Collagen fibril formation \textit{in vitro} and \textit{in vivo}

Karl E. Kadler

Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT UNITED KINGDOM

e-mail: karl.kadler@manchester.ac.uk

Keywords: collagen, fibril, fibripositor, tendon, electron microscopy, procollagen
Abstract
It is a great honour to be awarded the Fell Muir Prize for 2016 by the British Society of Matrix Biology. As recipient of the prize I am taking the opportunity to write a mini-review on collagen fibrillogenesis, which has been the focus of my research for 33 years. This is the process by which triple helical collagen molecules assemble into centimetre-long fibrils in the extracellular matrix of animals. The fibrils appeared a billion years ago at the dawn of multicellular animal life as the primary scaffold for tissue morphogenesis. The fibrils occur in exquisite three-dimensional architectures that match the physical demands of tissues; for example orthogonal lattices in cornea, basket-weaves in skin and blood vessels, and parallel bundles in tendon, ligament, and nerves. The question of how collagen fibrils are formed was posed at the end of the nineteenth century. Since then we have learned about the structure of DNA and the peptide bond, understood how plants capture the sun’s energy, cloned animals, discovered antibiotics, and found ways of editing our genome in the pursuit of new cures for diseases. However, how cells generate tissues from collagen fibrils remains one of the big unsolved mysteries in biology. In this review I will give a personal account of the topic and highlight some of the approaches that my research group are taking to find new insights.

A brief introduction to collagen
There are several excellent reviews on the collagen family and collagen structure (two such examples are (Bella, 2016, Mienaltowski and Birk, 2014)) and therefore only a brief account will be given here.

Collagens are a large family of proteins that have three left-handed polyproline II-like helices wound into a right-handed supercoiled triple helix. The chains have a repeating Gly-X-Y triplet in which glycine is located at every third residue position and X and Y are frequently occupied by the imino acids proline and hydroxyproline (see (Bella, et al., 1994, Brodsky and Persikov, 2005, Brodsky and Ramshaw, 1997) and reviewed by (Bella, 2016)). The first 20-or-so collagens were identified in animal tissues at the protein level and were assigned Roman numerals (reviewed by (Myllyharju and Kivirikko, 2004)). However, with the advent of genome sequencing it became apparent that many more collagens exist. We now know that there are 28 distinct collagens in vertebrates ((Huxley-Jones, et al., 2007) and reviewed by (Kadler, et al., 2007, Mienaltowski and Birk, 2014)), almost 200 in C. elegans (reviewed by (Johnstone, 2000)), and further collagens in marine invertebrates (Exposito, et al., 2010, Thurmond and Trotter, 1994, Trotter and Koob, 1989), bacteria (see (Ghosh, et al.,...
2012) and references therein) and viruses (e.g. see (Legendre, et al., 2011, Rasmussen, et al., 2003)). It has become clear that the triple helix is an important motif that is not restricted to collagens (Brody and Shah, 1995) but which occurs in a wide range of proteins including asymmetric acetylcholinesterase (Johnson, et al., 1977), macrophage scavenging receptors (Kodama, et al., 1990), complement component C1q (Reid and Day, 1990), ectodysplasin (Ezer, et al., 1999), and the mannose-binding lectin, collectins, and ficolins in the lectin pathway (Garred, et al., 2016) that are involved in mediating host-pathogen interactions (Berisio and Vitagliano, 2012).

The polypeptide chains in collagens are termed α-chains. Because there are numerous collagen genes and their protein products trimerise in a specific combination to produce a collagen ‘type’, a nomenclature has evolved to specify a particular α-chain based on the collagen type in which it is found. The nomenclature involves the α symbol followed by an Arabic number followed by a Roman numeral, in brackets (parentheses). The α symbol, Arabic number and Roman numeral are read together to indicate the gene that encodes that particular α-chain. Thus, α1(I) and α2(I) denotes that these chains are found in type I collagen, and are encoded by the genes COL1A1 and COL1A2.

Collagens can be homotrimers and heterotrimers. Moreover, some collagens of the same type can be homotrimeric or heterotrimeric (e.g. type I collagen can exist as a homotrimer of three α1(I) chains (i.e. [α1(I)]₃) chains or a heterotrimer of two α1(I) chains and a single α2(l) chain (i.e. [α1(I)]₂,α2(l)). Furthermore, heterotrimeric collagens can have 3 different α-chains (e.g. α1(IX), α2(IX), α3(IX)) that are encoded by three different genes (i.e. COL9A1, COL9A2 and COL9A3, respectively), and some collagen types contain specific combinations of a family of 6 chains (e.g. α1(IV),α2(IV) and α3(IV),α4(IV),α5(IV) and α6(IV) (see (Hudson, et al., 2003) for review)). There is chain selection specificity such that of the 45 different collagen α-chains in vertebrates, only 28 different types occur (see Table 1). For fibrillar collagens (Figure 1) the chain selection mechanism resides in the non-collagenous sequences at the C-terminal end of each pro-α-chain (Bourhis, et al., 2012, Lees, et al., 1997). The chain selection mechanism in other collagens is less well understood.

