows we are going to rely on the well known analogy between toral elements of \mathfrak{g} and elements of order p in G_C; see [Ser06]. This will enable us to use extended Dynkin diagrams and Kac coordinates for labelling toral G-orbits in \mathfrak{g}.

More precisely, let ζ be a primitive p-th root of unity in \mathbb{C}. Any toral element of \mathfrak{t} is a linear combination of semisimple root vectors $(d\beta^\vee)(1) \in \text{Lie}(\beta^\vee(\mathbb{k}^\times)) \subset T$ with coefficients in $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. If $i \in \mathcal{F}_p$ then $\mathfrak{g}(h, i)$ is spanned by the root spaces \mathfrak{g}_γ with $(d\gamma)(h) = i$. Let $\mathfrak{g}_Z = t_{Z} \oplus (\bigoplus_{\gamma \in \Phi} \mathbb{Z}e_{\gamma})$ be an admissible \mathbb{Z}-lattice in \mathfrak{g}_C such that $\mathfrak{t} = t_{Z} \otimes_{\mathbb{Z}} \mathbb{k}$ and $\mathfrak{g}_\gamma = \mathbb{k}(e_{\gamma} \otimes 1)$ for all $\gamma \in \Phi$. Since G_C is a group of adjoint type there exists a unique $\sigma = \sigma(h) \in T_C$ with $\sigma^p = 1$ such that

$$\mathfrak{g}_C(\sigma, \zeta^i) = \mathfrak{g}_Z(\sigma, \zeta^i) \otimes_{\mathbb{Z}} \mathbb{C} \quad \text{and} \quad \mathfrak{g}(h, i) = \mathfrak{g}_Z(\sigma, \zeta^i) \otimes_{\mathbb{Z}} \mathbb{k} \quad (\forall i \in (\mathbb{Z}/p\mathbb{Z})^\times)$$

where $\mathfrak{g}_C(\sigma, \zeta^i)$ is the ζ^i-eigenspace of σ and $\mathfrak{g}_Z(\sigma, \zeta^i)$ is \mathbb{Z}-span of all e_γ with $\gamma(\sigma) = \zeta^i$.

Let $P(\Phi^\vee)$ be the weight lattice of the dual root system Φ^\vee and let $W = N_G(T)/T \cong N_{G_C}(T_C)/T_C$ be the Weyl group of G. Since G_C is a group of adjoint type the lattice of cocharacters T_C coincides with $P(\Phi^\vee)$ which implies that the \mathbb{F}_p-W-module of all elements of order p in T_C identifies with $P(\Phi^\vee) \otimes_{\mathbb{F}_p} \mathbb{F}_p$. Since $p > 3$ the latter space is W-equivariantly isomorphic to t^{tor}, the \mathbb{F}_p-subspace of all toral elements of t. From this it follows that there is a natural bijection between the toral G-orbits in \mathfrak{g} and the conjugacy classes of elements of order p in G_C; see [Ser06] for more detail.

Let $\tilde{\alpha} = \sum_{\alpha \in \Pi} n_{\alpha} \alpha$ be the highest root in Φ^+ and put $\tilde{\Pi} := \Pi \cup \{\alpha_0\}$ where $\alpha_0 = -\tilde{\alpha}$. To any nonzero collection of non-negative integers $\alpha = (a_{\alpha} | \alpha \in \tilde{\Pi})$ such that $a_{\alpha} < p$ for all $\alpha \in \tilde{\Pi}$ and $\sum_{\alpha \in \Pi} a_{\alpha} n_{\alpha} \leq p$ we attach a unique element $\sigma_{\alpha} \in T_C$ of order p by imposing that $\sigma_{\alpha}(e_{\alpha}) = \zeta^{a_{\alpha}}e_{\alpha}$ for all $\alpha \in \tilde{\Pi}$ (here e_{γ} stands for a root vector of \mathfrak{g}_C corresponding to $\gamma \in \Phi$). It is well known that any element of order p in G is conjugate to one of the σ_{α}’s. If σ is conjugate to σ_{α} then the collection $(a_{\alpha} | \alpha \in \tilde{\Pi}) = (a_{\alpha_0}, \alpha)$ with $a_{\alpha_0} = p - \sum_{\alpha \in \Pi} a_{\alpha} n_{\alpha}$ is sometimes referred to as Kac coordinates of σ. It is known that two different Kac coordinates represent the same conjugacy class in G_C if and only if one can be obtained from the other by applying a suitable element from the group $\text{Stab}_W(\tilde{\Pi}) \cong Z(\tilde{G}_C)$ (here \tilde{G}_C stands for the simple simply connected algebraic group over \mathbb{C} with root system Φ). The action of $\text{Stab}_W(\tilde{\Pi})$ on $\tilde{\Pi}$ is described in [Bou68, Planches I–IX].
(recall that our numbering of simple roots is compatible with that of loc. cit.). It is immediate from the above that the set \(\{ \alpha \in \Pi | a_\alpha = 0 \} \) forms a basis of simple roots of the fixed-point algebra \(\mathfrak{g}_{\mathbb{C}}^\sigma = \{ x \in \mathfrak{g}_{\mathbb{C}} | \sigma_\alpha(x) = x \} \). To ease notation we set \(a_i := a_{\alpha_i} \) for \(0 \leq i \leq \ell \).

(c) Suppose for a moment that \(G \) is an arbitrary standard connected reductive group over \(\mathbb{k} \). Recall that a nilpotent \(G \)-orbit in \(\mathfrak{g} = \text{Lie}(G) \) is called rigid if it cannot be obtained by Lusztig–Spaltenstein induction from a proper Levi subalgebra of \(\mathfrak{g} \). In order to reduce the number of cases that we have to investigate closely we shall rely on the theory of sheets in \(\mathfrak{g} \) as presented in [PSt15]. Put \(l := \mathfrak{g}_h \) and let \(L \) be the standard Levi subgroup of \(G \) with \(l = \text{Lie}(L) \). Write \(L_{\mathbb{C}} \) for the standard Levi subgroup of \(G_{\mathbb{C}} \) associated with the subset \(\Pi_0 \) of \(\Pi \). We adopt the notation introduced in [PSt15] and, in particular, write \(\mathfrak{z}(l)_{\text{reg}} \) for the set of all elements \(z \) in the centre \(\mathfrak{z}(l) \) for which \(g_z = l \). This is a nonempty Zariski open subset of \(\mathfrak{z}(l) \). Since \(\{ 0 \} \) is a rigid nilpotent orbit in \(l \) there exists a unique sheet \(S \) of \(\mathfrak{g} \) whose open decomposition class coincides with \(D(l,0) = (\text{Ad} G) \cdot \mathfrak{z}(l)_{\text{reg}} \); see [PSt15, Theorem 2.8]. Furthermore, in view of [PSt15, 2.5] the unique nilpotent orbit contained in \(S \) coincides with \(O_0 := \text{Ind}_l^g \{ 0 \} \), the Richardson orbit associated with the Levi subalgebra \(l \). It follows from [PSt15, Theorem 1.4] that the Dynkin label of \(O_0 \) coincides with that of the Richardson orbit in \(\mathfrak{g}_{\mathbb{C}} \) associated with \(l_{\mathbb{C}} \). The latter can be read off from the tables in [dGE09].

Since \(h \) is a semisimple element of \(\mathfrak{g} \) the adjoint \(G \)-orbit \(O \) of \(h \) is Zariski closed in \(\mathfrak{g} \). Let \(KO \) denote the cone associated with \(O \), a \(G \)-stable, Zariski closed, conical subset of \(\mathfrak{g} \); see [PSk99, 5.1], for example. It is well known that all irreducible components of \(K\mathcal{O} \) have dimension equal to that of \(O \). Since \(x^{[p]} - x = 0 \) for all \(x \in \mathcal{O} \) and the \(p \)-th power map of \(\mathfrak{g} \) is a morphism given by a collection of homogeneous polynomial functions of degree \(p \) on \(\mathfrak{g} \) we have the inclusion \(K\mathcal{O} \subseteq N_p(\mathfrak{g}) \). On the other hand, it follows from [PSk99, Lemma 5.1] that \(K\mathcal{O} = k^x \mathcal{O} \setminus k^x \mathcal{O} \). Since \(k^x \mathcal{O} \subseteq D(l,0) \subseteq S \) and \(S \) contains a unique nilpotent orbit, we now deduce that \(K\mathcal{O} \) coincides with the Zariski closure of the Richardson orbit \(O_0 \). As a consequence, \(O_0 \subseteq N_p(\mathfrak{g}) \). We let \(e \) be any element of \(O_0 \). Since \(p \) is a good prime for \(G \) we have that \(\dim \mathfrak{g}_e = \dim G_e = \dim G_h = \dim \mathfrak{g}_h \). In view of (2) this shows that \(\dim O_0 \) is divisible by \(p(p-1) \).

(d) Suppose \(G \) is of type \(E_6 \) and let \(h, L, l, \Psi, O_0, e \) be as above. If \(p \geq 11 \) then \(p(p-1) > 78 = \dim \mathfrak{g} \). So \(\mathfrak{g} \) cannot contain orbits of dimension divisible by \(p(p-1) \).

Suppose \(p = 7 \). Then it must be that \(\dim O_0 = 42 \). There is only one nilpotent orbit of dimension 42 in \(\mathfrak{g} \) and its Dynkin label is \(A_2 \). In view of [dGE09, p. 267] this yields that \(\Psi \) has type \(A_5 \). But then \(l = \mathfrak{z}(l) \oplus [l,l] \) and \(\mathfrak{z}(l) = kh \). Since the restriction of \(\kappa \) to \(l \) is non-degenerate and \(\mathfrak{z}(l) \subseteq [l,l]^\perp \), this forces \(\kappa(h,h) \neq 0 \). Since this contradicts (1), the case \(p = 7 \) cannot occur.

Suppose \(p = 5 \). The \(p(p-1) = 20 \). As there are no nilpotent orbits of dimension 20 in \(\mathfrak{g} \) we have that \(\dim O_0 \in \{ 40, 60 \} \). The only nilpotent orbit of dimension 40 in \(\mathfrak{g} \) has Dynkin label \(3A_1 \). Since this orbit is rigid by [PSt15, Theorem 1.3], it must be that \(\dim O_0 = 60 \). There are two nilpotent orbits of dimension 60 in \(\mathfrak{g} \) and their Dynkin labels are \(A_4 \) and \(D_4 \). Both orbits are Richardson by [dGE09, p. 267]. However, if \(e \in O(D_4) \) then \(e^{[5]} \neq 0 \) by [McN03, Theorem 35] and [Law95, Table 6]. So it must be that \(e \in O(A_4) \). Then [dGE09, p. 267] shows that \(\Psi \) has type \(A_3 \). Let \(\sigma = \sigma(h) \in G_{\mathbb{C}} \) be the element of order \(p \) attached to \(h \) in part (b) and let \(\sigma_a \in T_{\mathbb{C}} \) be a canonical representative of the conjugacy class of \(\sigma \). Our discussion at the end of part (b) shows that the set \(\{ \alpha \in \Pi | a_\alpha = 0 \} \) forms a subdiagram of type \(A_3 \) of the extended Dynkin diagram \(\tilde{E}_6 \). Since \(a_0 = 5 - a_1 - 2a_2 - 2a_3 - 3a_4 - 2a_5 - a_6 \geq 0 \) and \(a_i \in \mathbb{Z}_{\geq 0} \) for all \(i \), we essentially have only one option here, namely,

\[
(a_0, a_1, a_2, a_3, a_4, a_5, a_6) = (1, 1, 1, 0, 0, 0, 1).
\]
The other two options that we have can be obtained from this one by applying a suitable symmetry of Π coming from the group $\text{Stab}_W(\Pi) \cong \mathbb{Z}/3\mathbb{Z}$. The uniqueness of σ_a implies that all powers σ^i with $1 \leq i \leq 4$ are G-conjugate forcing $\dim_C g_C(\sigma, \zeta^i) = \dim_C g_C(\sigma, \zeta^j) = 15$ for all $1 \leq i, j \leq 4$. Our discussion at the beginning of part (b) now shows that in characteristic 5 the Lie algebra g admits a unique G-orbit consisting of p-balanced toral elements. This p-balanced orbit is listed in part (i) of the proposition.

(e) Suppose G is of type E_7. If $p \geq 13$ then $p(p-1) > 133 = \dim g$. So g cannot contain orbits of dimension divisible by $p(p-1)$.

If $p = 11$ then $\dim O_0 = 110$ and $\dim g(h, i) = 11$ for all $i \in \mathbb{F}_p^\times$. There are two nilpotent orbits of dimension 110 in g, but only one of them is Richardson; see [dGE09, p. 269]. So e must have Dynkin label $E_6(a_3)$ and therefore Ψ must be of type $A_3A_7^2$. Replacing h by $w(h)$ for some $w \in W$ if necessary we may assume that $h = \lambda t_3 + \mu t_6$ for some $\lambda, \mu \in \mathbb{F}_p^\times$. Set

$$\Phi_{3,6}^+ := \{ \gamma \in \Phi^+ | \nu_2(\gamma) = 1 \text{ and } \nu_6(\gamma) = 0 \}.$$

It is straightforward to check that $|\Phi_{3,6}^+| = 12$. Since the k-span of the root vectors e_γ with $\gamma \in \Phi_{3,6}^+$ is contained in a single eigenspace $g(h, k)$ with $k \in \mathbb{F}_p^\times$ we see that h cannot be p-balanced. So the case where $p = 11$ cannot occur.

Suppose $p = 7$. Then $\dim O_0 \in \{42, 84, 126\}$. If $\dim O_0 = 126$ then $O_0 = O_{\text{reg}}$, the regular nilpotent orbit of g. Since $O_{\text{reg}} \not\subset N_p(g)$ by [McN03, Theorem 35] and [Law95, Table 8], this case cannot occur. As $N(g)$ has no orbits of dimension 42 it must be that $\dim O = 84$ and $\dim g(h, i) = 14$ for all $i \in \mathbb{F}_p^\times$. There are three orbits of this dimension in $N(g)$, but only two of them are Richardson; see [dGE09, p. 270]. Their Dynkin labels are $2A_2$ and $A_2 + 3A_1$. In the first case Ψ has type D_5A_1 and hence $3(l) = kh$. Since $p \neq 2$ we have a direct sum decomposition $l = 3(l) \oplus [l, l]$. Arguing as at the beginning of part (d) it is easy to see that $\kappa(h, h) \neq 0$. Since this contradicts (1) we deduce that the present case is impossible. If $O_0 = O(A_2 + 3A_1)$ then Ψ has type A_6. In this case we also have the equality $3(l) = kh$, but cannot argue as before because $[l, l] \cong sl_2$ contains $3(l)$. Instead, we observe that $h = \lambda t_2$ for some $\lambda \in \mathbb{F}_p^\times$. Since the set $\{ \gamma \in \Phi^+ | \nu_2(\gamma) = 1 \}$ has cardinality 35 > 14 we see that h cannot be p-balanced in g. Therefore, $p \neq 7$.

Suppose $p = 5$. Then $\dim O_0 \in \{20, 40, 60, 80, 100, 120\}$. Since there are no orbits of dimension 20, 40, 60 or 80 in $N(g)$ it must be that $\dim O_0 = 100$ or $\dim O_0 = 120$. If $\dim O_0 = 120$ then $O_0 = O(E_7(a_3))$ or $O_0 = O(E_6)$. Since neither of these orbits lies in $N_p(g)$ by [McN03, Theorem 35] and [Law95, Table 8], we obtain that $\dim O_0 = 100$ and $\dim g(h, i) = 20$ for all $i \in \mathbb{F}_p^\times$. There are two orbits of that dimension in g and their Dynkin labels are A_4 and $A_3 + A_2 + A_1$. If $O_0 = O(A_3 + A_2 + A_1)$ then [dGE09, p. 269] yields that Ψ has type A_4A_2 and $3(l) = k \tau_5$. As a consequence, $h = \lambda t_5$ for some $\lambda \in \mathbb{F}_p^\times$. Since the set $\{ \gamma \in \Phi^+ | \nu_5(\gamma) = 1 \}$ has cardinality 30 > 20, the element h cannot be p-balanced in the present case. Now suppose $O_0 = O(A_4)$. Then [dGE09, p. 267] shows that Φ is of type D_4A_1. Let $\sigma = \sigma(h) \in G_C^w$ be the element of order p attached to h in part (b) and let $\sigma_a \in T_C$ be a canonical representative of the conjugacy class of σ. Our discussion at the end of part (b) shows that the set $\{ \alpha \in \Pi | |a_\alpha| = 0 \}$ forms a subdiagram of type D_4A_1 on the extended Dynkin diagram \tilde{E}_7. Since $a_0 = 5 - 2a_1 - 2a_2 - 3a_3 - 4a_4 - 3a_5 - 2a_6 - a_7 \geq 0$ and $a_i \in \mathbb{Z}_{\geq 0}$ for all i, we essentially have only one option here, namely,

$$\begin{align*}
(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) &= (1, 1, 0, 0, 0, 0, 1, 0).
\end{align*}$$

The other option that we have can be obtained by applying a suitable symmetry of Π coming from the group $\text{Stab}_W(\Pi) \cong \mathbb{Z}/2\mathbb{Z}$. As at the end of part (d), the uniqueness of σ_a implies that all
powers σ^i with $1 \leq i \leq 4$ are G-conjugate. Then $\dim_{\mathbb{C}} g_{\mathbb{C}}(\sigma, \zeta^i) = \dim_{\mathbb{C}} g_{\mathbb{C}}(\sigma, \zeta^j) = 20$ for all $1 \leq i, j \leq 4$ (of course, one can also check this by a direct computation). Our discussion at the beginning of part (b) now shows that in characteristic 5 the Lie algebra g admits a unique G-orbit consisting of p-balanced toral elements. This proves statement (ii).

(f) Suppose G is of type E_8. If $p \geq 17$ then $p(p-1) > 248$, hence g does not have orbits of dimension divisible by $p(p-1)$. If $p = 13$ then it must be that $\dim O_0 = 156$. There is only one orbit of dimension 156 in $\mathcal{N}(g)$ and its Dynkin label is $2A_2$. Then [dGE09, p. 275] yields that Ψ has type D_7 and $3(I) = kt_4$. Since $I = 3(I) \oplus [I, I]$ we then have $k(h, h) \neq 0$ contrary to (1). Therefore, $p \leq 11$.

Suppose $p = 11$. Then $\dim O_0 = 220$ and $\dim g(h, i) = 22$ for all $i \in \mathbb{F}_p^\times$ because $\mathcal{N}(g)$ has no orbits of dimension 110. There are two orbits of dimension 220 in $\mathcal{N}(g)$ and their Dynkin labels are $E_7(a_3)$ and $E_8(b_6)$. Both orbits are Richardson and it follows from [dGE09, p. 272] that in the second case Ψ has type $A_3A_2A_1$ and $h = \lambda t_4 + \mu t_8$ for some $\lambda, \mu \in \mathbb{F}_p^\times$. Set

$$\Phi_{4,8}^+ := \{ \gamma \in \Phi^+ | \nu_4(\gamma) = 1 \text{ and } \nu_8(\gamma) = 0 \}.$$

It is easy to see that $|\Phi_{4,8}^+| = 24 > 22$. Since the k-span of the root vectors e_γ with $\gamma \in \Phi_{4,8}^+$ is contained in a single eigenspace of $ad h$ we deduce that the case where $O_0 = \mathcal{O}(E_8(b_6))$ cannot occur. If $O_0 = \mathcal{O}(E_7(a_3))$ then [dGE09, p. 272] shows that Ψ has type A_4. Let $\sigma = \sigma(h) \in G_{\mathbb{C}}$ be the element of order p attached to h in part (b) and let $\sigma_a \in T_{\mathbb{C}}$ be a canonical representative of the conjugacy class of σ. We know from part (b) that the set $\{ \alpha \in \tilde{H} | a_\alpha = 0 \}$ forms a subdiagram of type A_1 of the extended Dynkin diagram \tilde{E}_8. Since $a_0 = 11 - 2a_1 - 3a_2 - 4a_3 - 6a_4 - 5a_5 - 4a_6 - 3a_7 - 2a_8 \geq 0$ and $a_i \in \mathbb{Z}_{\geq 0}$ for all i, we have only one option here, namely,

$$a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1).$$

The uniqueness of σ_a implies that all powers σ^i with $1 \leq i \leq 10$ are G-conjugate implying that $\dim_{\mathbb{C}} g_{\mathbb{C}}(\sigma, \zeta^i) = \dim_{\mathbb{C}} g_{\mathbb{C}}(\sigma, \zeta^j) = 22$ for all $1 \leq i, j \leq 10$. Arguing as before we now conclude that in characteristic 11 the Lie algebra g admits a unique G-orbit consisting of p-balanced toral elements. This proves (v).

Suppose $p = 7$. Since $\mathcal{N}(g)$ has no orbits of dimension 42, 84 and 126, either $\dim O_0 = 168$ or $\dim O_0 = 210$. There are two orbits of dimension 168 in $\mathcal{N}(g)$, but one of them is rigid by [PS05, Theorem 1.3]. So if $\dim O_0 = 168$ then $\dim g(h, i) = 28$ for all $i \in \mathbb{F}_p^\times$ and $O_0 = \mathcal{O}(D_4)$. In that case [dGE09, p. 275] yields that Ψ has type E_6 and $h = \lambda t_4 + \mu t_8$ for some $\lambda, \mu \in \mathbb{F}_p^\times$. Let $\sigma = \sigma(h) \in G_{\mathbb{C}}$ be the element of order p attached to h in part (b) and let $\sigma_a \in T_{\mathbb{C}}$ be a canonical representative of the conjugacy class of σ. From part (b) we know that the set $\{ \alpha \in \tilde{H} | a_\alpha = 0 \}$ forms a subdiagram of type E_6 of the extended Dynkin diagram \tilde{E}_8. Since $a_0 = 7 - 2a_1 - 3a_2 - 4a_3 - 6a_4 - 5a_5 - 4a_6 - 3a_7 - 2a_8 \geq 0$ and $a_i \in \mathbb{Z}_{\geq 0}$ for all i, we have only one option here, namely,

$$a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 = (2, 0, 0, 0, 0, 0, 0, 1, 1).$$

The uniqueness of σ_a implies that all σ^i with $1 \leq i \leq 6$ are G-conjugate forcing $\dim_{\mathbb{C}} g_{\mathbb{C}}(\sigma, \zeta^i) = \dim_{\mathbb{C}} g_{\mathbb{C}}(\sigma, \zeta^j) = 28$ for all $1 \leq i, j \leq 6$. Therefore, in the present case h is a p-balanced toral element of g. Statement (iv) follows.

It remains to consider the case where $p = 7$ and $\dim O_0 = 210$. There are two orbits of that dimension in $\mathcal{N}(g)$ and their Dynkin labels are A_6 and $D_4(a_1)$. Both orbits are Richardson by [dGE, p. 273]. As $O_0 = \mathcal{O}(D_4(a_1)) \not\subset \mathcal{N}_p(g)$ by [McN03, Theorem 35] and [Law95, Table 9] it must be that $O_0 = \mathcal{O}(A_6)$. Then [dGE09, p. 273] in conjunction with [PS05, Theorem 1.4] shows that Ψ is of type D_4A_2 and $h = \lambda t_1 + \mu t_6$ for some $\lambda, \mu \in \mathbb{F}_p^\times$. Let $\sigma_a \in T_{\mathbb{C}}$ be a canonical representative of
the conjugacy class of $\sigma(h)$. By part (b), the set \(\{ \alpha \in \widehat{I} \mid a_\alpha = 0 \} \) forms a subdiagram of type D_4A_2 of the extended Dynkin diagram \tilde{E}_8. Since $a_0 = 7 - 2a_1 - 3a_2 - 4a_3 - 6a_4 - 5a_5 - 4a_6 - 3a_7 - 2a_8 \geq 0$ and $a_i \in \mathbb{Z}_{\geq 0}$ for all i, the only option we have here is

\[
(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8) = (1, 1, 0, 0, 0, 1, 0, 0).
\]

Once again the uniqueness of σ_a implies that all powers σ^i with $1 \leq i \leq 6$ are G_C-conjugate. Hence $\dim_C \mathfrak{g}(\sigma, \zeta^i) = \dim \mathfrak{g}(h, i) = 35$ for all $i \in F_p^\times$. Therefore, h is a p-balanced toral element of \mathfrak{g}, proving (v).

(g) Suppose G is of type F_4. If $p > 7$ then $p(p - 1) > 52 = \dim \mathfrak{g}$, hence \mathfrak{g} has no orbits of dimension divisible by $p(p - 1)$. If $p = 7$ then it must be that $\dim \mathcal{O}_0 = 42$ and $\dim \mathfrak{g}(h, i) = 7$ for all $i \in F_p^\times$. There are two orbits of dimension 42 in $\mathcal{N}(\mathfrak{g})$ and their Dynkin labels are B_3 and C_3. By [dGE09, p. 276] (which is applicable in view of [PSt15, Theorem 1.4]), both orbits are Richardson and Ψ has type A_2 in both cases (in the B_3-case Ψ consists of short roots whereas in the C_3-case all roots in Ψ are long). In both cases there exists a unique collection $a = (a_0, a_1, a_2, a_3, a_4)$ with $a_i \in \mathbb{Z}_{\geq 0}$ and $a_0 = 7 - 2a_1 - 3a_2 - 4a_3 - 2a_4$ such that the set \(\{ \alpha \in \widehat{I} \mid a_\alpha = 0 \} \) forms a basis of Ψ. Specifically, in the B_3-case we take $a = (2, 1, 1, 0, 0)$ whilst in the C_3-case we take $a = (1, 0, 0, 1, 1)$ (these are the only options available). Arguing as before it is now easy to observe that each of these two cases gives rise to a unique p-balanced conjugacy class in \mathfrak{g}. This proves (vii).

Suppose $p = 5$. Since there are no orbits of dimension 20 in \mathfrak{g} and there exists only one orbit of dimension 40 in $\mathcal{N}(\mathfrak{g})$ it must be that $\mathcal{O}_0 = \mathcal{O}(F_4(a_3))$. Thanks to [dGE09, p. 276] this yields that $[\mathfrak{l}, \mathfrak{l}]$ has type A_1A_2 or B_2. In the first case h spans the centre of \mathfrak{l}. Since $p = 5$ we have that $\mathfrak{l} = 3(\mathfrak{l}) \oplus [\mathfrak{l}, \mathfrak{l}]$ which forces $\kappa(h, h) \neq 0$ contrary to (1). Therefore, this case cannot occur. In the second case, \mathfrak{K} coordinates for the G-orbit of h should verify $a_2 = a_3 = 0$, $a_i > 0$ for $i \in \{0, 1, 4\}$, and $a_0 + 2a_1 + 2a_4 = 5$. Hence

\[
(a_0, a_1, a_2, a_3, a_4) = (1, 1, 0, 0, 1).
\]

As before, the uniqueness of a implies that all elements $\sigma(h)^i$ with $1 \leq i \leq 4$ are G_C-conjugate. Consequently, h is p-balanced in \mathfrak{g}.

