Equilibrium absorptive partitioning theory between multiple aerosol particle modes

Matthew Crooks, Paul Connolly, David Topping, and Gordon McFiggans
The School of Earth, Atmospheric and Environmental Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Correspondence to: Matthew Crooks (matthew.crooks@manchester.ac.uk)

Received: 18 August 2015 – Published in Geosci. Model Dev. Discuss.: 19 January 2016
Revised: 19 August 2016 – Accepted: 4 September 2016 – Published: 12 October 2016

Abstract. An existing equilibrium absorptive partitioning model for calculating the equilibrium gas and particle concentrations of multiple semi-volatile organics within a bulk aerosol is extended to allow for multiple involatile aerosol modes of different sizes and chemical compositions. In the bulk aerosol problem, the partitioning coefficient determines the fraction of the total concentration of semi-volatile material that is in the condensed phase of the aerosol. This work modifies this definition for multiple polydisperse aerosol modes to account for multiple condensed concentrations, one for each semi-volatile on each involatile aerosol mode. The pivotal assumption in this work is that each aerosol mode contains an involatile constituent, thus overcoming the potential problem of smaller particles evaporating completely and then condensing on the larger particles to create a monodisperse aerosol at equilibrium. A parameterisation is proposed in which the coupled non-linear system of equations is approximated by a simpler set of equations obtained by setting the organic mole fraction in the partitioning coefficient to be the same across all modes. By perturbing the condensed masses about this approximate solution a correction term is derived that accounts for many of the removed complexities. This method offers a greatly increased efficiency in calculating the solution without significant loss in accuracy, thus making it suitable for inclusion in large-scale models.

1 Introduction

Volatile and semi-volatile compounds are of key importance to a wide variety of industries (Biniecka and Caroli, 2011), including atmospheric science (Topping et al., 2013; Topping and McFiggans, 2012), pharmaceuticals (Sitaramaraju et al., 2008; Wang et al., 2011), food and drink (Vernocchi et al., 2008; de Roos, 2003; Hui et al., 2010; Mendes et al., 2012), water treatment (Zarra et al., 2009) and perfume (Morris, 1984). Many of these industries exploit the scented properties of a large number of semi-volatiles and an understanding of their behaviour is crucial in order to identify, produce and capture certain aromas as well as to control the rate of their subsequent evaporation in, for example, the perfume industry. In the water treatment sector the odorous properties are not considered a favourable quality, and inhibiting their release is important. The production of volatile compounds from all of these industries, however, can have far reaching negative consequences for both health and the environment (Klein, 1995; Epstein and Gibson, 2013; Wu et al., 2009) as well as influence weather and climate (Morgan et al., 2010).

This paper approaches the study of semi-volatile compounds from an atmospheric and cloud physics perspective, but the equilibrium partitioning theory presented herein is applicable to the wide variety of problems outlined above. The condensed phases of the semi-volatile compounds in the atmosphere occur within aerosol particles, which can have a profound effect on cloud properties and climate. The ability of an aerosol particle to act as a cloud condensation nucleus (CCN) is determined by many factors including size, number concentration and chemical composition, as well as the supersaturation of the air (Pruppacher and Klett, 1977). An increase in number concentration of a monodisperse aerosol
which acts as a CCN will, in general, produce a greater number of smaller cloud droplets as there are more particles competing for the same available water (Twomey, 1959). In contrast, according to Köhler theory, the larger aerosol particles in a polydisperse system will have a greater affinity to activate into cloud droplets and their presence can deplete the available water vapour more quickly than smaller ones, due to their quicker growth rates. Consequently, the presence of a larger CCN can suppress the supersaturation, causing fewer smaller particles to activate (Ghan et al., 1998).

The aforementioned effects of aerosol size and number concentration can alter precipitation rates and, as a result, the lifetime of clouds (Stevens and Feingold, 2009; Albrecht, 1989). In addition to a tangible effect of an increase in number of cloud droplets leading to both an increase in reflected shortwave radiation and absorbed longwave radiation (McCormick and Ludwig, 1967; Chylek and Coakley Jr., 1974), there is a complicated interdependency between cloud longevity and albedo (Twomey, 1974, 1977). The result is an approximate 0.7 W m^{-2} decrease in mean global radiative forcing, although this is subject to a large degree of uncertainty, which is a similar order of magnitude to the mean total radiative forcing from anthropogenic activity (Forster et al., 2007; Lohmann et al., 2000).

Quantifying the size and chemical composition of individual aerosol particles within a population is complicated due to them being a heterogeneous mix of primary and secondary particles, as well as secondary aerosol mass. Primary aerosol particles are emitted directly from biogenic and anthropogenic sources. Although some models exist to simulate purely semi-volatile primary particles (Tsimpidi et al., 2014), in this paper they are assumed to contain at least a small portion of non-volatile material. Secondary aerosol particles are formed by nucleation of vapours to form nanometer-sized particles, while secondary aerosol mass is formed by condensation of gases onto existing particles. The formation of secondary aerosol mass occurs both on the primary and secondary particles and can increase the size of the secondary particles to climate-relevant sizes. The condensation process that forms secondary aerosol mass is fairly well understood for inorganic gases (Hallquist et al., 2009); however, there is significant uncertainty associated with the formation of secondary organic aerosol (SOA) from volatile organic compounds (VOCs). Part of this uncertainty is a result of the poorly quantified process of oxidation of VOCs to produce SOA and other VOCs with reduced volatility (Jimenez and et al., 2009; Yu, 2011).

Over remote continental regions between 5 and 90 % of the total aerosol mass can be made up of organic material (Andreae and Crutzen, 1997; Zhang et al., 2007; Gray et al., 1986) and a significant proportion of this can be from secondary sources. SOA in such large quantities will act to increase the size of the particles as well as significantly change their chemical composition. The effect of the increased size, and consequently soluble mass, is found to be the dominant effect on cloud, increasing the number of cloud droplets and subsequently decreasing the critical supersaturation (Dusek et al., 2006; Topping et al., 2013).

It is estimated that 10^4–10^5 organic species have been measured in the atmosphere, but this may only be a small proportion of the total (Goldstein and Galbally, 2007). Of this number fewer than 3000 have actually been identified (Simpson et al., 2012; Borbon et al., 2013). It is, therefore, impractical to try to model each compound individually. Instead, fewer surrogate species are used to represent many different compounds. O’Donnell et al. (2011), for example, use α-pinene as a surrogate for all monoterpens and xylene to represent multiple aromatic compounds.