Fibrillar collagens

The 28 collagen types that occur in vertebrates can be classified according to domain structure, function, and supramolecular assembly (for review see (Mienaltowski and Birk, 2014)). The most abundant are the fibrillar collagens that form the basis of the fibrils in
bony, cartilaginous, fibrous, and tubular structures, and will be the focus of the remainder of this review. The fibril-forming collagens are types I, II, III, V, XI, XXIV and XXVII. They have uninterrupted triple helices of ~300 nm in length and have globular domains (propeptides) at each terminus of each α-chain. Types XXIV and XXVII were identified by genome sequencing and were added to this group on the basis of protein domain structure (Koch, et al., 2003) and the presence of type XXVII collagen in thin fibrils (Plumb, et al., 2007).

Collagen fibrils are complex macromolecular assemblies that comprise different fibrillar collagen types (Hansen and Bruckner, 2003). The fibrils are either ‘predominately type I collagen’ or ‘predominately type II collagen’. Predominately type I collagen fibrils occur in bony, tubular, and fibrous tissues whereas cartilaginous tissues contain predominately type II collagen fibrils. Collagen fibrils range in length from a few microns to centimetres (Craig, et al., 1989) and therefore have molecular weights in the tera Dalton range (based on calculations described by (Chapman, 1989)). The fibrils provide attachment sites for a broad range of macromolecules including fibronectin, proteoglycans, and cell surface receptors such as integrins, discoidin domain-containing receptors (DDRs) and mannose receptors (Di Lullo, et al., 2002, Jokinen, et al., 2004, Orgel, et al., 2011, Sweeney, et al., 2008).

Furthermore, the fibrils vary in diameter depending on species, tissue, stage of development, (Craig, Birtles, Conway and Parry, 1989, Parry, et al., 1978) and in response to injury and repair (Pingel, et al., 2014). Collagen fibrils are arranged in exquisite threedimensional architectures in vivo including parallel bundles in tendon and ligament, orthogonal lattices in cornea, concentric weaves in bone and blood vessels, and basket-weaves in skin. How the fibrils assemble, how length and diameter are regulated, how molecules attach to fibril surfaces, and how the multi-scale organisation is achieved are questions for which answers are either sketchy or not available. The extreme size and compositional heterogeneity of collagen fibrils mean that they are extremely difficult to study by conventional molecular, genetic and biochemical approaches. Collagen molecules are also hydroxylated at specific prolyl residues (by prolyl hydroxylases), lysyl residues (by lysyl hydroxylases or PLODs, procollagen-lysine 5-dioxygenases) and are non-reducibly cross-linked (by lysyl oxidase (LOX) enzymes), (Eyre, et al., 1984, Gistelinck, et al., 2016), which adds to the difficulty of studying the fibrils.

Collagen fibrils in tendon (Heinemeier, et al., 2013) and cartilage (Heinemeier, et al., 2016) are extremely long lived with estimates exceeding hundreds of years. Therefore the collagen in the fibrils is particularly prone to modification by advanced glycation end products (Thorpe, et al., 2010, Verzijl, et al., 2000). Thus, the two major experimental
approaches used in the study of collagen fibril assembly have been electron microscopy of

tissues to describe the organisation of the fibrils in vivo (explained below) and reconstitution

describe the organisation of the fibrils in vitro using collagen extracted from tissues (explained below) or recombinant

collagens (e.g. (Fertala, et al., 1996)).

Collagen fibril assembly in vitro

Studies by Gross (Gross and Kirk, 1958), Wood & Keech (Wood and Keech, 1960), Hodge

& Petruska (Hodge, 1989), Silver (Silver and Trelstad, 1980), and Chapman (Bard and

Chapman, 1968), to name a few, showed that exposure of animal tissues (typically skin and
tendon) to weak acidic solutions (typically acetic acid) or neutral salt buffers yielded a
solution of collagen molecules that when neutralised and warmed to ~30°C, produced

elongated fibrils that had the same alternating light and dark transmission electron

microscope banding appearance as fibrils occurring in vivo (Holmes and Chapman, 1979)
(Figure 2). The characteristic banding pattern of the fibrils arises from D-staggering of triple
helical collagen molecules that are 4.4 x D in length (where D is 67 nm, to a close
approximation). The electron-dense stain used at neutral pH penetrates more readily into
regions of least protein packing (the ‘gaps’) between the N- and C-termini of collagen
molecules that are aligned head-to-tail along the long axis of the fibril. The fact that fibrils
with D-periodic banding could be formed in vitro from purified collagen showed that all the
information required to form a collagen fibril was contained within the amino acid sequence
and triple helical structure of the collagen molecule (Hulmes, et al., 1973).