(h) If G is of type G_2 then $p(p - 1) > \dim \mathfrak{g} = 14$ for any good prime p. This means that \mathfrak{g} does not admit any p-balanced toral elements. This completes the proof of the proposition. \hfill \Box

2.8. In the final stages of the proof of Theorem 1.1 we shall require some information on the gradings of non-restricted Hamiltonian algebras $H(2; \mathfrak{m}; \Phi)^{(1)}$.

Given $m \in \mathbb{Z}_{\geq 1}$ we denote by $O((m))$ the full divided power algebra in m variables over \mathbb{k}. Its elements are the infinite series $\sum_{r} \lambda_r x^r$ with $\lambda_r \in \mathbb{k}$. Here $x^r = x^{(r_1)}_1 \cdots x^{(r_m)}_m$, where $r_i \in \mathbb{Z}_{\geq 0}$, and the product is induced by the rule

\[
x^a \cdot x^b = \left(\prod_{i=1}^{m} \left(\frac{a_i + b_i}{a_i} \right) \right) \cdot x^{a+b}.
\]

The maximal ideal \mathfrak{m} of the ring $O((m))$ is equipped with a system of divided powers $f \mapsto f^{(k)} \in O((m))$ where $k \in \mathbb{Z}_{\geq 0}$; see [Str04, 2.1] for more detail. Given $f \in \mathfrak{m}$ we set

\[
\exp(f) := \sum_{k \geq 0} f^{(k)}.
\]

This element is well-defined in the linearly compact ring $O((m))$ and using the axioms of divided powers it is straightforward to check that $\exp(f)^{-1} = \exp(-f)$.

\[
\text{[11]}
\]
A continuous derivation D of the topological algebra $O((m))$ is called special if $D(f^{(k)}) = f^{(k-1)}D(f)$ for all $f \in \mathfrak{m}$ and $k > 0$. The special derivations of $O((m))$ form a Lie subalgebra of Der $(O((m)))$ denoted $W((m))$. It is well known that this algebra is a free $O((m))$-module of rank m with a free basis consisting of the special partial derivatives $\partial_1, \ldots, \partial_m$. Recall that $\partial_i(x^r) = x^{r-\epsilon_i}$ where $\epsilon_i = (\delta_1, \ldots, \delta_m)$ and $1 \leq i \leq m$. We denote by $\text{Aut}_e O((m))$ the group of all continuous automorphisms g of the topological k-algebra $O((m))$ such that $g(f^{(k)}) = (g(f))^{(k)}$ for all $f \in \mathfrak{m}$ and $k > 0$. If $\underline{n} = (n_1, \ldots, n_m) \in \mathbb{Z}_{>0}^m$ then the k-span $O(m; \underline{n})$ of all x^r with $0 \leq r_i \leq p^{n_i} - 1$ is a subalgebra of dimension $p^{n_1 + \cdots + n_m}$ in $O((m))$ invariant under all special partial derivatives ∂_i with $1 \leq i \leq m$. The general Cartan type Lie algebra $W(m; \underline{n})$ is the normaliser of $O(m; \underline{n})$ in $W((m))$. It is a free $O(m; \underline{n})$-module with basis $\partial_1, \ldots, \partial_m$.

We denote by $\Omega((m)) = \bigoplus_{i=0}^m \Omega^i((m))$ the module of Kähler differentials over $O((m))$. It is known that any Hamiltonian algebra $H(2; \underline{n}; \Phi)^{(1)} \subset W(2; \underline{n})$ has Cartan type S and stabilises the volume form $J(\Phi)\omega_S \in \Omega^2((2))$ where $\omega_S = dx_1 \wedge dx_2$. Here $J(\Phi) \in O((2))^\times$ is the Jacobian of the admissible automorphism $\Phi \in \text{Aut}_e O((2))$; see [Str04, p. 301]. Moreover, thanks to [Str04, Theorem 6.3.8] we may assume that $\Phi = \Phi(\tau)$ or $\Phi = \Phi(l)$ where $\tau = \tau(\underline{n}) = (p^{n_1} - 1, p^{n_2} - 1)$ and $l = 1, 2$. Recall that $J(\Phi(\tau)) = 1 + x^\tau(\omega)$ and $J(\Phi(l)) = \exp(x_i^{(p^{n_i})})$; see [Str04, p. 309].

Lemma 2.8. Let $S = H(2; \underline{n}; \Phi)^{(1)}$ where Φ is one of $\Phi(\tau), \Phi(1), \Phi(2)$. Then all maximal tori of the algebraic group $\text{Aut}(S)$ are 1-dimensional.

Proof. Let $G = \text{Aut}(S)$ and denote by \tilde{G} the normaliser of $O(2; \underline{n})$ in $\text{Aut}_e O((2))$. It follows from [Skr91, Theorem 10.8] that the group G consists of all $g \in \tilde{G}$ such that $g(J(\Phi)\omega_S) \in k^\times J(\Phi)\omega_S$ (see also [Str04, Theorems 7.3.2]). Any element $g \in \tilde{G}$ is uniquely determined by its effect on the divided power generators $x_1, x_2 \in O((2))$ and $g(x_1), g(x_2) \in O(2; \underline{n})$. From this it is immediate that $G/R_\Phi(\tilde{G})$ is isomorphic to a parabolic subgroup of $GL_2(k)$. It follows that all maximal tori of G have dimension 2. One such torus, T_0, consists of all automorphisms $g(t_1, t_2)$ with $t_1, t_2 \in k^\times$ such that $(g(t_1, t_2))(x_i) = t_i x_i$ for $i = 1, 2$.

Suppose G contains a 2-dimensional torus. Then it is a maximal torus of \tilde{G} and hence is \tilde{G}-conjugate to T_0. Replacing $\Phi \in \text{Aut}_e O((2))$ by a $g\Phi g^{-1}$ for a suitable $g \in \tilde{G}$ we may assume $T_0 \subset G$. Then $J(\Phi)dx_1 \wedge dx_2$ is a weight vector for the action of T_0 on $\Omega^2((2))$. Note that $O((2))$ decomposes into an infinite direct sum of weight spaces for T_0. Since $(g(t_1, t_2))(x^a) = t_1^a t_2^2 \cdot x^a$, all T_0-weight spaces of $O((2))$ are 1-dimensional and spanned by monomials x^a. As a consequence the T_0-weight spaces of $\Omega^2((2))$ have the form $kx^a dx_1 \wedge dx_2$ for $a \in \mathbb{Z}_{>0}^2$. Since $J(\Phi)$ is invertible in $O((2))$ and $J(\Phi)dx_1 \wedge dx_2 = \lambda x^a dx_1 \wedge dx_2$ for some $\lambda \in k^\times$ and $a \in \mathbb{Z}_{>0}^2$, it must be that $a = (0, 0)$. But then $H(2; \underline{n}; \Phi)^{(1)} \subset H(2; \underline{n})$. The simplicity of $H(2; \underline{n}; \Phi)^{(1)}$ now forces $H(2; \underline{n}; \Phi)^{(1)} \subset H(2; \underline{n})^{(2)}$. Since $p^{n_1+n_2} - 2 = \dim H(2; \underline{n})^{(2)} \leq \dim H(2; \underline{n}; \Phi)^{(1)} \leq p^{n_1+n_2} - 1$ this is impossible. This contradiction shows that the maximal tori of G are at most 1-dimensional.

On the other hand, using the above expressions for $J(\Phi)$ it is straightforward, in each case, to produce a 1-dimensional subtorus T_Φ of T_0 contained in G. If $\Phi = \Phi(\tau)$ we take for T_Φ the identity component of $\{g(t_1, t_2) \in T_0 | t_1^{p^{n_1}-1}t_2^{p^{n_2}-1} = 1\}$ and if $\Phi = \Phi(l)$, where $l \in \{1, 2\}$, we take $T_\Phi = \{g(t_1, t_2) \in T_0 | t_1 = 1\}$. This completes the proof. \(\square\)

3. Proof of the main theorem
3.1. Let M be as in the statement of Theorem 1.1. Our proof will make essential use of Weisfeiler’s theorem; see [Weis78] and [Str04, Theorems 3.5.6, 3.5.7 ad 3.5.8]. Let $O(m; \underline{n})$ and $W(m, \underline{n})$ be as in (2.8). We shall often encounter the case where $\underline{n} = 1$, that is $n_i = 1$ for all i. In this case all derivations of $O(m; \underline{n})$ are special and $W(m; \underline{1})$ is the full derivation algebra of $O(m; \underline{1}) \cong k[X_1, \ldots, X_m]/(X_1^p, \ldots, X_m^p)$. For $1 \leq i \leq m$ we let x_i stand for the divided-power generator $x_1^{(e_i)}$ of $O(m; \underline{n})$ and denote by $O(x_1, \ldots, x_i)$ the divided power subalgebra of $O(m; \underline{n})$ generated by x_1, \ldots, x_i (as a k-algebra $O(x_1, \ldots, x_i)$ is isomorphic to a truncated polynomial ring in $n_1 + \cdots + n_i$ variables). A Lie subalgebra \mathcal{D} of $W(m; \underline{n}) = \sum_{i=1}^{m} O(m; \underline{n}) \partial_i$ is called transitive if $O(m; \underline{n})$ does not contain nonzero proper \mathcal{D}-invariant ideals.

3.2. Given a non-empty subset $X \subseteq g$ and $k \in \mathbb{Z}_{\geq 2}$ we let X^k denote the linear span of all elements $((\text{ad} \ x_1) \circ \cdots \circ (\text{ad} \ x_{k-1}))(x_k)$ with $x_i \in X$. Put $M_{(0)} := M$ and choose an $(\text{ad} \ M_{(0)})$-stable subspace $M_{(-1)}$ in g such that $M_{(0)} \subseteq M_{(-1)}$ and $M_{(-1)}/M_{(0)}$ is an irreducible $M_{(0)}$-module. Given $i \in \mathbb{Z}_{\geq 2}$ we define a subspace $M_{(-i)} \subseteq g$ recursively by setting $M_{(-i)} = M_{(-i+1)}^i + M_{(-i+1)}$. Since M is a maximal subalgebra of g there exists a positive integer q such that $g = M_{(-q)} \supseteq M_{(-q+1)}$. Set $M_{(1)} := \{ x \in M_{(0)} \mid [x, M_{(-1)}] \subseteq M_{(0)} \}$ and for $i \geq 2$ define $M_{(i)} := \{ x \in M_{(i-1)} \mid [x, M_{(-1)}] \subseteq M_{(i-1)} \}$. Since g is a simple Lie algebra there is a non-negative integer r such that $0 = M_{(r+1)} \subseteq M_{(r)}$. It is well known that the chain of subspaces

$$g = M_{(-q)} \supseteq \cdots \supseteq M_{(0)} \supseteq \cdots \supseteq M_{(r)} \supseteq 0$$

is a Lie algebra filtration, that is, $[M_{(i)}, M_{(j)}] \subseteq M_{(i+j)}$ for all $i, j \in \mathbb{Z}$. By maximality, M is a restricted subalgebra of g and one can see by induction on k that $M_{(k)} = \{ x \in M_{(0)} \mid (\text{ad} \ M_{(-1)})(x) \subseteq M_{(0)} \}$ for all $k > 0$. From this it is immediate that $M_{(k)}^{[p]} \subseteq M_{(pk)}$ for such k. The decreasing filtration of g thus obtained is referred to as the Weisfeiler filtration associated with the pair $(M_{(-1)}, M_{(0)})$.

Since $M_{(-1)}/M_{(0)}$ is an irreducible module over $M_{(0)} = M$ we have that $\text{nil}(M) \subseteq M_{(1)}$. If $x \in M_{(1)}$ then $(\text{ad} \ x)^{q+r+1}(M_{(-q)}) = 0$. So the ideal $M_{(1)}$ of M consists of nilpotent elements of g. This shows that $M_{(1)} = \text{nil}(M)$. Since we are assuming that $\text{nil}(M) \neq 0$, Weisfeiler’s filtration does not collapse completely in our case. In other words, $r > 0$.

We denote by \mathcal{G} the corresponding graded Lie algebra

$$\mathcal{G} = \text{gr}(g) := \bigoplus_{i=0}^{r} g_i, \quad \mathcal{G}_i = \text{gr}_i(g) = M_{(i)}/M_{(i+1)},$$

a graded vector space whose Lie product is induced by that of g. We can give $\mathcal{G}_{\geq 0} := \bigoplus_{i \geq 0} \mathcal{G}_i$ a restricted Lie algebra structure by setting $(\text{gr}_i(x))^{[p]} := \text{gr}_i(x^{[p]})$ for all $x \in M_{(i)}$ where $i \geq 0$. By construction, $\mathcal{G}_{0} \cong \text{M}/\text{nil}(M)$ as Lie algebras, \mathcal{G}_{-1} is an irreducible \mathcal{G}_{0}-module, and the Lie subalgebra $\mathcal{G}_{-} := \bigoplus_{i<0} \mathcal{G}_i$ is generated by \mathcal{G}_{-1}.

3.3. Let $N(\mathcal{G}) = \bigoplus_{i<0} N_i(\mathcal{G})$ be the largest graded ideal of \mathcal{G} contained in \mathcal{G}_{-} and put $\tilde{\mathcal{G}} := \mathcal{G}/N(\mathcal{G})$ so that $\tilde{\mathcal{G}} = \bigoplus_{i=-q}^{r} \tilde{g}_i$ where $\tilde{g}_i = g_i/N_i(\mathcal{G})$. Since $N(\mathcal{G}) \cap \mathcal{G}_{-1} = 0$ by the irreducibility of \mathcal{G}_{-1} we have that $N(\mathcal{G}) \subseteq \bigoplus_{i=-2}^{r} \tilde{g}_i$ (this means that $\bigoplus_{i\geq -1} \tilde{g}_i \cong \bigoplus_{i\geq -1} g_i$, as graded vector spaces).

Since $r > 0$, the first part of Weisfeiler’s theorem [Weis78] says that $N(\mathcal{G})$ coincides with the radical of \mathcal{G} and the semisimple Lie algebra \mathcal{G} has a unique minimal ideal which contains $\mathcal{G}_{-} := \bigoplus_{i\leq -1} \tilde{g}_i$. This ideal, denoted $A(\mathcal{G})$, is isomorphic to $S \otimes O(m; \underline{n})$ for some simple Lie algebra S and some divided power algebra $O(m; \underline{n})$. The restricted Lie algebra structure of $\mathcal{G}_{\geq 0}$ induces that on $\tilde{\mathcal{G}}_{\geq 0} := \bigoplus_{i\geq 0} \tilde{g}_i$.
Thanks to Block’s theorem, the adjoint action of \bar{G} on $A(\bar{G})$ gives rise to inclusions
\begin{equation}
S \otimes O(m; \underline{n}) \subset \bar{G} \subseteq (\text{Der}(S) \otimes O(m; \underline{n})) \times (\text{Id}_S \otimes W(m; \underline{n}))
\end{equation}
and the canonical projection
\[\pi: (\text{Der}(S) \otimes O(m; \underline{n})) \times (\text{Id}_S \otimes W(m; \underline{n})) \to W(m; \underline{n}) \]
maps \bar{G} onto a transitive subalgebra of $W(m; \underline{n})$; see [Str04, Theorem 3.3.5], for example. Since \bar{G} is semisimple (hence centreless) and acts faithfully on $A(\bar{G})$, the restricted Lie algebra $\bar{G}_{\geq 0} \cong \text{ad}_{A(\bar{G})}(\bar{G}_{\geq 0})$ identifies naturally with a restricted subalgebra of $\text{Der}(A(\bar{G}))$.

3.4. The uniqueness of $A(\bar{G})$ implies that it is a graded ideal of \bar{G}. The grading of $A(\bar{G})$ is completely determined by the second part Weisfeiler’s theorem which states that only one of the following two cases can occur:

Degenerate Case. If $A(\bar{G})$ intersects trivially with $\bar{G}_+ := \bigoplus_{i>0} \bar{G}_i$ then necessarily $m \geq 1$ and the grading of $A(\bar{G})$ is induced by that of the associative algebra $O(m; \underline{n})$. The latter is given by fixing a positive integer $s \leq m$ and assigning to the divided power generators x_1, \ldots, x_s and x_{s+1}, \ldots, x_m degrees -1 and 0, respectively. More precisely, for $i \leq 0$ the graded component of $A(\bar{G})$ has the form $A_i(\bar{G}) = S \otimes O(m; \underline{n})[i; s]$ where $O(m; \underline{n})[i; s]$ is the linear span of all monomials $\prod_{i=1}^m x_i^{a_i}$ with $0 \leq a_i \leq p^m - 1$ and $a_1 + \cdots + a_s = -i$. Moreover, in this case $[\bar{G}_{-1}, \bar{G}_1], \bar{G}_1 = 0$ and $\bar{G}_i = 0$ for all $i \geq 2$. Finally, \bar{G}_1 identifies with a nonzero subspace of $\sum_{i=1}^s O(x_{s+1}, \ldots, x_m) \partial_i$ through an embedding described in (9) and
\[S \otimes O(x_{s+1}, \ldots, x_m) \subset \mathcal{G}_0 \subseteq (\text{Der}(S) \otimes O(x_{s+1}, \ldots, x_m)) \times (\text{Id}_S \otimes W(m; \underline{n})[0; s]) \]
where $W(m; \underline{n})[0; s] = \sum_{i \geq s} O(x_{s+1}, \ldots, x_m) \partial_i + \sum_{i,j \leq s} O(x_{s+1}, \ldots, x_m)(x_i \partial_j)$.

Non-degenerate Case. The simple Lie algebra S is \mathbb{Z}-graded in such a way that $S_{\pm 1} \neq 0$ and $A_i(\bar{G}) = S_i \otimes O(m; \underline{n})$ for all $i \in \mathbb{Z}$. The grading of S induces that on $\text{Der}(S)$ and \mathcal{G}_0 is sandwiched between $S_0 \otimes O(m; \underline{n})$ and $(\text{Der}_0(S) \otimes O(m; \underline{n})) \times (\text{Id}_S \otimes W(m; \underline{n}))$. Since $\mathcal{G}_{-1} = S_{-1} \otimes (m; \underline{n})$ is a faithful \mathcal{G}_0-module and $S_0 \otimes (m; \underline{n}) \subseteq \mathcal{G}_0$, the Lie subalgebra S_0 of S acts faithfully on S_{-1}. Although S_{-1} does not have to be irreducible over S_0, in general, it follows from [Str04, Theorem 3.5.7(6)] that this module is semisimple and isogenic when $\text{Der}(S) = \text{ad} S$.

Let M be a counterexample to Theorem 1.1. By Lemma 2.4, M is not regular in \mathfrak{g}. We set $M := M_{(0)}$, choose a subspace $M_{(-1)}$ as in (3.2), and consider the Weisfeiler filtration of \mathfrak{g} associated with the pair $(M_{(-1)}, M_{(0)})$. Write \mathcal{G} for the corresponding graded Lie algebra, and let $\mathcal{N}(\mathcal{G}), \mathcal{G}$ and $A(\mathcal{G}) = S \otimes O(m; \underline{n})$ be as in (3.3).

3.5. In the next three subsections we assume that the degenerate case of Weisfeiler’s theorem holds for \mathcal{G}. In particular, this means that $m \geq 1$. If $m = 1$ then necessarily $s = 1$. As a consequence, $\mathcal{G}_1 = k \partial_1$ is 1-dimensional. Since $\mathcal{G}_2 = 0$ by (3.4), it must be that $M_{(2)} = 0$. So nil(M) = $M_{(1)}$ is isomorphic to \mathcal{G}_1. But then nil(M) = $k e$ for some nonzero nilpotent element $e \in \mathfrak{g}$ and $M \subseteq \mathfrak{n}_e(k e)$. This, however, contradicts our assumption on M because $\mathfrak{n}_e(k e)$ is contained in a proper parabolic subalgebra of \mathfrak{g} (see the proof of Corollary 2.3 for detail).

Now suppose $m \geq 2$. Since S is a simple Lie algebra and $\dim O(m; \underline{n}) \geq p^m$, we have the inequality $(\dim \mathfrak{g})/p^m > \dim S \geq 3$. Since \mathfrak{g} is exceptional and p is a good prime for \mathfrak{g}, this forces $m = 2$, $\underline{n} = (1, 1)$, and rules out the cases where \mathfrak{g} is of type G_2 or F_4. Furthermore, if \mathfrak{g} is of type E_6 then
where D and $S = \mathfrak{sl}_2$, if g is of type E_7 then $p = 5$ and S is either \mathfrak{sl}_2 or $W(1; 1)$, and if g is of type E_8 then $p = 7$ and $S \cong \mathfrak{sl}_2$. In any event, all derivations of S are inner which implies that

$$S \otimes O(2; 1) \subset \mathcal{G} = (S \otimes O(2; 1)) \times (\text{Id}_S \otimes D)$$

for some transitive Lie subalgebra of $W(2; 1)$.

3.6. Suppose $s = m = 2$. Then $\mathcal{G}_1 \subset \mathbb{k} \partial_1 \oplus \mathbb{k} \partial_2$ and

$$\mathcal{G}_0 \cong \mathcal{G}_0 = (S \otimes 1) \oplus (\text{Id}_S \otimes D_0) \subset (S \otimes 1) \oplus \left(\sum_{i,j=1}^2 k(x_i \partial_j) \right)$$

where $D_0 = D \cap W(2; 1)[0]$. If dim $\mathcal{G}_1 = 1$ we can argue as in the previous paragraph to conclude that M is contained in a proper parabolic subalgebra of g. So assume that $\mathcal{G}_1 = k \partial_1 \oplus k \partial_2$. Then $D_0 \subset \sum_{i,j=1}^2 k(x_i \partial_j) \cong \mathfrak{gl}_2$ acts faithfully on \mathcal{G}_1. Let Q denote the centraliser of nil(M) in g. This is a restricted ideal of M. Since $\mathcal{G}_2 = 0$, the ideal nil(M) is abelian. Hence nil(M) $\subseteq Q$. Write Q for the image of Q in $\mathcal{G}_0 = M/\text{nil}(M)$. Since $S \otimes \mathbb{k} \subset \mathcal{G}_0$ commutes with \mathcal{G}_1 and D_0 acts faithfully on \mathcal{G}_1, we now deduce that $Q = S \otimes \mathbb{k}$.

Our next goal is to produce a nice subalgebra R of M satisfying the conditions of Lemma 2.2. If $S \cong \mathfrak{sl}_2$ we choose a standard basis $\{e_0, h_0, f_0\}$ of S. If $S \cong W(1; 1)$ we choose an \mathfrak{sl}_2-triple $\{e_0, h_0, f_0\} \subset S \setminus \{0\}$ such that $f_0 \in \mathbb{k} \partial_1$, $h_0 = x \partial$ and $e_0 \in \mathbb{k}(x^2 \partial)$. This choice ensures that $\mathcal{G}(f_0) = k f_0$. To ease notation we identify S with $S \otimes \mathbb{k} \subset \mathcal{G}_0$ and regard e_0, h_0, f_0 as elements of \mathcal{G}_0. Let $\tilde{h}_0 \in Q$ be a preimage of h_0 under the canonical homomorphism $Q \to \bar{Q} = Q/M(1)$. By construction, \tilde{h}_0 is a toral element of \mathcal{G}_0. Replacing \tilde{h}_0 by its sufficiently large $[p]$-th power in Q we may assume that \tilde{h}_0 is a semisimple element of g. Then the inverse image of f_0 under the canonical homomorphism $Q \to \bar{Q} = Q/M(1)$ contains an eigenvector for ad \tilde{h}_0; we call it \tilde{f}_0. Since $f_0^{[p]} = 0$ in S it must be that $\tilde{f}_0^{[p]} \in M(1)$. Therefore, \tilde{f}_0 is a nilpotent element of g. We now set $R := k \tilde{h}_0 \oplus k \tilde{f}_0 \oplus \text{nil}(M)$. Clearly, this is a Lie subalgebra of M and $[R, R] \subseteq k \tilde{f}_0 \oplus \text{nil}(M)$. So $[R, R]$ consists of nilpotent elements of g by Jacobson’s formula for p-th powers. By Corollary 2.3, there exists a nonzero $e \in Q$ such that $[R, e] \subseteq \mathbb{k} e$ and $[e, [e, g]] = \mathbb{k} e$. Let \tilde{e} denote the image of e in \bar{Q}.

Suppose $\tilde{e} \neq 0$. As $[\tilde{f}_0, \tilde{e}] = 0$ we then have $\tilde{e} \in \mathbb{k}^x \tilde{f}_0$. So our assumption on \tilde{e} entails $\text{rk}(\text{ad } \tilde{f}_0)^2 \leq 1$. However, the restriction of $(\text{ad } \tilde{f}_0)^2$ to every subspace $\mathcal{G}_i = S \otimes O(2; 1)[i; 2]$ with $1 \leq i \leq 2(p - 1)$ is nonzero, forcing $\text{rk}(\text{ad } e)^2 \geq \text{rk}(\text{ad } \tilde{f}_0)^2 \geq 2p - 2$. This contradiction shows that $\tilde{e} = 0$. As a consequence, $e \in M(1)$. Since $\mathcal{G}_1 = k \partial_1 \oplus k \partial_2$, we may assume after a suitable linear substitution of x_1, x_2 that the image of e in \mathcal{G} equals ∂_1. But since $(\text{ad } e)^3 = 0$ this would entail $(\text{ad } \partial_1)^3 = 0$ which is false because $(\text{ad } \partial_1)^{p-1} \neq 0$ and $p > 3$. We thus conclude that the present case cannot occur.

3.7. Now suppose $m = 2$ and $s = 1$, so that again S is either \mathfrak{sl}_2 or $W(1; 1)$. This case is quite similar to the previous one, but we need to choose a solvable subalgebra R more carefully. By (3.4), $\mathcal{G}_1 \subset O(x_2) \partial_1$ and $\mathcal{G}_0 \cong \mathcal{G}_0 = (S \otimes O(x_2)) \oplus (\text{Id}_S \otimes D_0)$ where

$$D_0 = D \cap W(2; 1)[0; 1] \subset O(x_2) \partial_2 \oplus O(x_2)(x_1 \partial_1).$$

Let \mathfrak{m}_2 be the maximal ideal of the local ring $O(x_2)$. Thanks to the transitivity of $D \subset D_0 \oplus \mathcal{G}_1$ and the inclusion $\mathcal{G}_1 \subset O(x_2) \partial_1$ there exists an element $d \in \mathcal{G}_0$ such that $\pi(d) = \phi(x_2) \partial_2 + \psi(x_2)(x_1 \partial_1) \in D_0$ has the property that $\phi(x_2) \in O(x_2) \setminus \mathfrak{m}_2$. Since all derivations of S are inner, our discussion in (3.4) yields $d - \pi(d) \in S \otimes O(x_2)$.