Two popular methods have been developed to simulate multiple organic species using equilibrium absorptive partitioning theory (Pankow, 1994), a method of calculating the equilibrium condensed concentrations without solving the computationally expensive dynamic condensation and evaporation processes. The first (Odum et al., 1996) involves an empirically fitted relation derived from two-compound experiments which benefits from its simplicity but, as with any empirical relation, has possibly limited applicability outside of the original constraints. In particular, the approach has been found to be unrealistically sensitive to changes in the concentration of the organics (Cappa and Jimenez, 2010). The second (Donahue et al., 2006) uses a volatility basis set, binning large numbers of semi-volatile organic compounds (SVOCs) into a small number of representative species with effective saturation concentrations. This method was later extended to account for partitioning of both water and SVOCs (Barley et al., 2009) by treating the water as an additional volatile substance.

A limitation of equilibrium absorptive partitioning theory (Pankow, 1994) is the assumption of well-mixed particles. Although some experimental results indicate that aerosol particles containing SOA can exist in highly viscous states (Vaden et al., 2011; Cappa and Wilson, 2011), it is still an active area of research, especially in relation to high relative humidities and the effects on cloud droplet formation. Numerical models investigating the effect of diffusion within aerosol particles (Zobrist et al., 2011; Smith et al., 2003) indicate a transition from a glassy to liquid phase of the particles above about 50 % relative humidity, which is often encountered in the atmosphere and is of particular relevance in cloud microphysics.

The focus of this paper is on the condensation of SVOCs within the atmosphere and we assume that there are sufficient aerosol particles so that the process of condensation onto existing particles is the dominant sink for the SVOCs over nucleation of new particles. We also assume that existing particles, which act as a seed for the condensation, are involatile, although in many applications particles that have previously nucleated from oxidation of extremely low volatility compounds can also be approximated as being involatile (Ehn et al., 2014). Consequently, every particle considered in this
paper is assumed to have at least a small portion of an involatile compound which cannot evaporate into the vapour phase. This assumption is crucial in calculating the equilibrium vapour/condensed phases on multiple modes as without it, a polydisperse equilibrium does not exist. In the purely volatile particle case, the smaller particles evaporate completely, thus allowing the larger particles to take up additional condensed mass to produce a monodisperse aerosol at equilibrium.

In this paper we present a model for equilibrium absorptive partitioning of water and SVOCs onto multiple involatile aerosol modes using the volatility basis set method of Donahue et al. (2006). All compounds are considered to be at least partially soluble so that the involatile aerosol influences the partitioning of the SVOCs and the particles are assumed to be always well mixed. The concentration of a SVOC in the condensed phase on one mode has the effect of reducing the total concentration available to the other modes and, as a result, the equilibrium vapour/condensed phases of all the organics on all the involatile modes must be solved for simultaneously. By assuming all modes have approximately the same organic mole fraction, a parameterisation for the solution is derived that has a high degree of accuracy while being significantly more efficient than a standard numerical algorithm would be. Condensed concentrations of organics are compared against equilibrium calculated from a dynamic condensation model and are found to be comparable.

2 Equilibrium absorptive partitioning theory for size independent bulk aerosol

Before introducing the new multiple mode equilibrium partitioning theory, we first review existing partitioning theories, beginning with that for a bulk aerosol. The volatility basis set method of Donahue et al. (2006) involves binning multiple organic species into groups of compounds with similar saturation concentrations, \(C^*_{j} \). Each volatility bin is then represented by a single representative species with an effective \(C^*_{j} \) value. A \(\log_{10} \) volatility basis set is used with \(C^*_{j} \) values from \(1 \times 10^{-6} \) to \(1 \times 10^{3} \) \(\mu \text{g m}^{-3} \) (Cappa and Jimenez, 2010; Donahue et al., 2006). We use the notation, \(C^*_{j} \), for the saturation concentration measured in \(\mu \text{g m}^{-3} \) to distinguish it from the analogous molar quantity (Barley et al., 2009). \(C^*_{j} \), in units of \(\mu \text{mol m}^{-3} \) obtained by dividing \(C^*_{j} \) by the molecular weight. The value of \(C^*_{j} \) is proportional to the saturation vapour pressure, \(p^*_{j} \) (atm), of the organics in the \(j \)th volatility bin at temperature, \(T_0 \), through the equation

\[
C^*_{j} = \frac{p^*_{j} \gamma_j 10^6}{RT_0}.
\]

Here \(\gamma_j \) is the activity coefficient of the organics in the \(j \)th bin, \(R \) is the universal gas constant (\(\text{m}^3 \ \text{atm mol}^{-1} \ \text{K}^{-1} \)) and \(T_0 \) is the temperature (K). The saturation vapour pressure is dependent on the temperature, \(T_0 \), which is taken to be 298.15 K. Conversion to a \(C^* \) at another temperature, \(T \), can be done using the Clausius–Clapeyron equation,

\[
C^* (T) = C^* (T_0) \frac{T_0}{T} \exp \left[- \frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T} - \frac{1}{T_0} \right) \right],
\]

where \(\Delta H_{\text{vap}} \) is the enthalpy of vaporisation of the organic compounds and is taken to be 150 kJ mol\(^{-1}\) in the current work.

Water and other inorganic semi-volatile compounds can additionally be considered by binning them along with the organics. For simplicity we ignore inorganic semi-volatiles and for the purposes of applying the theory to the particular problem of cloud physics later in the paper we treat water as a separate volatile compound so that its abundance can be varied independently of the organics.

The total concentration of the SVOCs in the \(j \)th volatility bin is defined by \(C_j \) (\(\mu \text{mol m}^{-3} \)) and is decomposed into a vapour and a condensed phase,

\[
C_j = C^v_j + C^c_j,
\]

indicated by the superposed \(v \) and \(c \), respectively. The total concentration of all compounds in the condensed phase, \(C_T \), is the sum of the concentration of ions of involatile aerosol, \(C^0 \), the condensed water, \(C^w \), and each organic component in the condensed phase,

\[
C_T = C^0 + C^w + \sum_k C^c_k.
\]

The condensed water can be calculated by assuming ideality by equating the saturation ratio, \(S \), to the mole fraction of water,

\[
S = \frac{C^w}{C^0 + C^w + \sum_k C^c_k}.
\]

Equation (4) can be rearranged to make \(C^w \) the subject and then substituted into Eq. (3) and factorised to give

\[
C_T = \frac{1}{1 - S} \left(C^0 + \sum_k C^c_k \right).
\]

The analogous expression to Eq. (4) for the organics is

\[
\frac{C^c_j}{C^c_T} = \frac{C^c_j}{C^c_T},
\]

where the saturation ratio has been replaced by the ratio of the vapour pressure to the saturation vapour pressure of the \(j \)th component using Eq. (1).