Subsequent studies showed that collagen fibrils from embryonic tendon (which are
predominantly type I collagen) exist in two isoforms: unipolar and bipolar (Holmes, et al.,
1994) (Figure 3). Unipolar fibrils have all collagen molecules in the fibril oriented in one
direction, which gives the fibril a carboxyl and an amino tip. Bipolar fibrils (more precisely,
N, N-bipolar fibrils) have two amino terminal ends and a molecular polarity switch region (or
transition zone) in which the orientation of collagen molecules switches e.g. from N-to-C to
C-to-N (Holmes, Lowe and Chapman, 1994). The switch in orientation occurs over an 8 D-
period range in chick tendon collagen fibrils (Holmes, Lowe and Chapman, 1994). Notably,
sea cucumbers (Actinopyga echinites) lack unipolar fibrils and all their bipolar fibrils have the
molecular switch region located precisely mid-way from each fibril tip; also, the switch varies
in extent from 14 to 41 D-periods in invertebrate fibrils (Trotter, et al., 1998, Trotter, et al.,
2000). Earlier studies had shown that collagen fibrils formed by cleavage of procollagen to
collagen (explained below) grow from pointed tips (i.e. the pointed ends of fibrils) and the
collagen molecules were oriented in one direction along the long axis of the fibril (Kadler et al., 1990). Moreover, the C-tip of a unipolar fibril is required for end-to-end fusion of either two unipolar fibrils (to generate a new N, N-bipolar fibril) or to one end of an N, N-bipolar to generate a longer N, N-bipolar fibril (Graham, et al., 2000, Kadler, et al., 2000). Notably, C, C-bipolar collagen fibrils have not been described. Presumably, the structure of C-tips exposes binding sites to promote carboxyl-to-amino fusion of fibril tips.

Two schools of thought developed about how collagen molecules assemble into fibrils: (1) precipitation from a solution of ‘bulk’ collagen by liquid crystalline ordering of molecules (e.g. see (Martin, et al., 2000)), or (2) ‘nucleation and propagation’ in which a finite number of collagen molecules form a nucleus that then grows in length and diameter to become the mature fibril (Gross, et al., 1954). This latter mechanism is analogous to the formation of inorganic crystals. The existence of fibrils of different lengths supports the notion that the fibrils grow in size (which supports the nucleation and propagation model) but collagen and procollagen (see below) molecules can form a liquid-like structure when packed in high concentration (which supports the liquid crystalline model). In reality, these two hypotheses might not be mutually exclusive; work by Hulmes and Bruns showed that procollagen molecules can align in zero-D register in secretory vacuoles of fibroblasts (analogous to liquid crystalline packing) (Bruns, et al., 1979, Hulmes, et al., 1983), which might increase the rate of conversion of procollagen to collagen to nucleate fibrils. Therefore it is possible that elements of both assembly mechanisms exist in vivo.

A system for generating collagen fibrils in vitro starting with procollagen

In 1984 I joined Darwin Prockop’s laboratory at UMDNJ, Piscataway, NJ, USA to develop a system of studying collagen fibril formation by cleavage of procollagen with its physiological convertases, the procollagen N- and C-proteinases (Figure 4). Procollagen had previously been shown to be the biosynthetic precursor of collagen (Bellamy and Bornstein, 1971]) and there had been initial success in purifying the N- and C-proteinases that convert procollagen to collagen (Njieha, et al., 1982, Tuderman and Prockop, 1982). With the collaboration of Yoshio Hojima who purified the procollagen N- and C-proteinases from chick tendon (Hojima, et al., 1989, Hojima, et al., 1985), we developed a method of purifying type I procollagen and cleaving it with N-proteinase to generate pCcollagen, and then cleaving the re-purified pCcollagen with the C-proteinase in a bicarbonate buffer. pCcollagen is a cleavage intermediate of procollagen that retains the C-propeptide but lacks the N-propeptide. This system allowed us to study collagen fibril formation in the absence of lysyl
oxidase and crosslink precursors (Eyre, et al., 2008). The presence of crosslink precursors in extracted collagen can affect collagen fibril formation in vitro (Herchenhan, et al., 2015).

Using this new system of forming fibrils by cleavage of procollagen, we defined the thermodynamic parameters of the assembly process (Kadler, et al., 1987), the temperature dependence of collagen fibril assembly (Kadler, et al., 1988), and showed that the fibrils form as a nucleus that grows at its pointed tips (Kadler, Hojima and Prockop, 1990). These observations indicated that collagen fibrils (in the absence of lysyl oxidase-derived crosslinks) exhibit a critical concentration of assembly, analogous to the self-formation of inorganic crystals. Our ability to purify procollagen from cells paved the way to study how mutations in collagen genes that cause osteogenesis imperfecta affect procollagen structure and fibril assembly. These studies showed that mutations in type I collagen genes can produce procollagen molecules that are ‘kinked’ (Vogel, et al., 1988), slow the rate of conversion of procollagen to collagen (Lightfoot, et al., 1992), lead to the formation of abnormal collagen fibrils (Kadler, et al., 1991), and impair the ability of collagen fibrils to be mineralised during the formation of bone (Culbert, et al., 1995). These studies led to a better understanding of how mutations in collagen genes can change the structure and processing of collagen molecules and how the resultant collagen fibrils are poorer scaffolds for mineralisation, as occurs in osteogenesis imperfecta in vivo (Culbert, et al., 1996). In parallel studies we also showed that the tips are the sites of diameter regulation (Holmes, et al., 1998), that fibrils formed at low C-proteinase/pCollagen ratios bore the closest resemblance to fibrils in vivo (Holmes, et al., 1996), and that the tips of fibrils are paraboloidal in shape (Holmes, et al., 1992).