15
As before, we may assume that \(\dim \mathcal{G}_1 \geq 2 \). Indeed, otherwise \(\text{nil}(M) = M_{(1)} \) is 1-dimensional implying that \(M = n_2(M_{(1)}) \) is contained in a parabolic subalgebra of \(\mathfrak{g} \). We choose \(e_0, f_0, h_0 \in S \) as in (3.6) and define \(R := kd \oplus k(h_0 \otimes 1) \oplus (f_0 \otimes O(x_2)) \). Then \([R, R] \subseteq f_0 \otimes O(x_2) \) yielding \([R, R]^{|p|} \subseteq f_0^{|p|} \otimes O(x_2) = 0 \). Let \(R \) be the preimage of \(R \) under the canonical homomorphism \(M \to \mathcal{G}_0 \). By construction, \(R \) is a Lie subalgebra of \(M \) with \([R, R]^{|p|} \subseteq M_{(1)} \). Therefore, it satisfies the assumptions of Lemma 2.2.

Now we need to locate \(\bar{Q} \), the image of \(Q = e_0(M_{(1)}) \) in \(\mathcal{G}_0 \). It contains \(S \otimes O(x_2) \) because the latter commutes with \(\mathcal{G}_1 \subseteq O(x_2) \partial_1 \). Therefore,

\[
\bar{Q} = (\text{Id}_S \otimes \text{Ann}_{\mathcal{D}_0}(\mathcal{G}_1)) \oplus (S \otimes O(x_2)).
\]

Clearly, \(\text{Ann}_{\mathcal{D}_0}(\mathcal{G}_1) \) is an ideal of \(\mathcal{D}_0 \). Since \(\mathcal{G}_1 \subseteq O(x_2) \partial_1 \) is \(d \)-stable and \(O(x_2)(x_1 \partial_1) \) preserves \(m_2 \partial_1 \subseteq \mathcal{G}_1 \), the subspace \(\mathcal{G}_1 \) contains an element of the form \(a(x_2) \partial_1 \) with \(a(x_2) \in O(x_2) \setminus m_2 \). Since

\[
[f(x_2)(x_1 \partial_1), a_2(x_2) \partial_1] = -f(x_2)a(x_2) \partial_1 \quad (\forall f(x_2) \in O(x_2))
\]

and \(a(x_2) \) is invertible in \(O(x_2) \), it must be that \((O(x_2)(x_1 \partial_1)) \cap \text{Ann}_{\mathcal{D}_0}(\mathcal{G}_1) = 0 \).

Suppose \(\text{Ann}_{\mathcal{D}_0}(\mathcal{G}_1) \neq 0 \). Then there exists \(u = b(x_2) \partial_2 + c(x_2)(x_1 \partial_1) \in \text{Ann}_{\mathcal{D}_0}(\mathcal{G}_1) \) such that \(b(x_2), c(x_2) \in O(x_2) \) and \(b(x_2) \neq 0 \). Since \(O(x_2)(x_1 \partial_1) \) is an abelian ideal of the Lie algebra \(O(x_2) \partial_2 \oplus O(x_2)(x_1 \partial_1) \) and \(\text{Ann}_{\mathcal{D}_0}(\mathcal{G}_1) \) is \((ad \partial) \)-stable, we may assume further that \(b(x_2) \notin m_2 \).

As \(\dim \mathcal{G}_1 \geq 2 \) and \(m_2 \partial_1 \) has codimension 1 in \(O(x_2) \partial_1 \) it must be that \((m_2 \partial_1) \cap \mathcal{G}_1 \neq 0 \). Let \(v = g(x_2) \partial_1 \) be a nonzero vector in \((m_2 \partial_1) \cap \mathcal{G}_1 \). Then there is \(k \in \{1, \ldots, p - 1\} \) such that \(g(x_2) \in m_2^k \setminus m_2^{k+1} \) and

\[
[u, v] = [b(x_2) \partial_2 + c(x_2)(x_1 \partial_1), g(x_2) \partial_1] = (b(x_2)g(x_2) - c(x_2)g(x_2)) \partial_1 \notin m_2^k \partial_1
\]

(it is important here that \(b(x_2) \notin m_2 \)). In particular, \([u, v] \neq 0 \). Since this contradicts our choice of \(u \) we now deduce that \(\text{Ann}_{\mathcal{D}_0}(\mathcal{G}_1) = 0 \). This yields \(\bar{Q} = S \otimes O(x_2) \).

By Corollary 2.3, there exists a nilpotent element \(e \in Q \) such that \([R, e] \subseteq k e \) and \([e, [e, g]] = k e \). Let \(\bar{e} \) be the image of \(e \) in \(\bar{Q} = S \otimes O(x_2) \). Since \([f_0 \otimes 1, \bar{e}] = 0 \) it must be that \(\bar{e} = f_0 \otimes q(x_2) \) for some \(q(x_2) \in O(x_2) \). Suppose \(\bar{e} \neq 0 \). Note that \(O(x_2)(x_1 \partial_1) \) acts trivially on \(S \otimes O(x_2) \). Since

\[
[d, f_0 \otimes q(x_2)] \in k(f_0 \otimes q(x_2)) \bigcap (f_0 \otimes \phi(x_2)q'(x_2) + S \otimes O(x_2)q(x_2))
\]

and \(\phi(x_2) \notin m_2 \), it must be that \(q(x_2) \notin m_2 \). From this it is immediate that the restriction of \((ad \bar{e})^2 \) to every subspace \(\bar{G}_{-i} = S \otimes O(2; \bar{1})[i; 1] \) with \(1 \leq i \leq p - 1 \) is nonzero. But then \(\text{rk } (ad \bar{e})^2 \geq \text{rk } (ad \bar{e})^p \geq p - 1 \). This contradiction shows that \(e \in M_{(1)} \). Identifying \(M_{(1)} \) with \(\mathcal{G}_1 \subseteq O(x_2) \partial_1 \) we write \(e = w(x_2) \partial_1 \) for some nonzero \(w(x_2) \in O(x_2) \). Since \(\phi(x_2) \notin m_2 \) and

\[
[d, w(x_2) \partial_1] = (\phi(x_2)w'(x_2) - \psi(x_2)w(x_2)) \partial_1 \in k(w(x_2) \partial_1)
\]

it is straightforward to see that \(w(x_2) \notin m_2 \). But then \((w(x_2) \partial_1)^{p-1} \) is a nonzero linear operator on \(O(2; \bar{1}) \) implying that \((ad \bar{e})^p \neq 0 \). Since this is false, we finally conclude that the degenerate case of Weisfeiler’s theorem cannot occur for \(\bar{G} \).

3.8. From now on we may assume that the non-degenerate case of Weisfeiler’s theorem holds for \(\bar{G} \), that is \(S = \bigoplus_{i \in \mathbb{Z}} S_i \) is \(\mathbb{Z} \)-graded, \(A_i(\bar{G}) = S_i \otimes O(m; \bar{n}) \) for all \(i \in \mathbb{Z} \), and

\[
S_0 \otimes O(m; \bar{n}) \subseteq \bar{G}_0 \subseteq (\text{Der}_0(S) \otimes O(m; \bar{n})) \times (\text{Id}_S \otimes \mathcal{D})
\]

where \(\mathcal{D} = \pi(\bar{G}_0) \) is a transitive subalgebra of \(W(m; \bar{n}) \). We shall often identify \(\bar{G}_{\geq 0} \) with \(\bar{G}_{\geq 0} \).
First suppose that $S = \text{Lie}(\mathcal{H})$ for some simple algebraic \mathbb{k}-group \mathcal{H} (this excludes the case where $S \cong \mathfrak{psl}_{kp}$ for some $k \geq 1$). Then $\text{Der}(S) = \text{ad} S$; see [BGP09, Lemma 2.7], for example. It follows that $\mathcal{G}_i = S_i \otimes O(m; \mathbb{Z})$ for all $i \neq 0$. Our grading of S is induced by the action of a 1-dimensional torus T_0 of $(\text{Aut } S)^0 = \text{Ad } \mathcal{H}$. Differentiating this action we find a toral element $t_0 \in \text{Lie}(T_0)$ such that $[t_0, x] = i\hat{x}$ for all $x \in S_i$ where $i \in \mathbb{Z}$. Here and in what follows we write i for the image of i in $\mathbb{F}_p \subset \mathbb{k}$. The element $t_0 \in \text{Der}(S)$ is often referred to as the degree derivation of the graded Lie algebra S. In the present case the derivation t_0 is inner.

It is well known that $S_{\geq 0} = \bigoplus_{i \geq 0} S_i$ is a parabolic subalgebra of S and $S_0 = S^{T_0}$ is a Levi subalgebra of $S_{\geq 0}$. Obviously, $t_0 \in S_0$ and we may assume without loss of generality that $S_{\geq 0}$ is a standard parabolic subalgebra of S. Since $M_{(0)} = M$ is a restricted subalgebra of g, there exists a toral element $t_0 \in M_{(0)}$ which maps onto t_0 under the canonical homomorphism $M_{(0)} \to \mathcal{G}_0$. If $c_G(t_0) \subseteq \mathcal{G}_0$ then g_{t_0} is a Levi subalgebra of g, it contains a maximal torus of g. This, however, contradicts our assumption that M is not a regular subalgebra of g. So it must be that $c_G(t_0) \cap \mathcal{G}_i \neq 0$ for some $i < 0$.

Since $\text{Der}(S) = \text{ad } S$, our discussion at the end of (3.4) shows that the S_0-module S_{-1} is semisimple and isogenic. In particular, $\mathfrak{z}(S_0)$ acts on S_{-1} by scalar endomorphisms forcing $\mathfrak{z}(S_0) = \mathbb{k}t_0$. From this it follows that the parabolic subalgebra $S_{\geq 0}$ is maximal in S and our grading of S is standard. This means that there exist a maximal torus T of H containing T_0, a basis of simple roots $\{\alpha_1, \ldots, \alpha_\ell\}$ in the root system $\Phi(H, T)$, and a positive integer $d \leq \ell$ such that S_k with $k \neq 0$ is spanned by all root vectors e_γ of S with respect to T such that $\gamma = \sum_{i=1}^{\ell} m_i \alpha_i$ and $m_d = k$; see [BGP09, 2.4] for details.

Note that $p > 3$ is good for S provided that S is not of type E_8 and if S is of type E_8 then so is g. So in any event p is good for S. Since our grading of S is standard we now obtain that $\mathcal{G}_+ = \bigoplus_{i > 0} (S_i \otimes O(m; \mathbb{Z}))$ is generated by $\mathcal{G}_1 = S_1 \otimes O(m; \mathbb{Z})$. Furthermore, dim $S_i = \text{dim } S_{-i}$ for all $i \in \mathbb{Z}$, and $S_i = 0$ for all $i \geq p$. This yields $c_G(t_0) \subseteq \mathcal{G}_{\geq 0}$. Since $c_G(t_0) \cap \mathcal{G}_i \neq 0$ for some $i < 0$ it follows that $N(\mathcal{G}) \neq 0$.

Let l be the smallest positive integer for which $N_{l-1}(\mathcal{G}) \neq 0$. Then $2 \leq l \leq p$ and $[N_{l-1}(\mathcal{G}), \mathcal{G}_1] = 0$. Since \mathcal{G}_i is generated by $M_{(-1)}$, the toral element t_0 preserves each $M_{(i)}$ with $i \in \mathbb{Z}$ and acts on $M_{(j)}/M_{(-1)}$ as the scalar operator $i \cdot \text{Id}$. Since $\text{ad } t_0$ is diagonalisable, for every $i \in \mathbb{Z}$ there exists a subspace $V_i \subset g$ such that $[t_0, v] = iv$ for all $v \in V_i$ and $M_{(i)} = V_i \oplus M_{(i+1)}$. Given $a \in \mathbb{k}$ and an $(\text{ad } t_0)$-invariant subspace W of g we write $W(a)$ for the set of all $w \in W$ with $[t_0, w] = aw$.

Let $\bar{u} \in N_{l-1}(\mathcal{G}) \setminus \{0\}$ and pick $u \in V_{-l}$ which maps onto \bar{u} under the canonical homomorphism $M_{(-l)} \to \mathcal{G}_{-l} = M_{(-l)}/M_{(-l+1)}$. Since $[\bar{u}, \mathcal{G}_1] = 0$ it must be that $[u, M_{(1)}] \subseteq M_{(-l+2)}$. But then $[u, V_1] \subseteq M_{(-l+2)}(-l+1) = (V_{-l+2} \oplus \cdots \oplus V_{-l} \oplus V_0 \oplus M_{(1)}) \cap g(-l+1) = M_{(1)}(-l+1)$.

(It is of utmost importance here that the set of residues of $0, -1, \ldots, -l+2$ in $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ does not contain the residue of $-l+1$). This shows that $[u, V_1] \subseteq M_{(1)}$. Since V_1 maps onto \mathcal{G}_1 under the canonical homomorphism $M_{(1)} \to \mathcal{G}_1$ and \mathcal{G}_1 generates the Lie algebra \mathcal{G}_+ by our remarks earlier in the proof, the nilpotent Lie algebra $M_{(1)}$ must be generated by V_1. This gives $[u, M_{(1)}] \subseteq M_{(1)}$ forcing $u \in n_\mathbb{g}(M_{(1)})$. But then $u \in M$ by the maximality of M. This contradiction shows that the case where $S = \text{Lie}(\mathcal{H})$ is impossible.

3.9. In the next four subsections we assume that $S = \mathfrak{psl}_{kp}$ for some $k \in \mathbb{Z}_{>0}$. Recall that for a finite dimensional Lie algebra L over \mathbb{k} the absolute toral rank $\text{TR}(L)$ denotes the maximal
dimension of toral subalgebras in the restricted Lie algebras $\tilde{L}/\mathfrak{z}(\tilde{L})$ where \tilde{L} runs over the set of all finite dimensional p-envelopes of L. Since $p > 2$, the restricted Lie algebra \mathfrak{psl}_p contains a self-centralising torus of dimension $kp - 2$. Similarly, \mathfrak{g} contains a self-centralising torus whose dimension equals $\text{rk}(\mathfrak{g})$. Combining [Pre87] and [Pre90] with [Str04, Theorem 1.2.9] one obtains that $\text{TR}(\mathfrak{g}) = \text{rk}(\mathfrak{g})$ and $TR(\mathfrak{psl}_p) = kp - 2$. On the other hand, Skryabin’s theorem says that $\text{TR}(\mathfrak{g}) \geq \text{TR}(\mathfrak{G})$; see [Skr98, Theorem 5.1]. By [Str04, Theorems 1.2.8(3) and 1.2.7(1)], this gives

$$kp - 2 = \text{TR}(\mathfrak{psl}_p) = \text{TR}(S) \leq \text{TR}(\mathfrak{G}) \leq \text{TR}(\mathfrak{g}) = \text{rk}(\mathfrak{g}) \leq 8.$$

Since $p > 5$ when G is of type E_8, this yields $k = 1$. Since $\dim \mathfrak{g} > (p^2 - 2)p^{2|}$ where $|n| = n_1 + \cdots + n_m$, it must be that $m = 0$ unless \mathfrak{g} is of type E_7, $p = 5$, and $(m, n) = (1, 1)$.

The grading of S is induced by the action of a 1-dimensional torus $\lambda(k^\times)$ of $(\text{Aut} S)^0 \cong \text{PGL}_p$ on S and hence $S_{\geq 1}$ is a parabolic subalgebra of S. However, it is no longer true in the present case that the degree derivation $t_0 \in \text{Lie}(\lambda(k^\times))$ lies in $\text{ad} S_0$. Essentially this is due to the fact that $\text{Der}(\mathfrak{psl}_p) \cong \mathfrak{pgl}_p$; see [BGP09, Lemma 2.7], for example. Still $\lambda(k^\times)$ is contained in a maximal torus T of PGL_p and there is a basis of simple roots Δ in the root system of $\text{Aut} S$ with respect to T and a collection of non-negative integers $\{r_\alpha | \alpha \in \Delta\}$ such that $\alpha(\lambda(t)) = t^{r_\alpha}$ for all $\alpha \in \Delta$ and all $t \in k^\times$.

If $m = 0$ then [Str04, Theorem 3.5.7.(6)] shows that the S_0-module S_{-1} is semisimple and isogenic. If $m > 0$ then $S_0 = c_S(\lambda)$ is a proper standard Levi subalgebra of $S \cong \mathfrak{psl}_p$. Let Σ_0 be the root system of S_0 with respect to T. Since $\text{Der}(S)$ has type A_1, the Lie algebra S_0 is either toral or Σ_0 has type A_1, A_2, A_2A_1 or A_3. In any event, this implies that S_{-1} is a semisimple S_0-module and all its irreducible submodules have dimension 1, 2, 3, 4 or 6. Moreover, in the last two cases S_{-1} is an irreducible S_0-module. If S_0 is toral then S_{-1} coincides with the span of the roots vectors $e_{-\alpha} \in S$ such that $\alpha \in \Delta$ and $r_\alpha = 1$. In particular, $\dim S_{-1} \leq 4$. Taking all this into account it is not hard observe that S_{-1} always contains an irreducible S_0-submodule U_0 such that $\dim S_{-1} < p \dim U_0$. Applying [Str04, Theorem, 3.5.7(6)] we now deduce that when $m > 0$ the S_0-module S_{-1} is semisimple and isogenic, too. This implies that in all cases of interest the parabolic subalgebra $S_{\geq 0}$ is maximal in S. From this it is immediate that $S = S_{-1} \oplus S_0 \oplus S_1$.

3.10. The above discussion in (3.9) also shows that $\text{Der}(S) = kT_0 \oplus \text{ad} S$ and

$$S_0 \otimes \text{O}(m; n) \subseteq \mathcal{G}_0 \subseteq \left(\text{Der}_0(S) \otimes \text{O}(m; n)\right) \rtimes \left(\text{Id}_S \otimes \mathcal{D}\right)$$

for some transitive subalgebra \mathcal{D} of $W(m; n)$. Since all Cartan subalgebras of \mathfrak{sl}_p are toral the subalgebra S_0 of $S = \mathfrak{sl}_p/k1$ contains a toral Cartan subalgebra of S, say t. Clearly, t is a toral subalgebra of $\mathcal{G}_0 = G_0$. Since the canonical homomorphism $\eta: M_{(0)} \twoheadrightarrow \mathcal{G}_0$ is restricted, there exists a toral subalgebra \mathfrak{i} in $M_{(0)}$ such that $\eta(\mathfrak{i}) \cong t$; see [Str04, Proposition 1.2.2], for example.

Since $t \subset S_0$ is self-centralising we have that $c_S(t) \cap S_{-1} = 0$. Consequently, $c_S(t) \cap \mathcal{G}_{-1} = 0$. If $\mathcal{G}_{-2} = 0$ then $c_S(t) \subset \mathcal{G}_{\geq 0}$ forcing $c_S(t) \subset M_{(0)} = M$. As this contradicts our assumption that M is non-regular we now deduce that $\mathcal{G}_{-2} = N_{-2}(\mathcal{G}) \neq 0$. Since $N(\mathcal{G}) \subseteq \bigoplus_{i \leq -2} N_i(\mathcal{G})$ we have that $G_1 \cdot N_{-2}(\mathcal{G}) = 0$. The graded factor-space $\mathcal{N}(\mathcal{G}) := N(\mathcal{G})/N(\mathcal{G})^2$ carries a natural \mathcal{G}-module structure and $\mathcal{N}_{-i}(\mathcal{G}) \cong N_{-i}(\mathcal{G})$ for $i = 2, 3$ as vector spaces. Therefore, $N_{-2}(\mathcal{G}) \neq 0$. If $\mathcal{G}_{-1} \cdot \mathcal{N}_{-2}(\mathcal{G}) = 0$ then $\mathcal{G}_{-3} = [\mathcal{G}_{-1}, \mathcal{G}_{-2}] = N_{-2}(\mathcal{G}) = 0$ because $N_{-3}(\mathcal{G}) \cong \mathcal{N}_{-3}(\mathcal{G})$.

Suppose $\mathcal{G} \cdot \mathcal{N}(\mathcal{G}) = 0$. Then the above shows that $N(\mathcal{G}) = \mathcal{G}_{-2}$ and $[\mathcal{G}_{\pm 1}, N(\mathcal{G})] = 0$. It is well known that the torus $\mathfrak{i} \subset M_{(0)}$ is contained in a maximal torus of \mathfrak{g} and all such tori are $(\text{Ad} G)$-conjugate by [Bor91, 11.8] or [Hum67, Theorem 13.3]. Since t is a maximal torus of S_0 we have that
dim $\mathfrak{l} = p - 2$. If $p \geq 7$ then $p - 2 > \frac{1}{2} \text{rk}(\mathfrak{g})$. In this case, the restriction of the (non-degenerate) Killing form of \mathfrak{g} to \mathfrak{l} is nonzero. Since $\mathfrak{l} \subset M_{(0)}$, and $t \subset S_0 \subset [\mathcal{G}_{-1}, \mathcal{G}_1]$, one of the composition factors of the S-module $\tilde{\mathcal{G}} = \mathcal{G}/\mathcal{G}_{-2}$ provides S with a nonzero trace form. But since $S \cong \text{psl}_p$ no such form can exist by [Bl62] or [Gar09]. This shows that if $\tilde{\mathcal{G}} \cdot N(\mathcal{G}) = 0$ then $p = 5$ and \mathfrak{g} is not of type E_8. Arguing similarly one also observes that G cannot be of type G_2 or F_4 (even when $p = 5$).

3.11. Suppose $m = 0$. Then $S_0 \subset \mathcal{G}_0 \subset \text{Der}_0(S) = S_0 \oplus kt_0$. If $t_0 \in \mathcal{G}_0$ then arguing as in (3.8) we could find a toral element $\tilde{t}_0 \in M_{(0)}$ with $\mathfrak{g}_0 \subset M$. Since this contradicts our assumption that M is non-regular, the equality $\tilde{G} = S$ must hold. In particular, this means that $\mathcal{G}_1 = S_1$ and $\mathcal{G}_0 = S_0$ acts faithfully on \mathcal{G}_1. From this it is immediate that the subalgebra $\mathfrak{c}_\mathfrak{g}(\text{nil}(\mathcal{M}))$ of $M_{(0)}$ coincides with $M_{(1)}$. Then there exists a nonzero $e \in M_{(1)}$ such that $[e, [e, \mathfrak{g}]] = k e$; see Corollary 2.3. Its image $\tilde{e} = \text{gr}_1(e)$ in $\mathcal{G}_1 = S_1$ has the property that $[\tilde{e}, [\tilde{e}, \mathcal{G}_1]] = 0$ for all $i \leq -2$.

Since $\tilde{\mathcal{G}} = S$ we have that $\tilde{\mathcal{G}} = \tilde{\mathcal{G}}^{(\infty)}$. If all composition factors of the $\tilde{\mathcal{G}}$-module $\tilde{N}(\mathcal{G})$ are trivial then $\tilde{\mathcal{G}} \cdot \tilde{N}(\mathcal{G}) = \tilde{\mathcal{G}}^{(\infty)} \cdot \tilde{N}(\mathcal{G}) = 0$. Then $\tilde{\mathcal{G}}_{-1} \cdot \tilde{N}_{-2}(\mathcal{G}) = 0$ and our discussion in (3.10) shows that $p = 5$. Since $\tilde{\mathcal{G}}_{-2} = [\tilde{\mathcal{G}}_{-1}, \tilde{\mathcal{G}}_{-1}]$ is a homomorphic image of $\wedge^2 \tilde{\mathcal{G}}_{-1}$ and dim $\tilde{\mathcal{G}}_{-1} = k(5 - k)$ for some $1 \leq k \leq 4$ we have that dim $\tilde{\mathcal{G}}_{-2} \leq 15$. But then dim $\mathfrak{g} = \text{dim } S + \text{dim } \tilde{\mathcal{G}}_{-2} \leq 23 + 15 = 48$, a contradiction.

Let V be a non-trivial composition factor of the S-module $\tilde{N}(\mathcal{G})$ and denote by $\rho: S \to \mathfrak{gl}(V)$ the corresponding representation of $S = \text{psl}_p$. We shall regard ρ as a representation of $\mathfrak{sl}_p = \text{Lie}(\text{SL}_p)$ by inflation. Our earlier remarks then show that $\rho(a)^2 = 0$ for some non-central element $a \in \mathfrak{sl}_p$ (one can take $a = \tilde{e}$ since $(\text{ad}_{\mathfrak{g}}(\tilde{e}))^2 = 0$). It should be stressed at this point that the centre $\mathbb{R}I_p$ of \mathfrak{sl}_p acts trivially on V. By Lemma 2.5, ρ is a restricted representation of S. So, thanks to Curtis’ theorem it can be obtained by differentiating an infinitesimally irreducible rational representation of SL_p. Since the $(\text{Ad } \text{SL}_p)$-stable set $\{ X \in \mathfrak{sl}_p \mid \rho(X)^2 = 0 \}$ is non-central, Zariski closed and conical, it contains the orbit $\mathcal{O}_{\text{min}}(\mathfrak{sl}_p)$. This shows that $\rho(e_\alpha)^2 = 0$ for any root vector $e_\alpha \in \mathfrak{sl}_p$. Arguing as in [PSu83, p. 72] one then observes that ρ is a fundamental representation of \mathfrak{sl}_p, i.e. $V \cong L(\varpi_k)$ for some $1 \leq k \leq p - 1$. But then the central element $I_p \in \mathfrak{sl}_p$ acts on V as $k \cdot \text{Id}_V \neq 0$, a contradiction. As a result, $m \geq 1$.

3.12. Our discussion in (3.11) implies that $p = 5$, \mathfrak{g} is of type E_7 and $O(m; \mathbb{R}) = O(1; 1)$. Then
\[\dim \tilde{N}(\mathcal{G}) \leq \dim N(\mathcal{G}) = \dim \mathfrak{g} - \dim \tilde{\mathcal{G}} < \dim \mathfrak{g} - \dim S \otimes O(1; 1) = 133 - 115 = 18. \]

We claim that $\mathcal{G}_{-3} = 0$. Indeed, if this is not the case then $\mathcal{G}_{-1} \cdot \tilde{N}_{-2}(\mathcal{G}) \neq 0$. Since $A(\tilde{\mathcal{G}}) = S \otimes O(1; 1)$ is a perfect Lie algebra, this implies that one of the composition factors of the $A(\tilde{\mathcal{G}})$-module $\tilde{N}(\mathcal{G})$ is non-trivial. This, in turn, shows that there is a composition factor W of the $\tilde{\mathcal{G}}$-module $\tilde{N}(\mathcal{G})$ such that $A(\tilde{\mathcal{G}}) \cdot W = W$. In this situation Block’s theorem on derivation simple modules says that there exists a faithful S-module \mathfrak{W}_0 such that $W = \mathfrak{W}_0 \otimes O(1; 1)$ as vector spaces; see [Str04, Corollary 3.3.7]. As dim $W \leq \dim \tilde{N}(\mathcal{G}) < 18$ and $p = 5$ we get dim $\mathfrak{W}_0 \leq 3$. But then 23 = dim $S \leq \dim \mathfrak{gl}(\mathfrak{W}_0) = 9$. By contradiction the claim follows.