Eliminating \(C^c_j \) from Eq. (2) using Eq. (6) and rearranging gives the condensed concentration of the \(j \)th organic component in terms of the total concentration

\[
C^c_j = C_j \left(1 + \frac{C^c_j}{C^c_T} \right)^{-1}.
\]
The partitioning coefficient is defined as

$$\xi_j = \left(1 + \frac{C^*_j}{C_T}\right)^{-1},$$

so that $C^c_j = \xi_j C_j$. Since C_T depends on the C^c_j, this problem must be solved iteratively: calculating the C^c_j given an initial C_T, using these values to update the value of C_T and repeating until Eq. (5) is satisfied within some tolerance.

3 Equilibrium absorptive partitioning theory for a monodisperse aerosol

The theory in the previous section is independent of the size of the aerosol particles. We extend this theory to include size dependence for a monodisperse aerosol. The partitioning of water is influenced by the size of the aerosol particles through the Kelvin factor,

$$K^w = \exp\left(\frac{4M_w \sigma}{\rho_w RTD}\right),$$

where M_w, ρ_w and σ are the molecular weight, density and surface tension of water, and D is the diameter of the wet aerosol particles. The Kelvin factor multiplies the right-hand side of Eq. (4); see, for example, Rogers and Yau (1996),

$$S = \frac{C^w K^w}{C^o + C^w + \sum_k C^c_k}.$$ \hfill (9)

Consequently, the right-hand side of Eq. (5) becomes

$$C_T = \frac{K^w}{K^w - S}\left(C^o + \sum_k C^c_k\right),$$

and for notational simplicity we define the prefactor on the right-hand side by η,

$$\eta = \frac{K^w}{K^w - S}.$$

The Kelvin factor for the organics, K_j, is defined by Cai (2005) as

$$K_j = \exp\left(\frac{4M_j \sigma}{\rho_j RTD}\right),$$

where M_j and ρ_j are the molecular weight and density of the organics in the jth volatility bin, and σ is the surface tension of the particle with condensed organics and water. This is included in Eq. (6) in an analogous way to the Kelvin factor for water to give

$$\frac{C^w_j}{C^c_j} = \frac{C^c_j K_j}{C_T},$$

and consequently the partitioning coefficient is defined as

$$\xi_j = \left(1 + \frac{C^*_j K_j}{C_T}\right)^{-1}.$$ \hfill (13)

This set of algebraic equations again needs to be solved iteratively as in the previous section but with the addition of calculating the diameter, and consequently the Kelvin term, from the C^c_j at each iteration.

4 Equilibrium absorptive partitioning theory for a conglomerate of particles of multiple sizes and composition

An aerosol population commonly comprises particles of different sizes and chemical composition. In this section we consider aerosol which can be decomposed into multiple monodisperse aerosol modes. We propose a novel extension to the theory of the previous sections which is applicable to these more diverse conglomerations of particles and therefore suitable for application to a wider class of problems.

The most significant change to the theory for multiple modes is that the equations must explicitly take into account that a single molecule of an organic cannot condense onto more than one mode. Consider the 10 organic molecules and 2 involatile particles shown in blue and green, respectively, in Fig. 1. Suppose the subsets highlighted in pink are known to condense onto the left involatile particle (highlighted in pink) and those remaining to equilibrate on the right particle (circled by the dashed black line).

Figure 1. A representation of the condensation of a SVOC, shown by the blue dots, onto two non-volatile particles, shown by the green circles. The SVOC is divided into two groups: those that condense onto the left involatile particle (highlighted in pink) and those remaining to equilibrate on the right particle (circled by the dashed black line).
available to the ith mode is the total concentration in the jth volatility bin minus the condensed concentrations of the organics in the jth bin on the other modes. It is this remaining vapour phase that is multiplied by the partitioning coefficient in the multiple mode case.

We make the following changes to extend the theory in the previous section to the multiple mode case.

– The condensed mass of the jth organic component will now be split across several modes. Define the condensed concentration of the jth organic species on the ith involatile mode by \(C^c_{ij} \) so that the condensed phase \(C^c_j \) can be expressed as the sum

\[
C^c_j = \sum_r C^c_{rj}.
\]

For consistency, a subscript \(i \) refers to the involatile mode and \(j \) refers to the jth volatility bin. Separate indices \(r \) and \(k \) are used in the summations to make clear which terms are being summed and are applied to summations over \(i \) and \(j \), respectively. Subsequently, the total concentration of semi-volatiles in the jth volatility bin is decomposed into a single vapour phase and the sum of the multiple condensed phases

\[
C_j = C^o_j + \sum_r C^c_{rj},
\]

The total concentration in the condensed phase on the ith mode is given by the sum of the concentrations of the involatile constituent and all of the condensed organics and water on the ith mode,

\[
C_{T,i} = C^o_i + C^w_i + \sum_k C^c_{ik},
\]

which can equally be expressed in an analogous way to Eq. (10) as

\[
C_{T,i} = \frac{K^w_i}{K^w_i - S} \left(C^o_i + \sum_k C^c_{ik} \right).
\]

Here

\[
K^w_i = \exp \left(\frac{4M_i \sigma}{\rho_i RTD_i} \right)
\]

is the Kelvin factor of water and \(C^o_i \) is the number of µmol per cubic metre of the jth involatile aerosol mode. \(D_i \) is the diameter of the ith mode with both condensed water and organics. For notational simplicity we define

\[
\eta_i = \frac{K^w_i}{K^w_i - S},
\]

so that Eq. (16) can be written as

\[
C_{T,i} = \eta_i \left(C^o_i + \sum_k C^c_{ik} \right).
\]

– The partitioning coefficient, given by Eq. (13), depends on the material properties and size of the involatile aerosol particles, through \(C_T \) and \(K_j \), and consequently each volatility bin can have a different coefficient for each mode. The Kelvin factor for the jth volatility bin, Eq. (11), is modified to depend on the diameter of the ith composite mode, \(D_i \):

\[
K_{ij} = \exp \left(\frac{4M_j \sigma}{\rho_j RTD_i} \right).
\]

Subsequently, the multiple mode analogy to Eq. (12) on the ith mode is

\[
\frac{C_j}{C^o_j} = \frac{C^o_j K_{ij}}{C_{T,i}}.
\]

This can be used to eliminate the vapour concentration from Eq. (15):

\[
C_j = \frac{C^o_j C^c_{ij} K_{ij}}{C_{T,i}} + \sum_r C^c_{rj}.
\]

The concentration \(C^c_{ij} \) can be extracted from the sum on the right-hand side and the equation rearranged to give

\[
C_j - \sum_{r \neq i} C^c_{rj} = C^c_{ij} \left(1 + \frac{C^o_j K_{ij}}{C_{T,i}} \right).
\]

