Using national registry data and record linkage to inform post-market surveillance of prosthetic aortic valve models over 15-years

Graeme L. Hickey1,2 [Ph.D.], Ben Bridgewater2,3 [Ph.D., FRCS (C-Th)], Stuart W. Grant2,4 [MB ChB, Ph.D.], John Deanfield2 [MB BChir, FRCP], John Parkinson2 [Ph.D.], Alan J. Bryan5 [MD, FRCS (C-Th)], Malcolm Dalrymple-Hay6 [Ph.D., FRCS (C-Th)], Neil Moat7 [FRCS], Iain Buchan8 [MD, FFPH], Joel Dunning9 [Ph.D., FRCS (C-Th)]

1 University of Liverpool, Department of Biostatistics, Waterhouse Building (Block F), 1-5 Brownlow Street, Liverpool, L69 3GL, UK

2 University College London, National Institute for Cardiovascular Outcomes Research (NICOR), 1 St Martin le Grande, London, EC1A 4NP, UK

3 Computer Science Corporation, One Pancras Square, Kings Cross, London, N1C 4AG, UK

4 Department of Cardiothoracic Surgery, Lancashire Cardiac Centre, Blackpool Victoria Hospital, Whinney Heys Road, Blackpool, FY3 8NR, UK

5 Department of Cardiac Surgery, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, BS2 8HW, UK

6 South West Cardiothoracic Centre, Derriford Hospital, Derriford, Plymouth, PL68DH, UK

7 Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
8 University of Manchester, Manchester Academic Health Science Centre, Centre for Health Informatics, Vaughan House, Portsmouth St, Manchester, M13 9GB, UK

9 Department Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, TS4 3BW, UK

* Corresponding Author: Mr. Joel Dunning, Address: Department Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, TS4 3BW, UK, Email: joeldunning@doctors.org.uk, Tel: +44 (0)1642 854612

Word count: 2979 (34 references)

Number of tables: 0; Number of figures: 5

Number of supplementary files: 1
ABSTRACT

Context: Post-market evidence generation for medical devices is important yet limited for prosthetic aortic valve devices in the United Kingdom (UK).

Objective: To identify prosthetic aortic valve models that display unexpected patterns of mortality or re-intervention using routinely collected national registry data and record linkage.

Design: Observational study using the UK National Adult Cardiac Surgery Audit (NACSA) registry for procedures performed between 1998 and 2013. Valves were classified into series of related models. Outcome tracking was performed using multifaceted record linkage. The median follow-up was 4.1 years (maximum 15.3 years). Cox proportional hazards regression with random effects (frailty models) were used to model valve effects on the outcomes, with and without adjustment for (pre-)operative covariates.

Setting: All National Health Service and private hospitals in England and Wales who submit data to the NACSA registry.

Patients and Interventions: All patients undergoing first-time elective and urgent aortic valve replacement surgery (± coronary artery bypass graft) with a mechanical (n=10 series) or biological (n=15 series) prosthetic valve from 5 primary suppliers, and satisfying pre-specified data quality criteria were included (n=43,782 biological, n=11,084 mechanical).

Main Outcome Measures: Time to all-cause mortality or aortic valve re-intervention (surgical or trans-catheter). There were 13,104 deaths and 723 re-interventions during follow-up.

Results: Two series of valves were associated with significantly increased hazard of death or re-intervention were identified: Sorin Biological Series (frailty 1.18 [95%PI: 1.06 to 1.32]) and
Sorin Mitroflow series (frailty 1.19 [95%PI: 1.09 to 1.31]). These results were robust to covariate adjustment, and sensitivity analyses. Three biological valve series were associated with significantly decreased hazard.

Conclusions: Meaningful evidence from the analysis of routinely-collected registry data can inform post-market surveillance of medical devices. Although the findings are associated with a number of caveats, two specific biological aortic valve series identified in this study may warrant further investigation.