Collagen fibril formation in vivo

Although collagen molecules can spontaneously self assemble into fibrils in vitro, additional factors must exist in vivo to explain the exquisite three-dimensional supramolecular organisation of fibrils, as well as the regulation of diameter, length and composition, that depend on tissue, stage of development, state of tissue ageing and repair, and which vary in disease. The in vivo regulation of collagen fibril formation has been studied for over a century, and although enormous progress has been made, the cellular mechanisms of fibril assembly and organisation in vivo remain elusive.

Some of the earliest reports on the existence of collagen fibrils date back to the end of the 19th century and beginning of the 20th century. For example, Mallory described a ‘fibrillar substance’ produced by connective tissue cells (i.e. fibroblasts) (Mallory, 1903).
Studies of collagen fibrils continued during the 1920s and 1930s during which time several groups attempted to develop methods to observe the assembly of the fibrils in vivo. A breakthrough came in 1940 when Mary Stearns published her first observations of fibroblasts secreting and assembling collagen fibres (Stearns, 1940). Her paper is a ‘must read’ for students of collagen fibril formation; the 46 hand-drawn plates are exquisite. Stearns used the camera lucida to visualise and draw details of cytoplasmic connections between cells, striations within cells, ‘vacuoles de secretion’, and fibres growing at the cell surface. In so doing, she produced the first evidence that fibroblasts are instrumental in assembling collagen fibrils in tissues. Almost 40 years later, Trelstad and Hayashi used transmission electron microscopy (TEM) to show that collagen fibrils occurred in invaginations of the plasma membrane of embryonic fibroblasts (Trelstad and Hayashi, 1979). A decade later this observation was extended using high-voltage TEM to study collagen fibrillogenesis in cornea as well as embryonic chick tendon (Birk and Trelstad, 1984, Birk and Trelstad, 1985, Birk and Trelstad, 1986, Trelstad and Birk, 1985). In 2006, we used serial section TEM and immunoEM of embryonic tendon to describe a variety of structures at the plasma membrane that contained collagen fibrils, and which we collectively called ‘fibripositors’ (Canty, et al., 2004). Collectively, these studies demonstrate the exquisite control the cell exerts over the self assembly of collagen fibrils to generate tissues with highly organised collagen matrices.

In 1989 I returned to the UK as a Wellcome Trust Senior Research Fellow in Basic Biomedical Science, and joined Michael Grant’s Department of Medical Biochemistry. During the next 10 years we extended our knowledge of how mutations in collagen genes affect procollagen structure and fibril formation. In collaboration with Peter Byers and Gillian Wallis, these studies focussed on the Ehlers-Danlos syndrome (type VII) that is caused by mutations in COL1A1 and COL1A2 genes that encode the chains of type I procollagen. PhD students Rod Watson, Samantha Lightfoot and Ainsley Culbert, and a postdoc David Holmes, joined my lab and together we showed how mutations in COL1A1 and COL1A2 that cause EDS VII disrupt the structure of procollagen, slow the cleavage of procollagen by N-proteinase, and lead to the ‘cauliflower’ appearance of collagen fibrils in affected individuals (Culbert, Wallis and Kadler, 1996, Holmes, et al., 1993, Wallis, et al., 1992, Watson, et al., 1998, Watson, et al., 1992). We also studied the function of the CUB domains in bone morphogenetic protein-1, which is a potent procollagen C-proteinase (Canty, et al., 2006,
Garrigue-Antar, et al., 2001, Garrigue-Antar, et al., 2004, Garrigue-Antar, et al., 2002, Hartigan, et al., 2003, Petropoulou, et al., 2005). Here, CUB is an evolutionary conserved protein domain named after its discovery in complement components (C1r/C1s), the sea urchin protein Uegf, and in BMP-1 (for review see (Bork and Beckmann, 1993)).

However, it was during a staff meeting in 2002 that I heard good advice that scientists should change their experimental approach every 10 years. Up until this time, I had used cells as a factory for procollagen production and had overlooked the importance of the cell in fibril assembly. A new postdoc in the lab, Elizabeth Canty, took up the challenge of taking our lab into new, in vivo, directions. We were inspired by the work of Hayashi, Trelstad and Birk, and decided to ask questions about how cells regulate fibril assembly and fibril number. With the assistance of David Holmes, Tobias Starborg and Yinhui Lu in the lab, Liz Canty embarked on studying collagen fibril formation in embryonic chick tendon using serial section electron microscopy and 3D reconstruction. Our first paper, in 2004, showed 3D reconstructions from 50 x 100 nm serial sections of embryonic chick tendon, cut perpendicular to the tissue long axis. These were the deepest and most detailed 3D reconstructions at the time and showed finger-like projections of the plasma membrane containing thin collagen fibrils (Figure 5). The 3D reconstructions showed that the projections were part of an invagination of the plasma membrane, and, that the fibril within the invagination and the projection were co-aligned to the long axis of the tendon (Canty, Lu, Meadows, Shaw, Holmes and Kadler, 2004) (Figure 6). We called these structures ‘fibripositors’ (a portmanteau of ‘fibril’ and ‘depositors’). We also showed that fibripositors are actin-dependent structures (Canty, et al., 2006) that projected into intercellular channels stabilised by cadherin-11 containing junctions (Richardson, et al., 2007).