Let M' denote the inverse image of $S_0 \otimes O(1; 1)$ under the canonical homomorphism $M_{(0)} \to \mathcal{G}_0$. Since dim $S_{-1} = k(5 - k)$ for some $1 \leq k \leq 4$, we have that dim $S_{\geq 0} = 23 - 6 = 17$. As a consequence, dim $M' = \dim \mathcal{G}_{\geq 0} > \dim (S_{\geq 0} \otimes O(1; 1)) \geq 85 > (\dim \mathfrak{g})/2$. It follows that the restriction of the Killing form κ of \mathfrak{g} to M is nonzero. Since $\text{ad } M_{(1)}$ acts nilpotently on \mathfrak{g}, it lies in the radical of the trace form $\kappa| M'$. Let κ_L denote the Killing form of a finite dimensional Lie
algebra L. Since $M = M_{(0)}$ preserves each component $M_{(i)}$ of our filtration, we have that
\begin{equation}
\kappa(x, y) = \text{tr}((\text{ad } x) \circ (\text{ad } y)) = \kappa_{\mathfrak{g}}(\text{gr}_{0}(x), \text{gr}_{0}(y)) \quad (\forall x, y \in M).
\end{equation}

In view of the above this shows that the restriction of $\kappa_{\mathfrak{g}}$ to $S_{0} \otimes O(1; 1)$ is nonzero. As $[\mathfrak{g}_{\pm 1}, \mathfrak{g}_{-2}] = 0$ by our earlier remarks and $S_{0} \otimes O(1; 1) = [\mathfrak{g}_{-1}, \mathfrak{g}_{1}]$, we have that $\kappa_{\mathfrak{g}}(x, y) = \kappa_{\mathfrak{g}}(x, y)$ for all $x, y \in S \otimes O(1; 1)$ (as before we identify \mathfrak{g}_{0} with \mathfrak{g}_{0}). This implies that the restriction of $\kappa_{\mathfrak{g}}$ to $A(\mathfrak{g}) = S \otimes O(1; 1)$ of \mathfrak{g} is nonzero. Since $A(\mathfrak{g})$ is the unique minimal ideal of \mathfrak{g} and the form $\kappa_{\mathfrak{g}}$ is \mathfrak{g}-invariant, the restriction of $\kappa_{\mathfrak{g}}$ to $A(\mathfrak{g})$ must be non-degenerate. On the other hand, it is straightforward to see that for any $s \in S$ and any $u \in A(\mathfrak{g})$ the linear operator
\[
\text{ad}_{A(\mathfrak{g})}(s \otimes x_{i}^{-1}) \circ \text{ad}_{A(\mathfrak{g})} u
\]
is nilpotent and hence has zero trace. This contradiction shows that the case where $S = \mathfrak{psl}_{kp}$ is impossible.

3.13. Suppose S is a Lie algebra of Cartan type W. Since $\dim W(r; \mathfrak{d}) = rp^{[d]}$ and $\dim S \leq \dim \mathfrak{g}$, the Lie algebra S is in the following list:
\[
W(1; 1), W(1; 2), W(1; 3), W(2; 1).
\]

If $S = W(1; d)$ for $1 \leq |d| \leq 3$ then we may assume that its grading is either natural or reverse thereof; see [PS01, Theorem 4.7]. In the second case, $S_{-2} = 0$ and $\dim S_{-1} = 1$. But then
\[
0 \neq S_{-2} \otimes O(m; n) = \mathfrak{g}_{-2} = [\mathfrak{g}_{-1}, \mathfrak{g}_{1}] = [S_{-1}, S_{-1}] \otimes O(m; n) = 0,
\]
a contradiction. Thus, $S = \bigoplus_{i \geq -1} S_{i}$ and all graded components of S are 1-dimensional. Moreover, there exists $t_{0} \in S_{0}$ such that $[\bar{t}_{0}, x] = \bar{x}$ for all $x \in S_{i}$. It follows that $N(\mathfrak{g}) = \bigoplus_{i \leq -2} S_{i}$, forcing $[\mathfrak{g}_{-2}, \mathfrak{g}_{1}] = 0$. Equivalently, $[M_{(i)}, S_{-1}] \subseteq M_{-(i-1)}$ for all $i \geq 0$.

The subspace $\mathfrak{k}(t_{0} \otimes 1)$ is a 1-dimensional torus contained in $\mathfrak{j}(\mathfrak{g}_{0})$. As both \mathfrak{g}_{0} and $M_{(0)}$ are restricted, there exists a toral element $\tilde{t}_{0} \in M_{(0)}$ which maps onto t_{0} under the canonical epimorphism $M_{(0)} \to \mathfrak{g}_{0}$. If $N(\mathfrak{g}) = 0$ then $\mathfrak{g}_{\tilde{t}_{0}} \subset M_{(0)}$ contrary to our assumption that $M = M_{(0)}$ is non-regular. This shows that $\mathfrak{g}_{-2} \neq 0$. As in (3.8) we choose a subspace V_{i} in $M_{(i)}$ such that $M_{(i)} = V_{i} \oplus M_{(i+1)}$ and $[\tilde{t}_{0}, x] = \bar{x}$ for all $x \in V_{i}$. By our preceding remarks, $V_{-2} \neq 0$ and $[V_{-2}, V_{i}] \subseteq M_{(i-1)} \cap M_{(i-2)} \subseteq M_{(1)}$ for $i = 1, 2$. Since $[V_{-2}, M_{(3)}] \subseteq M_{(1)}$ and $M_{(1)} = V_{1} \oplus V_{2} \oplus M_{(3)}$ we thus deduce that $0 \neq V_{-2} \subseteq \mathfrak{n}_{0}(M_{(1)}) = M_{(0)}$. This contradiction shows that $S \neq W(1; d)$.

3.14. Suppose $S = W(2; 1)$, a Lie algebra of dimension $2p^{2}$. Then $m = 0$ and $\text{Der}(S) = \text{ad} S$ by [Str04, Theorem 7.1.2(1)]. Hence $\mathfrak{g} = S$. In particular, this implies that S_{-1} is an irreducible and faithful S_{0}-module. By [PS01, Theorem 4.7], any grading of $W(2; 1)$ is given by assigning to some generators u_{1}, u_{2} of the maximal ideal of $O(2; 1)$ certain degrees $a_{1}, a_{2} \in \mathbb{Z}$. The element $u_{1}^{a_{1}} u_{2}^{a_{2}} \frac{\partial}{\partial x_{k}} \in W(2; 1)$ with $k = 1, 2$ then acquires the degree $a_{1}m_{1} + a_{2}m_{2} - a_{k}$. The grading of S obtained this way is said to have type (a_{1}, a_{2}) with respect to u_{1}, u_{2}. To ease notation we assume that $u_{i} = x_{i}$ for $i = 1, 2$. We write $S[i]$ for the i-th component of the standard grading of the Cartan type Lie algebra S which has type $(1, 1)$.

Suppose our grading of S has type (a_{1}, a_{2}). No generality will be lost by assuming that $|a_{1}| \geq |a_{2}|$. Then S_{0} is spanned by some $x_{1}^{a_{1}} x_{2}^{a_{2}} \frac{\partial}{\partial k}$ with $k = 1, 2$. We now follow very closely the argument in [PS01, Lemma 4.15]. If $\{ \partial_{1}, \partial_{2}, x_{1} \partial_{2}, x_{2} \partial_{1} \} \cap S_{0} = \emptyset$ then
\[
kx_{1} \partial_{1} + kx_{2} \partial_{2} \subseteq S_{0} \subseteq kx_{1} \partial_{1} + kx_{2} \partial_{2} \oplus kx_{2} \partial_{1} \oplus \sum_{i \geq 1} S[i].
\]
In this case S_0 is solvable and $[S_0, S_0] \subseteq k[x_2] \partial_1 + \sum_{i \geq 1} S[i]$ acts nilpotently on S. Since S_{-1} is an irreducible and faithful S_0-module, this is impossible. Therefore, $\{\partial_1, \partial_2, x_1 \partial_2\} \cap S_0 \neq \emptyset$, implying that either $a_2 = 0$ or $a_1 = a_2$. Since $S_{-1} \neq 0$ we now deduce that either the grading of S or its reverse has type $(1, 1)$ or $(1, 0)$. As before, we set $Q := \mathfrak{g}(M_{(1)})$, pick $e \in Q \cap \mathcal{O}_{\text{min}}$, and denote by \bar{Q} the image of Q in $\mathcal{G}_0 = M_{(0)}/M_{(1)}$. Write \bar{e} for the image of e in \bar{Q}.

If the grading of S has type $(-1, -1)$ then $\mathcal{G}_1 = S_1 = k\partial_1 \oplus k\partial_2$ and $S_i = 0$ for $i \geq 2$. Furthermore, $\mathcal{G}_0 = S_0 = \sum_{i,j=1}^2 k[x_i \partial_j]$ acts on S_1 faithfully. From this it is immediate that $\bar{Q} = 0$. But then $\bar{e} = \text{gr}_1(e)$ is a nonzero linear combination of ∂_1 and ∂_2. Since $(ad \bar{e})^3 = 0$ and $p > 3$, this is impossible. So this case cannot occur. If the grading of S has type $(-1, 0)$ then $S_1 = \sum_{i=0}^{p-1} (kx_2 \partial_1)$ and $S_i = 0$ for $i \geq 2$. Moreover, the Lie algebra

$$S_0 = \sum_{i=0}^{p-1} (kx_2 \partial_2) \oplus \sum_{i=0}^{p-1} k(x_1 \partial_1)$$

is isomorphic to $W(1; 1) \ltimes O(1; 1)$ where $\sum_{i=0}^{p-1} kx_2 \partial_1 \cong O(1; 1)$ is an abelian ideal of S_0. It is straightforward to check that $\mathcal{G}_0 = S_0$ acts faithfully on $\mathcal{G}_1 = S_1$. So the equality $\bar{Q} = 0$ must hold. Let $R = k\partial_1 \oplus S_1$ and denote by R the inverse image of \bar{R} in $M_{(0)}$. Then $[R, R] \subseteq M_{(1)}$ consists of nilpotent elements of \mathfrak{g}. In view of Corollary 2.3 we may assume that $[R, e] \subseteq k e$. Then $[\partial_2, \bar{e}] = 0$ forcing $\bar{e} = \lambda \partial_1$ for some $\lambda \in k$. This, however, contradicts the fact that $(ad \partial_1)^4 \neq 0$.

As a result, we may assume that the grading of S is either standard or has type $(1, 0)$. These are the reverse gradings of the ones considered earlier. In particular, $\mathcal{G}_{-2} = S_{-2} = 0$. Let $t = k(x_1 \partial_1) \oplus k(x_2 \partial_2)$, a maximal toral subalgebra of $\mathcal{G} = S$ contained in $\mathcal{G}_0 = S_0$. Since \mathcal{G}_0 is restricted, there exists a 2-dimensional toral subalgebra \mathfrak{t} in $M_{(0)}$ which maps onto t under the canonical homomorphism $M_{(0)} \rightarrow \mathcal{G}_0$; see [Str04, Proposition 1.2.2]. Since M is non-regular and $\mathfrak{c}_{\mathfrak{g}}(t) = \mathfrak{c}_S(t) = t$ it must be that $N(\mathcal{G}) \neq 0$. So the above yields $0 \neq \mathcal{G}_{-2} \subseteq N(\mathcal{G})$. Since $\text{Der}(S) = \text{ad} S$, the Lie algebra \mathcal{G}_0 contains the degree derivation t_0 associated with our present grading of S. As before, we find a toral element $t_0 \in M_{(0)}$ which maps onto t_0 under the canonical homomorphism $M_{(0)} \rightarrow \mathcal{G}_0$ and pick, for any $i \in \mathbb{Z}$, a subspace V_i of \mathfrak{g} such that $M_{(i)} = V_i \oplus M_{(i+1)}$ and $[t_0, v] = iv$ for all $v \in V_i$. Repeating verbatim the argument used in the $W(1; 1)$-case we obtain that $[V_{-2}, M_{(i)}] \subseteq M_{(i)}$ for $i = 1, 2$. It follows that $0 \neq V_{-2} \subset \mathfrak{n}_0(\text{nil}(M)) = M$ which is impossible. This enables us to conclude that the case where $S \cong W(r; d)$ cannot occur.

3.15. Suppose S is of special Cartan type. Then it follows from [Str04, 6.3] that S is one of

$$S(r; d)^{(1)}, \ S(r; d; \Phi(\tau))^{(1)}, \ S(r; d; \Phi(l))^{(1)},$$

where $r \geq 3$ and $1 \leq l \leq r$. The Lie algebras in this list have dimensions $(r - 1)(p^{d^{[d]}} - 1)$, $(r - 1)(p^{d_{[d]}} - 1)$ and $(r - 1)p^{d_{[d]}}$, respectively. As a consequence, $\dim S \geq 2(p^3 - 1) \geq 248$. Since $\dim \mathfrak{g} \geq \dim S$ and $p > 5$ if \mathfrak{g} is of type E_8, we see that this case is impossible.

3.16. Suppose S is a Hamiltonian Lie algebra, that is $S \cong H(2r; d; \Phi)^{(2)}$, where $r \geq 1$. This case is more complicated because several entirely different situations may occur here. We first note that $\dim S \geq \dim H(2r; d)^{(2)}$ because $H(2r; d; \Phi)^{(2)}$ is a filtered deformation of a graded Lie algebra sandwiched between the graded Hamiltonian algebras $H(2r; d)^{(2)}$ and $CH(2r; d)$; see [Str04, Theorem 6.1.2], for instance. Hence $\dim S \geq \dim H(2r; 1)^{(2)} = p^{2r} - 2$. If $r \geq 2$ then $248 \geq \dim \mathfrak{g} \geq \dim S \geq 5^4 - 2$, a contradiction. In view of [Str04, Theorem 6.3.10] this shows that S is one of

$$H(2; d)^{(2)}, \ H(2; d; \Phi(\tau))^{(1)}, \ H(2; d; \Phi(l))^{(1)}, \ l = 1, 2,$$

where $d \in \{(1, 1), (2, 1), (1, 2)\}$. Besides, $H(2; (1, 2); \Phi)^{(2)} \cong H(2; (2, 1); \Phi)^{(2)}$ unless $\Phi = \Phi(l)$.

21
3.17. We first assume that $A(\tilde{G}) = S \otimes O(m; n)$ and $m \geq 1$. Then $\dim \mathcal{G} > (\dim S)p^{[\nu]} \geq (p^2 - 2)p$. From this it is immediate that $p = 5$, $O(m; n) = O(1; 1)$, \mathfrak{g} is of type E_7, and S is one of $H(2; 1)^{(2)}$, $H(2; 1; \Phi(\tau))^{(1)}$, $H(2; 1; \Phi(1))$.

Let $\mathcal{M}(S)$ denote the standard maximal subalgebra of the Cartan type Lie algebra S. By Kreknin’s theorem, $\mathcal{M}(S)$ is invariant under all automorphisms of S; see [Str04, Theorem 4.2.6]. Since our grading of S is induced by the action of a 1-dimensional torus $T_0 \subset \text{Aut}(S)$, this implies that $\mathcal{M}(S) = \bigoplus_{i \in \mathbb{Z}} (\mathcal{M}(S) \cap S_i)$. Since $\mathcal{M}(S)$ is maximal in S, it cannot consist of nilpotent elements of the minimal p-envelope S_p of S. Since each $S_i \cap \mathcal{M}(S)$ with $i \neq 0$ acts nilpotently on S, it follows from the Engel–Jacobson theorem that $S_0 \cap \mathcal{M}(S)$ contains a non-nilpotent element of S_p. On the other hand, it is immediate from [Str04, Lemma 7.1.1.(3)] that $\mathcal{M}(S)$ is a restricted subalgebra of S_p. It follows that so is $\mathcal{M}(S) \cap S_0 = \mathcal{M}(S)^{T_0}$. As a consequence, $\mathcal{M}(S) \cap S_0$ contains a nonzero toral element, h_0 say. It is straightforward to see that $S_p \otimes 1$ coincides with the p-envelope of $S \otimes 1$ in $\text{Der} (S \otimes (1; 1))$.

Let $C_0 = \mathfrak{c}_o(h_0 \otimes 1)$. Clearly, $h_0 \otimes O(1; 1) \subset C_0$. Recall that

$$S_0 \otimes O(1; 1) \subset \tilde{G}_0 \subset \left(\text{Der}_0(S) \otimes O(1; 1) \right) \times \left(\text{Id}_S \otimes \mathcal{D} \right)$$

for some transitive Lie subalgebra \mathcal{D} of $W(1; 1)$. Let $m = O(1; 1)x_1$ denote the maximal ideal of $O(1; 1) = O(x_1)$. Since $\text{ad}_c(h_0 \otimes 1)$ is semisimple and \mathcal{D} is transitive, C_0 contains an element $c = (d \otimes f) + (\text{Id}_S \otimes \mathcal{D})$ with $d \in \text{Der}_0(S)$, $f \in O(1; 1)$, $D \in W(1; 1)$ such that $D(x_1) \notin m$. Since $c \in C_0$ it must be that $[d, h_0] = 0$. By construction, $[c, h_0 \otimes x_1] = h_0 \otimes D(x_1)$. Since $h_0^{[p]} = h_0$ and $D(x_1)^p$ is a nonzero scalar in $O(1; 1)$, the p-closure of $[c, h_0 \otimes x_1]$ in the restricted Lie algebra \tilde{G}_0 contains $h_0 \otimes 1$.

Since the canonical homomorphism $\eta: M_{(0)} \rightarrow \tilde{G}_0$ is restricted, there is a toral element $\tilde{h}_0 \in M_{(0)}$ such that $\eta(\tilde{h}_0) = h_0 \otimes 1$. Let $\tilde{C}_0 = \mathfrak{c}_M(\tilde{h}_0)$. Since $\text{ad} \tilde{h}_0$ is semisimple, we have that $\eta(\tilde{C}_0) = C_0$ and $\tilde{C}_0 \cap \ker \eta = \mathfrak{c}_{M_{(1)}}(\tilde{h}_0)$. Since both c and $h_0 \otimes x_1$ are in C_0, the above discussion implies that the p-closure of $[\tilde{C}_0, \tilde{C}_0]$ in M contains an element of the form $\tilde{h}_0 + y$ for some $y \in \tilde{C}_0 \cap M_{(1)}$. As $(\tilde{h}_0 + y)^{[p]^N} = \tilde{h}_0^{[p]^N} = \tilde{h}_0$ for $N \gg 0$, it follows that the p-closure of the derived subalgebra of $\tilde{g}_{\tilde{h}_0}$ contains \tilde{h}_0. Since it follows from Jacobson’s formula that for any Levi subalgebra \mathfrak{l} of \mathfrak{g} the Lie algebra $[\mathfrak{l}, \mathfrak{l}]$ is closed under taking p-th powers in \mathfrak{g}, this yields $\tilde{h}_0 \in [\tilde{g}_{\tilde{h}_0}, \tilde{g}_{\tilde{h}_0}]$.

We now wish to estimate $\dim \tilde{g}(\tilde{h}_0, i)$ for all $i \in \mathbb{F}_p^\times$. First we note that since $\text{ad} \tilde{h}_0$ is toral and preserves all components $M_{(j)}$ of our filtration, the equality $\dim \tilde{g}(\tilde{h}_0, i) = \dim \tilde{g}(h_0 \otimes 1, i)$ must hold for all $i \in \mathbb{F}_p$. Next we observe that for any $k \geq 1$ the factor space $N(\mathcal{G})^k/N(\mathcal{G})^{k+1}$ is a graded \mathcal{G}-module. This yields

$$\dim \tilde{g}(\tilde{h}_0, i) = \dim \tilde{g}(h_0 \otimes 1, i) + \sum_{k \geq 1} \dim \left(N(\mathcal{G})^k/N(\mathcal{G})^{k+1} \right) (h_0 \otimes 1, i).$$

Clearly, each $N(\mathcal{G})^k/N(\mathcal{G})^{k+1}$ is a graded \tilde{G}-module. Since \tilde{G} is semisimple and \mathcal{G} is a restricted $\left(\text{ad} \tilde{G}_0 \right)$-module, applying Lemma 2.5 shows that all composition factors of the $(S \otimes 1)$-modules \tilde{G} and $N(\mathcal{G})^k/N(\mathcal{G})^{k+1}$ with $k \geq 1$ are restricted.

If S is one of $H(2; 1)^{(2)}$ or $H(2; 1; \Phi(\tau))^{(1)}$ then any non-trivial irreducible restricted S_p-module V is either isomorphic to S (the adjoint $\left(\text{ad} S \right)$-module) or is induced from an irreducible restricted $\mathcal{M}(S)$-module V_0; see [FSW15, § 5]. Note that $\mathcal{M}(S)/\text{nil}(\mathcal{M}(S))$ is isomorphic to \mathfrak{sl}_2 and $S/\mathcal{M}(S)$ is a 2-dimensional irreducible module over $\mathcal{M}(S)/\text{nil}(\mathcal{M}(S))$. Since $h_0 \in \mathcal{M}(S)$ this implies that if V is induced from V_0 then $\dim V(h_0, i) = p(\dim V_0)$ for all $i \in \mathbb{F}_p$. If $V \cong S$ then one derives
that $\dim V(h_0, i) = p$ for all $i \in \mathbb{F}_p^\times$ by passing from the filtered Cartan type algebra S to the corresponding graded Lie algebra $\text{gr}(S) \cong H(2; \mathbb{1})^{(2)}$. If $S = H(2; \mathbb{1}; \Phi(1))$ then the description in [Str09, 10.4] shows that $h_0 \in S_0$ is contained in a 2-dimensional torus of S_p. Thanks to [BW82, Lemmas 4.7.2] this yields that for any non-trivial restricted S_p-module V all eigenspaces $V(h_0, i)$ with $i \in \mathbb{F}_p^\times$ have the same dimension divisible by p. In conjunction with (11) this entails that in all cases $\dim \mathfrak{g}(\tilde{h}_0, i) = \dim \mathfrak{g}(\tilde{h}_0, j)$ for all $i, j \in \mathbb{F}_p^\times$.

As a result, \tilde{h}_0 is a p-balanced toral element of \mathfrak{g}. Since in the present case $p = 5$ and G is of type E_7, applying Proposition 2.7(ii) yields that the Levi subalgebra $\mathfrak{g}_{\tilde{h}_0}$ has type D_4A_1. But then the derived subalgebra of $\mathfrak{g}_{\tilde{h}_0}$ is semisimple and hence cannot contain its central element \tilde{h}_0. This contradiction shows that the case where $m \geq 1$ cannot occur.

3.18. In the next five subsections we assume that $A(\tilde{G}) = S \cong H(2; \mathbb{1})^{(2)}$. In this case we may regard \tilde{G} as a graded subalgebra of $\text{Der}(H(2; \mathbb{1})^{(2)})$. Recall that S is spanned by all

$$D_H(f) := \partial_1(f)\partial_2 - \partial_2(f)\partial_1$$

where $f \in O(2; \mathbb{1})$ is a linear combination of $a_1^1 x_2^2$ with $0 < a_1 + a_2 < 2(p - 1)$, and the standard maximal subalgebra $\mathcal{M}(S)$ has a basis consisting of all $D_H(a_1^1 a_2^2 x_2^2)$ with $2 \leq a_1 + a_2 < 2(p - 1)$. By [PS99, Theorem 3.3], every grading of $\text{Der}(H(2; \mathbb{1})^{(2)})$ is induced by a suitable (a_1, a_2)-grading of $W(2; \mathbb{1})$ (which contains the derivation algebra of $H(2; \mathbb{1})^{(2)}$). Since \tilde{G}_{-1} is an irreducible G_0-module, no generality will be lost by assuming that $(a_1, a_2) \in \{(-1, -1), (-1, 0), (1, 0), (1, 1)\}$; see [PS99, Corollary 3.4(4)]. If $a_1 = a_2 = -1$ then $\tilde{G}_i = 0$ for $i \geq 2$, $\tilde{G}_1 = kD_H(x_1) \oplus kD_H(x_2) = k\partial_2 \oplus k\partial_1$, and

$$\mathfrak{sl}_2 \cong S_0 \subseteq \tilde{G}_0 \subseteq \mathfrak{gl}_2$$

acts irreducibly on \tilde{G}_1. From this it is immediate that $M(1) \cong \tilde{G}_1$ and $\mathfrak{c}_0(M(1))$ coincides with $M(1)$ (recall that $\mathfrak{c}_0(M(1)) \subseteq M(0)$ by the maximality of M). Since $p \geq 5$, every nonzero element $D \in k\partial_1 \oplus k\partial_2$ has the property that $(\text{ad} D)^4(\tilde{G}) \neq 0$. Arguing as before it is now easy to observe that this contradicts Corollary 2.3. So the case where $(a_1, a_2) = (-1, -1)$ is impossible.

3.19. If $(a_1, a_2) = (-1, 0)$ then [PS99, Corollary 3.4] implies that $\tilde{G}_i = 0$ for $i \geq 2$ and \tilde{G}_0 is sandwiched between $S_0 = \bigoplus_{i=0}^{p-1} k(x_2^{p-1} x_1 \partial_1 - x_1^{p-1} \partial_1) \cong W(1; \mathbb{1})$ and $S_0 \oplus k\mathfrak{z}$ where $z = x_1 \partial_1$ acts on \tilde{G}_1 as a scalar operator. Also, $S_1 = \bigoplus_{i=0}^{p-2} kx_2^i \partial_1 \cong O(1; \mathbb{1})/k\mathfrak{z}$ has codimension 1 in $\tilde{G}_1 \subseteq S_1 \oplus kx_2^{p-1} \partial_1$ which is indecomposable as a $k\partial_2$-module. We now see that as in the previous case $M(1) \cong \tilde{G}_1$ is abelian and $\mathfrak{c}_0(M(1)) = M(1)$. We pick an element $v \in M(0)$ which maps onto $\partial_2 \in S_0$ under the canonical homomorphism $M(0) \to \mathcal{G}(0) = M(0)/M(1)$ and set $R = k\mathfrak{z}$. Since $\mathfrak{c}_0(\tilde{G}_1(\partial_2)) = k\partial_1$ it follows from Corollary 2.3 that there exists an element $e \in \mathcal{O}_\text{min} \cap M(1)$ which maps onto ∂_1 under the epimorphism $M(1) \to \mathcal{G}(1)$. As $(\text{ad} e)^3 = 0$ this contradicts the fact that $(\text{ad} \partial_1)^4(H(2; \mathbb{1})^{(2)}) \neq 0$. Hence the case where $(a_1, a_2) = (-1, 0)$ cannot occur either.