We denote the partitioning coefficient for the jth organic component onto the ith involatile mode by \(\xi_{ij} \) and define it in an analogous way to Eq. (13),

\[
\xi_{ij} = \left(1 + \frac{C^o_j K_{ij}}{C_{T,i}} \right)^{-1}.
\]
– The total concentration of the \(j \)th organic which is available to the \(j \)th involatile mode, as previously discussed, can now be defined as

\[
C_{ij} = C_j - \sum_{r \neq i} C_{rj}^c,
\]

or alternatively

\[
C_{ij} = C_j - \sum_r C_{rj}^c + C_{ij}^c. \tag{22}
\]

– An expression for the condensed concentration of the \(j \)th organic on the \(r \)th involatile mode can now be expressed as the product of the partitioning coefficient with \(C_{ij} \),

\[
C_{ij}^c = \frac{C_j - \sum_r C_{rj}^c + C_{ij}^c}{1 + C_j^T K_{ij} / C_{T,i}}, \tag{23}
\]

which is a rearrangement of Eq. (20). Replacing \(C_{T,i} \) using Eq. (18) yields

\[
C_{ij}^c = \frac{C_j - \sum_r C_{rj}^c + C_{ij}^c}{1 + C_j^T K_{ij} / \eta_i}, \tag{24}
\]

The non-linear nature of these equations poses a problem for obtaining a solution. Numerical methods exist for solving such problems, but require an initial guess for the solution. Furthermore, there are multiple unknowns and multi-dimensional non-linear solvers are too computationally expensive to implement in a global climate model. In the following section, we present a method for obtaining an approximate solution to the system of equations represented by Eq. (24), which facilitates a numerical solver in computing the full solution. This approximation, however, is found to be sufficiently accurate that an analytic perturbation method, derived in Sect. 5.4, can be used to reduce the inaccuracies and render the costly numerical solution redundant.

5 A parameterisation for the condensed concentrations

We present in this section a proposed parameterisation to calculate the condensed concentrations of SVOCs that approximate the solution to the multiple mode equilibrium absorptive partitioning equations represented by Eq. (24). We begin by simplifying the equations, assuming that all modes share a common average organic mole fraction, and the resulting equations are derived in Sect. 5.2. This approximation can either be used as an initial condition for a numerical algorithm to solve the full system of equations represented by Eq. (24) or, as we suggest in Sect. 5.4, can be used as a leading-order solution in a perturbation method in order to derive a correction term that reintroduces many of the removed complexities. We begin by justifying the assumption of the common organic mole fraction.

5.1 Motivation

To demonstrate that the individual organic mole fractions of the different modes are comparable, we have run a Monte Carlo simulation that solves the system of equations represented by Eq. (24) for randomly chosen parameter values taken from Table 1. Low accuracy solutions of Eq. (24) for the equilibrium concentrations in the condensed phase are found using a brute force trial and error method. Fifty such solutions for between two and five involatile modes are shown in Fig. 3, with each calculated using different randomised parameter values. The concentrations of organics in each volatility bin are kept in the proportions shown in Table 2 but are rescaled by a random factor of between 0 and 100. Plotted in the graph is the organic mole fraction that we define as the total concentration of semi-volatile material on a mode divided by the total number of ions in the aerosol. For the \(i \)th mode this is

\[
\theta_i = \frac{\sum_k C_{ik}^c}{C_{i0}^c + \sum_k C_{ik}^c}. \tag{25}
\]

Each solution is represented by several dots joined by a vertical line, with the \(y \) coordinate of the dots showing the mole fraction of one of the modes. These are plotted against the average mole fraction of all the modes in that solution on the \(x \) axis. As can be seen from Fig. 3, even though the mole fractions are different, they never deviate too far from the mean, shown by the dashed line, assuming the same mole fraction for all the modes allows approximate values of \(C_{T,i} \) to be found in terms of a single parameter. This greatly simplifies the problem and can provide a reasonable guess for the non-linear solver.

We emphasise that although the mole fractions of the different modes are comparable, the equilibrium partitioning solution is still dependent on the individual material properties of the involatile aerosol, with number concentration, size, molecular weight, density and van’t Hoff factors all influencing the number of moles of the involatile compound and consequently the number of moles of condensed organics required to give the appropriate mole fraction.
Table 1. Randomised parameters used to plot Fig. 3. \(N_i, D_i, \rho_i^0 \) and \(M_i^0 \) are the number concentration, diameter, density and molecular weight of the \(i \)th involatile aerosol, respectively. \(v_i^0 \) and \(v_j \) are the van’t Hoff factors of the involatile constituents and organics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(N_i) (cm(^{-3}))</th>
<th>(D_i) (nm)</th>
<th>(\rho_i^0) (kg m(^{-3}))</th>
<th>(\rho_j) (kg m(^{-3}))</th>
<th>(M_j, M_i^0) (kg mol(^{-1}))</th>
<th>(v_i^0)</th>
<th>(v_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>50</td>
<td>50</td>
<td>500</td>
<td>500</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>500</td>
<td>500</td>
<td>2000</td>
<td>1500</td>
<td>0.4</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 3. The mole fractions of multiple different involatile aerosol modes plotted against the mean mole fraction on the x axis. Fifty solutions are shown with parameters randomly chosen from the ranges shown in Table 1 with RH = 0 %. The volatility distribution of SVOCs is shown in Table 2, but is rescaled by a random factor of between 0 and 100.

5.2 Derivation of a solution with a common average organic mole fraction

The previous section showed that the organic mole fraction of individual modes is always similar to the mean organic mole fraction across all modes. By making the assumption of a common mole fraction, we now derive a new set of equations to calculate approximate condensed concentrations of the SVOCs that contain only one unknown in the denominators of the partitioning coefficients. Using a root-finder algorithm the common mole fraction can be iterated until it is equal to the mean organic mole fraction across all modes.

The solution derived under the assumption of a common mole fraction, \(\theta \), is referred to as the leading-order solution and is denoted \(C_{ij}^\infty \). Rearranging Eq. (25) with \(\theta_i \) replaced by \(\theta \) gives

\[
\frac{\theta}{1 - \theta} = \frac{\sum_k C_{ik}^c}{C_{i}^0}.
\]

The left-hand side of this equation is the same for all the modes, and consequently the right-hand side must also be the same. For notational simplicity we combine the left-hand side into a single parameter, \(\beta \),

\[
\beta = \frac{\theta}{1 - \theta} = \frac{\sum_k C_{ik}^c}{C_{i}^0},
\]

and subsequently

\[
\sum_k C_{ik}^c = \beta C_{i}^0.
\]

The wet diameter of the combined aerosol is assumed to be sufficiently large that the Kelvin factors for the SVOCs can be approximated by 1. The same is not true for the Kelvin factors for water, \(K_{ij}^w \). If these are assumed to take the value 1, then the definition of \(\eta_i \), as given by Eq. (17), will lead to a gross overestimate of the condensed water close to the cloud base, becoming infinite as the relative humidity becomes 100 %.