Word count (abstract): 300

Keywords: Post-market surveillance; prosthetic valves; aortic valves; survival; clinical registry data
INTRODUCTION

In recent years there has been a shift in emphasis from establishing device safety and effectiveness before marketing, to post-market evidence generation and surveillance.¹ The United States Food and Drug Administration (US FDA) system for post-market surveillance has been found to be in need of strengthening.²,³ This need for improved surveillance systems was recently highlighted by the international health scare caused by Poly Implant Prothèse (PIP) breast implants.⁴ Post-market surveillance systems have historically been reactive rather than proactive in the United Kingdom (UK) as evidenced by concerns over hip prostheses leading to the UK National Joint Registry being established.⁵

Prosthetic heart valves have evolved significantly since the first valve replacement was performed in 1952. Although there are two main groups of prosthetic heart valve, tissue or mechanical, there are a variety of different valves within these groups. There is a large body of literature on the long-term reliability of prosthetic heart valves, but these studies, whether randomised trials,⁶ observational,⁷ or case-series,⁸ typically compare a very small number of valves. Data from systematic benchmarking of long-term performance is not readily available.

In the UK, the Heart Valve Registry (UKHVR) was established in 1986 between the Government’s Department of Health and the Society for Cardiothoracic Surgery in Great Britain and Ireland (SCTS).⁹,¹⁰ Within 10-years a minimum dataset of clinical variables about heart valve replacement procedures had been entered for more than 45,000 patients.¹¹ The UKHVR fulfilled an important role: the ability to monitor trends in outcomes by different prosthetic valve models. It was setup to do this by recording valve model and serial numbers for implanted prosthetic valves, and also by linkage to mortality data, including cause of death, from the Office
for National Statistics (ONS). In 2004, funding was withdrawn due to cost and governance issues, with its functionality partly subsumed by a national adult cardiac surgery register.12

Currently, the UK agency responsible for ensuring that medical devices meet applicable standards of safety – the Medicines and Healthcare products Regulatory Agency (MHRA) – collects data on acute valve failures submitted by healthcare professionals; however, in the absence of a device-specific registry, the opportunity to detect patterns of unexpected outcomes are limited.

Prospective surveillance based on clinical registries that record device-specific information can identify important signals that passive reporting mechanisms may miss,13,14 and there have been calls to move from reactive to proactive monitoring.14 As a prelude to any prospective surveillance programme, we present results for a retrospective cross-sectional surveillance analysis of prosthetic valves implanted into patients undergoing aortic valve replacement (AVR) surgery with or without concomitant coronary artery bypass grafting (CABG) in England and Wales over the past 15-years.
MATERIALS AND METHODS

Extraction and preprocessing of aortic valve surgery data

A complete extract from the National Adult Cardiac Surgery Audit (NACSA) registry version 4.1.2, which is run by the National Institute for Cardiovascular Outcomes Research (NICOR; an institute of University College London), was performed on 10th October 2014. This extract included all adult cardiac surgery procedures performed in UK National Health Service (NHS) hospitals, some private hospitals and some hospitals in the Republic of Ireland. Case ascertainment of NHS procedure is expected to be high for most of the study period. As part of a wider clinical epidemiological research and quality improvement programme, a regularly updated suite of ‘data cleaning’ rules developed by specialist clinicians were coded and applied to the raw data (excluding the valve model data) prior to any analysis as summarized in the Appendix.\(^\text{15,16}\)

The initial filtering step was to extract all records corresponding to aortic valve surgery performed in hospitals located in England and Wales between 1st April 1998 and 31st March 2013. Data for one private hospital were removed prior to analysis pending local validation, as were all data for patients who had more than one record in the registry for the same admission spell. For the purposes of this study, we selected all patients who underwent an AVR ± CABG. We then excluded all records corresponding to: 1) patients having previous cardiac surgery; 2) suspected incorrectly entered trans-catheter aortic valve implantation (TAVI) procedures (as identified using a rules-based approach); 3) emergency or salvage procedures; 4) unidentifiable responsible consultant surgeon (as identified by a unique surgeon’s General Medical Council number in the registry); 5) missing primary outcome data.
Record linkage

To facilitate long-term monitoring of patient and valve status, we performed multiple record linkages for each patient for life status, surgical reoperation, and TAVI as described in the Appendix.