Serial block face-scanning electron microscopy

The fact that fibripositors are too thin to be seen by light microscopy, and that no marker has been identified that can aid in their visualisation by fluorescence light microscopy, has been a severe hurdle to studies of fibripositor structure, function and formation. Also, the effort and time involved in producing serial sections for electron microscopy is a significant hurdle to further progress; sections can be lost or distorted during processing, and the process requires exceptional skills in ultrathin sectioning and handling. A major breakthrough came with the commercialisation of serial block face-scanning electron microscopy (SBF-SEM) (Denk and Horstmann, 2004). Here, images of a block face are recorded using a scanning electron microscope prior to the removal of a section by an in-
microscope ultramicrotome. The ability to produce serial images without manual sectioning opened up new opportunities to explore fibripositor function. After optimisation of sample preparation and staining, image acquisition and data analysis, Toby Starborg, Nick Kalson and Yinhui Lu showed that we could use SBF-SEM as a semi-high throughput system to examine fibripositor structure and function at the cell-matrix interface (Starborg, et al., 2013) (Figure 7 and Movie). With this new approach we were able to show that fibripositors are the site of fibril assembly in tendon and that non-muscle myosin II is required for fibril transport and formation (Kalson, et al., 2013). We also showed that fibripositor-like structures called keratopodia exist in corneal keratocytes (Young, et al., 2014). SBF-SEM also gave us the opportunity to explore how collagen fibril formation contributes to tendon development. In a tour de force of SBF-SEM, Nick Kalson, Yinhui Lu and Susan Taylor outlined a new hypothesis for tendon development in which the number of collagen fibrils is determined by embryonic tendon fibroblasts, and that the growth in lateral size of the tendon is driven by matrix expansion caused by the increase in girth and length of collagen fibrils (Kalson, et al., 2015). SBF-SEM studies have also revealed a new function for membrane type I-matrix metalloproteinase (MT1-MMP or MMP14) in being essential for tendon development (Taylor, et al., 2015). Taylor and colleagues showed that release of collagen fibrils from fibripositors at birth requires MT1-MMP, and that the process does not rely on the cleavage of collagen at the ¾-¼ vertebrate collagenase cleavage site in the molecule.

Negative regulation of collagen fibril formation during intracellular protein trafficking

Canty and co-workers also made the observation that procollagen can be cleaved to collagen prior to secretion by tendon fibroblasts in vivo. Evidence that procollagen can be cleaved to collagen within the cell without forming fibrils demonstrates active negative control of the self-assembly properties of collagen fibrillogenesis in vivo (Humphries, et al., 2008). These observations are in contrast to what happens in conventional cell culture, in which procollagen is readily purified from the cell culture medium. Presumably the environment of the cell and matrix influence the trafficking of procollagen. A half-way house between in vivo and in vitro is the use of 3D cell culture systems; Kapacee and colleagues showed that fibroblasts incubated in fibrin gels under linear tension replace the fibrin with collagen fibrils that are aligned parallel to the lines of stress and exhibit features of embryonic fibroblasts in vivo, including fibripositors (Bayer, et al., 2010, Kalson, et al., 2011, Kalson, et al., 2010, Kapacee, et al., 2008, Kapacee, et al., 2010). This approach
facilitates studies of the role of cells, in a near-physiological environment with tissue-derived mechanical forces, in assembling collagen fibrils.

Regulators of collagen fibril assembly in vivo

The fact that collagen fibrils are comprised of different collagens, that they occur in different numbers and with different diameters and packing densities in different tissues, that the supramolecular organisation of fibrils is different in different tissues, and that collagen molecules provide interaction sites for receptors and a wide range of extracellular matrix molecules, suggests that there are multiple steps in the assembly and organisation of fibrils, and that each step can be error prone. Defective collagen fibrillogenesis can arise from mutations in genes encoding fibrillar collagens (see Table 2), fibril associated collagens with interrupted triple helices that bind to the surfaces of collagens fibrils e.g. type XII and type XIV collagen (Young, et al., 2002), proteoglycans that interact with fibrils e.g. decorin (Danielson, et al., 1997), lumican (Chakravarti, et al., 1998) fibromodulin (Hedlund, et al., 1994, Svensson, et al., 1999), osteoglycin (Tasheva, et al., 2002), keratocan (Liu, et al., 2003), and biglycan (Heegaard, et al., 2007) (for review see (Kalamajski and Oldberg, 2010)), enzymes required for posttranslational modification of collagen α-chains e.g. prolyl 4-hydroxylase (Mussini, et al., 1967), lysyl hydroxylases (Takaluoma, et al., 2007), lysyl oxidases (Maki, et al., 2002), proteins involved in transporting collagens through the secretory pathway e.g. HSP47 (Satoh, et al., 1996), sedlin (Venditti, et al., 2012), and TANGO1 (Saito, et al., 2009, Wilson, et al., 2011), and proteinases involved in collagen turnover e.g. MMP14 (Taylor, Yeung, Kalson, Lu, Zigrino, Starborg, Warwood, Holmes, Canty-Laird, Mauch and Kadler, 2015). Loss of the collagen network in cartilage occurs in end stage osteoarthritis (Ehrlich, et al., 1977). Conversely ectopic or excessive accumulation of collagen occurs in fibrosis, which can be stimulated by TGF-β (Roberts, et al., 1986), and can affect any organ often resulting in death. Thus, collagen fibrillogenesis is a precisely regulated process in which the mechanisms that maintain the appropriate number, size, and organisation of collagen fibrils in adult tissues appear to be sensitive to a wide range of genetic mutations and environmental stimuli.