The governing equations for the leading-order solution are obtained by making the approximation given by Eq. (28) together with setting \(K_{ij} = 1 \),

\[
\bar{C}_{ij}^c = \frac{C_j - \sum_r \bar{C}_{rj}^c + \bar{C}_{ij}^c}{1 + \frac{C_j^* / \eta_i}{C_j^0 / (1 + \beta)}}.
\]

The interdependence of the \(\bar{C}_{ij}^c \) can be eliminated to obtain an explicit expression for each in terms of the mole fraction \(\beta \),

\[
\bar{C}_{ij}^c = \frac{C_j^0 (1 + \beta) \left(1 - \phi_j(\beta, \eta_i)\right)}{C_j^* / \eta_i} C_j.
\]

The algebra of this step is given in Appendix A. The dependence of \(\phi_j \), given by Eq. (A2), is expressed explicitly for clarity. Both sets of equations are equivalent to one another and either can be used to find the \(\bar{C}_{ij}^c \). The coupled nature of Eq. (29), however, requires a matrix inversion to solve,
and this will take more time to calculate than the solution to Eq. (30).

The complexity of the summation of \overline{C}_{ij} in the denominator has now been removed in favour of a single parameter, β. This can be solved by using a much quicker one-dimensional root find algorithm which iterates the value of θ, calculating β using Eq. (27) and solving the linear system of equations at each step to find \overline{C}_{ij}. The value of θ can be updated at each iteration based on the average value obtained through Eq. (26), namely,

$$\theta = \frac{1}{n} \sum_r \left(\frac{\sum_k \overline{C}_{rk}}{C^0_T + \sum_k \overline{C}_{rk}} \right),$$

where n is the number of modes.

While the dependence of η_i on \overline{C}_{ij} has not been removed, it is sufficiently weak that the values of \overline{C}_{ij} calculated at the previous iteration of θ can be used to evaluate the Kelvin factor for water and therefore η_i, simultaneously converging on the correct value as θ is found.

5.3 Results

The leading-order solution given in the previous section is calculated and used as an initial guess for a solver of the full non-linear problem; a comparison of the two solutions is presented here. In order to test the theory over a large parameter space, values of the inputs are chosen from Table 1 and the models are run for between two and six modes. Solutions from only one mode are plotted for each run to avoid a bias towards the solutions for six mode runs which would otherwise have 3 times as many points plotted as the two mode runs. Concentrations of the SVOCs are chosen randomly by rescaling the volatility distribution given in Table 2 by between 0 and 100.

Figure 4 shows the individual condensed masses of the 10 volatility bins, each with differently shaped points. The solid black line shows equality between the approximation and the full solution and the dashed lines show 50% inaccuracies in the approximations. The very strong correlation between the full non-linear solution and the leading-order solution demonstrates that the assumption of a common average organic mole fraction made in the previous section not only offers an efficient way of calculating an initial guess for the non-linear solver, but actually also offers an accurate approximation to the solution for the condensed masses of the organics.

Figure 5 compares the organic mass fractions, defined as the total mass of condensed organics divided by the total mass of the aerosol, from the full non-linear solution and the leading-order solution from the different runs. A range of relative humidities and van’t Hoff factors of the involatile aerosol are used; these values are shown above each plot. Small values of the van’t Hoff factor appear to have a significant effect on the mass fraction as the correlation of the three right-hand plots is worse than the left three. This is caused by the need to divide by the van’t Hoff factor when converting from number of ions to mass. The result is a high sensitivity of the mass to slight inaccuracies in the number of ions for van’t Hoff factors close to 0; this is addressed in Sect. 5.4.

Similarly, lower values of the relative humidity reduce the correlation of the two solutions, with almost perfect agreement in the lower two plots for RH = 99.999%. This is likely a result of higher relative humidities increasing the wet diameter of the droplets and subsequently reducing the Kelvin factor closer to 1. Since the leading-order solution sets the Kelvin factors of the organics to 1, higher values of RH improve this approximation. At RH = 99.999% the increased water content of the wet aerosol will further act to increase the value of C_T and subsequently lead to a significantly higher proportion of the organics being in the condensed phase. With nearly all the organics in the condensed phase, there is much less potential for errors in the approximation.
Table 2. Volatility distribution of SVOCs.

<table>
<thead>
<tr>
<th>log C^*</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_j (µg m$^{-3}$)</td>
<td>0.005</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.08</td>
<td>0.16</td>
<td>0.3</td>
<td>0.42</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Figure 5. Comparison of the organic mass fraction from the leading-order solution against that calculated using the non-linear solver for randomly chosen parameters from Table 1. SVOC concentrations are obtained by randomly rescaling the volatility distribution in Table 2 by a random factor between 0 and 100. The solution is calculated for between two and six modes, and only the organic mass fraction of the first mode is plotted. The 25 % error margins are shown by the dashed green lines.
5.4 Perturbation solution

Although the condensed masses computed using the approximation derived in Sect. 5.2 did not completely agree with the full non-linear solution, the errors were small relative to the size of the \(C_{ij} \). We propose a correction term to this approximation which improves the accuracy and also takes into account the Kelvin terms. Suppose the actual condensed masses, \(C_{ij}^* \), can be obtained from the leading-order solution, \(C_{ij}^c \), by adding a small perturbation

\[
C_{ij}^* = C_{ij}^c + \delta C_{ij},
\]

where we assume \(|\delta C_{ij}| \ll |C_{ij}^c|\). The Kelvin factors also depend on the final condensed mass and for clarity ought to be written as \(K_{ij} = K_{ij}(C_{ij}^*) \). This, however, adds much complexity. Therefore, it is assumed that the leading-order solution provides a suitably accurate approximation to the condensed masses of semi-volatiles for the purposes of calculating the Kelvin factors. Consequently, we make the additional approximation \(K_{ij}(C_{ij}^c) \approx K_{ij}(C_{ij}^c) \) which we denote \(\tilde{K}_{ij} \).

Similarly, \(K^w(C_{ij}^c) \approx K^w(C_{ij}^c) \) and consequently \(\eta_i(C_{ij}^c) \approx \eta_i(C_{ij}^c) = \tilde{\eta}_i \). We substitute the perturbation into the equations represented by Eq. (24) together with these approximations to give

\[
\tilde{C}_{ij}^c = C_{ij} - \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c - \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c \approx C_{ij} - \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c - \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c + \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c,
\]

where \(|\tilde{C}_{ij}^c| \ll |C_{ij}^c| \). The Kelvin factors also depend on the final condensed mass and for clarity ought to be written as \(K_{ij} = K_{ij}(C_{ij}^*) \). This, however, adds much complexity. Therefore, it is assumed that the leading-order solution provides a suitably accurate approximation to the condensed masses of semi-volatiles for the purposes of calculating the Kelvin factors. Consequently, we make the additional approximation \(K_{ij}(C_{ij}^c) \approx K_{ij}(C_{ij}^c) \) which we denote \(\tilde{K}_{ij} \).

