Title: First isolation of the pan-azole-resistant *Aspergillus fumigatus cyp51A* TR46/Y121F/T289A mutant in a UK patient

Author: Caroline B. Moore, Lily Novak-Frazer, Eavan Muldoon, Kenneth W. Dunn, Rikesh Masania, Malcolm D. Richardson, Riina Rautemaa-Richardson

PII: S0924-8579(17)30041-9
DOI: http://dx.doi.org/doi: 10.1016/j.ijantimicag.2017.01.004
Reference: ANTAGE 5024

To appear in: *International Journal of Antimicrobial Agents*

Received date: 10-11-2016
Accepted date: 28-1-2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
First isolation of the pan-azole-resistant *Aspergillus fumigatus* cyp51A TR46/Y121F/T289A mutant in a UK patient

Sir,

Antifungal resistance in *Aspergillus fumigatus* owing to a number of mutations has been reported from many regions of the globe. The cyp51A gene TR46/Y121F/T289A mutation is an emerging mechanism conferring resistance to azole antifungal drugs. It is unclear whether these mutations are acquired from specific ecological niches or are generated by long-term exposure to azoles during suboptimal therapy. Previous surveys of azole resistance in the UK have not found this mutation [1–3].

A man in his early forties was admitted to the Adult Burns Centre of University Hospital of South Manchester (Manchester, UK) in April 2016 following self-inflicted burns involving 44% of total body surface area. He also had an associated inhalation injury requiring immediate intubation and ventilation. His wounds became colonised with *Candida parapsilosis* and he was administered fluconazole (Days 34–40) and subsequently transitioned to anidulafungin (Table 1). His hospital course was complicated by bowel ischaemia requiring subtotal colectomy on Day 34 of admission as well as bilateral necrosis of his fingers distally.

On Day 47, *A. fumigatus* was isolated from a non-directed bronchoalveolar lavage (BAL) specimen. Lung computed tomography (CT) demonstrated large bilateral pleural effusions with associated atelectasis. A directed bronchoscopy was performed but no features suggestive of airway aspergillosis were seen. Abdominal
complications following bowel ischaemia and surgery were ongoing, requiring further drainage and laparoscopy and washout on Day 83 (Table 1). His ventilator requirements increased in association with this.

On Day 70, *Aspergillus flavus* was isolated bilaterally from the patient’s hands. On abdominal CT performed due to intra-abdominal complications, images from the lung bases demonstrated bilateral dense consolidation. He was commenced on micafungin and liposomal amphotericin B (AmB) mainly to cover the *A. flavus* from the necrotic areas of his hands. These were stopped on Days 141 and 200, respectively.

The patient was discharged to rehabilitation on Day 228 with no signs of ongoing infection and having discontinued all antifungal agents.

The patient worked in a marble plant where he was involved in resizing imported marble from Spain and Italy. His last travel abroad (Spain) was ca. 3 months prior to admission. He had no history of prior use of azole antifungals.

Respiratory, wound and blood samples were collected regularly from Day 1 onwards (Table 1). *Aspergillus fumigatus* resistant to itraconazole, voriconazole, posaconazole and isavuconazole [minimum inhibitory concentrations (MICs) of >8, >8, 1 and >8 mg/L, respectively] was first isolated from a non-directed BAL on Day 47 post-admission. Pan-azole-resistant *A. fumigatus* isolates were also reported from a variety of respiratory samples on Days 53, 57, 69 and 74. All of these isolates
were susceptible to AmB and echinocandins. Prior to Day 47, twelve respiratory samples taken as part of routine care had been reported negative for fungi.

Weekly environmental monitoring of indoor and outdoor air was performed throughout the patient’s admission because of construction work adjacent to the Burns Centre. All *A. fumigatus* isolates from air samples were susceptible to all azoles, echinocandins and AmB.

Nucleic acids were extracted from the patient isolates taken on Days 47 and 57. Identification of *A. fumigatus* was confirmed by sequencing the internal transcribed spacer (ITS) region as well as \(\beta \)-tubulin and calmodulin genes. In addition, the entire *cyp51A* gene, including 360 bases 5’ upstream of the start codon, was amplified by PCR. The amplified gene product was purified and sequencing, revealing a TR46 repeat insertion (TCTAGAATCACGCGGTCCGGATGTGTGCTGAGCCGAATGAAAGTTG) in the 5’ region upstream of *cyp51A*. In addition, the mutations Y121F and T289A were detected. No other mutations were found.

Here we report the first case of a pan-azole-resistant *A. fumigatus cyp51A* TR46/Y121F/T289A mutant in the UK. The source of this isolate is not clear, but it is unlikely that resistance evolved in the patient considering his minimal exposure toazole antifungals during hospitalisation. Although extensive environmental sampling was performed in the Burns Centre and outside, no other similar isolates were identified. It is possible that the patient carried the azole-resistant *A. fumigatus* in his airways prior to admission. However, it is unlikely that it would have remained
dormant in the airways for 47 days, especially considering how profoundly immunocompromised a patient with 44% burns and an inhalation injury is. It is even more unlikely that the patient would have carried the *A. fumigatus* conidia in his airways for over 4 months since his last trip abroad. Therefore, it can be assumed that he had obtained the pan-azole-resistant *A. fumigatus cyp51A* TR46/Y121F/T289A mutant from the environment within the UK.