A personal perspective on some of the most important unanswered questions in the field of collagen fibril homeostasis

We do not have clear line of sight of how the three-dimensional organisation of collagen fibrils is established in tissues. Collagen fibrils first appear part way though vertebrate
embryonic development when the mass of matrix begins to exceed the mass of cells. At this pivotal stage of development, the patterning of tissue progenitor cells has, to a close approximation, been established and might be expected to dictate the patterning of the matrix. Perhaps novel insights into organogenesis will come from a better understanding of the interplay between cell positioning, cell-cell communication, cell-matrix interactions, cell polarity, the role of the secretory pathway in directing matrix assembly, and mechanical forces.

A further exciting area of research is matrix homeostasis; it will be fascinating to learn how changes in this process lead to diseases such as osteoarthritis, tendinopathies, fibrosis and cell migration through the matrix. The realisation that the bulk of the collagen in tendon and cartilage is synthesised during adolescence and remains unchanged during the lifetime of a person raises intriguing questions about how the collagen network is maintained during life despite countless cycles of mechanical loading. Advances in genome editing and super-resolution light microscopy are all likely to be brought to bear on this question. These approaches are expected to lead to a better understanding of how matrix homeostasis goes wrong in diseases such as fibrosis, where ectopic and excessive deposition of collagen fibrils can cause death. Recent discoveries show that matrix-rich tissues are peripheral circadian clock tissues and that defects in the rhythm in these tissues lead to pathologies such as calcific tendinopathy (Yeung, et al., 2014), osteoarthritis (Dudek, et al., 2016, Guo, et al., 2015) and intervertebral disc disease (Dudek, et al., 2016). Thus, the mechanical environment of the cell, the role of the matrix in modulating cell behaviour, and peripheral circadian clocks are all likely to contribute to matrix homeostasis.

Acknowledgements

I am indebted to The Wellcome Trust for continuous support of my research for over 30 years. Numerous students, postdoctoral fellows and technical staff have made valuable contributions to this research. However, a few people need a special mention: Laure Garrigue-Antar, Samantha Lightfoot and Rod Watson performed the studies on osteogenesis imperfecta, the Ehlers-Danlos syndrome and bone morphogenetic protein-1 that established my laboratory at the University of Manchester. In recent years, my gratitude goes out to Nick Kalson, Zoher Kapacee, Elizabeth Laird (nee Canty), Yinhui Lu, Susan Taylor (nee Richardson), Toby Starborg, and Chloé Yeung who led the work on 3D electron microscopy, fibrapositors, and tendon-like constructs. Finally, very special thanks to David Holmes, who I have known since my PhD days, and who joined my group in the 1990s. David is an
enormously talented electron microscopist who has made outstanding contributions to our research.
Table 1. Collagen types and their chain compositions