Similarly, \(K^w(C_{ij}^c) \approx K^w(C_{ij}^c) \) and consequently \(\eta_i(C_{ij}^c) \approx \eta_i(C_{ij}^c) = \tilde{\eta}_i \). We substitute the perturbation into the equations represented by Eq. (24) together with these approximations to give

\[
\tilde{C}_{ij}^c = C_{ij}^c = \frac{C_{ij} - \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c - \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c + \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c}{1 + C_{ij}^c + \sum_i \tilde{C}_{ij}^c + \sum_k \tilde{C}_{ik}^c}.
\]

Assuming the perturbed quantities, \(\tilde{C}_{ij}^c \), are small, we can linearise these equations to give

\[
(1 - \tilde{\xi}_{ij})\tilde{C}_{ij}^c + \tilde{\xi}_{ij} \sum_i \tilde{C}_{ij}^c = L_{ij}^c \sum_i \tilde{C}_{ij}^c,
\]

\[
\approx \frac{C_{ij} - \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c - \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c + \sum_i \tilde{C}_{ij}^c + \tilde{C}_{ij}^c}{1 + C_{ij}^c + \sum_i \tilde{C}_{ij}^c + \sum_k \tilde{C}_{ik}^c}.
\]

the algebra for which is given in Appendix B. The \(\tilde{\xi}_{ij} \) are the partitioning coefficients, Eq. (21), calculated using the leading-order solution; explicit expressions are given by Eq. (B2). The \(L_{ij}^c \) are defined in Appendix B and are coefficients that depend on the \(C_{ij}^c \) as well as the parameters of the problem but are independent of the perturbations. Therefore, these equations are linear in the perturbations and can be solved much quicker than the full set of non-linear equations.

If the leading-order solution, \(C_{ij}^c \), were the exact answer, then the right-hand side would simply be a rearrangement of the Eq. (24) and would be zero. In such a situation, the left-hand side would also have to be zero, resulting in a homogeneous system of coupled linear equations with only the trivial solution in which \(\tilde{C}_{ij}^c = 0 \). However, the leading-order solution does not satisfy the full system of equations, but is “close” by some measure. Consequently, the right-hand side of Eq. (32) is “small” and defines the size of the small perturbation \(\tilde{C}_{ij}^c \). The additional correction term can be calculated by a simple matrix inversion owing to the linear nature of Eq. (32) which, as we shall see in the following section, produces a much more accurate solution in a fraction of the time it would take to run the non-linear solver.

5.5 Results

Figure 6 is a replica of Fig. 4 with the addition of the perturbation solution shown in red.
and improvements in the accuracy of the condensed concentrations reduce the subsequent errors in the masses.

Figure 8 shows the percentage errors in the calculated mass fractions when compared to the solution from the nonlinear solver. The top two plots, which had the worst correlation in Fig. 7, show that the leading-order solution produces errors in the organic mass fraction of below 20 % in nearly all cases, and these reduce to 10 % when the correction term in the perturbation solution is included. The effect of van’t Hoff factors close to 0 is most notable in the middle two plots where the errors increase about 3-fold compared to when the van’t Hoff factors are greater than 1: middle right and left plots, respectively. The errors in the perturbation solution rarely exceed 10 % across the entire parameter space and are only a few percent at cloud base, shown by the lower two plots.

6 Comparison between the partitioning theory and a dynamic condensation model

The equilibrium absorptive partitioning theory presented in the previous sections calculates the equilibrium condensed concentration of each organic compound. If a dynamic model of condensation of SVOCs is left to run for long enough, it ought to equilibrate on the same solution. We test this in Sect. 6.1 for two modes as a verification of the extension of the partitioning theory to multiple modes. Once we have confirmed that the dynamic model converges on the equilibrium absorptive partitioning theory solution for monodisperse modes, we investigate the performance of equilibrium partitioning theory when applied to aerosol modes that are represented by lognormal size distributions in Sect. 6.2, which is more applicable to atmospheric models. Again, a dynamic condensation model is allowed to run until it reaches equilibrium, and this solution is compared to the analogous solution calculated using equilibrium partitioning theory. We have, additionally, simulated two different scenarios designed to study how equilibrium absorptive partitioning theory may perform in large-scale models, and the results appear in the Supplement.

6.1 Multiple monodisperse aerosol modes

In this section we confirm that the dynamic model converges on the numerical solution from the equilibrium absorptive partitioning theory for multiple monodisperse modes. This allows us to confirm that the errors encountered in Sect. 6.2 and Sect. S3 of the Supplement are not the result of inaccuracies in the standard equilibrium absorptive partitioning theory presented earlier in the paper.

A dynamic parcel model with binned microphysics by Topping et al. (2013) is modified to maintain constant temperature, pressure and water vapour mass; the former two are set to 293.15 K and 95 000 Pa, respectively, and the latter is calculated from the specified relative humidity. In the simulations the time taken for small particles to grow to equilibrium is of the order of hundreds of seconds, whereas larger particles take thousands. The large particles, however, should take up more of the condensed concentration of the organic compounds due to their higher value of C_T. As a consequence, the vapour phase equilibrates with the total condensed concentration very quickly, but the condensed mass on smaller particles exceeds equilibrium and consequently deceeds equilibrium on the larger particles. Once the bulk system reaches equilibrium the large particles can only grow at the same rate that the small particles shrink and this process can take millions of seconds of simulation time to correct to a high degree of accuracy. For the purposes of confirming convergence of the dynamic model towards the solution from equilibrium absorptive partitioning theory it is important to ensure that the dynamic model has converged on an equilibrium to a high degree of accuracy. This solution can then be compared against the equilibrium absorptive partitioning solution to confirm that the two agree.

To obtain accurate convergence of the dynamic model without excessively long simulation times, we start the dynamic model from a perturbed equilibrium state in which the condensed mass on each mode deceeds equilibrium by a small amount. The dynamic model is initiated with the remaining organic mass in the vapour phase. Details of how we calculate the initial condensed masses are given in the Supplement.