Valve model data and data quality

Prostheses are recorded in the NACSA registry in two separate free-text fields: valve name and valve model. There was inconsistency on how each hospital entered these data. An updated suite of data-processing scripts was written to map each recorded name and/or model to a homogenous list of known prosthetic valves using a variety of information sources as described in the Appendix. For each record, we attempted to record the valve manufacturer, model, series, and type (mechanical or biological, and xenograft type in the case of biological valves). Here, ‘series’ refers to a group of valve models from a single manufacturer considered related (See Table S1 for groupings used). Not all valves could be accurately classified. When valve series was not clear, a subjective decision was made based on expert clinical opinion. Note that manufacturer classification only reflects ownership as of 2015 to the best of our knowledge. Some models have been acquired by manufacturers through business mergers and acquisitions, but are grouped together according to model.

Records which were irrelevant or featured gross inconsistencies were excluded, including records that could either not be matched or which were matched to more than one manufacturer, series, or type, or which were matched to >1 model were excluded. Homografts, autografts, rings, valve conduits, two particular model types, off-label procedures, and valves not produced by one of the UK primary suppliers were also excluded (see Appendix for details). The 5
manufacturers included are Edwards Lifesciences (Irvine, CA, USA), Medtronic Inc. (Minneapolis, MN, USA), Sorin Group (Milan, Italy), St Jude Medical, Inc. (St. Paul, MN, USA), and Vascutek Ltd. (a Terumo Company, Inchinnan, Scotland, UK).

Study variables

For each procedure, data were extracted for administrative factors, patient characteristics, comorbidities, surgical team, intra-operative factors, and post-operative outcomes. There were few missing clinical data (all >95% complete with the exception of the dichotomous creatinine variable [5.6% missing], critical preoperative state [7.4% missing], haemodynamics [5.1% missing] and aortic valve pathology [10.1% missing]). Details of study variable definitions and missing data imputation are given in the Appendix.

Study outcomes

The outcome for this study was time from surgery to the first event of death or re-intervention. Patients were censored at the last follow-up time if alive and re-intervention free. Patients who died in-hospital on the day of surgery were recorded as having a nominal survival time of 0.5 days. Follow-up data, until the point of discharge, were collected by the NACSA registry and post-discharge survival data were collected by record linkage to the ONS death registry. Re-intervention was defined as surgical reoperation on the aortic valve for any reason or TAVI. Time-to-re-intervention data was collected by intra- and inter-record linkage as described above.

Statistical analysis
Mechanical and biological valves were analyzed separately to avoid confounding by indication. Valves were compared only at series-level. The Kaplan-Meier estimator was used to construct survival curves for the time-to-event outcome, and compared between valves using log-rank tests. Multivariable Cox proportional hazards regression models were used to adjust for potential differences with zero-mean valve series-level normally distributed random effects. The exponentiated random-effects—also known as the shared frailties—act multiplicatively on the baseline hazard rate and therefore have an intuitive translation: frailty terms >1 correspond to increased hazard for a valve, and those <1 correspond to decreased hazard. Frailties where the corresponding 95% prediction interval lower limit lies above 1 indicate a valve with a significantly large hazard rate for the outcome. The focus of this study was not the identification of prognostic factors, hence we limit reporting to the frailty effects. For comparison, unadjusted frailties are also reported. All analyses and data cleaning were performed in R (Version 3.3.1; R Foundation for Statistical Computing, Vienna, Austria; http://www.R-project.org/). More detailed description of the statistical analysis is given in the Appendix. A number of different sensitivity analyses were performed (reported in the Appendix). All inferences remained broadly consistent.
RESULTS

From 79,345 AVR ± CABG records with a biological or mechanical prosthesis, a total of 54,866 records were retained for analysis (Figure 1; Appendix), from 37 hospitals (including 4 private units) and 344 consultant surgeons.