3.20. Now suppose $(a_1, a_2) = (1, 0)$. Then [PS99, Corollary 3.4(2)] implies that $S = \bigoplus_{i=1}^{p-2} S_i$ and $\tilde{G} = \bigoplus_{i=-1}^r \tilde{G}_i$ where $r = p - 2$ or $r = p - 1$. Moreover, if $r = p - 1$ then $\dim \tilde{G}_i = \dim \tilde{G}_{i-1} = 1$. Since $\dim \tilde{G}_r = \dim M(r)$ the equality $r = p - 1$ would mean that M normalises a 1-dimensional subspace $ke \subset \mathcal{N}(\mathfrak{g})$. As the latter would entail that $M \subseteq \mathfrak{n}_e(ke)$ lies in the optimal parabolic subalgebra of e, it must be that $r = p - 2$.

23
Since \bar{G} is a graded Lie algebra, the centre of $\bar{G}_{>0}$ is a graded subalgebra of \bar{G}. Since $S \cong \text{ad} S$ coincides with the unique minimal ideal of $\bar{G} \subseteq \text{Der}(S)$ and $S_{p-2} \neq 0$, this forces $\mathfrak{z}(\bar{G}_{>0}) = \bar{G}_{p-2}$.

From this it is immediate that $c_{\mathfrak{g}}(\text{nil}(M)) = \mathfrak{z}(M_{(1)}) = M_{(p-2)}$.

Applying [PS99, Corollary 3.4(2)] it is straightforward to see that the endomorphism $\text{ad} D_H(x_1) = \partial_2 \in \text{ad} S_0$ acts on $\bar{G}_{p-2} = \bar{G}_{p-2}$ as a single Jordan block and annihilates $D_H(x_1^{p-1}) = -x_1^{p-2}\partial_2 \in S_{p-2}$. Pick $e \in M_{(p-2)}$ which maps onto $D_H(x_1^{p-1})$ under the canonical epimorphism $M_{(p-2)} \to \bar{G}_{p-2}$. Using Corollary 2.3 and arguing as in (3.19) we now observe that $e \in \mathcal{O}_{\text{min}}$.

Let E be a non-trivial restricted irreducible S-module. We have already mentioned in (3.17) that either $E \cong S$, the adjoint S-module, or E is induced from an irreducible restricted module E_0 over $\mathcal{M}(S)/\text{nil}(\mathcal{M}(S)) \cong \mathfrak{sl}_2$. Let $\rho: S \to \mathfrak{gl}(E)$ denote the corresponding representation. If $\rho = \text{ad}$ then $\rho(D_H(x_1^{p-1}))$ is injective on the span of $\{D_H(x_2^i), D_H(x_1 x_2^i) \mid 1 \leq i \leq p-1\}$ implying that $\dim \text{Im} \rho(D_H(x_1^{p-1})) \geq 2(p-1)$.

Now suppose $E \cong u(S) \otimes_{u(\mathcal{M}(S))} E_0$ and write $x \cdot v$ for $(\rho(x))(v)$ where $x \in S$ and $v \in E$. Let $w \in E$ be such that $D_H(x_1^k) \cdot w = 0$ for $3 \leq k \leq p-1$. Recall that $D_H(x_1^k) = kx_1^{k-1}\partial_2$. Also, $x_1\partial_2 = \frac{1}{2}D_H(x_1^2) \in \mathcal{M}(S)$ acts nilpotently on the subspace E_0 of E and commutes with ∂_2. We wish to determine $D_H(x_1^{p-1}) \cdot \partial_2^{p-2} \cdot w$. As $D_H(x_1^{p-1}) = -x_1^{p-2}\partial_1$ we require an inductive formula for $(x_k\partial_2) \cdot \partial_1^k \cdot w$ valid for $k \in \{1, \ldots, p-2\}$. Clearly, $(x_1\partial_2) \cdot \partial_1 \cdot w = -\partial_2 \cdot w + \partial_1 \cdot (x_1\partial_2)(w)$.

Suppose the equality

\begin{equation}
(x_k\partial_2) \cdot \partial_1^k \cdot w = k!(1)^{-1}k\partial_2 \cdot w + \lambda_k \partial_1 \cdot (x_1\partial_2)(w)
\end{equation}

holds for some $\lambda_k \in k$ (this is true for $k = 1$ with $\lambda_1 = 1$). Then

\begin{equation}
(x_{k+1}^1\partial_2) \cdot \partial_1^{k+1} \cdot w = [x_1^{k+1}\partial_2, \partial_1] \cdot \partial_1^k \cdot w + \partial_1 \cdot (x_1^{k+1}\partial_2) \cdot \partial_1^k \cdot w = -(k+1)(x_1^{k+1}\partial_2) \cdot \partial_1 \cdot w + (k+1)(1)^{-1}k\partial_1 \cdot (x_1\partial_2)(w)
\end{equation}

This shows that (12) holds for all $k \in \{1, \ldots, p-2\}$. Since $(p-2)! = 1$ in k we get

\begin{equation}
D_H(x_1^{p-1}) \cdot \partial_1^{p-2} \cdot w = \partial_2 \cdot w - \lambda_{p-2} \partial_1 \cdot (x_1\partial_2)(w).
\end{equation}

Next we show that the equality

\begin{equation}
(x_k^1\partial_2) \cdot \partial_1^{k+1} \cdot w = (k+1)!(-1)^k\partial_1 \cdot w + \mu_k \partial_1^2 \cdot (x_1\partial_2)(w) \quad \text{with} \quad \mu_k \in k
\end{equation}

holds for all $k \in \{1, \ldots, p-2\}$. Since

\begin{equation}
(x_1\partial_2) \cdot \partial_1^2 \cdot w = [x_1\partial_2, \partial_1] \cdot \partial_1 \cdot w + \partial_1 \cdot [x_1\partial_2, \partial_1] \cdot w + \partial_1^2 \cdot (x_1\partial_2)(w) = -2\partial_1 \cdot w + \partial_1^2 \cdot (x_1\partial_2)(w)
\end{equation}

the statement holds for $k = 1$. If it holds for $k = m$ then using (12) we get

\begin{equation}
(x_{m+1}^1\partial_2) \cdot \partial_1^{m+2} \cdot w = \partial_1 \cdot (x_1^{m+1}\partial_2) \cdot \partial_1^{m+1} \cdot w + [x_1^{m+1}\partial_2, \partial_1] \cdot \partial_1^{m+1} \cdot w = (m+1)!(-1)^m\partial_1 \cdot w + \lambda_m \partial_1^2 \cdot (x_1\partial_2)(w) = (m+1)!(-1)^m\partial_1 \cdot w + \mu_m \partial_1^2 \cdot (x_1\partial_2)(w)
\end{equation}

This proves (14). As a consequence,

\begin{equation}
D_H(x_1^{p-1}) \cdot \partial_1^{p-2} \cdot w = -\partial_1 \cdot w - \mu_{p-2} \partial_1^2 \cdot (x_1\partial_2)(w).
\end{equation}
Note that we can take for w any vector of the form $\partial_i^2 \otimes v$ with $v \in E_0$ and $0 \leq i \leq p - 2$. Applying (13) and (15) it is now straightforward to see that $\rho(D_H(x_1^{p-1}))$ is injective on the subspace $\bigoplus_{i=0}^{p-2} \left((\partial_i^{p-1} \otimes E_0) \oplus (\partial_0^2 \otimes E_0)\right)$ of E. It follows that $\text{Im} \rho(D_H(x_1^{p-1}))$ has dimension $\geq 2(p-1)(\text{dim} E)/p^2$.

Let $\text{gr}(G)$ denote the S-module $\tilde{G} \oplus \sum_{k \geq 1} N(G)^k/N(G)^{k+1}$ and write φ for the corresponding representation of S. Let E_1, \ldots, E_r be all induced composition factors of the S-module $\text{gr}(G)$ and write l for the multiplicity of S in $\text{gr}(G)$. Put

$$s := l + \sum_{i=1}^r (\text{dim } E_i)/p^2.$$

Repeating almost verbatim the argument used in (3.17) one observes that g contains a p-balanced toral element \tilde{h}_0 such that $\dim g(\tilde{h}_0, i) = ps$. for all $i \in \mathbb{F}_p^\times$. On the other hand, since $D_H(x_1^{p-1}) = \text{gr}(e)$ for some $e \in M_{(p-2)} \cap \mathcal{O}_{\text{min}}$, the above discussion yields

$$\dim \mathcal{O}_{\text{min}} = \dim (\text{Im ad } e) \geq \dim (\text{Im } \varphi(D_H(x_1^{p-1})) \geq 2(p-1)s.$$

If G is of type E_6 then Proposition 2.7(i) shows that $p = 5$ and $s = 3$. But then $2(p-1)s = 24 > 22 = \dim \mathcal{O}_{\text{min}}$. As this contradicts (16) this case cannot occur. If g is of type E_7 then Proposition 2.7(ii) yields that $p = 5$ and $s = 5$. Since $\dim \mathcal{O}_{\text{min}} = 34 < 40 = 2(p-1)s$ this case cannot occur either.

3.21. Suppose G is of type E_8. Then Proposition 2.7 says that $p = 7$ or $p = 11$. Moreover, if $p = 7$ then $g_{\tilde{h}_0}$ has dimension 80 or 38. If $\dim g_{\tilde{h}_0} = 38$ then $s = 5$ and $\dim \mathcal{O}_{\text{min}} = 58 < 60 = 2(p-1)s$ which violates (16).

Suppose $p = 7$ and $\dim g_{\tilde{h}_0} = 80$. Then $s = 4$ and part (f) of the proof of Proposition 2.7 shows that no generality will be lost by assuming that $\tilde{h}_0 = 2t_7 + 2t_8$. In this case, there exists an element $e \in \mathcal{O}(D_4)$ which admits an optimal cocharacter $\lambda : k^\times \to G$ with the property that $e \in g(\lambda e, 2)$ and $(\partial \lambda)(1) = \tilde{h}_0$. Moreover, it follows from (7) and the preceding discussion that the weight space $g(\lambda, 2)$ coincides with the 2-eigenspace of $\text{ad } \tilde{h}_0$. In view of [Pre03, Theorem 2.3] this implies that the subset $g(\tilde{h}_0, 2) \cap \mathcal{O}(D_4)$ is Zariski dense in $g(\tilde{h}_0, 2)$. As $\mathcal{O}(D_4) \subset \mathcal{N}_p(g)$ by [Law95, Table 9] and [PS15, Theorem 4.1] we now deduce that $x^{[p]} = 0$ for all $x \in g(\tilde{h}_0, 2)$. We may assume that the image of \tilde{h}_0 in G_0 equals $2D_H(x_1x_2)$.

As $[2D_H(x_1x_2), D_H(x_2)] = 2D_H(x_2)$ we can find an element $u \in g(\tilde{h}_0, 2) \cap M(0)$ which maps onto $D_H(x_2) = -\partial_1$ under the epimorphism $M(0) \to G_0$. One checks directly that $\text{Im}(\text{ad}_S D_H(x_2)^{p-1})$ has dimension $p-1$. Since $D_H(x_2) \not\in S(0)$, it is straightforward to see for any irreducible restricted representation $\rho : S \to \mathfrak{g}(E)$ such that $E = u(S) \otimes u(S(0)) E_0$ as S-modules, $\rho(D_H(x_2))$ has $p \dim E_0$ Jordan blocks of size p. Since $u^{[p]} = 0$ by our earlier remark, the definition of s in (3.20) shows that at least $4(p-1) = 24$ Jordan blocks of size $p = 7$.

As $\dim (\text{Ad} G) u \leq \dim (\text{Ad} G) e = 168$, combining [Law95, Table 9] with [PS15, Theorem 4.1] now yields $u \in \mathcal{O}(D_4)$. Note that $D_H(x_1^kx_2^{p-1}) \in S_{k-1}$ for $1 \leq k \leq p - 2$. Since $(\text{ad } u)^p = 0$ and

$$\left(\text{ad } D_H(x_2)\right)^{p-1}(D_H(x_1^kx_2^{p-1})) \neq 0, \quad [2D_H(x_1x_2), D_H(x_1^kx_2^{p-1})] = -2(k+1)D_H(x_1^kx_2^{p-1}),$$

it follows that $g_u \cap g(\tilde{h}_0, 2j) \neq 0$ for five values of $j \in \mathbb{F}_p^\times$. This, however, contradicts [LT11, p. 131]. Therefore, the case where $p = 7$ cannot occur.
If \(p = 11 \) then \([M(5), M(5)] \subseteq M(10) = M(p-1) = 0 \) and

\[
\dim M(5) = \sum_{i=5}^{9} G_i \geq \dim \sum_{i=5}^{9} S_i = 4p + (p - 1) = 54.
\]

Hence \(\mathfrak{g} \) contains an abelian Lie subalgebra of dimension 54. The set of all \(d \)-dimensional abelian Lie subalgebras of \(\mathfrak{g} \) is a closed subset of the Grassmannian \(\text{Gr}(d, \mathfrak{g}) \) invariant under the action of a maximal torus \(T \) of \(G \). So it follows from the Borel fixed-point theorem that the root system \(\Phi = \Phi(G, T) \) contains an abelian subset \(\mathcal{A} \) of size 54 (it has the property that \(\beta + \gamma \notin \Phi \) for all \(\beta, \gamma \in \mathcal{A} \)). However, an old result of Malcev says that in type \(E_8 \) the size of any abelian subset of \(\Phi \) cannot be bigger than 36; see [Ma45]. It is not hard to see that this result of Malcev is still valid in our situation; see [PeS15] for detail. Thus \(G \) is not of type \(E_8 \).

If \(G \) is of type \(F_4 \) then \(\mathfrak{g} \) (and hence \(M \)) acts faithfully on a 26-dimensional irreducible \(G \)-module \(V \) of highest weight \(\varpi_4 \). It is well known that the restricted Lie algebra \(\mathfrak{g} \) embeds into a restricted Lie algebra \(\tilde{\mathfrak{g}} \) of type \(E_6 \) in such a way that \(\tilde{\mathfrak{g}} = \mathfrak{g} \oplus V \) as \(\mathfrak{g} \)-modules and \(\mathcal{O}_{\min}(\mathfrak{g}) \subset \mathcal{O}_{\min}(\tilde{\mathfrak{g}}) \). Let \(e \in \mathcal{O}_{\min}(\mathfrak{g}) \) and denote by \(\rho \) the representation of \(\mathfrak{g} \) in \(\mathfrak{gl}(V) \). As \(\dim [e, \mathfrak{g}] = \dim \mathcal{O}_{\min}(\mathfrak{g}) = 16 \) and \(\dim [e, \tilde{\mathfrak{g}}] = \dim \mathcal{O}_{\min}(\tilde{\mathfrak{g}}) = 22 \) the above shows that

\[
\dim \text{Im} \rho(e) = 22 - 16 = 6.
\]

Since \(V \) is a restricted \(M \)-module, the subspace \(V(0) := \{ v \in V \mid \rho(M(1)) \cdot v = 0 \} \) is nonzero. For \(i > 0 \) we put \(V(i) := (\rho(M(-1))^i \cdot V(0)) \). As \(V \) is an irreducible \(\mathfrak{g} \)-module and \(M(-1) \) generates the Lie algebra \(\mathfrak{g} \) we obtain a finite filtration \(V = V(-r) \supseteq \cdots \supseteq V(-1) \supseteq V(0) \) of \(V \) with the property that \(\rho(M(i)) \cdot V(j) \subseteq V(i+j) \) for all \(i, j \in \mathbb{Z} \). Let \(\text{gr}(V) = \bigoplus_{i \geq -r} \text{gr}_i(V) \) be the corresponding graded \(\mathfrak{g} \)-module where, as usual, \(\text{gr}_i(V) = V(i)/V(i+1) \) and \(V(1) = 0 \) by convention. Since the restricted Lie algebra \(M = M(0) \) contains a nonzero toral element \(h_0 \) of \(\mathfrak{g} \), the \(\mathcal{G} \)-module \(\text{gr}(V) \) has at least one non-trivial composition factor, say \(W \).

By construction, all elements of \(\mathcal{G}_- \) acts nilpotently on \(\text{gr}(V) \). Therefore, the ideal \(\mathcal{N}(\mathcal{G}) \) of \(\mathcal{G} \) acts trivially on \(W \). Hence \(W \) is a non-trivial irreducible \(\mathcal{G} \)-module. Since we can choose \(h_0 \) in such a way that \(h_0 := \text{gr}_0(h_0) \) is a nonzero toral element of \(S_0 \subseteq \mathcal{G}_0 \), the \(S \)-module \(W \) has a non-trivial composition factor, too; we call it \(\bar{W} \). Let \(\bar{\rho} \) denote the representation of \(S \) in \(\mathfrak{gl}(\bar{W}) \). Recall that we can find \(e \in \mathcal{O}_{\min} \cap M(p-2) \) whose image \(\bar{e} \) in \(\mathcal{G}_{p-2} \) coincides with \(D_H(x_1^{p-1}) \). Our remarks earlier in this part now imply that \(\dim \text{Im} \bar{\rho}(\bar{e}) \geq 2(p - 1) \). But then

\[
6 = \dim \text{Im} \rho(e) \geq \dim \text{Im} \bar{\rho}(\bar{e}) \geq 2(p - 1).
\]

As \(p \geq 5 \) we reach a contradiction which shows that the case where \((a_1, a_2) = (1, 0) \) is impossible.

3.2. Finally, suppose \((a_1, a_2) = (1, 1) \), i.e. the grading of the Cartan type Lie algebra \(S = H(2;1)^{(2)} \) is standard. Then \(S_0 = kD_H(x_1^2) \oplus kD_H(x_1x_2) \oplus kD_H(x_2^2) \) is isomorphic to \(\mathfrak{sl}_2 \) and \(\mathcal{G}_1 = S_1 = kD_H(x_1) \oplus kD_H(x_2) \) is a 2-dimensional irreducible \(S_0 \)-module. Furthermore, \(\mathcal{G}_k = 0 \) for \(k \leq -2 \) and \(\mathcal{G}_1 = S_1 = kD_H(x_1^2) \oplus kD_H(x_1x_2) \oplus kD_H(x_2^2) \) is an irreducible 4-dimensional \(S_0 \)-module.

As before, we choose a toral element \(\bar{h}_0 \in M(0) \) which maps onto \(D_H(x_1x_2) \) under the epimorphism \(M(0) \to \mathcal{G}_0 \). Since the endomorphism \(\text{ad} \bar{h}_0 \) is semisimple, there exist \(v_{-1,1} \in M(-1) \cap \mathfrak{g}(\bar{h}_0, \pm 1) \) and \(v_{0,2} \in M(0) \cap \mathfrak{g}(\bar{h}, \pm 2) \) such that

\[
\text{gr}_{-1}(v_{-1,-1}) = D_H(x_1), \quad \text{gr}_{-1}(v_{-1,1}) = D_H(x_2), \quad \text{gr}_0(v_{0,-2}) = D_H(x_1^2), \quad \text{gr}_0(v_{0,2}) = D_H(x_2^2).
\]
Besides, there exist \(v_{1,\pm 3} \in M_{(1)} \cap g(\tilde{h}, \pm 3)\) and \(v_{1,\pm 1} \in M_{(1)} \cap g(\tilde{h}, \pm 1)\) such that
\[
gr_1(v_{1,-3}) = D_H(x_1^3), \quad gr_1(v_{1,-1}) = D_H(x_1x_2^2), \quad gr_1(v_{1,1}) = D_H(x_2^3), \quad gr_1(v_{1,3}) = D_H(x_2^3).
\]
Since \(p > 3\) we have that \(G_2 = S_2 = [S_1, S_1]\). Our earlier remarks show that
\[
(17) \quad [v_{0,-2}, v_{1,3}] \equiv b v_{1,1} \mod M_{(2)} \quad \text{for some } b \in k^\times.
\]
To unify notation we put \(\tilde{h}_0 = v_{0,0}\). If \(N(G) = 0\) then \(g = M_{(-1)}\) contains \(g_{v_{0,0}}\). Since the latter contains a maximal torus of \(g\) the subalgebra \(M\) is regular in \(g\). So from now on we may assume that \(N_2(G) = [G_{-1}, G_{-1}] \neq 0\). In this case \([G_{-1}, G_{-1}] \cong \wedge^2 G_{-1}\) is a 1-dimensional \(S_0\)-module and
\[
M_{(-2)} = [M_{(-1)}, M_{(-1)}] + M_{(-1)} = kw \oplus M_{(-1)}\quad \text{where } w = [v_{-1,-1}, v_{-1,1}] \neq 0.
\]
We claim that \(w \in n_g(M_{(1)})\). Since \(w \in M_{(-2)}\) and \(M_{(2)} = [M_{(1)}, M_{(1)}] + M_{(3)}\) we just need to show that \([w, v_{1,1}] \in M_{(1)}\) for \(i \in \{\pm 1, \pm 3\}\). Since \(w \in M_{(-2)} \cap g_{v_{0,0}}\) and
\[
M_{(-2)} \subseteq g_{v_{0,0}} + g(v_{0,0}, 1) + g(v_{0,0}, -1) + M_{(0)}
\]
we have \([w, v_{0,\pm 2}] \in M_{(0)}\). As \([w, v_{1,3}] \in g(v_{0,0}, 3) \cap M_{(-1)}\) and \(M_{(-1)} \subseteq g(v_{0,0}, 1) + g(v_{0,0}, -1) + M_{(0)}\) it must be that \([w, v_{1,3}] \in M_{(0)}\). Hence \([v_{0,-2}, [w, v_{1,3}]] \in M_{(0)}\). But then (17) yields
\[
M_{(0)} \supseteq [v_{0,-2}, [w, v_{1,3}]] = [[v_{0,-2}, w], v_{1,3}] + [w, [v_{0,-2}, v_{1,3}]] \subseteq [M_{(0)}, M_{(1)}] + b[w, v_{1,1}] + [w, M_{(2)}] \subseteq b[w, v_{1,1}] + M_{(0)}.
\]
As \(b \neq 0\) and \(M_{(0)} \cap g(v_{0,0}, 1) \subseteq M_{(1)}\) this yields \([w, v_{1,1}] \in M_{(1)}\). So \([w, [v_{0,\pm 2}, v_{1,1}]] \in [M_{(0)}, v_{1,1}] + [v_{0,\pm 2}, M_{(1)}] \subseteq M_{(1)}\) forcing \([w, v_{1,3}], [w, v_{1,1}] \in M_{(1)}\). Finally, \([w, [v_{0,-2}, v_{1,-1}]] \in [M_{(0)}, v_{1,-1}] + [v_{0,-2}, M_{(1)}] \subseteq M_{(1)}\). Hence \([w, v_{1,-3}] \in M_{(1)}\) proving the claim. As a result, \(w \in n_g(M_{(1)})\) contrary to the maximality of \(M\). We now conclude that the case where \(S = H(2; 1\frac{1}{2})\) is impossible.

3.23. Suppose that \(S \cong H(2; 1\frac{1}{2}; \Phi)^{(1)}\) where \(\Phi\) is one of \(\Phi(\tau), \Phi(1), \Phi(2)\). Then \(\text{Der}(S) = S_p\); see [Str04, Theorem 7.2.2]. The grading of \(S\) gives rise to that of \(\text{Der}(S)\). Identifying \(S\) with \(ad\) \(S\) we have that \(S_i^{[p]} \subseteq \text{Der}_{pd}(S)\) for all \(i \in \mathbb{Z}\). Then it follows from Jacobson’s formula for \(p\)-th powers that
\[
(18) \quad \text{Der}_0(S) = \left(\sum_{i \in \mathbb{Z}, i \geq 0} S_i^{[p]}\right)_0 = \sum_{i \geq 0} S_i^{[p]}.
\]
As \(G_0 \cong G_0 \subseteq \text{Der}_0(S)\) this implies that \(S_{-1} = G_{-1}\) is an irreducible \(S_0\)-module.

If \(\Phi = \Phi(\tau)\) then \(\omega = \Phi(\omega_S) = (1 + x_1^{p-1} x_2^{p-1}) x_1 \wedge dx_2\) and \(S\) is contained in the \(k\)-span of all \(D_{H, \omega}(f)\) with \(f \in O(2; 1)\); see [Str04, Theorem 6.5.7(2)]. Thanks to (the proof of) Lemma 2.8 we may assume that the grading of \(S\) is induced by the action of the torus \(T_\Phi = \{g(t, t^{-1}) \mid t \in k^\times\}\). Then \(S_0\) is contained in the \(k\)-span of all \(D_{H, \omega}(x_1^{k} x_2^{l})\) with \(k \in \{1, \ldots, p-1\}\). Using [Str04, (6.5.5)] it is then straightforward to check that \(S_0\) is abelian. The irreducibility of the \(S_0\)-module \(S_{-1}\) now gives \(\dim G_{-1} = \dim S_{-1} = 1\). But then \(G_{-1}\) is not a faithful \(G_0\)-module. This contradiction shows that \(S \not\cong H(2; 1\frac{1}{2}; \Phi(\tau))^{(1)}\).

Suppose \(\Phi = \Phi(l)\). Since in the present case \(p = 1\) we may assume that \(l = 1\). Then \(\omega = \Phi(\omega_S) = \exp(x_1^{(p)}) dx_1 \wedge dx_2\). Using (18) we observe that \(G_0 \cong G_0\) identifies with the \(p\)-closure of \(S_0\) in \(\text{Der}_0(S)\). By the proof of Lemma 2.8, we may assume that the grading of \(S\) is induced by the action of the torus \(T_\Phi = \{g(t, 1) \mid t \in k^\times\}\). In this case, \(S_0\) contains \(D_{H, \omega}(x_2) = -\partial_1 - x_1^{p-1} x_2 \partial_2\). Since \(G_0\) is a restricted subalgebra of \(\text{Der}(S)\) we then have \(x_2 \partial_2 = D_{H, \omega}(x_2)^{[p]} \in G_0\); see [Str09, p. 45]. This means that \(G_0 \cong G_0\) contains the degree derivation of \(G\). Since \(M_0\) is a restricted subalgebra of \(g\) we
can find a toral element $t_0 \in M(0)$ which maps onto the degree derivation $x_2\partial_2$ under the canonical homomorphism $M(0) \to \mathcal{G}_0$.

From [Str09, 10.4] we know that $S_\rho = S \oplus \mathbb{k} (x_2\partial_2)$ and $\mathcal{G}_i = S_i$ for all $i \neq 0$. Since $S_{-1} \neq 0$ there exists $\varepsilon \in \{ \pm 1 \}$ such that $S_i = \{ x \in S \mid \langle g(1,t) \cdot x = t^{\varepsilon i} x \rangle \}$ for all $i \in \mathbb{Z}$. As S is spanned by all $D_{H,\omega}(f)$ with $f \in O(1;1)$ by [Str04, Theorem 6.5.7(2)], this shows that $\mathcal{G}_i = S_i = 0$ for all $i \leq -p$. If $\varepsilon = -1$ then $S_i = 0$ for $i > 1$. So we can repeat verbatim the argument used in the last two paragraphs of (3.8) to obtain that $N(\mathcal{G}) = 0$. If $\varepsilon = 1$ then $S_i = 0$ for $i > 1$ and we reach the same conclusion by arguing as in (3.13). In any event, $\mathfrak{g}_t \subset M$ which implies that M is a regular subalgebra of \mathfrak{g}. Since this contradicts our assumption on M we deduce that the case $S \cong H(2;1;\Phi(1))$ is impossible.