<table>
<thead>
<tr>
<th>Type</th>
<th>Gene</th>
<th>α-chain</th>
<th>Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>COL1A1</td>
<td>α1(I)</td>
<td>[α1(I)]₃</td>
</tr>
<tr>
<td></td>
<td>COL1A2</td>
<td>α2(I)</td>
<td>[α1(I)],α2(I)</td>
</tr>
<tr>
<td>II</td>
<td>COL2A1</td>
<td>α1(II)</td>
<td>[α1(II)]₂</td>
</tr>
<tr>
<td>III</td>
<td>COL3A1</td>
<td>α1(III)</td>
<td>[α1(III)]₃</td>
</tr>
<tr>
<td>IV</td>
<td>COL4A1</td>
<td>α1(IV)</td>
<td>[α1(IV)],α2(IV)</td>
</tr>
<tr>
<td>V</td>
<td>COL5A1</td>
<td>α1(V)</td>
<td>α1(V), α2(V), α3(V)₃</td>
</tr>
<tr>
<td>VI</td>
<td>COL6A1</td>
<td>α1(VI)</td>
<td>α1(VI), α2(VI) and any of α3(VI), α4(VI), α5(VI), and α6(VI) (see Maass, et al., 2016)</td>
</tr>
<tr>
<td>VII</td>
<td>COL7A1</td>
<td>α1(VII)</td>
<td>[α1(VII)]₃</td>
</tr>
<tr>
<td>VIII</td>
<td>COL8A1</td>
<td>α1(VIII)</td>
<td>[α1(VIII)]₃</td>
</tr>
<tr>
<td></td>
<td>COL8A2</td>
<td>α2(VIII)</td>
<td>[α2(VIII)]₃</td>
</tr>
<tr>
<td>IX</td>
<td>COL9A1</td>
<td>α1(IX)</td>
<td>α1(IX), α2(IX), α3(IX)</td>
</tr>
<tr>
<td></td>
<td>COL9A2</td>
<td>α2(IX)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COL9A3</td>
<td>α3(IX)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>COL10A1</td>
<td>α1(X)</td>
<td>[α1(X)]₂</td>
</tr>
<tr>
<td>XI</td>
<td>COL11A1</td>
<td>α1(XI)</td>
<td>[α1(XI)],α2(XI); α1(XI), α2(XI), α3(XI)*</td>
</tr>
<tr>
<td></td>
<td>COL11A2</td>
<td>α2(XI)</td>
<td>[α2(XI)]₃</td>
</tr>
<tr>
<td>XII</td>
<td>COL12A1</td>
<td>α1(XII)</td>
<td>[α1(XII)]₃</td>
</tr>
<tr>
<td>XIII</td>
<td>COL13A1</td>
<td>α1(XIII)</td>
<td>[α1(XIII)]₃</td>
</tr>
<tr>
<td>XIV</td>
<td>COL14A1</td>
<td>α1(XIV)</td>
<td>[α1(XIV)]₃</td>
</tr>
<tr>
<td>XV</td>
<td>COL15A1</td>
<td>α1(XV)</td>
<td>[α1(V)]₂</td>
</tr>
<tr>
<td>XVI</td>
<td>COL16A1</td>
<td>α1(XVI)</td>
<td></td>
</tr>
<tr>
<td>XVII</td>
<td>COL17A1</td>
<td>α1(XVII)</td>
<td></td>
</tr>
<tr>
<td>XVIII</td>
<td>COL18A1</td>
<td>α1(XVIII)</td>
<td></td>
</tr>
<tr>
<td>XIX</td>
<td>COL19A1</td>
<td>α1(XIX)</td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td>COL20A1</td>
<td>α1(XX)</td>
<td></td>
</tr>
<tr>
<td>XIX</td>
<td>COL21A1</td>
<td>α1(XXI)</td>
<td></td>
</tr>
<tr>
<td>XXII</td>
<td>COL22A1</td>
<td>α1(XXII)</td>
<td></td>
</tr>
<tr>
<td>XXIII</td>
<td>COL23A1</td>
<td>α1(XXIII)</td>
<td></td>
</tr>
<tr>
<td>XXIV</td>
<td>COL24A1</td>
<td>α1(XXIV)</td>
<td></td>
</tr>
<tr>
<td>XXV</td>
<td>COL25A1</td>
<td>α1(XXV)</td>
<td></td>
</tr>
<tr>
<td>XXVI</td>
<td>COL26A1</td>
<td>α1(XXVI)</td>
<td></td>
</tr>
<tr>
<td>XXVII</td>
<td>COL27A1</td>
<td>α1(XXVII)</td>
<td>[α1(XXVII)]₃</td>
</tr>
<tr>
<td>XXVIII</td>
<td>COL28A1</td>
<td>α1(XXVIII)</td>
<td>[α1(XXVIII)]₃</td>
</tr>
</tbody>
</table>

* the α3(XI) chain is encoded by the COL2A1 gene

Table 2. Diseases caused by mutations in genes encoding fibrillar collagens

<table>
<thead>
<tr>
<th>Collagen type</th>
<th>Gene</th>
<th>OMIM</th>
<th>Disease</th>
<th>Mouse models</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>COL1A1</td>
<td>120150</td>
<td>Osteogenesis imperfecta (OI);</td>
<td>Mov13 (Bonadio, et al.,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COL1A2</td>
<td>120160</td>
<td>Ehlers Danlos syndrome type VII; Osteogenesis imperfecta (OI); Ehlers-Danlos syndrome type VII</td>
<td>1990); Col1a1(Irt/+); OI/EDS mouse (Chen, et al., 2014)</td>
</tr>
<tr>
<td>II</td>
<td>COL2A1</td>
<td>120140</td>
<td>Stickler syndrome; Achondrogenesis; Familial avascular necrosis of the femoral head; Legg-Calves-Perthes disease Kniest dysplasia; Spondyloepiphyseal dysplasia congenital (SEDC); Czech dysplasia; Myopia 2; Marshall syndrome; Epiphyseal dysplasia; Platyspondylis lethal skeletal dysplasia</td>
<td>(Donahue, et al., 2003, Gaiser, et al., 2002, Garofalo, et al., 1991, Li, et al., 1995, Vandenberg, et al., 1991);</td>
</tr>
<tr>
<td>III</td>
<td>COL3A1</td>
<td>120180</td>
<td>Ehlers Danlos syndrome type IV; Intracranial berry aneurysm</td>
<td>(Liu, et al., 1997); Tsk2 mouse (Long, et al., 2015)</td>
</tr>
<tr>
<td>V</td>
<td>COL5A1</td>
<td>120215</td>
<td>Nail patella syndrome; Ehlers Danlos syndrome classic type</td>
<td>(Wenstrup, et al., 2004)</td>
</tr>
<tr>
<td></td>
<td>COL5A2</td>
<td>120190</td>
<td>Ehlers Danlos syndrome type I or type II</td>
<td>(Andrikopoulos, et al., 1995)</td>
</tr>
<tr>
<td></td>
<td>COL5A3</td>
<td>120216</td>
<td></td>
<td>(Huang, et al., 2011)</td>
</tr>
<tr>
<td>XI</td>
<td>COL11A1</td>
<td>120280</td>
<td>Stickler syndrome; Otospondyloepiphyseal dysplasia (OSMED); Marshall syndrome</td>
<td>Cho/cho mouse (Li, et al., 1995)</td>
</tr>
<tr>
<td></td>
<td>COL11A2</td>
<td>120290</td>
<td>Stickler syndrome; Otospondyloepiphyseal dysplasia</td>
<td>(McGuirt, et al., 1999); (Li, et al., 2001)</td>
</tr>
<tr>
<td>XXIV</td>
<td>COL24A1</td>
<td>610025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure legends

Figure 1: Schematic diagram of the chain composition of the fibril-forming collagens

Figure 2: Transmission electron microscopy of individual collagen fibrils

A. Single collagen fibril from 18-day chick embryonic metatarsal tendon. The fibril is negatively stained with 2% uranyl acetate to show the characteristic light and dark banding pattern.