Table S1 lists the valves included, which were grouped into 15 and 10 series of biological and mechanical valves, respectively. Figure 2 shows an increasing trend in the implantation rate of biological valves during the study period, stabilising at 86%. Figure 3 shows the number of valves implanted by time for each series. The distribution of patient age at surgery (Figure 4) indicates homogeneity between the valve-series within type (biological and mechanical), with the exception of greater patient ages for the Medtronic Hall series, Vascutek Ultracor series, Edwards Lifesciences Mechanical series, and Sorin Sutureless series relative to others of the same type. Plots for logistic EuroSCORE, gender, native valve pathology, procedure, BMI, valve size, and NYHA grade are shown in Figures S1-S8.

Valve outcomes

During a median follow-up of 4.1 years (maximum follow-up 15.3-years), 13,104 deaths (11,353 biological; 1751 mechanical) were recorded and there were 723 (571 biological; 152 mechanical) re-interventions, (682 were surgical procedures and 41 were TAVIs). Results from the Kaplan-Meier estimator analysis and pathological data for surgical re-interventions are described in the Appendix.

After adjustment, the random effects survival model indicated that the Sorin Mitroflow series (frailty 1.19 [95%PI: 1.09 to 1.31]) and Sorin Biological series (frailty 1.18 [95%PI: 1.06 to 1.32]) displayed larger hazard than expected (Figure 5). To place the outcomes into
perspective, the 10-year overall freedom from re-intervention or death rates for the 2 valves were 33.8% [95%CI: 31.3% to 36.5%] and 41.4% [95%CI: 37.6% to 45.6%], respectively, compared to the overall average of 47.2% [95%CI: 46.2% to 48.1%] for all non-Sorin biological valves. Although non-significant, the lower 95% PI for the Medtronic ATS-3f series only marginally crossed the line of unity (frailty 1.21 [95%PI: 1.00 to 1.47]). For mechanical valves, the Medtronic Hall valve had a significantly larger unadjusted hazard (unadjusted frailty 1.48 [95%PI: 1.22 to 1.80]). However, after adjustment this was considerably shrunken (adjusted frailty 1.10 [95%PI: 0.97 to 1.24]), reflecting the greater patient age relative to the profile of other mechanical valves. Additional results are provided in the Appendix.

There were three prosthetic valves with a significant reduction in hazard (Figure 5): the Edwards Lifesciences Perimount series (frailty 0.88 [95%PI: 0.80 to 0.96]), the Edwards Lifesciences Perimount Magna series (frailty 0.88 [95%PI: 0.80 to 0.96]), and the Medtronic Hancock series (frailty 0.88 [95%PI: 0.78 to 0.98]).

A subgroup analysis of all bioprosthesis records performed on or after 1st April 2008 (n=23,834) showed that the lower 95% prediction interval limit was <1 for every valve after adjustment (see Appendix).
DISCUSSION

We analysed a comprehensive clinical registry to measure re-intervention-free survival in a large series of patients undergoing AVR in the UK. Two series of prosthetic aortic valves were associated with significantly increased hazards of death or re-intervention, relative to the population of prosthetic valves implanted in England and Wales from large suppliers. Similarly, three series of prosthetic valves were associated with decreased hazards. Inferences remained broadly consistent following covariate adjustment and sensitivity analyses. This study has shown that routinely-collected clinical registry data can be exploited, in conjunction with multifaceted record linkage, to perform long-term device surveillance.

There is a large literature examining outcomes following different prosthetic AVR implants. Few studies, however, reflect national data. Moreover, the evidence-base is mixed. For example, some studies have suggested an inferior performance of the Sorin Mitroflow\(^{17,18}\) whereas on the other hand, others have demonstrated long-term durability and haemodynamic performance.\(^{19,20}\)

The NHS number—a unique patient identifier—enables record linkage across clinical registries and other data sources. It would be feasible to exploit this to link across further data sources (e.g. trace readmission from administrative data). In fact, strategic linking of complementary registries and data sources is a “foundational architectural construct” recommendation of the US Medical Device Registries Task Force.\(^{21}\) Furthermore, record-linkage could be further extended using unique serial numbers of implanted devices (including prosthetic aortic valves) to device manufacturer databases to improve ongoing research, augment clinical trial follow-up after completion, and to allow traceability in case of serious fault detection. The
planned role out by the US FDA of a unique device identification system integrated for use with electronic health records would allow scalable cross-speciality surveillance.22