This is of clinical importance because first-line therapy for pulmonary aspergillosis is voriconazole [4] as azole resistance is not acknowledged in treatment-naïve patients. In addition, previous reports have associated the *A. fumigatus cyp51A* TR46/Y121F/T289A mutant with invasive disease and therapy failure [5]. The extent of azole resistance due to this or other mutations is in the UK is impossible to estimate as susceptibility testing is not routinely performed for clinical and environmental mould isolates. Nevertheless, it is likely that this case represents a 'tip of the iceberg' and that there is an environmental origin. We advocate the introduction of UK-wide genetic analysis of azole-resistant isolates of *A. fumigatus* to enable monitoring of environmental transmission.

Funding: None.

Competing interests: None declared.

Ethical approval: Not required.
References

Riina Rautemaa-Richardson a,b,c,*

a Mycology Reference Centre Manchester, University Hospital of South Manchester, Manchester, UK

b National Aspergillosis Centre, University Hospital of South Manchester, Manchester, UK

c The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, Manchester, UK

d The Adult Burns Centre, University Hospital of South Manchester, Manchester, UK

* Corresponding author. Present address: Education & Research Centre, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK. Tel.: +44 161 291 5941
fax: +44 161 291 5806
E-mail address: riina.richardson@manchester.ac.uk (R. Rautemaa-Richardson)
Table 1. Summary of the case

<table>
<thead>
<tr>
<th>Clinical history</th>
<th>Day</th>
<th>Fungal culture and biomarker findings</th>
<th>Antifungal therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission, intubated, ventilated</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Non-directed BAL: no fungal growth</td>
<td></td>
</tr>
<tr>
<td>Burns theatre: debridement</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Endotracheal secretions: no fungal growth</td>
<td></td>
</tr>
<tr>
<td>Ventilator-associated pneumonia</td>
<td>11</td>
<td>Sputum: no fungal growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>BAL ×2: no fungal growth for either</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Wound swabs, L and R hands: yeasts + grown in both, serum BDG positive</td>
<td></td>
</tr>
<tr>
<td>Abdominal distention, CT abdomen: faecal loading and enema</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing oxygen requirements, abdominal distention, pressors</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Non-directed BAL: no fungal growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Wound swabs ×2, R forearm: scanty yeasts in both</td>
<td>MFG (100 mg once daily)</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Non-directed BAL: no fungal growth</td>
<td>initiated</td>
</tr>
<tr>
<td>Procedure</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT abdomen: bowel wall haematoma</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percutaneous tracheostomy (bedside)</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burns theatre: removal of Biobrane</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burns theatre: alcohol and saline wash</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burns theatre: subtotal colectomy (ischaemic bowel)</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burns theatre: subtotal colectomy</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum BDG positive</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burns theatre: subtotal colectomy (ischaemic bowel)</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wounds swabs ×10, various body sites: Candida parapsilosis species complex</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum BDG positive</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wounds swabs ×11, various body sites: yeasts +</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum BDG positive</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directed BAL: no fungal growth. Wound swab, R hand: yeasts +</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directed BAL: no fungal growth</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directed BAL: no fungal growth</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directed BAL: no fungal growth</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-directed BAL: no fungal growth</td>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- MFG stopped
- FLC initiated
- FLC stopped, AFG (100 mg once daily) initiated
Wounds swabs ×3, various body sites: *C. parapsilosis* species complex

Abdominal collection: drain placed under US guidance

Serum BDG positive

Non-directed BAL: *Aspergillus fumigatus* +

Abdominal drain removed

Sputum: *A. fumigatus* ++. Wound swabs from various body sites: *C. parapsilosis* complex. Wound swab, R chest: *Trichosporon* sp.

Non-directed BAL: no fungal growth, serum BDG positive

Right iliac fossa drain placed under US guidance

Sputum GM positive

Left iliac fossa drain placed under US guidance

Non-directed BAL: *A. fumigatus* +

Wounds swabs ×6, various body sites: *C. parapsilosis* complex

Non-directed BAL: no fungal growth

Pleural fluid L & R: no fungal growth
AFG stopped, FLC initiated

BAL (RUL and LUL): *A. fumigatus* ++

Wounds swabs from both hands and L shoulder: *Aspergillus flavus* on all. Wound swab from R flank: yeasts +. Sacrum swab: *Candida albicans* +

Non-directed BAL: no fungal growth

TEE, no evidence of endocarditis

BAL: *A. fumigatus*. BAL GM positive. BAL *Aspergillus* PCR positive

Non-directed BAL: no fungal growth

Sputum: no fungal growth

Non-directed BAL: no fungal growth

Abdominal wash out. Large collection, T tube inserted

Non-directed BAL: no fungal growth

Confirmed *cyp51A* resistance mutations TR46 insertion and Y121F, T289A in isolates from Days 47 and 57

FLC stopped, MFG (150 mg once daily) and L-AmB (3 mg/kg) initiated
Confirmed *A. fumigatus* identification by ITS, β-tubulin and calmodulin sequencing

MFG stopped

L-AmB stopped

Discharged to rehabilitation

BAL, bronchoalveolar lavage; L, left; R, right; BDG, β-1-3-d-glucan; CT, computed tomography; MFG, micafungin; FLC, fluconazole; AFG, anidulafungin; US, ultrasound; GM, galactomannan; RUL, right upper lobe; LUL, left upper lobe; TEE, transoesophageal echocardiography; L-AmB, liposomal amphotericin B; ITS, internal transcribed spacer.

a Details of dosing not available.