The simulations are run with the material properties given in Table 3 and the size distribution parameters given in Table 4. Figure 9 compares the condensed concentrations for a range of values of the diameter of the first mode; values are denoted above each plot. In each plot the relative humidity was 50 %. The top of the red sections of each bar depicts the total condensed concentration in each volatility bin from the dynamic model, and the equivalent quantity from the partitioning theory is shown by the black crosses; the two agree almost exactly for all particle sizes shown. The proportions that are condensed on the first and second modes are shown by the areas that are coloured green and red, respectively. The height of the green bar shows the condensed concentrations on the first mode from the dynamic model and, as expected, an increase in diameter of these particles results in both an increase in total condensed concentration and the proportion of which is on the first mode. The small particles of diameter 25 nm in the top left plot only account for a small proportion of the condensed concentration, as shown by the small area of green compared to the large area of red. When the size of these particles is increased to 100 nm they take up almost all of the organic material in the condensed phase; the lower right bars have a much larger area of green than red. The analogous quantities from the partitioning theory are shown by the dashed yellow lines which coincide with the tops of the green bars to a high degree of accuracy. The condensed concentrations on the second mode are shown by the height
Figure 7. Same as Fig. 5 with the addition of the perturbation solution shown in red.

Table 3. Material parameters used in the dynamic model simulations. Total SVOC concentrations are 0.47 µg m\(^{-3}\), which represents a rescaling of the volatility distribution given in Table 2 by a factor of 0.25.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\rho_i^0) (kg m(^{-3}))</th>
<th>(\rho_j) (kg m(^{-3}))</th>
<th>(M_j) (kg mol(^{-1}))</th>
<th>(M_i^0) (kg mol(^{-1}))</th>
<th>(\nu_i^0)</th>
<th>(\nu_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1770</td>
<td>1500</td>
<td>0.132</td>
<td>0.2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
of the red sections of the bars which, when measured from the x axis, are shown by the horizontal black dashed lines across each bar. These too agree exceptionally well with the pink dashed lines, which are the equivalent values from the partitioning theory.

Similar plots are shown in Fig. 10, but this time the size of the first mode is fixed at 50 nm and the number concentration is varied instead; the values used are shown above each plot. As previously seen, the equilibrium partitioning theory agrees incredibly well with the dynamic model simulations across the parameter space explored. Interestingly, in these plots the total condensed concentration does not increase significantly when the number concentration of the first mode is increased from 100 to 750 cm$^{-3}$. The proportion on each of the two modes, however, does increase, with
Table 4. Range of values assigned to the number concentration, N_i, and involatile particle diameter, D_i, used in the dynamic model simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N_i (cm$^{-3}$)</th>
<th>D_i (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>100–1000</td>
<td>25–100</td>
</tr>
<tr>
<td>Mode 2</td>
<td>50</td>
<td>125</td>
</tr>
</tbody>
</table>

almost equal amounts placed on each of the two modes when the first mode has a number concentration of 750 cm$^{-3}$.

6.2 Application to lognormally distributed particle sizes

Aerosol in the atmosphere is often characterised by multiple polydisperse modes with particles in each mode composed of the same chemical composition. The sizes of particles in each mode are described by size distributions which are a convenient way of treating a polydisperse aerosol as each size distribution can be considered as a single entity.

A common assumption is that the diameters of the particles, D_i, are lognormally distributed so that the number of aerosol particles, N, per logarithmic size interval is given by

$$\frac{dN}{d\ln D} = \frac{N}{\sqrt{2\pi} \ln \sigma} \exp \left[-\left(\frac{\ln \left(\frac{D}{D_m}\right)}{\sqrt{2\ln \sigma}} \right)^2 \right].$$ (33)

Here N is the total number of particles and D_m and $\ln \sigma$ are the median diameter and geometric standard deviation. Multiple lognormal size distributions can be added together to form more diverse aerosols:

$$\frac{dN}{d\ln D} = \sum_i \frac{N_i}{\sqrt{2\pi} \ln \sigma_i} \exp \left[-\left(\frac{\ln \left(\frac{D}{D_{m,i}}\right)}{\sqrt{2\ln \sigma_i}} \right)^2 \right].$$ (34)
where $D_{m,i}$ and $\ln \sigma_i$ are the median diameter and geometric standard deviation of the ith mode.

The difficulty with applying equilibrium partitioning theory to size distributions is that particles of different sizes have different Kelvin factors and the semi-volatile organic compounds will consequently partition non-uniformly across the sizes of particles. We replace the Kelvin factors by effective values calculated using the median diameters of each mode including the additional condensed mass of SVOCs. For the equilibrium comparisons used in this section, we assume that the non-volatile compound is represented by lognormal size distributions of particles. After adding the additional condensed mass of SVOCs calculated using equilibrium absorptive partitioning, we assume that the particle sizes are also represented by lognormal size distributions. We use the same geometric standard deviation, $\ln \sigma_i$, as the non-volatile aerosol modes and assume that the median diameter of each mode increases in order to account for the additional aerosol mass from the SVOCs. In Sect. S4 of the Supplement, we investigate whether, in practice, the geometric standard deviation can be assumed to remain constant while undergoing condensation of SVOCs.

![Figure 10](http://www.geosci-model-dev.net/9/3617/2016/)

Figure 10. Same as Fig. 9 but with a differing number concentration of the first mode in each plot and a diameter of 50 nm. The second mode has a median diameter of 125 nm and a number concentration of 50 cm$^{-3}$.

<table>
<thead>
<tr>
<th>Parameter values used in the first set of dynamic model simulations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Mode 1</td>
</tr>
<tr>
<td>Mode 2</td>
</tr>
</tbody>
</table>

Table 5. Parameter values used in the first set of dynamic model simulations.

We begin by comparing the limiting behaviour of the dynamic model against the equilibrium absorptive partitioning theory, presented in this paper, when each mode is represented by a lognormal size distribution. In order to isolate the errors resulting from the lognormal size distribution approximation in the equilibrium absorptive partitioning theory from errors in the convergence of the dynamic model, we again start the simulations from a perturbed equilibrium condensed mass. Details of how we derive this initial condensed mass are given in Sect. S2 of the Supplement. Further investigations into the applicability of the assumption of equilibrium in more realistic scenarios and timescales appear in the Supplement.

The equilibrium calculated using the dynamic model is compared against the equilibrium absorptive partitioning the-
Figure 11. Same as Fig. 9 for involatile aerosol modes represented by lognormal size distributions with number concentrations of 200 and 50 cm$^{-3}$ and median diameters of 25 and 125 nm, respectively. The geometric standard deviations are 0.5 and 0.1. The relative humidity used in each simulation is stated above each plot.