We explored outcomes in prosthetic valves cross-sectionally using 15-years of data. Moving forward, this is not a suitable approach for post-market device surveillance, which should be dynamic, providing regular updates, to achieve superiority over existing passive reporting mechanisms. It is conceivable that signals of unexpected patterns of outcomes could have been detected earlier on. The Data Extraction and Longitudinal Trend Analysis (DELTA) network study is a validated example of such a tool, which has utilised propensity score matching and statistical process control methodology to evaluate the safety of high-risk cardiovascular devices for perioperative binary outcomes.13,21,23,24 Similar efforts for post-market surveillance of pharmacological products are also on-going.25 Whilst the methodology applied here was relatively simplistic, what we have demonstrated is that routinely collected clinical registry data can be leveraged for evaluating performance of medical devices, even when this was not a primary goal of the data collection programme. With some improvements to the data collection mechanisms, this messy real-world registry, or other registries, data could be analysed using alternative platforms.
LIMITATIONS

Data quality

Research with routinely-collected healthcare data inevitably raises questions over data quality. Many of the data on clinical variables are of high quality, owing to the fact they are used for national governance. Valve-specific data, on the other hand, are not subject to similar quality management. As the valve model data were collected as free-text inputs, more data quality issues were present than for equivalent clinical information collected using structured inputs. Data quality is expected to improve in the future, due to increased scrutiny of device monitoring. Caution must therefore be taken when interpreting the results, as there is potential for coding errors by the surgeon.

Valve classification

Focusing surveillance on a coarsened valve grouping—series—as opposed to valve models ensured that the maximum number of records would be available for analysis. This decision, whilst allowing us to retain more records for analysis, introduces limitations. Firstly, different models in a series, including stented and stentless models, or different generations of the same model, might have a variable effect on outcome. For example, the latest generations of Sorin Mitroflow valves are processed with a phospholipid reduction treatment to mitigate calcification. This might lead to improved performance compared to earlier generations. Secondly, not all valve series are clearly delineated due to either historical device company purchases/mergers or naming conventions. Similarity in naming means that valves identified to the series level but not the model level might potentially be misclassified. This is discussed further in the Appendix.
Covariate adjustment

The adjustment data used in this study derives from a national clinical registry, which is widely accepted to be superior to administrative data.27 There was no \textit{a priori} expectation of gross selection bias by valve series within valve type, nor was substantial heterogeneity observed, unlike in some other post-market surveillance studies for cardiovascular devices.13 However, there has been a shift in patient risk profiles over time,28 which might confound with market availability of certain valves. We adjusted for baseline risk factors, as well for a number of clinical valve-related variables, and contrasted the change in inference with that of the unadjusted model. Another potential source of bias stems from the missing data being imputed according to a (gender-stratified) mean/mode approach;29 however, missing data was not considered substantial. One should also note that the number of random-effects was quite small for a frailty model. Additionally, no adjustment for institutional effects were included, which could conflate with models implanted.

Study outcomes

In some records, patient ID was missing, which can reduce the ability to track patients. Moreover, tracking was terminated at different time points for different endpoints: December-2012 for TAVI, March-2013 for surgical re-intervention, and July-2013 for survival. Since the focus of the study was on valve surveillance, rather than patient outcomes monitoring, we only analysed the time to first event. We also note that sample sizes differed substantially between models. This was due to multiple factors, including market availability; some are relatively new and others have been withdrawn, which might impact on the ability to detect valves that have significantly different event hazards.30 Some newer implanted valves may not yet have sufficient
volume to show significantly different outcomes. We have also defined a composite outcome for
analysis, rather than analysing death and re-intervention as a competing risk.31 Differences in
outcomes may be attributable to different causes; for example, if a valve migrates it will lead to
an increase in re-operation, as was observed with the 3f Enable Aortic Bioprosthesis.32

The greatest clinical limitations of this study are its relatively short follow-up and lack of
other clinical outcomes.33 The median follow-up time was 4.1-years, however valve failure is
most likely to occur later on, especially in the context of mechanical valves. In fact, only 152
surgical re-interventions were observed in the mechanical valve group. Finally, we excluded
patients who had multiple surgical records within a single admission; however, there were only
34 such cases satisfying the inclusion criteria for the study.
CONCLUSIONS