3.24. Suppose $S \cong H(2;2;1;\Phi(2))$. Then $\dim S \geq p^3 - 2$ which implies that G is of type E_7 and $p = 5$. Therefore,

$$\dim N(\mathcal{G}) = \dim \mathfrak{g} - \dim \mathcal{G} \leq \dim \mathfrak{g} - \dim S \leq 133 - 123 = 10.$$

From this it is immediate that $S = S^{(\infty)}$ acts trivially on all \mathcal{G}-modules $N(\mathcal{G})^k/N(\mathcal{G})^{k+1}$ with $k \geq 1$. Let M' be the inverse image of S_0 under the canonical homomorphism $M = M(0) \to \mathcal{G}_0$.

If $\dim M' > (\dim \mathfrak{g})/2$ then $\kappa_{\mathcal{G}} \neq 0$. Applying (10) then yields that the restriction of $\kappa_{\mathcal{G}}$ to S_0 is nonzero. Since S_0 acts trivially on each $N(\mathcal{G})^k/N(\mathcal{G})^{k+1}$, it follows that the restriction of $\kappa_{\mathcal{G}}$ to S_0 is nonzero as well. Since S is an ideal of \mathcal{G}, the restriction of $\kappa_{\mathcal{G}}$ to S coincides with the Killing form of S. In view of the above this means that $\kappa_{S} \neq 0$. But then κ_{S} is non-degenerate by the simplicity of S. Since S is strongly degenerate, i.e. contains a nonzero element c with $(\text{ad}c)^2 = 0$, this is impossible; see [PS01, Lemma 4.4], for example. It follows that

$$\dim S_{\geq 0} \leq \dim M' \leq (\dim \mathfrak{g})/2.$$

If $S = H(2;2;1;\Phi(2))$ we may assume without loss of generality that the grading of S has type (a_1,a_2) with respect to the standard generators x_1,x_2 of $O(2;2;1))$; see [PS01, Theorem 4.7]. Since S_{-1} is an irreducible $\text{Der}(S)$-module, the proof of [PS01, Lemma 4.18] shows that (a_1,a_2) is one of $(-1,-1),(-1,0),(0,-1),(1,0),(1,1)$. The description in loc. cit. shows that in the last three cases $S_{\geq 0}$ has codimension $p^2 = 25$ in S, implying that $\dim S_{\geq 0} \geq 123 - 24 = 94 > (\dim \mathfrak{g})/2$. In view of (19) it follows that $(a_1,a_2) \in \{(1,-1),(1,0),(0,-1)\}$. Repeating almost verbatim the arguments used (3.18) and (3.19) we find, in each of the remaining cases, an element $x \in M(1) \cap \mathcal{O}_{\text{min}}$ such that $(\text{ad}^1 x)^4 \neq 0$. Since $(\text{ad} x)^3 = 0$ for every $x \in \mathcal{O}_{\text{min}}$, we reach a contradiction. This shows that the case where $S \cong H(2;2;1;\Phi(2))$ cannot occur.

If $S \cong H(2;2;1;\Phi(1))$ we argue as in (3.23). Indeed, in this case $\text{Der}(S) = S_\rho$ by [Str04, Theorem 7.2.2(3)] and $\omega = (1 + x_1^{p^2-1}x_2^{p-1})dx_1 \wedge dx_2$. It follows from (18) that S_{-1} is an irreducible S_0-module. By the proof of Lemma 2.8, we may assume that the grading of S is induced by the action of the torus $T_\rho = \{ g(t,t^{-p-1}) \mid t \in \mathbb{k}^\times \}$ whilst [Str04, Theorem 6.5.7(2)] yields that S is contained in the \mathfrak{k}-span of all $D_{H,\omega}(f)$ with $f \in O(2;2;1))$. Then S_0 is contained in the \mathfrak{k}-span of all $D_{H,\omega}(x_1^{kp+k-p}x_2^k)$ with $k \in \{1,\ldots, -p\}$. As a consequence, the nilradical of S_0 has codimension 1 in S_0. As S_{-1} is an irreducible S_0-module S_{-1} this implies that $\dim S_{-1} = \dim S_{-1} = 1$. But then S_{-1} is not faithful over S_0, a contradiction. Therefore, $S \not\cong H(2;2;1;\Phi(1))$.

If $S \cong H(2;2;1;\Phi(1))$ then $\omega = \text{exp}(x_1^{p^2})dx_1 \wedge dx_2$ and we may assume that the grading of S is induced by the action of $T_\Phi = \{ g(1,t) \mid t \in \mathbb{k}^\times \}$ (see the proof of Lemma 2.8). Since $S_{-1} \neq 0$
there exists $\varepsilon \in \{\pm 1\}$ such that $S_i = \{x \in S \mid (g(1,t)) \cdot x = t^{\varepsilon}x\}$ for all $i \in \mathbb{Z}$. From [Str04, Theorem 7.2.(4)] we know that $\text{Der}(S) = S_p$ whilst [Str04, Theorem 7.1.3(2)] implies that $\text{Der}(S)$ is spanned by $S \cong \text{ad} S$ and the elements $x_2\partial_2$ and $(\partial_1 - x_1^{(p^2-1)}x_2\partial_2)^p$ both of which have degree 0. By [Str04, Theorem 6.5.8], S is spanned by the homogeneous elements

$$D_{H,1}(f) = D_\omega\left(\exp(x_1^{(p^3)}) \cdot f\right), \quad f \in O(2;(2;1)).$$

This implies that if $\varepsilon = 1$ then the graded subalgebra $S_{\geq 0}$ of $\text{Der}(S)$ has codimension $p^2 = 25$ in S. As $\dim S_{\geq 0} = 100 > (\dim g)/2$, this violates (19). So it must be that $\varepsilon = -1$. But then the above description shows that $S_0 \cong W(1;2)$ as Lie algebras, $G_i = S_i = 0$ for $i > 1$, and $G_1 = S_1 = \text{span}\{D_{H,1}(x_1^{(i)}) \mid 0 \leq i \leq p^2 - 1\}$ is an irreducible (non-restrictable) S_0-module of dimension p^2. Using [Str04, (6.5.8)] it is straightforward to check that $D_{H,1}(x_1^{(i)}) = x_1^{(i-1)}\partial_2$ for $1 \leq i \leq p^2 - 1$ and $D_{H,1}(1) = x_1^{(p^2-1)}\partial_2$. Moreover, the element $u := \partial_1 - x_1^{(p^2-1)}x_2\partial_2 \in S_0$ operates on S_1 as a single Jordan block of size p^2 with eigenvalue 1. Put $v := \sum_{i=0}^{p^2-1} x_1^{(i)}\partial_2$. Then $v \in S_1$ and direct computations show that $[u,v] = v$ and $(ad v)^4 \neq 0$. Since $G_i = 0$ for $i > 1$, the ideal $\text{nil}(M) = M_{(1)}$ is abelian. Since G_0 acts faithfully on S_1, it coincides with $\mathfrak{g}_0(\text{nil}(M))$. Let $\pi: M_{(0)} \to G_0$ be the canonical homomorphism, and pick any $\tilde{u} \in \pi^{-1}(u)$. Let R be the Lie subalgebra of M generated by \tilde{u} and v (here we identify $M_{(1)}$ with S_1). Since $[\tilde{u},v] = v$ and $v \in \text{nil}(M)$, the above discussion in conjunction with Corollary 2.3 show that $v \in O_{\text{min}}$. But then $(ad v)^3 = 0$. As this contradicts our choice of v we conclude that $S \not\cong H(2;(2;1);\Phi(1))$.

The case $S \cong H(2;(2;1);\Phi(2))$ is quite similar, but shorter. Here $\omega = \exp(x_2^{(p)})dx_1 \wedge dx_2$ and the grading of S is induced by the action of $T_\mathbb{C} = \{g(t,1) \mid t \in \mathbb{C}\}$. Arguing as before we observe that $\varepsilon = \pm 1$. If $\varepsilon = 1$ then $S = \bigoplus_{i \geq -1} S_i$ and $S_{\geq 0}$ has codimension $p = 5$ in S. But then $\dim S_{\geq 0} = 120 > (\dim g)/2$ violating (19). If $\varepsilon = -1$ then $S_i = 0$ for $i > 1$ and

$$S_{-1} = \text{span}\{D_\omega\left(\exp(x_2^{(p)}) \cdot x_1^{(2)}x_1^{(i)}\right) \mid 0 \leq i \leq p - 1\}.$$

Using [Str04, (6.5.8)] is is straightforward to check that $S_{-1} \subset W(2;\mathbf{1})$. Since the Lie algebra $S_{<0}$ is generated by S_{-1}, it follows that S_{-1} is S and $W(2;\mathbf{1})$ as Lie subalgebras of $W(2;\mathbf{1})$. However, $D_\omega(x_2^{(p)} \cdot x_1^{(p)}) \in S_{-1} \setminus W(2;\mathbf{1})$. This contradiction finally shows that S is not a Lie algebra of type H.

3.25. If $S = K(3;\mathbf{1})$ then $S \subset W(3;\mathbf{1})$ has basis $\{D_K(x_1^{a_1}x_2^{a_2}x_3^{a_3}) \mid 0 \leq a_i \leq p - 1\}$. In particular, $\dim S = p^3$. Hence this case may occur only if $p = 5$ and G is a group of type E_7. Recall that if $f \in O(3;\mathbf{1})$ then $D_K(f) = f_1\partial_1 + f_2\partial_2 + f_3\partial_3$ where $f_1 = x_1\partial_2(f) - \partial_2(f)$, $f_2 = x_2\partial_3(f) + \partial_1(f)$ and $f_3 = 2f - x_1\partial_1(f) - x_2\partial_2(f)$; see [BGP09, 2.11], for example.

Repeating verbatim the arguments used at the beginning of (3.24) we observe that $\dim S_{\geq 0} \leq (\dim g)/2$. As all derivations of S are inner by [Str04, 7.1.2(4)], the S_0-module S_{-1} is faithful and irreducible. The Lie algebra S has basis $\{D_K(f) \mid f \in O(3;\mathbf{1})\}$ and any \mathbb{Z}-grading of S is induced by an admissible grading of $O(3;\mathbf{1})$; see [PS01, p. 276]. Hence it may be assumed without loss of generality that there exists a triple $(a_1,a_2,a_3) \in \mathbb{Z}^3$ with $a_3 = a_1 + a_2$ such that

$$\deg(D_K(x_1^{a_1}x_2^{a_2}x_3^{a_3})) = (r_1 + r_3 - 1)a_1 + (r_2 + r_3 - 1)a_2.$$

We first suppose that $a_2 = 0$. Since $S_{-1} \neq 0$ it follows from (20) that $a_1 = \pm 1$ and S_0 is spanned by $D_K(x_1x_2^i)$ and $D_K(x_3^ix_3)$ with $0 \leq i \leq p - 1$. Also,

$$\sum_{i \leq 0} S_{ia_1} = S_{-a_1} = \text{span}\{D_K(x_2^i) \mid 0 \leq i \leq p - 1\}.$$
If \(a_1 = 1 \) then \(\dim S_{\geq 0} = 120 > (\dim g)/2 \). So this case cannot occur. Hence \(a_1 = -1 \) implying \(S_{\geq 0} = S_0 \oplus S_1 \). Then the proof of [PS01, Lemma 4.12] shows that \(S_0 \cong W(1; 1) \times O(1; 1) \) acts irreducibly and faithfully on \(S_1 \cong O(1; 1) \). Set \(u := D_K(x_1) \) and \(v := D_K(x_2) \). It is straightforward to see that \(u \in S_0 \) and \(v \) spans \(S_1 \cap \ker(\text{ad} u) \). Identify \(S_1 \) with \(M_{(1)} = \text{nil}(M) \) and let \(\tilde{u} \) be a preimage of \(u \) in \(M = M_{(0)} \). The preceding remarks show that \(c_g(\text{nil}(M)) = M_{(1)} \). Applying Corollary \ref{cor:abelian} with the abelian Lie algebra \(R = \mathbb{k} \tilde{u} \oplus \mathbb{k} v \) we now conclude that \(v \in \mathcal{O}_{\text{min}} \). But \((\text{ad} D_K(x_2))^4 \neq 0 \) and \((\text{ad} e)^3 = 0 \) for all \(e \in \mathcal{O}_{\text{min}} \). This contradiction shows that \(a_1 \neq 0 \). Arguing similarly \((\text{with the roles of } x_1 \text{ and } x_2 \text{ interchanged})\) one obtains that \(a_2 \neq 0 \).

If \(a_1 \neq |a_2| \) then none of \(D_K(1), D_K(x_1), D_K(x_2), D_K(x_1^2), D_K(x_2^2) \) have degree 0. As \(D_K(x_3) \) and \(D_K(x_1 x_2) \) belong to the standard maximal subalgebra of \(S \) it follows that \([S_0, S_0]\) acts nilpotently on \(S \). The irreducibility of the \(G_0 \)-module \(G_{-1} = S_{-1} \) then forces \(\dim G_{-1} = 1 \) yielding \(g_k = 0 \) for \(k \geq 2 \). But then \(\dim g = \dim S = 125 \), a contradiction. Therefore, \(a_1 = |a_2| \).

If \(a_1 = -a_2 \) then arguing as in part \((d)\) of the proof of [PS01, Lemma 4.12] one observes that \(S_0 \) contains a nonzero ideal acting nilpotently on \(S \). As this contradicts the faithfulness of the \(S_0 \)-module \(S_{-1} \), we conclude that \(a_1 = a_2 \). Then \(a_1 = \pm 1 \) because \(S_{-1} \neq 0 \). If \(a_1 = 1 \) then \(\dim S_{\geq 0} = 122 > (\dim g)/2 \). As this is not the case we have that \(a_1 = a_2 = -1 \). Then \(G_2 = S_2 = kD_K(1) \) and \(g_k = S_k = 0 \) for \(k \geq 2 \). It follows that \(M \) normalises a line \(k e \) with \(e \in N(g) \). As \(p_g(ke) \) is contained in the optimal parabolic subalgebra of \(e \) by [Pre03, Theorem A], we now deduce that the case where \(S \cong K(3; 1) \) is impossible.

3.26. Finally, suppose that \(S \) is isomorphic to the Melikian algebra \(M(1, 1) \). Then \(p = 5 \) and \(\dim S = 125 \) implying that the group \(G \) has type \(E_7 \). By [Str04, 7.1.4], all derivations of \(S \) are inner. As \(\dim G = 125 < 133 = \dim g \) it must be that \(N(G) \neq 0 \). Arguing as at the beginning of \((\ref{eq:rigidity})\) we observe that \(G = S = S^{(\infty)} \) acts trivially on the nonzero \(G \)-module \(N(G)/N(G)^2 \). As a consequence, \(N(G) \) contains a graded ideal \(I \) of \(G \) such that \(N(G)^2 \subset I \) and \(\dim(N(G)/I) = 1 \). Let \(L = G/I \). This Lie algebra is a central extension of \(M(1, 1) \) and its centre \(z(L) = N(G)/I \) is contained in \(G_{-k}/I_{-k} \) for some \(k \geq 2 \). Since \(G_{-k} = G_{k-1}^2 \) for all \(k \geq 1 \) it must be that \(z(L) \subset [L, L] \), i.e. the extension

\[
0 \to z(L) \to L \to M(1, 1) \to 0
\]

is non-split. Since this contradicts [PS08, Proposition 6.2] we now conclude that the present case case cannot occur. This completes the proof of Theorem \ref{thm:main}.

4. Further remarks and observations

4.1. Non-existence of Hamiltonian subalgebras of \(g \). We retain our assumption that \(G \) is an exceptional algebraic \(k \)-group and \(p \) is a good prime for \(G \). It is proved in [HS15b] that \(g \) does not contain Lie subalgebras \(M \) isomorphic to \(H(m; \overline{2}; \Phi(2)) \). Of course, the majority of pairs \((m; n)\) are ruled out by simple dimension arguments, but the most difficult case where \(M \cong H(2; 1; \Phi(2)) \) is addressed in loc. cit. by using a description of the Witt subalgebras of \(g \). Since this result is important for classifying all maximal subalgebras of \(g \), an alternative proof is given below.

Proposition 4.1 (Herpel–Stewart). *The Lie algebra \(g \) does not contain Lie subalgebras isomorphic to \(H(2; 1; \Phi(2)) \).*

Proof. (a) Suppose \(S \cong H(2; 1; \Phi(2)) \) is a Lie subalgebra of \(g \) and no exceptional group \(H \) of dimension \(< \dim g \) has the property that \(H(2; 1; \Phi(2)) \hookrightarrow \text{Lie}(H) \). Let \(S \) be the \(p \)-envelope of \(S \).
in \(\mathfrak{g} \). If \(\mathfrak{z}(\mathcal{S}) \) contains a semisimple element, \(t \) say, then \(S \) is contained in the Levi subalgebra \(\mathfrak{g}_t = \text{Lie}(L) \) where \(L = G_t \). If \(\mathfrak{z}(\mathcal{S}) \) contains a nonzero nilpotent element, \(e \) say, then \(S \subset \mathfrak{g}_e \). Since \(\mathfrak{g}_e \) is contained in a proper parabolic subalgebra of \(\mathfrak{g} \), the Lie algebra \(S \) again injects into the Lie algebra of a proper Levi subgroup \(L \) of \(G \). In any event, the Lie algebra of one of the simple components of \(L \) must contain an isomorphic copy of \(S \). As this component must be classical by our assumption on \(\mathfrak{g} \), it is straightforward to see that \(S \) affords a faithful representation of dimension \(< 23 \leq p^2 - 2 \). However, our discussion in (3.20) shows that this is impossible. Therefore, \(\mathfrak{z}(\mathcal{S}) = 0 \) that is \(\mathcal{S} \cong S_p \), the minimal \(p \)-envelope of \(S \); see [Str04, Corollary 1.1.8(2)]. In particular, this implies that all composition factors of the \(S \)-module \(\mathfrak{g} \) are restrictable.

(b) Since all composition factors of the \(S \)-module \(\mathfrak{g} \) are restricted, the arguments used in (3.17) show that \(S \) contains a nonzero \(p \)-balanced toral element, say \(h \). Then the centraliser \(\mathfrak{g}_h \) is listed in one of the seven cases of Proposition 2.7. Let \(S = S_{(-1)} \supset S_{(0)} \supset S_{(1)} \supset \cdots \supset S_{(q)} \) be the standard filtration of the Cartan type Lie algebra \(S \) and denote by \(O(2; 1)[d] \) the subspace of all homogeneous truncated polynomials of degree \(d \) in \(O(2; 1) \). It is well known that \(q \in \{2p - 5, 2p - 4\} \) and \(\dim S_{(i)}/S_{(i+1)} \geq \dim O(2; 1)[i + 2] \) for all \(i \geq -1 \). From this it is immediate that \(S_{(p-1)} \) is an abelian subalgebra of \(\mathfrak{g} \) and

\[
\dim S_{(p-1)} \geq \sum_{i \geq p+1} \dim O(2; 1)[i] = (p - 2) + (p - 3) + \cdots + 2 = \frac{1}{2}(p - 1)(p - 2) - 1.
\]

If \(p = 11 \) then \(\dim S_{(p-1)} \geq 44 \) and if \(p = 7 \) then \(\dim S_{(p-1)} \geq 14 \). Applying [Ma45] and [PeS15] and arguing as in (3.21) we now observe that cases \(\text{(v)} \) and \(\text{(vi)} \) of Proposition 2.7 are impossible.

(c) Suppose \(S \cong H(2; 1)^{(2)} \). Some dimension estimates used in (3.20) and (3.21) are still applicable since they only rely on the structure of \(S \) and properties of its irreducible restricted representations. Furthermore, keeping in mind that Lie algebras of type \(F_4 \) embed into Lie algebras of type \(E_6 \) and arguing as at the end of (3.21) we see that case \(\text{(vii)} \) of Proposition 2.7 cannot occur in the present situation.

We adopt the notation introduced in (3.20). In particular, we let \(E_1, \ldots, E_r \) stand for the induced composition factors of the \(\mathfrak{ad}_g \)-module \(\mathfrak{g} \) and write \(l \) for the multiplicity of the adjoint module \(S \) in \(\mathfrak{g} \). As in (3.20) we put

\[
s := l + \sum_{i=1}^r (\dim E_i)/p^2.
\]

Recall that \(S \) is closely related with \(O(2; 1) \) regarded as a Lie algebra through its standard Poisson bracket \(\{ \cdot, \cdot \} \). More precisely, \(\mathbb{k}1 \subset \{ O(2; 1), O(2; 1) \} \) is the centre of the Poisson algebra \(O(2; 1) \) and \(S \cong \{ O(2; 1), O(2; 1) \}/\mathbb{k}1 \) as Lie algebras. The derived subalgebra \(\{ O(2; 1), O(2; 1) \} \) is spanned by all monomials \(x_1^{m_1}x_2^{m_2} \) with \(0 \leq m_1, m_2 \leq p - 1 \) and \(m_1 + m_2 < 2(p - 1) \). In other words, we may identify \(S \) with the the \(k \)-span of all \(x_1^{m_1}x_2^{m_2} \in O(2; 1) \), with \(0 < m_1 + m_2 < 2(p - 1) \) in such a way that

\[
(21) \quad [x_1^{m_1}x_2^{m_2}, x_1^{n_1}x_2^{n_2}] = (m_1n_2 - m_2n_1)x_1^{m_1+n_1-1}x_2^{m_2+n_2-1} \quad (0 \leq m_i, n_i \leq p - 1, i = 1, 2).
\]

Let \(h = -2(1 + x_1)x_2 \), a toral element of \(S \) not contained in \(S_{(0)} \). Using (21) it is easy to see that all nonzero eigenvalues of \(h \) have multiplicity \(p \). If \(\rho : S \to \mathfrak{gl}(E) \) is a restricted representation of \(S \) induced from \(S_{(0)} \), so that \(E = u(S) \otimes_{u(S_{(0)})} E_0 \) for some irreducible restricted \(S_{(0)} \)-module \(E_0 \), then all eigenvalues of \(\rho(h) \) have multiplicity \(p \dim E_0 \) because \(h \notin S_{(0)} \) and \(h^{[p]} = h \). From this it is immediate that \(h \) is a \(p \)-balanced element of \(\mathfrak{g} \) and \(\dim \mathfrak{g}(h, i) = ps \) for all \(i \in \mathbb{F}_p^\times \).

(d) Let \(V \) be the 2-dimensional subspace of \(S \) spanned by \(x_1 \) and \((1 + x_1)^2x_2 \). By construction, \(V \cap S_{(0)} = 0 \) and \([h, v] = 2v \) for all \(v \in V \). Analysing Kac coordinates of \(p \)-balanced \(G \)-orbits obtained in the course of proving Proposition 2.7 one finds out that in cases \(\text{(i)}, \text{(ii)} \) and \(\text{(iv)} \) there
always exist a nilpotent element $e \in \mathcal{O}(A_{p-1})$ and an optimal cocharacter $\tau: k^\times \to G$ for each such that $e \in g(\tau, 2)$ and $h = (\langle \tau \rangle)(1)$. In order to see this one just needs to compare (3), (4) and (7) with [Car03, pp. 402–407]. Moreover, in all three case $g(h, 2) = g((d\tau)(1), 2) = g(\tau, 2) \oplus kn$ for some $n \in \mathcal{O}_{\min}$. As dim $V = 2$ it must be that $V \cap g(\tau, 2) \neq 0$. In view of [Pre03, Theorem 2.3] this implies that a nonzero element $v \in V$ is contained in the Zariski closure of $\mathcal{O}(A_{p-1})$ in g. Note that $v = \lambda x_1 + \mu (1 + x_1)^2 x_2 = v = u + v_0$ where $v_0 = 2\mu x_1 x_2 + x_1 x_2^2 \in S(0)$ and $u = \lambda x_1 + \mu x_2$ is a nonzero element in the linear span of $x_1 = \partial_2$ and $x_2 = -\partial_1$.

As $\mathcal{O}(A_{p-1}) \subset N_p(g)$ we have that $v|_{\mathfrak{p}} = 0$. Since $v \notin S(0)$ it is straightforward to see that for any irreducible restricted representation $\rho: S \to \mathfrak{gl}(E)$ such that $E = u(S) \otimes_{u(S)} E_0$ as S-modules, the endomorphism $\rho(v)$ has $p \dim E_0$ Jordan blocks of size p. On the other hand, using (21) one checks directly that the Im$(\ad_S u)^{p-1}$ has dimension $p - 1$. A standard filtration argument then shows that dim Im$(\ad_S v)^{p-1} \geq \dim$ dim$(\ad_S u)^{p-1}$. Since $(\ad_S v)^p = 0$ and dim $S = p^2 - 2$ it follows that $\ad_S v$ has $p - 1$ Jordan blocks of size p. Consequently, $\ad v$ has at least $s(p - 1)$ Jordan blocks of size p.

Regarding $v = \lambda x_1 + \mu (1 + x_1)^2 x_2$ as an element of the Poisson algebra $O(2; 1)$ we observe that $v^k \in \{O(2; 1), O(2; 1)\}$ for all $1 \leq k \leq p - 1$. We identify the v, v^2, \ldots, v^{p-1} with their images in $S \cong \{O(2; 1), O(2; 1)\}/k1$. Since $\{v, v^k\} = 0$ and $[h, v] = 2v$ we have that $[v, v^k] = 0$ and $[h, v^k] = 2kv^k$ for all $1 \leq k \leq p - 1$. This implies that $g(h, i) \cap g_v \neq 0$ for all $i \in \mathbb{F}_p^\times$.

Note that $v^{p-1}, v^{p-1} \in S(p-3)$ and $v^{p-1} - v^{p-1} \in S(p-2)$. Since the automorphism group Aut(S) preserves all components $S(i)$ of the standard filtration of S, it is straightforward to see that v^{p-1} lies in the Zariski closure of $\mathbb{k}^\times (\text{Aut}(S)\cdot v^{p-1})$. In view of Chevalley’s Semicontinuity Theorem, this means that dim Im$(\ad_S v^{p-1}) \geq \dim$ dim$(\ad_S v^{p-1})$. Since for every irreducible restricted representation $\rho: S \to \mathfrak{gl}(E)$ induced from $S(0)$ the vector space E carries an Aut(S)-module structure compatible with that of S, we also have, by the same token, that dim Im$\rho(v^{p-1}) \geq \dim$ dim$\rho(v^{p-1})$. Since v^{p-1} and x_1^{p-1} are conjugate under the action of Aut(S) the images of $\ad_S(v^{p-1})$ and $\ad_S(x_1^{p-1})$ have equal dimensions. The same applies to the images of $\rho(v^{p-1})$ and $\rho(x_1^{p-1})$ thanks to the compatible action of Aut(S) on E.

