A workflow PROV-corpus based on Taverna and Wings

DOI:
10.1145/2457317.2457376

Document Version
Submitted manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Proceedings of the Joint EDBT/ICDT 2013 Workshops

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
A Workflow PROV-Corpus based on Taverna and Wings

Khalid Belhajjame1, Jun Zhao2, Daniel Garijo3, Aleix Garrido4
Stian Soiland-Reyes1, Pinar Alper1, Oscar Corcho3
1 School of Computer Science, University of Manchester, UK. (khalidb,soiland,alper)@cs.manchester.ac.uk
2 Department of Zoology, University of Oxford, UK. jun.zhao@zoo.ox.ac.uk
3 Facultad de Informática, Universidad Politécnica de Madrid, Spain. (dgarijo, ocorcho)@fi.upm.es
4 iSOCO, Spain. agarrido@isoco.com

1. SUMMARY

We describe a corpus1 of provenance traces that we have collected by executing 120 real world scientific workflows. The workflows are from two different workflow systems: Taverna [5] and Wings [3], and 12 different application domains (see Figure 1). Table 1 provides a summary of this PROV-corpus.

The information in the provenance traces is mostly specified using the PROV-O ontology [4]. Terms from other vocabularies, including the Research Object Model2 [1] and the Open Provenance Model for Workflows (OPMW)3 [2], are also used to associate the provenance traces with descriptions about the corresponding workflows.

Table 1: Information about the PROV-corpus.

<table>
<thead>
<tr>
<th>Data format</th>
<th>RDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data model</td>
<td>PROV-O</td>
</tr>
<tr>
<td>Size</td>
<td>360 Megabytes</td>
</tr>
<tr>
<td>Tools used for generating provenance</td>
<td>Taverna and Wings provenance plug-ins</td>
</tr>
<tr>
<td>Domain</td>
<td>see Figure 1</td>
</tr>
<tr>
<td>Submission group</td>
<td>Wf4Ever-Wings</td>
</tr>
<tr>
<td>License</td>
<td>Creative Commons Attribution 3.0 Unported</td>
</tr>
</tbody>
</table>

2. CORPUS CREATION SETUP

The selected workflows were executed within the system where they were designed (either Taverna or Wings) and the provenance traces of these runs were exported using the native plugins of the two workflow systems, respectively. All workflows were executed at least one time. In total, we collected the provenance traces of 198 workflow runs. It is also worth mentioning that not all the workflows finished their execution successfully. 30 workflow runs out of 198 failed for different reasons: unavailability of third party resources, illegal input values, etc. We chose to include the traces of failed workflow runs, since they can be particularly relevant to researchers who are investigating topics such as incomplete provenance, workflow decay, etc.

3. APPLICATION

We expect a wide range of applications to be built from our provenance traces. Some exemplars are listed below:

i) Identification of dependencies between data products and processes: provenance traces can be used to identify the process that generated a given data product, and how it was derived from other data products in order to identify dependencies.

ii) Debug workflow executions: the PROV-corpus can be used to identify the processes that are responsible for workflow failure and detect the steps in the workflow that were affected.

iii) Detection of workflow decay: provenance traces captured over time can be used to monitor and compare the results generated by the same workflow template. Such traces can be used to detect changes in workflow results and/or to repair a failed workflow by using results from previous runs.

4. EXEMPLAR PROVENANCE QUERIES

We provide a list of exemplar provenance queries that can be issued against our provenance corpus:
1. What are the workflow runs available, and what is their start and end time?
2. What are the workflow runs associated with a given workflow template, and how many of them failed?
3. What are the workflow runs of a given workflow template, and what are the inputs they used and the outputs they generated?
4. How many process runs are associated with a given workflow run, what is the start and end time of each one of them (only available in Taverna provenance logs), and what are the inputs they used and the outputs they generated?
5. Who executed a given workflow run?
6. What are the services executed as a result of the execution of a given workflow run? (only available in Wings provenance logs).

5. COVERAGE OF PROV TERMS

Our provenance traces have been specified using mostly the PROV-O ontology and an extensions of it, namely the wprov ontology [1] and OPMW, for expressing workflow-specific provenance information. Table 2 and Table 3 show the coverage of the PROV terms by both workflow systems. As illustrated in Table 2, most of the starting-point PROV-O terms are covered by the two systems, except for prov:actedOnBehalfOf (the only chain of responsibility we have is between the user and the software executing the workflow, and it is not recorded) and prov:wasDerivedFrom (data derivation relationships cannot be asserted easily without a proper understanding of the exact function of each process of a workflow run. This is part of our ongoing work).

Table 2: Coverage of Starting-point PROV Terms.

<table>
<thead>
<tr>
<th>PROV Terms</th>
<th>Support by the Systems</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:Activity</td>
<td>Taverna and Wings</td>
<td></td>
</tr>
<tr>
<td>prov:Agent</td>
<td>Taverna and Wings</td>
<td></td>
</tr>
<tr>
<td>prov:Entity</td>
<td>Taverna and Wings</td>
<td></td>
</tr>
<tr>
<td>prov:actedOnBehalfOf</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>prov:endedAtTime</td>
<td>Taverna</td>
<td>Activity start and end not recorded in Wings provenance traces</td>
</tr>
<tr>
<td>prov:startedAtTime</td>
<td>Taverna</td>
<td>Same as above</td>
</tr>
<tr>
<td>prov:used</td>
<td>Taverna and Wings</td>
<td></td>
</tr>
<tr>
<td>prov:wasAssociatedWith</td>
<td>Taverna and Wings</td>
<td></td>
</tr>
<tr>
<td>prov:wasAttributedTo</td>
<td>Wings</td>
<td>No direct attribution is recorded in Taverna provenance traces</td>
</tr>
<tr>
<td>prov:wasDerivedFrom</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>prov:wasGeneratedBy</td>
<td>Taverna and Wings</td>
<td></td>
</tr>
<tr>
<td>prov:wasInformedBy</td>
<td>Taverna</td>
<td>Used to express the connection between sub-workflows</td>
</tr>
</tbody>
</table>

Table 3 shows additional coverage of PROV terms for each workflow system. Those entries marked with a star imply that the PROV statement is not directly asserted in the traces, but it can be inferred.

6. MAINTENANCE AND FUTURE WORK

We expect new provenance traces will continue to be added to this corpus. Future work includes providing access to the corpus via a SPARQL endpoint and web interfaces, maintaining the corpus to keep it aligned with possible changes in PROV-O, Research Object and OPMW ontologies. We also intend to investigate further interoperable queries to retrieve provenance results from both workflows systems, and improve the corpus in the light of community feedback.

Acknowledgments

This work is supported by the Wf4Ever (http://www.wf4ever-project.org) EU project (FP7-270192) and the Wings project (http://www.wings-workflows.org).

7. REFERENCES