The need for such post-marketing surveillance of medical devices was made clear by the PIP breast implant and other medical device scares, yet infrastructure is lacking. We have shown that a national clinical registry, linked to other routinely-collected data, might be used to inform post-market surveillance programmes. By analysing 15-years of data on AVR procedures in England and Wales we identified 2 prosthetic valves that may warrant further scrutiny through additional studies. As Taylor noted about valve monitoring nearly 3-decades ago, “overreaction is as inappropriate as complacency”. Given the limitations of the study, the signals shown here should only serve as a hypothesis generating, and not be misinterpreted as causal effects.
STUDY APPROVAL

This study was approved by the NICOR NACSA Research Board (study reference 13-ACS-09), and the need to obtain informed consent from patients was waived as patient identifiable information was either removed or pseudonymised.

ACKNOWLEDGEMENTS

The authors acknowledge all members of the Society for Cardiothoracic Surgery in Great Britain and Ireland who contribute data to the SCTS database. The National UK TAVI Registry steering group agreed to the use of record linkage for the purposes of tracking valve-in-valve re-interventions. The National Institute for Cardiovascular Outcomes Research (NICOR), University College London (UCL), London, provided the data for this study. The authors also thank Miss Rebecca Cosgriff (former NACSA project manager for NICOR) for obtaining the hospital code lists; Mr John McKenna (formerly of Vascutek Terumo) for helping to identify some of the valves; and representatives of the valve companies for their helpful support. No one acknowledged here received or provided compensation for their services.

FUNDING

GLH is currently supported by the Medical Research Council [MR/M013227/1]. Data pre-processing was completed when GLH was at the University of Manchester, supported by Heart Research UK [RG2583]. IB is supported by the Medical Research Council funded Health e-Research Centre [MR/K006665/1]. JD (J. Deanfield) is supported by the British Heart Foundation.

CONFLICTS OF INTEREST
BB has received honoraria from Edwards Lifesciences in the last 3-years. JD1 (J. Dunning) has received proctoring fees from Cardica. MD-H has received honoraria from St. Jude Medical, Edwards Lifesciences and Maquet, and research grants from Edwards Lifesciences and St. Jude Edwards. NM has received fees for consultancy and proctoring from Medtronic, consultancy for Tendyne (Direct Flow), and speaking from Abbott. All other authors have no conflicts of interests to declare.

CONTRIBUTORSHIP STATEMENT

JD1 (J. Dunning) conceived the idea for the study. All co-authors contributed to the development of the study analysis plan. GLH and SWG cleaned the clinical surgical data. GLH, BB, AJB, MD-H and JD1 cleaned the valve model data. GLH performed the data linkage and statistical analysis. GLH, JD1, BB, SWG, JP and JD2 (J. Deanfield) wrote the manuscript, which was critically reviewed for intellectual content by all authors. All authors have read and agree to the final version. JD1 acts as guarantor for the manuscript.

DATA SHARING

The United Kingdom National Adult Cardiac Surgery Audit registry and the United Kingdom National TAVI Audit Registry are available to researchers upon application to the National Institute of Cardiovascular Outcomes Research (NICOR), University College London. Full details on the NICOR data sharing application process are available at https://www.ucl.ac.uk/nicor/access/application [last accessed: 16th October 2015].

22. Rising J, Moscovitch B. The Food and Drug Administration’s unique device identification

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
FIGURE LEGENDS

Figure 1. Flowchart of study data.

Figure 2. Trend in proportion of biological and mechanical valves implanted over the study period.

Figure 3. Trends in number of valves implanted by valve series over the study period.

Figure 4. Box-and-whisker plots of patient age at time of surgery stratified by valve series.

Figure 5. Frailty effects (black filled circles) and 95% prediction intervals (black lines) by valve series for time-to-death and time-to-re-intervention as calculated for Cox random effects models (with and without adjustment for other patient and operative risk factors). Red dashed line denotes ‘no effect’.