(e) If h is as in case (i) of Proposition 2.7 then $p = 5$, the group G has type E_6 and $s = 3$. So $\ad v$ has at least 12 Jordan blocks of size p. If h is as in case (ii) of Proposition 2.7 then $p = 5$, the group G has type E_7 and $s = 5$. Therefore, $\ad v$ has at least 20 Jordan blocks of size p. If h is as in case (iii) of Proposition 2.7 then $p = 7$, the group G has type E_8 and $s = 5$. Therefore, $\ad v$ has at least 30 Jordan blocks of size p. Since $(\ad G)v \in \mathcal{O}(A_{p-1})$ (and hence dim $\langle g, v \rangle \leq \dim(\mathcal{O}(A_{p-1}))$) we combine [Law95, Tables 6, 8 and 9] with [PS15, Theorem 4.1] to conclude that either $v \in \mathcal{O}(A_{p-1})$ or G is of type E_8 and $v \in \mathcal{O}(E_8(a_7))$.

Suppose $v \in \mathcal{O}(E_8(a_7))$. Then $p = 7$ and v is distinguished in g. So it follows from [Bor91, 11.8] that all maximal toral subalgebras of the normaliser $n_g(kv) = \text{Lie}(N_G(kv))$ are 1-dimensional and conjugate under the adjoint action of G_v. By [LT11, p. 157], there is a nonzero toral element $t \in n_g(kv)$ such that $g(t, 2p - 2) \cap g_v = 0$. As $[h, v] = 2v$ the above implies that $g(h, i) \cap g_v = 0$ for some $i \in \mathbb{F}_p^\times$, a contradiction.

Now suppose $v \in \mathcal{O}(A_{p-1})$. Then it is immediate from [LT11, pp. 87, 104, 158] that the subspace $g_v \cap g(h, 2p - 2) = g_v \cap g((d\tau)(1), 2p - 2) = g_v \cap g(\tau, 2p - 2)$ is contained in the Zariski closure of \mathcal{O}_{\min}. Our earlier remarks then show that $v^{p-1} \in \mathcal{O}_{\min}$. In particular, dim Im$(\ad v^{p-1}) < 2(p - 1)s$ in all three cases. On the other hand, arguing as in
Moreover, we now deduce that any non-trivial irreducible restricted \([\text{Bl}(\mathbb{F}_p, \mathbb{F}_p)]\). Since in the present case \(\dim S = 2\), all isomorphism types of Albert–Zassenhaus algebras of a given dimension are determined in \([\text{Bl}(\mathbb{F}_p, \mathbb{F}_p)]\) with Lie bracket given by

\[
\{v_\alpha, v_\beta\} = (\alpha | \beta)v_{\alpha + \beta}
\]

where \((\cdot | \cdot)\) is a non-degenerate skew-symmetric \(\mathbb{F}_p\)-valued bilinear form on \(\mathbb{F}_p \oplus \mathbb{F}_p\); see \([\text{Str09}, \text{Theorem 10.3.2}]\). Here \(\mathbb{F}_p \oplus \mathbb{F}_p\) is nothing but the dual space of \(T^\text{tor} = \mathbb{F}_p(1 + x_1)\sigma_1 \oplus \mathbb{F}_p(1 + x_2)\sigma_2\) and \(\mathbb{F}_p \oplus \mathbb{F}_p\) \(\setminus \{0\}\) identifies with the set of all weights of \(T\) on \(S\). By \([\text{BW82}, \text{Lemma 4.6.4}]\) or by the proof of \([\text{Str09}, \text{Theorem 10.7.3}]\), any non-trivial irreducible restricted \(S_p\)-module \(E\) has \(p^2 - 1\) nonzero \(T\)-weights, all of the same multiplicity (depending on \(E\)). From this it is immediate that any nonzero toral element of \(T\) is \(p\)-balanced in \(\mathfrak{g}\).

Pick linearly independent \(\alpha, \beta \in \mathbb{F}_p \oplus \mathbb{F}_p\) and set \(V = kv_\alpha \oplus kv_\beta\), a 2-dimensional subspace of \(\mathfrak{g}\). There is a toral element \(h \in T\) with \(\alpha(h) = \beta(h) = 2\). This element is \(p\)-balanced in \(\mathfrak{g}\) by the preceding remark. By \([\text{Str09}, \text{Theorem 10.3.2(5)}]\), there exist linearly independent toral elements \(t_\alpha, t_\beta \in T\) such that \(v_\alpha^{[p]} = at_\alpha\) and \(v_\beta^{[p]} = bt_\beta\) for some \(a, b \in \mathbb{k}^\times\). Combining (22) with Jacobson’s formula for \(p\)-th powers one observes that

\[
(\lambda v_\alpha + \mu v_\beta)^{[p]} - \lambda^p at_\alpha - \mu^p bt_\beta \in \sum_{\gamma \in (\mathbb{F}_p \alpha + \mathbb{F}_p \beta) \setminus \{0\}} \mathbb{k}v_\gamma
\]

for all \(\lambda, \mu \in \mathbb{k}\). This implies that \(V \cap \mathcal{N}_p(\mathfrak{g}) = 0\). On the other hand, it follows from (3), (4), (6), (7) and (8) that \(\mathfrak{g}(h, 2) \cap \mathcal{N}_p(\mathfrak{g})\) contains a subspace of codimension \(\leq 1\) in \(\mathfrak{g}(h, 2)\). Since \(V \subset \mathfrak{g}(h, 2)\) is 2-dimensional we reach a contradiction thereby proving that the case \(S \cong H(2; 1; \mathfrak{f}(\tau))^{(1)}\) is impossible.

Finally, suppose \(S \cong H(2; 1; \mathfrak{f}(\tau))^{(1)}\). It is well known that \(S\) is isomorphic to an Albert–Zassenhaus algebra \(L(\Gamma, \Theta)\) where \(\Gamma\) is an additive subgroup of \(\mathbb{k}\) and \(\Theta: \Gamma \to \mathbb{k}\) is a group homomorphism. Recall that \(L(\Gamma, \Theta)\) is spanned by the symbols \(u_\alpha\) with \(\alpha \in \Gamma\) and

\[
[u_\alpha, u_\beta] = (\beta - \alpha + \alpha \Theta(\beta) - \beta \Theta(\alpha))u_{\alpha + \beta}.
\]

All isomorphism types of Albert–Zassenhaus algebras of a given dimension are determined in \([\text{BIO79}]\). Since in the present case \(\dim S = |\Gamma| = p^2\), we may assume further that \(\Gamma = \mathbb{F}_p^2\), the set of all roots of \(X^2 - X = 0\) in \(\mathbb{k}\), and \(\Theta = \text{Fr}\), the Frobenius automorphism of \(\mathbb{F}_p^2\); see \([\text{BIO79}, \text{Corollary 5.3}]\). The \(p\)-powers \(u_\alpha^{[p]} = (\text{ad} u_\alpha)^p\) with \(\alpha \in \mathbb{F}_p^2\) span a self-centralising 2-dimensional torus \(T\) of \(S_p \cong \text{Der}(S)\) such that \(T \cap S = ku_0\). It has \(p^2\) weights on \(S\) each of multiplicity 1; see \([\text{Str09}, \text{Theorem 10.4.6}]\). The corresponding weight spaces are nothing but \(ku_\beta\) with \(\beta \in \mathbb{F}_p^2\). Since \([u_0, u_\beta] = \beta u_\beta\) for all \(\beta \in \mathbb{F}_p^2\) by (23), it is straightforward to see that \(v_0^{[p]} \not\in ku_0\). Hence \(T = ku_0 \oplus ku_0^{[p]}\) and \(T \cap S\) is not a restricted subalgebra of \(S_p\). Applying \([\text{BW82}, \text{Lemma 4.8.1}]\) we now deduce that any non-trivial irreducible restricted \(S_p\)-module \(E\) has \(p^2 - 1\) nonzero \(T\)-weights,
all of the same multiplicity (depending on E). As before, this implies that any nonzero toral element of T is p-balanced in \mathfrak{g}. It follows from (23) that

\begin{equation}
[u_{\alpha}, u_{\beta + k\alpha}] = (\beta + (k - 1)\alpha + \alpha(\beta^p + k\alpha^p) - (\beta + k\alpha)\alpha^p)u_{\beta+(k+1)\alpha} = ((\beta(1 - \alpha^p) + \alpha(\beta^p + k - 1))u_{\beta+(k+1)\alpha}.
\end{equation}

for all $\alpha, \beta \in \mathbb{F}_p^2$ and all $k \in \mathbb{F}_p$. Taking $\alpha = 1$, the identity element of \mathbb{F}_p^2, we get

\[[u_1, u_{\beta + k}] = (\beta^p + k - 1)u_{\beta+1} \quad (\forall \beta \in \mathbb{F}_p^2). \]

Therefore, $[u_1^p, u_{\beta}] = \prod_{i \in \mathbb{F}_p^2}(\beta^p + i) \cdot u_{\beta} = (\beta^p - \beta^p)u_{\beta} = (\beta - \beta^p)u_{\beta}$ for all $\beta \in \mathbb{F}_p^2$ which yields $u_1^p = u_0 - u_0^p$. This means that $u_1^p \neq 0$ and $(ad u_1)^{p-1}(u_{\beta}) \neq 0$ whenever $\beta \notin \mathbb{F}_p$. Applying (24) with $(\alpha, \beta) = (1, 1)$ we get

\[[u_{\beta}, u_{1+\beta}] = (1 + k\beta - \beta^p)u_{1+(k+1)\beta} \quad (\forall \beta \in \mathbb{F}_p^2). \]

Note that $\Theta^2 = \mathbb{F}_p^2$. If $\beta \in \mathbb{F}_p^2$ is such that $\beta^p = -\beta$ then $[u_{\beta}, u_{1+\beta}] = (1 + (k+1)\beta)u_{1+(k+1)\beta}$, implying

\[(ad u_{\beta})^{p-1}(u_1) = (\prod_{i \in \mathbb{F}_p^2}(1 + i\beta))u_{1-\beta} = \beta^{p-1}(\prod_{i \in \mathbb{F}_p^2}(\beta^{-1} + i))u_{1-\beta} = \beta^{p-1}(\beta^{-1} - 1)u_{1-\beta} = (1 - \beta^p - 1)u_{1-\beta} = \beta^{-1}(\beta - \beta^p)u_{1-\beta} = 2u_{1-\beta}. \]

It follows that $[u_1^p, u_1] = 2[u_{\beta}, u_{1-\beta}] = 2u_1$. In particular, $u_1^p \neq 0$.

Let V be the \mathbb{k}-span of u_1 and u_{β} where $\beta^p = -\beta$. As $[u_0, u_1] = [u_0^p, u_1] = u_1$ and $[u_0, u_{\beta}] = -[u_0^p, u_{\beta}] = \beta u_{\beta}$, the T-weights of u_1 and u_{β} are \mathbb{F}_p-independent. Therefore, they form a basis of T^*. As a consequence, there exists a nonzero toral element $h \in T$ such that $[h, v] = 2v$ for all $v \in V$. This element must be p-balanced in \mathfrak{g} by our earlier remarks. Jacobson’s formula for p-th powers shows that

\[(\lambda u_1 + \mu u_{\beta})^p - \lambda^{p-1}\mu(ad u_1)^{p-1}(u_{\beta}) - \lambda\mu^{p-1}(ad u_{\beta})^{p-1}(u_1) \in T \oplus \sum_{\alpha \notin \{0, \pm(\beta-1)\}} \mathbb{k}u_\alpha \]

for all $\lambda, \mu \in \mathbb{k}$. Since both $(ad u_1)^{p-1}(u_{\beta}) \in S_{\beta-1}$ and $(ad u_{\beta})^{p-1}(u_1) \in S_{1-\beta}$ are nonzero by our choice of β we now deduce that $V \cap \mathcal{N}_p(\mathfrak{g}) = 0$ (one should also keep in mind here that $u_1^p \neq 0$ and $u_1^p \neq 0$). At this point we can argue as at the end of part (f) to conclude that $S \nsubseteq H(2; \mathbb{F}_p, \Phi(1))$. This completes the proof. \hfill \square

4.2. Counterexamples to Morozov’s theorem in bad characteristic: type E_8. Suppose G is a group of type E_8 and $p = 5$. Although 5 is a bad prime for G there is a bijection between the nilpotent orbits in $\mathfrak{g} = \text{Lie}(G)$ and $\mathfrak{g}_C = \text{Lie}(G_C)$ which preserves the orbit dimensions. In the notation of [Pre03, 2.6], each G-orbit $O \subset \mathcal{N}(\mathfrak{g})$ has the form $O = O(I, J)$ for a suitable pair $(I, J) \in \mathcal{P}(\Pi)$ and by [CP13, Theorem 1.4] each cocharacter $\lambda_{I,J} \in X_*(G)$ constructed in [Pre03, 2.6] is still optimal in the sense of the Kempf–Rousseau theory for a nice representative $e_{I,J} \in O(I, J)$. In particular, the stabiliser $G_{e_{I,J}}$ is contained in the parabolic subgroup $P(\lambda_{I,J})$.

Due to the above-mentioned bijection between the nilpotent orbits of \mathfrak{g} and \mathfrak{g}_C each Hesselink stratum of $\mathcal{N}(\mathfrak{g})$ (i.e. each Lusztig’s nilpotent piece of \mathfrak{g}) is a single G-orbit; see [CP13] for details. This means that for any $(I, J) \in \mathcal{P}(\Pi)$ the orbit $\text{Ad} P(\lambda_{I,J}) \cdot e_{I,J}$ is Zariski dense in $\bigoplus_{i \geq 2} \mathfrak{g}(\lambda_{I,J}, i)$ and $\text{Lie}(G_{e_{I,J}}) \subseteq \text{Lie}(P(\lambda_{I,J}))$. Comparing the tables in [VAG05, pp. 90–93] and [Car93, pp. 405–407] one observes that the elements $e \in \mathcal{N}(\mathfrak{g})$ for which $\text{Lie}(G_e) \subseteq \mathfrak{g}_e$ lie in two orbits which have Dynkin
labels E_8 and $A_4 + A_3$. That $O(E_8)$ has this property was first pointed out in \cite[Theorem 5.9]{Spr66}. Note that $O(A_4 + A_3) \subset N_{G}(g)$ has dimension 200 whilst \cite[p. 92]{VAG05} implies that $\dim g_e = 50$ for any $e \in O(A_4 + A_3)$. It turns out that in characteristic 5 the centraliser g_e has very unusual properties.

By \cite[p. 86]{VAG05}, the standard representative $e = \sum_{\alpha \in \Pi \setminus \{\alpha_3\}} e_{\alpha}$ still lies in $O(A_4 + A_3)$ which in conjunction with \cite[Theorem 5.2]{CP13} shows that the cocharacter $\tau \in X_{*}(G)$ from \cite[p. 148]{LT11} is still optimal for e. Using \cite[p. 148]{LT11} it is not hard to check that $g_{e}(\tau,0)$ is spanned by an \mathfrak{sl}_2-triple $\{e_0, h_0, f_0\}$ and $g_{e}(\tau,1)$ is an irreducible module for $g_{e}(\tau,0) \cong \mathfrak{sl}_2$ of highest weight 3. In \cite[\S 4]{LMT09} (which also deals with $O(A_4 + A_3)$ in characteristic 5) one finds two nonzero elements $X,Y \notin \mathfrak{g}_{e}(\tau,-1)$ and checks directly that $[h_0,X] = X$ and $[h_0,Y] = -Y$. On the other hand, the preceding remarks entail that $\text{Lie}(G_{e}) \subseteq \bigoplus_{i \geq 0} g_{e}(\tau,i)$ has dimension 48. As $\dim g_{e} = 50$ we now deduce that $g_{e} = \bigoplus_{i \geq 1} g_{e}(\tau,i)$, $\text{Lie}(G_{e}) = \bigoplus_{i \geq 0} g_{e}(\tau,i)$, $\dim g_{e}(\tau,-1) = 2$.

Set $h := (d\tau)(1)$ and $n_{e} := n_{(ke)}$. As $[h,e] = 2e$ we have that $n_{e} = kh \oplus g_{e}$. As the torus k^{\times} acts on g_{e} by Lie algebra automorphisms the radical of g_{e} is a graded subspace of $g_{e} = \bigoplus_{i \geq -1} g_{e}(\tau,i)$. In particular, it is $(ad h)$-stable. At the author’s request Thomas Purslow has checked the following by using some standard GAP routines:

(i) the radical A of g_{e} is abelian and has dimension 24;
(ii) the Lie subalgebra g_{e}' of g_{e} generated by $g(\tau,1)$ and $g(\tau,-1)$ has dimension 47;
(iii) the normaliser $\mathfrak{w} := n_{\mathfrak{g}}(A)$ has dimension 74;
(iv) the Lie algebra \mathfrak{w}/A is simple and restricted.

Theorem 4.2. The following are true for any $e \in O(A_{4} + A_{3})$:

1. $A \subseteq g_{e}'$ and $g_{e}'/A \cong H(2; 1)^{(2)}$ as Lie algebras.
2. $A = \text{rad}(g_{e})$ and $g_{e}/A \cong H(2; 1)$ as Lie algebras.
3. $A = \text{rad}(n_{e})$ and $n_{e}/A \cong \text{Der}(H(2; 1)^{(2)})$ as Lie algebras.
4. $A = \text{rad}(\mathfrak{w})$ and $\mathfrak{w}/A \cong W(2; 1)$ as Lie algebras.
5. $A \cong (O(2; 1)/k1)^{\ast}$ as $W(2; 1)$-modules.
6. $A \subseteq N(g)$ and \mathfrak{w} is a maximal Lie subalgebra of g.

Proof. (a) Using \cite[p. 148]{LT11} and our earlier remark that $g_{e}(\tau,0) \cong \mathfrak{sl}_2$ it is straightforward to see that $g_{e}(\tau,1)$ is an irreducible 4-dimensional $g_{e}(\tau,0)$-module. If $[g_{e}(\tau,-1), g_{e}(\tau,1)] = 0$ then the Engel–Jacobson theorem implies that $\sum_{i \neq 0} g_{e}(\tau,i)$ is a nilpotent ideal of codimension 3 in g_{e}. As this contradicts (i) it must be that $[g_{e}(\tau,-1), g_{e}(\tau,1)] = g_{e}(\tau,0)$ and $A \subseteq \bigoplus_{i \geq 2} g_{e}(\tau,i)$. Let $L = g_{e}/A$. As A is a graded subspace of g_{e} we have that $L = \bigoplus_{i \geq -1} L_{i}$ where $L_{i} = g_{e}(\tau,i)/A \cap g_{e}(\tau,i)$. Also, $L_{0} \cong \mathfrak{sl}_2$, and L_{-1} is an irreducible L_{0}-module. Since L is semisimple it satisfies the conditions of the Weak Recognition Theorem; see \cite[Lemma 2.66]{BGP09}. As L is a restricted Lie algebra, $L_{0} \cong \mathfrak{sl}_2$ and $L_{1} \not\cong L_{-1}^{\ast}$ applying that theorem shows that L is sandwiched between $H(2; 1)^{(2)}$ and $H(2; 1)$. As a consequence, the Lie subalgebra L' generated by $L_{\pm 1}$ is isomorphic to $H(2; 1)^{(2)}$, so that $\dim L' = p^2 - 2 = 23$. In conjunction with (i) and (ii) this gives $A \subseteq g_{e}'$ proving (1).

\footnote{The tables in \cite{VAG05} are known to contain a number of errors in characteristics 2 and 3. These errors are fixed in \cite{Ste17} which provides a correct list of representatives of the nilpotent G-orbits in bad characteristics together with their Jordan block structure.}
(b) As \(L \subseteq H(2; \mathbb{1}) \) and \(\dim H(2; \mathbb{1}) = p^2 + 1 = 26 = \dim g_e - \dim A = \dim L \) by [BGP09, 2.10] and (i), the equality must hold, i.e. \(L = H(2; \mathbb{1}) \). This proves (2). Since \(n_e = kh \oplus g_e \) and \(A \) is \((\text{ad} \ h)\)-stable, we have that \(A = \text{rad}(n_e) \). In this situation [BGP09, Theorem 2.66] applies to the graded Lie algebra \(n_e/A \) forcing

\[
H(2; \mathbb{1}) \cong L \subseteq n_e/A \subseteq CH(2; \mathbb{1}) .
\]

As \(CH(2; \mathbb{1}) \cong \text{Der} \left(H(2; \mathbb{1})^{(2)} \right) \) by [Str09, Theorem 7.1.2(2)], statement (3) follows.

(c) As \(L_{-i} = 0 \) for \(i > 1 \) it also follows from [BGP09, Theorem 2.66] that the grading of the Cartan type Lie algebra \(L = H(2; \mathbb{1}) \) is standard. In particular, \(L_k = 0 \) for \(k \geq 2p - 4 = 6 \). In view of [LT11, p. 148] this means that \(A \) contains \(g_e(\tau, 9) \), a 2-dimensional irreducible \(g_e(\tau, 0) \)-module contained in the centre of the Lie algebra \(\bigoplus_{i > 0} g_e(\tau, i) \). Since \(\ker \) \(e \) is a trivial submodule of the \(L \)-module \(A \) and \(A/\ker \) has dimension \(23 = p^2 - 2 \), we can apply [RH98, Corollary 510] to conclude that \(A/\ker \cong L' \) as \(L \)-modules.

Since no Lie algebras of the form \(\mathfrak{sp}_{k\mathbb{p}} \) or \(\text{Lie}(H) \), where \(H \) is a simple algebraic \(k \)-group, have dimension \(50 = \dim \mathfrak{w}/A \), the Classification Theorem from [PS08] implies that \(\mathfrak{w}/A \) is isomorphic to a restricted Lie algebra of Cartan type. As \(\dim W(m; \mathbb{1}) = m^{5m} \) for \(m \geq 1 \), \(\dim S(m; \mathbb{1})^{(1)} = (m - 1)(5^{m - 1}) \) for \(m \geq 3 \), \(\dim H(2m; \mathbb{1})^{(2)} = 5^{2m} - 2 \) for \(m \geq 1 \), and \(\dim K(2m + 1, \mathbb{1}) \geq 5^{2m+1} - 1 \) for \(m \geq 1 \), we have only one option, namely, \(\mathfrak{w}/A \cong W(2; \mathbb{1}) \). This proves (4).

(d) Since \(A \) is a graded subspace of \(g_e \) and \(A \cap g_e(\tau, i) = 0 \) for \(i = \{-1, 0, 1\} \) by our remarks in part (a) we have that \(A \subseteq \bigoplus_{i \geq 2} g_e(\tau, i) \). In particular, \(A \subseteq N(g) \). Since \(\mathfrak{w} = (\text{Ad} \, \tau(\mathfrak{k}^x))\)-stable and \(A(\tau, i) = 0 \) for \(i \leq 1 \), it must be that \([\mathfrak{w}(\tau, k), e] = 0 \) for \(k \leq -1 \). This forces \(\mathfrak{w} = g_e(\tau, -1) \oplus \bigoplus_{i \geq 0} \mathfrak{w}(\tau, i) \). As \(W(2; \mathbb{1}) \) has a unique subalgebra of codimension \(2 \) by Kreknin’s theorem, we now obtain that the image of \(\bigoplus_{i \geq 0} \mathfrak{w}(\tau, i) \) in \(\mathfrak{w}/A \) coincides with the standard maximal subalgebra of \(\mathfrak{w}/A \cong W(2; \mathbb{1}) \). Consequently, \(\mathfrak{w}(\tau, 0) = n_e(\tau, 0) \cong \mathfrak{g}_{\mathbb{2}} \).

Since \(A \) is a non-trivial restricted \(W(2; \mathbb{1}) \)-module of dimension \(p^2 - 1 \), it follows from [RH01, Theorem 4.2] that either \(A \cong O(2; \mathbb{1})/k1 \) or \(A \cong (O(2; \mathbb{1})/k1)^* \) as \(W(2; \mathbb{1}) \)-modules. In the former case the annihilator \(A^{\mathfrak{g}_e(\tau,-1)} \) of \(g_e(\tau, -1) \cong k\partial_1 \oplus k\partial_2 \) in \(A \) is a 2-dimensional irreducible module over \(g_e(\tau, 0) \cong \mathfrak{g}_{\mathbb{2}} \) which generates an irreducible \(L \)-submodule isomorphic to \(L' \). Since \(\ker \) \(e \) is a trivial \(L \)-submodule of \(A \), this would imply that \(\dim A^{\mathfrak{g}_e(\tau,-1)} \geq 3 \) contrary to the fact that \((O(2; \mathbb{1})/k1)^{\partial_1} \cap (O(2; \mathbb{1})/k1)^{\partial_2} \) is 2-dimensional. So \(A \cong (O(2; \mathbb{1})/k^1)^* \) proving (5).

(e) It remains to show that \(\mathfrak{w} \) is a maximal subalgebra of \(\mathfrak{g} \). Suppose this is not the case and let \(\mathcal{L} \) be a proper restricted Lie subalgebra of \(\mathfrak{g} \) with \(\mathfrak{w} \subseteq \mathcal{L} \). If \(I \) is a nonzero ideal of \(\mathcal{L} \) then \(I^A \neq 0 \) and hence \(A \subseteq I \) by the irreducibility of the \(\mathfrak{w} \)-module \(A \). If \(\text{nil}(\mathcal{L}) \neq 0 \) then we can take \(z(\text{nil}(\mathcal{L})) \neq 0 \) for \(I \) to conclude that \(\text{nil}(\mathcal{L}) \) is a nilpotent ideal of \(\mathfrak{g}_e \). But then \(\text{nil}(\mathcal{L}) = A \), by part (a), forcing \(\mathcal{L} \subseteq \mathfrak{w} \). As this contradicts our choice of \(\mathcal{L} \) we deduce that \(\text{nil}(\mathcal{L}) = 0 \).

Suppose \(\text{rad}(\mathcal{L}) \neq 0 \). Then \(\mathcal{L} \) contains a nonzero abelian restricted ideal. Since \(\text{nil}(\mathcal{L}) = 0 \) this ideal must contain a nonzero \([p]\)-semisimple element of \(\mathfrak{g}_e \), say \(z \). As \((\text{ad}_z z)^2 = 0 \) and \(\text{Ker} \, (\text{ad}_z z) = \text{Ker} \, (\text{ad}_z z)^2 \) by the semisimplicity of \(\text{ad}_z z \), it must be that \(z(\mathcal{L}) \neq 0 \). Taking \(I = z(\mathcal{L}) \) we then obtain that \(A \subseteq z(\mathcal{L}) \) which, in turn, yields \(\mathcal{L} \subseteq \mathfrak{g}_e \), a contradiction.