B. Schematic representation of the axial arrangement of collagen molecules in a collagen fibril. Each collagen molecule is represented with three coiled chains with amino and carboxy termini indicated. Each molecule is 4.4 x D in length, where D ~ 67 nm. The D-stagger of molecules that are 4.4D long leads to the formation of a gap zone in the axial structure.

C. The characteristic negative staining pattern of collagen fibrils, as shown by 1% sodium phosphotungstate staining at neutral pH.

Figure 3: Unipolar and bipolar collagen fibrils

A. Negatively-stained unipolar collagen fibril isolated from embryonic chick metatarsal tendon. Analysis of the staining pattern shows that the collagen molecules are oriented with their amino terminal to the right hand side (as shown) and the carboxy termini to the left.

B. Negatively-stained N, N-bipolar collagen fibril from embryonic chick tendon showing the molecular polarity switch region (box).

C. Enlargement of the box in B.

Figure 4: Schematic representation of collagen fibril formation by cleavage of procollagen

Sequential cleavage of the N-propeptides (by procollagen N-proteinase, which are ADAM 2, 3, 14) and the C-propeptides (by procollagen C-proteinase, which are the BMP-1/Tolloid family) of procollagen generates collagen that self-assembles into unipolar collagen fibrils (Kadler, Hojima and Prockop, 1987).
Figure 5. Transmission electron microscopy of embryonic tendon
Embryonic tendon contains bundles of collagen fibrils between adjacent fibroblasts. The image shows profiles of fibripositors.

Figure 6: A fibripositor at the plasma membrane of an embryonic fibroblast
Transmission electron microscope image of a collagen fibril contained within a fibripositor at the surface of an embryonic mouse tail-tendon fibroblast.

Figure 7: Serial block face-scanning electron microscopy for studies of the cell-matrix interface
Three images from the downloadable Movie generated by serial block face-scanning electron microscopy. The coloured circles show fibripositors. Numbers refer to the image sequence.

Movie: Step-through movie of consecutive images of embryonic mouse tendon generated by serial block face-scanning electron microscopy
E17.5 mouse-tail tendon was prepared for serial block face-scanning electron microscopy as described previously (Starborg, Kalson, Lu, Mironov, Cootes, Holmes and Kadler, 2013). Images were recorded prior to 100 nm-thick sections being removed sequentially from the block face. The movie shows 60 consecutive images covering a z-depth of 6 µm. Fibripositors are highlighted with coloured circles.
References

intervertebral disc contains intrinsic circadian clocks that are regulated by age and cytokines and linked to degeneration. Ann Rheum Dis.

tendon show an early and abrupt limitation in diameter at the growing tips. Journal of
Molecular Biology 283, 1049-1058.

in vivo can exhibit a reversal in molecular polarity. Journal of Molecular Biology 235, 80-
83.

type VIIIB. Morphology of type I collagen fibrils formed in vivo and in vitro is determined by
the conformation of the retained N-propeptide. Journal of Biological Chemistry 268,
15758-15765.

Huang G., Ge G., Wang D., Gopalakrishnan B., Butz D.H., Colman R.J., Nagy A. &
Greenspan D.S. (2011) alpha3(V) collagen is critical for glucose homeostasis in mice due
to effects in pancreatic islets and peripheral tissues. J Clin Invest 121, 769-783.

procollagen. Proceedings of the National Academy of Sciences of the United States of
America 80, 388-392.

the primary structure of collagen for the origins of molecular packing. Journal of molecular
biology 79, 137-148.

Humphries S.M., Lu Y., Canty E.G. & Kadler K.E. (2008) Active negative control of
collagen fibrillogenesis in vivo. Intracellular cleavage of the type I procollagen propeptides

extracellular matrix in vertebrates. Matrix biology : journal of the International Society for
Matrix Biology 26, 2-11.

acetylcholinesterases; separation and selective modification by collagenase. J Neurochem
28, 617-624.

Genet 16, 21-27.

Lightfoot S.J., Holmes D.F., Brass A., Grant M.E., Byers P.H. & Kadler K.E. (1992) Type I procollagens containing substitutions of aspartate, arginine, and cysteine for glycine in the
pro alpha 1 (I) chain are cleaved slowly by N-proteinase, but only the cysteine substitution introduces a kink in the molecule. The Journal of biological chemistry 267, 25521-25528.

lethal osteogenesis imperfecta does not alter cleavage of the molecule by N-proteinase.

protruding fibrilers

collagen fibrils contained within a bundle

lumen of two fibrisers containing collagen fibrils

400 nm