Thus from now on we may assume that \(\mathcal{L} \) is semisimple. If \(\mathcal{L} \) contains two distinct minimal ideals \(I_1 \) and \(I_2 \) then the above shows that \(A \subseteq I_1 \cap I_2 = 0 \), a contradiction. Therefore, \(\mathcal{L} \) contains a unique minimal ideal, \(J \) say. In this situation Block’s theorem says that there exist a simple Lie algebra \(S \)
and a nonnegative integer \(m \) such that \(J \cong S \otimes O(m; 1) \) as Lie algebras and

\[
S \otimes O(m; 1) \subset \mathcal{L} \subset (\text{Der}(S) \otimes O(m; 1)) \rtimes (\text{Id}_S \otimes W(m; 1)).
\]

Furthermore, since \(\mathcal{L} \) is restricted the image of \(\mathcal{L} \) under the canonical projection

\[
\pi: (\text{Der}(S) \otimes O(m; 1)) \rtimes (\text{Id}_S \otimes W(m; 1)) \to W(m; 1)
\]

is a transitive subalgebra of \(W(m; 1) \); i.e. does not preserve the maximal ideal of the commutative algebra \(O(m; 1) \); see [Str04, Corollary 3.3.5]. Since \(\dim g = 248 \), \(\dim S \geq 3 \) and \(\dim O(n; m) = 5^n \) we have that \(m \in \{0, 1, 2\} \).

(f) Suppose \(m > 0 \) and let \(m \) be the maximal ideal of the local algebra \(O(m; 1) \). If \(\pi(w) = 0 \) then \(w \subset \text{Der}(S) \otimes O(m; 1) \). In this case the abelian ideal \(J_0 := S \otimes m^{m(p-1)} \) of \(J \) is an \((\text{ad} m)\)-stable and \(J_0^A \) is a nonzero \(w \)-submodule of \(J_0 \). But then \(J_0^A \subset g_e \subset w \) is an abelian ideal of \(w \) implying \(J_0^A = A \). As \(J_0^A \subset 3(S \otimes m) \) and \(S \otimes m = \text{nil}(J) \) this entails that \(S \otimes m \) is a nilpotent ideal of \(g_e \) containing \(A \). But then \(S \otimes m = A = J_0^A \subset S \otimes m^{m(p-1)} \), a contradiction. We thus deduce that \(\pi(w) \) is a nonzero \(\text{Lie subalgebra of } W(m; 1) \).

Since \(A \subset J \) by part (e) and \(W(2; 1) \equiv w/A \) is a simple Lie algebra, the above discussion shows that \(\pi \) identifies \(W(2; 1) \) with a nonzero \(\text{Lie subalgebra of } W(m; 1) \). The concluding remark in part (e) now shows that \(m = 2 \) and the restriction of \(\pi \) to \(w \) is surjective. Since in this situation \(\dim S < 10 \) it is immediate from [PS08, Theorem 1.1] that \(\text{Der}(S) = \text{ad } S \cong S \), so that

\[
\mathcal{L} = J + w \cong (S \otimes O(2; 1)) \rtimes (\text{Id}_S \otimes (W(2; 1))) \quad \text{and} \quad J \cap w = A.
\]

The algebra \(O(2; 1) \) is spanned by the monomials \(x^a := x_1^{a_1} x_2^{a_2} \) with \(0 \leq a_i \leq p-1 \). As \(e \in S \otimes O(2; 1) \) we can write \(e = s_0 \otimes 1 + \sum_{|a| \geq 1} s_a \otimes x^a \) for some \(s_0, s_a \in S \). As \(A \) is an irreducible \(w \)-module and \(W(2; 1) \) has no Lie subalgebras of codimension 1, it follows from Kreknin’s theorem that \(w \) contains a unique \(\text{Lie subalgebra of codimension 2} \), namely, the inverse image of the standard maximal subalgebra \(W(2; 1)_{(0)} \) under the canonical homomorphism \(w \to W(2; 1) \); we call it \(w_{(0)} \). It is immediate from our discussion in part (d) that \(w = g_e(\tau, -1) \oplus w_{(0)} \). This yields that \(\pi(g_e(\tau, -1)) \) contains elements of the form \(\partial_1 + u_1 \) and \(\partial_2 + u_2 \) for some \(u_1, u_2 \in W(2; 1)_{(0)} \). As \(e \) commutes with \(g_e(\tau, -1) \) this implies that \(s_0 \neq 0 \).

Let \(\mathfrak{p} - 1 = (p - 1, p - 1) \). Since \(s_0 \otimes x^{\mathfrak{p} - 1} \) commutes with \(e \) we have that \(s_0 \otimes x^{\mathfrak{p} - 1} \in g_e \cap J \subset w \cap J = A \). Applying to \(s_0 \otimes x^{\mathfrak{p} - 1} \neq 0 \) the endomorphisms \(\text{ad } y \) with \(y \in g_e(\tau, -1) \) we observe that for any \(a = (a_1, a_2) \) with \(0 \leq a_1, a_2 \leq p - 1 \) the \(w \)-module \(A \) contains an element of the form \(s_0 \otimes x^a + \sum_{|b| > |a|} t_b \otimes x^b \) for some \(t_b \in S \). But then \(p^2 - 1 = \dim A \geq \dim O(2; 1) = p^2 \). This contradiction shows that \(m = 0 \).

(g) From now on we may assume that any proper restricted Lie subalgebra \(\mathcal{L} \) of \(g \) containing \(w \) is sandwiched between \(S \cong \text{ad } S \) and \(\text{Der}(S) \) for some simple Lie algebra \(S \). It follows from [Str04, Chapter 7] and the Classification Theorem proved in [PS08] that the Lie algebra of outer derivations of \(S \) is solvable. Since the Lie algebra \(w \) is perfect we have that \(w \subset S \). Therefore, no generality will be lost by assuming that \(w \) is a maximal subalgebra of \(S \).

Suppose \(S \cong \mathfrak{psl}_{5k} \) for some \(k \geq 1 \). Since \(\dim S > 74 \) by (iii) and \(5k - 2 = \text{TR}(S) \leq \text{TR}(\mathcal{L}) \leq \text{TR}(g) = 8 \) by [Pre87], [Pre90] and [Str04, Theorem 1.2.7] it must be that \(k = 2 \). Since \(\text{Der}(S) \cong \mathfrak{pgl}_{10} \) by [BGP09, Lemma 2.7] and \(\text{TR}(\mathfrak{pgl}_{10}) = 9 \) by [Pre87] and [Pre90] the restricted Lie algebras \(\mathcal{L} \) and \(\mathfrak{psl}_{10} \) are isomorphic (one should keep in mind here that \(\mathcal{L} \) contains \(\text{ad } S \) which has codimension 1 in \(\text{Der}(S) \)). As a consequence, \(\mathfrak{psl}_{10} \) contains a maximal toral subalgebra of \(g \), say \(t \). In view of [Hum67, Theorem 13.3] or [Bor91, 11.8] there is a maximal torus \(T \) in \(G \) with \(t = \text{Lie}(T) \).
Since $p > 3$, it follows from [Sel67, Ch. II, §3] that all root spaces of \mathfrak{g} with respect to \mathfrak{t} are 1-dimensional and hence $(\text{Ad}T)$-stable. In conjunction with [Sel67, Ch. II, §4] this implies the set $\Phi_0 := \{ \gamma \in \Phi(G,T) \mid \mathcal{L} \gamma \neq 0 \}$ is a root subsystem of the root system $\Phi = \Phi(G,T)$. As $|\Phi_0| = 90$, it is immediate from the Borel–de Siebenthal theorem that Φ_0 is contained in a maximal root subsystem of type $E_7 + A_1$ or D_8 in Φ. The simplicity of the restricted Lie algebra \mathcal{L} then entails that it embeds into a restricted Lie algebra \mathfrak{g}_0 of type E_7 or D_8. The first possibility cannot occur as Lie algebras of type E_7 do not contain 8-dimensional toral subalgebras. Hence $\mathfrak{g}_0 \cong \mathfrak{so}(V)$ where V is a 16-dimensional vector space over k. Let $\rho : \mathcal{L} \to \mathfrak{gl}(V)$ be the representation of \mathcal{L} induced by inclusion $\mathcal{L} \subset \mathfrak{so}(V)$. As $\dim \mathcal{L} > 74 > 60 = (\dim \mathfrak{g}_0)/2$, the trace form $(X,Y) \mapsto \text{trace}(\rho(X) \circ \rho(Y))$ on \mathcal{L} is nonzero and hence non-degenerate by the simplicity of $\mathcal{L} \cong \mathfrak{psl}_{10}$. Since this contradicts [Bl62] we now conclude that $S \neq \mathfrak{psl}_{16}$.

Suppose $S \cong \text{Lie}(\mathcal{H})$ for some simple algebraic k-group \mathcal{H}. Since $\dim S < 248$ and S is simple, 5 is a very good prime for \mathcal{H}. Theorem 1.1 then says that $\mathfrak{w} = \text{Lie}(\mathcal{P})$ for some maximal parabolic subgroup \mathcal{P} of \mathcal{H}. In view of our discussion at the beginning of part (e) this implies that $A = \text{Lie}(R_u(\mathcal{P}))$. Then $\text{Lie}(\mathcal{P})/\text{Lie}(R_u(\mathcal{P})) \cong W(2;1)$ as Lie algebras. Since $\text{Lie}(\mathcal{P})/\text{Lie}(R_u(\mathcal{P}))$ is isomorphic to the Lie algebra of a reductive k-group this is false.

Therefore, S is a Lie algebra of Cartan type (not necessarily restricted). Since $\mathfrak{g} \cong \mathfrak{g}^*$ as $(\text{Ad}G)$-modules, the Lie algebra \mathfrak{g} admits a non-degenerate \mathfrak{g}-invariant bilinear form, b say. We stress that $b \neq \kappa$ as in the present case the Killing form of \mathfrak{g} is identically zero. The explicit formulae in [CP13, p. 661] show that the form b is symmetric. If $\dim S > 124$ then the restriction of b to S is nonzero and hence non-degenerate by the simplicity of S. Hence $\mathfrak{g} = S \oplus E$ where $E = \{ x \in \mathfrak{g} \mid b(x,S) = 0 \}$. Since b is S-invariant, $[S, E] \subseteq E$. Since $\mathfrak{w} \subset S$ by our earlier remarks and $E^A \neq 0$ is $(\text{ad} \mathfrak{w})$-stable, the irreducibility of the \mathfrak{w}-module A yields $A \subseteq E$. But then $A \subseteq S \cap E = 0$, a contradiction. So $74 < \dim S \leq 124$. The results proved in [Str04, §§6.3–6.7] now imply that $S \cong H(2; (2,1); \Phi)^{(2)}$ where $\Phi \in \{ \text{Id}, \Phi(\tau) \}$. In any event, the standard maximal subalgebra $S_{(0)}$ of S is a restricted Lie subalgebra of $\text{Der}(S)$ and $S_{(0)}/\text{nil}(S_{(0)}) \cong \mathfrak{sl}_2$; see [Str04, Theorems 7.2.2 and 6.3.10].

Since $\mathfrak{w} \subset S$ and $S_{(0)}$ has codimension 2 in S, the Lie algebra $\mathfrak{w} \cap S_{(0)}$ has codimension ≤ 2 in \mathfrak{w}. Since $S_{(0)}$ has no homomorphic images isomorphic to $W(2;1)$ and $W(2;1)$ has no subalgebras of codimension 1, our discussion in part (f) shows that $\mathfrak{w} \cap S_{(0)} = \mathfrak{w}_{(0)}$. Note that $\text{nil}(\mathfrak{w}_{(0)})$ coincides with the preimage of $W(2;1)_{(1)}$ under the canonical homomorphism $\mathfrak{w}_{(0)} \to W(2;1)_{(0)}$ and $\mathfrak{w}_{(0)}/\text{nil}(\mathfrak{w}_{(0)}) \cong \mathfrak{gl}_2$. By our remark at the beginning of this part, the p-closure of S in \mathfrak{g} is semisimple. Therefore, $S \cong S_p$ as restricted Lie algebras, where S_p denotes the p-envelope of S in $\text{Der}(S)$. It follows that $\mathfrak{w}_{(0)}$ is a restricted subalgebra of $S_{(0)}$. But then the restricted subalgebra $S_{(0)}/\text{nil}(S_{(0)}) \cong \mathfrak{sl}_2$ has a copy of \mathfrak{gl}_2 as a homomorphic image. As this is obviously false, we conclude that S does not exist. Thus \mathfrak{w} is a maximal subalgebra of \mathfrak{g} and our proof is complete. \[\square\]

Conjecture 4.3. Suppose G is a group of type E_8 and $p = 5$. We conjecture that any maximal subalgebra M of \mathfrak{g} with $\text{rad}(M) \neq 0$ is either conjugate to \mathfrak{w} under the adjoint action of G or has the form $M = \text{Lie}(P)$ for some maximal parabolic subgroup P of G or coincides with the centraliser of a toral element t of \mathfrak{g}. In the latter case, $M = \text{Lie}(G_t)$ and G_t is a semisimple group of type $A_4 A_4$.

Remark 4.4. It is quite possible that the maximal subalgebra \mathfrak{w} gives rise to a Weisfeiler filtration \mathcal{F} of \mathfrak{g} such that the corresponding graded Lie algebra $\text{gr}_{\mathcal{F}}(\mathfrak{g})$ is isomorphic to the special Cartan type Lie algebra $S(3; \frac{1}{2})^{(1)}$. This guess is supported by numerology: $\dim S(3; \frac{1}{2})^{(1)} = 2(p^3 -1) = 248$, and
the fact that the Lie algebra $\mathcal{G} = S(3; 1)^{(1)}$ does admit a \mathbb{Z}-grading $\mathcal{G} = \bigoplus_{i \in \mathbb{Z}} \mathcal{G}_i$ with $\mathcal{G}_i = 0$ for $i \geq 2$, $\mathcal{G}_0 \cong W(2; 1)$ and $\mathcal{G}_1 \cong (O(2; 1)/k1)^*$ as $W(2; 1)$-modules; see [PS01, p. 283]. This grading did not feature in our proof of Theorem 1.1 because the possibility that $S \cong S(3; 1)^{(1)}$ was ruled out in 3.15 by dimension arguments.

4.3. **Non-existence of Melikian subalgebras of \mathfrak{g}**. We continue assuming that G is a group of type E_8 and $p = 5$. In this subsection we are going to show that no Melikian algebras $M = M(m, n)$ can occur as subalgebras of \mathfrak{g}. Since $\dim \mathcal{M}(m, n) = 5^{m+n+1}$ and $\dim \mathfrak{g} = 248$, the Lie algebras $\mathcal{M}(m, n)$ with $m + n \geq 3$ are immediately ruled out by dimension reasons.

Suppose $M = \mathcal{M}(1, 1)$ is a Lie subalgebra of \mathfrak{g} and let \mathcal{M} be the p-closure of M in \mathfrak{g}. The centre $\mathfrak{z}(\mathcal{M})$ is an abelian restricted subalgebra of \mathfrak{g} and hence decomposes as $\mathfrak{z}(\mathcal{M}) = \mathfrak{z}(\mathcal{M})_s \oplus \mathfrak{z}(\mathcal{M})_n$ where $\mathfrak{z}(\mathcal{M})_s$ and $\mathfrak{z}(\mathcal{M})_n$ are the maximal torus and the nilradical of $\mathfrak{z}(\mathcal{M})$, respectively. If $\mathfrak{z}(\mathcal{M})_n \neq 0$ then \mathcal{M} is contained in the centraliser of a nonzero toral element of \mathfrak{g}, say t. Since $t \in \text{Lie}(T)$ for some maximal torus T of G, by [Bor91, 11.8], and M is a simple Lie algebra of dimension 125, it is immediate from the Borel–Siebert–Tate theorem that M embeds into a Lie algebra of type E_7. If $\mathfrak{z}(\mathcal{M})_n \neq 0$ then \mathcal{M} is contained in the centraliser of a nonzero element $e \in N_p(\mathfrak{g})$. Since $\dim \mathfrak{g}_e \geq 125$ we have that $\mathcal{O}(e) \neq \mathcal{O}(A_1 + A_3)$. Then our discussion at the beginning of (4.2) shows that \mathfrak{g}_e is contained in a proper parabolic subalgebra $\mathfrak{p} = \text{Lie}(P)$ of \mathfrak{g}. Since $P = L \cdot R_a(P)$ for some Levi subgroup L and $\text{Lie}(R_a(P))$ is nilpotent, the simple Lie algebra M injects into $\mathfrak{l} = \text{Lie}(L)$. Since $\dim L \geq 125$ the Lie algebra $[l, l]$ must have type E_7.

A Lie algebra \mathfrak{g}_0 of type E_7 admits a non-degenerate invariant symmetric bilinear form $\eta : \mathfrak{g}_0 \times \mathfrak{g}_0 \to k$. If $M \subset \mathfrak{g}_0$ the the restriction of η to M is nonzero because $\dim M > (\dim \mathfrak{g}_0)/2$. The simplicity of M then shows that $\eta|_M$ is a non-degenerate. But then $\mathfrak{g}_0 = M \oplus M^\perp$ where M^\perp is the orthogonal complement of M in \mathfrak{g}_0. As $\dim M^\perp = \dim \mathfrak{g}_0 - 125 = 133 - 125 = 8$ we have that $\dim M > 64 = \dim \mathfrak{g}(M^\perp)$. As a consequence, the simple Lie algebra M must act trivially on M^\perp, that is $[M, M^\perp] = 0$. But then $[\mathfrak{g}_0, M] = [M + M^\perp, M] \subseteq M$ which implies that M is an ideal of \mathfrak{g}_0. This contradiction shows that $\mathfrak{z}(\mathcal{M}) = 0$. Since M is a restricted Lie algebra, applying [Str04, Corollary 1.1.8] yields $\mathcal{M} \cong \mathcal{M}_p \cong M$. Therefore, $\mathcal{M} = M$, i.e. M is a restricted subalgebra of \mathfrak{g}.

Let b be the invariant symmetric bilinear form on \mathfrak{g} introduced at the end of the proof of Theorem 4.2. Since M is simple and $\dim M > (\dim \mathfrak{g})/2$ the restriction of b to M is non-degenerate. Therefore, $\mathfrak{g} = M \oplus M^\perp$ where $M^\perp = \{x \in \mathfrak{g} \mid b(x, M) = 0\}$. As $[M, M^\perp] \subseteq M^\perp$, the preceding discussion shows that M^\perp is a restricted M-module. If all composition factors of the M-module M^\perp are trivial then $[M, M^\perp] = [M^{(\infty)}, M^\perp] = 0$ implying that M is an ideal of \mathfrak{g}. As this contradicts the simplicity of \mathfrak{g} we may assume that at least one composition factor of the M-module M^\perp is non-trivial. In particular, M^\perp is a faithful M-module.

It was first observed by Kuznetsov in [Ku91] that the restricted Melikian algebra M admits a $(\mathbb{Z}/3\mathbb{Z})$-grading $M = M_0 \oplus M_1 \oplus M_2$ such that M_0 is a restricted Lie subalgebra of M isomorphic to $W(2; 1)$. Given a 2-dimensional torus t_0 of M_0 we can decompose the restricted M_0-module M^\perp into weight spaces with respect to t. We denote by $\Gamma(M^\perp, t_0)$ the set of all nonzero t-weights of M^\perp. Since the Lie algebra M_0 is simple and M^\perp is a faithful M-module, at least one composition factor of the M_0-module M^\perp is non-trivial. Applying [Str09, 10.7.3] we now deduce that $\Gamma(t_0, M^\perp) = p^2 - 1 = 24$. By [Pre94, Lemma 4.1], there exists a 2-dimensional torus t_0 in M_0 whose centraliser H in M is a 5-dimensional Cartan subalgebra of M with the property that $[H, [H, H]] = t_0$. Each weight space M^\perp_{γ} with $\gamma \in \Gamma(t_0, M^\perp)$ is invariant under the adjoint action of H. Since $\gamma \in t_0^* \setminus \{0\}$
and \(t_0 \subseteq [H, H] \), the \(H \)-module \(M^\perp_\gamma \) has no 1-dimensional composition factors. Representation theory of nilpotent Lie algebras then yields that each \(t_0 \)-weight space \(M^\perp_\gamma \) with \(\gamma \in \Gamma(t_0, M^\perp) \) has dimension divisible by \(p = 5 \). As a consequence, \(\sum_{\gamma \in \Gamma(t_0, M^\perp)} \dim M^\perp_\gamma \geq p(p^2 - 1) = 120 \). Since \(\dim M^\perp = 240 - 125 = 123 \) and \(\dim c_M(t_0) = \dim H = 5 \) this gives
\[
\dim \gamma(t_0) = \dim \gamma(t_0) + \dim c_M^\perp(t_0) \leq 5 + 3 = 8.
\]
Since \(t_0 \) is a toral subalgebra of \(g \) and the field \(k \) is infinite we can find an element \(t \in t_0 \) such that \(\gamma(t_0) = \gamma_t \). By [Bor91, 11.8], there exists a maximal torus \(T \) of \(G \) such that \(t \in \text{Lie}(T) \). Since \(\text{Lie}(T) \) is abelian and has dimension 8 it must be that \(\gamma(t_0) = \gamma_t = \text{Lie}(T) \). Since \(H \subset \gamma(t_0) \) is non-abelian, this is impossible. We have reached a contradiction thereby proving that \(M(1, 1) \) is not isomorphic to a Lie subalgebra of \(g \).

4.4. **Counterexamples to Morozov’s theorem in bad characteristic:** type \(G_2 \). In this subsection we assume that \(G \) is a group of type \(G_2 \) and \(p = 2 \). It was first observed by Robert Steinberg in [St61, 2.6] that \(g \cong \mathfrak{psl}_3 \). This curious fact is explained in [CE16, Sect. 4] as follows: in characteristic 2, the irreducible \(G \)-module \(E = L(\varpi_1) \) of highest weight \(\varpi_1 \) has dimension 6 and carries a nonzero \(G \)-invariant symplectic form. This gives us an inclusion \(g \subseteq \mathfrak{sp}(E) \). Since \(g \) is a simple Lie algebra it is contained in the second derived subalgebra of \(\mathfrak{sp}(E) \) which is isomorphic to \(\mathfrak{psl}_4 \). Hence \(g \cong \mathfrak{psl}_4 \) by dimension reasons.

Set \(V := O(2; 1) \), a 4-dimensional vector space over \(k \), and regard \(V \) as the left regular \(O(2; 1) \)-module. The Lie algebra \(W(2; 1) \) acts on \(V \) by derivations. Let \(\mathcal{W} \) denote the semidirect product \(W(2; 1) \rtimes O(2; 1) \) where \(O(2; 1) \) is regarded as an abelian ideal of \(\mathcal{W} \) acted upon by \(W(2; 1) \) in the natural fashion. The above-mentioned actions of \(O(2; 1) \) and \(W(2; 1) \) are compatible in the sense that they give rise to a faithful representation \(\rho: \mathcal{W} \rightarrow \mathfrak{gl}(V) \). It is straightforward to see that the representation \(\rho \) is irreducible.

In characteristic 2, the standard grading of \(L := W(2; 1) \) is surprisingly short, namely, \(L = L_{-1} \oplus L_0 \oplus L_1 \), and we have that \(L_0 \cong \mathfrak{gl}_2 \) and \([L_{-1}, L_1] = L_0 \). Furthermore, \(L_1 \cong L_{-1}^* \) is an irreducible 2-dimensional \(L_0 \)-module. From this it is immediate that \(L \cong \mathfrak{sl}_3 \) as Lie algebras (this can also be deduced from the fact that \(L \) acts faithfully on the 3-dimensional vector space \(O(2; 1)/\mathfrak{k} \mathfrak{l}_1 \)). In particular, \(L \) is simple. Let \(m \) be the maximal ideal of \(O(2; 1) \), so that \(O(2; 1) = k \mathfrak{l}_1 \oplus m \). Obviously, \(\rho(1) = \text{Id}_V \) and \(\rho(m)^2 = 0 \). Since the trace of \(\text{Id}_V \) is zero and \(W(2; 1) = W(2; 1)^{\text{rel}} \) by the preceding remark, \(\rho(\mathcal{W}) \subseteq \mathfrak{sl}(V) \). Note that \(\mathfrak{k} \mathfrak{l}_1 \) coincides with the centre of the Lie algebra \(\mathcal{W} \). We now set \(\mathcal{W} := \mathcal{W}/\mathfrak{k} \mathfrak{l}_1 \), a semidirect product of \(W(2; 1) \) and \(\mathfrak{nil}(\mathcal{W}) = O(2; 1)/\mathfrak{k} \mathfrak{l}_1 \). By the above, \(\mathcal{W} \) is an 11-dimensional Lie subalgebra of \(\mathfrak{psl}(V) \cong \mathfrak{g} \).

We claim that \(\mathcal{W} \) is a maximal subalgebra of \(\mathfrak{psl}(V) \). Indeed, suppose the contrary. Then \(\mathfrak{psl}(V) \) has a proper subalgebra of codimension \(\leq 2 \), say \(\mathfrak{r} \). Taking the inverse image of \(\mathfrak{r} \) in \(\mathfrak{sl}(V) \) we observe that \(\mathfrak{sl}(V) \) has a proper Lie subalgebra of codimension \(\leq 2 \). Since the set of all \(d \)-dimensional subalgebras of \(\mathfrak{sl}(V) \) is Zariski closed in the Grassmannian \(\text{Gr}(d, \mathfrak{sl}(V)) \) and is acted upon by a Borel subgroup \(B \) of \(\text{SL}(V) \), it follows from the Borel fixed-point theorem that \(\mathfrak{sl}(V) \) contains a proper Lie subalgebra of codimension \(\leq 2 \) normalised by \(\text{Ad} B \); we call it \(\mathfrak{p} \). Since the \(k \)-span of \(\text{Id}_V \) is the only proper nonzero ideal of \(\mathfrak{sl}(V) \), the Lie subalgebra \(\mathfrak{p} + \text{Lie}(B) \) of \(\mathfrak{sl}(V) \) is proper and \((\text{Ad} B) \)-stable. From this it is immediate that \(\text{SL}(V) \) contains a proper parabolic subgroup of codimension \(\leq 2 \). Since \(\dim V = 4 \) we reach a contradiction thereby proving the claim.

If \(\mathcal{W} \) is a parabolic subalgebra of \(\mathfrak{g} \cong \mathfrak{psl}(V) \) then its preimage \(\rho(\mathcal{W}) \) in \(\mathfrak{sl}(V) \) is a proper parabolic subalgebra of \(\mathfrak{sl}(V) \). But then \(V \) is a reducible \(\rho(\mathcal{W}) \)-module. As this contradicts the irreducibility
of \(\rho: \hat{\mathcal{W}} \to \mathfrak{gl}(V) \) we conclude that the subalgebra \(\mathcal{W} \) of \(\mathfrak{g} \) is a counterexample to Morozov's theorem in type \(G_2 \).

References