Figure 12. Same as Fig. 11, but the first mode has a median diameter of 50 nm and a number concentration of 200 cm$^{-3}$. The second mode has a median diameter of 125 nm and a number concentration of 50 cm$^{-3}$. The geometric standard deviations are 0.5 and 0.1.

ory in Fig. 11 for a range of relative humidities. Lognormal size distributions are defined by the parameters in Table 5 with the material properties in Table 3. Total condensed concentrations from the partitioning theory are shown by the crosses, which lie almost exactly at the top of the red sections which mark the analogous quantity from the dynamic model at equilibrium. The partitioning theory underpredicts the condensed concentrations on the first mode (dashed yellow line) compared to the dynamic model (green bar), and the converse is true for the larger mode (dashed pink line and dashed black lines). This is a consequence of the equilibrium absorptive partitioning theory calculating the same
total condensed concentration as the dynamic model. The condensed concentration on the larger mode is overpredicted by the equilibrium absorptive partitioning theory and consequently the condensed mass on the smaller mode is underpredicted by the same amount. Due to the condensed masses on the smaller mode being an order of magnitude less than the larger mode, this error results in a much larger relative error of between 35 and 50% on the smaller mode. The effect of the increased relative humidity is to increase the total condensed concentration of organics; all of the SVOCs in the five lowest volatility bins are in the condensed phase even at RH = 0 %, and so this extra organic mass must come from the higher volatility bins. This is seen by the larger red and green regions for the higher volatility bins in the lower right plot.

The proposed reason for the discrepancies in the condensed masses on the smaller mode is the effect of the Kelvin factor. The Kelvin factor is most variable for smaller diameters, and so using an effective value for all particles within a lognormal mode with a small median diameter results in appreciable errors. To demonstrate this theory, we have carried out further simulations with a smaller mode with a median diameter of 50 nm. These are shown in Fig. 12 for relative humidities of 0 and 90%. As can be seen, the errors in condensed mass on the smaller mode are eradicated and the two equilibrium solutions are in perfect agreement. We conclude, therefore, that equilibrium partitioning can very accurately calculate the equilibrium condensed mass on lognormal modes if the median diameter is above 50 nm. In some situations it may be deemed sufficiently accurate to use equilibrium partitioning with lognormal size distributions at smaller diameters, especially when off-set against the reduction in computational complexity compared to solving the dynamic condensation process.

7 Conclusions

This paper presents both a model and an efficient and accurate parameterisation of the solution that are suitable for investigations in a wide range of research areas that use equilibrium absorptive partitioning theory. Of particular interest to the authors are cloud droplet activation parameterisations and, ultimately, inclusion in global climate models.

The model itself predicts the equilibrium condensed concentrations of organics onto multiple monodisperse aerosol modes incredibly accurately compared to the equilibrium solution from a dynamic model. This holds true for a range of particle sizes, number concentrations and relative humidities.

The proposed parameterisation is found to be exceptionally accurate for a wide range of parameters. Assuming the same mole fraction for all of the modes offers a quick method of obtaining a reasonably accurate approximation for all but the smallest van’t Hoff factors of the involatile compounds, but performs well at high values of relative humidity. The perturbation correction term offers significant improvements at lower relative humidity, especially for smaller van’t Hoff factors, with a negligible increase in computational expense.

The condensed mass calculated using equilibrium absorptive partitioning theory with lognormal size distributions of involatile particles agrees very well with the limiting behaviour of the dynamic model if the median diameters of the modes are above 50 nm. Below this size the Kelvin term becomes important and results in non-negligible errors. This is further corroborated in the more realistic scenarios simulated in the Supplement.

8 Code availability

All Matlab source code used in the generation of the plots in this paper, including a solver for the multiple mode equilibrium partitioning theory equations, is available at doi:10.5281/zenodo.34025.
Appendix A

The implicit equations governing the leading-order solution can be manipulated to give an explicit expression for each of the condensed concentrations, \tilde{C}_{ij}, in terms of the average mole fraction. We present the algebra for such a step here. The coupled equations are given by Eq. (29) and are restated here:

\[
\tilde{C}_{ij} = \frac{C_j - \sum_r \tilde{C}_{rj} + \tilde{C}_i^c}{1 + \frac{C_j^o(1 + \beta)}{C_j^s/\eta_i}}.
\]

We can make use of the notation given by Eq. (14) to write the summation term as \tilde{C}_j^c and rearrange the denominator on the right-hand side to give

\[
\tilde{C}_{ij} = \left(C_j - \tilde{C}_j^c + \tilde{C}_{ij} \right) \frac{C_j^o(1 + \beta)}{C_j^o(1 + \beta) + C_j^s/\eta_i}.
\]

The explicit dependence on \tilde{C}_{ij} can be factorised onto the left-hand side:

\[
\frac{C_j^s/\eta_i}{C_j^o(1 + \beta) + C_j^s/\eta_i} \tilde{C}_{ij} = C_j^o(1 + \beta) \left(C_j - \tilde{C}_j^c \right),
\]

which further reduces to

\[
\tilde{C}_{ij} = \frac{C_j^o(1 + \beta) \left(C_j - \tilde{C}_j^c \right)}{C_j^s/\eta_i}.
\]

By summing over i an equation for C_j^c is obtained,

\[
\tilde{C}_j^c = \left(C_j - \tilde{C}_j^c \right) \sum_r C_r^o(1 + \beta)
\]

which has the solution

\[
\tilde{C}_j^c = \phi_j C_j,
\]

where ϕ_j depends on β and η_i and is given by

\[
\phi_j(\beta, \eta_i) = \frac{\sum_r C_r^o(1 + \beta)}{1 + \sum_r \frac{C_r^o(1 + \beta)}{C_r^s/\eta_r}}.
\]

The individual condensed concentrations are then calculated using Eq. (A1), which can now be written as

\[
\tilde{C}_{ij} = \frac{C_j^o(1 + \beta) \left(1 - \phi_j \right) C_j}{C_j^s/\eta_i}.
\]

Appendix B

The details of the linearisation of the perturbation Eq. (31) are presented in this appendix and we begin by restating the set of non-linear equations

\[
\tilde{C}_{ij} + \hat{C}_{ij} = \left(C_j - \sum_r \tilde{C}_{rj} + \tilde{C}_i^c - \sum_r \hat{C}_{rj} + \hat{C}_i^c \right)
\]

\[
\times \left(\frac{C_j^o + \sum_r \tilde{C}_{rj}^c + \sum_k \hat{C}_{ik}^c}{1 + C_j^o + \sum_k \tilde{C}_{ik}^c + C_j^s K_{ij}/\eta_i} \right)
\]

The denominator on the right-hand side can be rearranged to give

\[
\tilde{C}_{ij} + \hat{C}_{ij} = \left(C_j - \sum_r \tilde{C}_{rj} + \tilde{C}_{ij} - \sum_r \hat{C}_{rj} + \hat{C}_{ij} \right)
\]

\[
\times \left(\frac{C_j^o + \sum_r \tilde{C}_{rj}^c + \sum_k \hat{C}_{ik}^c \sum_j (\hat{C}_{ij} + \hat{C}_{ij}^c)}{1 + \sum_k \tilde{C}_{ik}^c + C_j^s K_{ij}/\eta_i} \right)
\]

We now assume that the perturbations are sufficiently small that

\[
\left| \frac{\sum_k \hat{C}_{ik}^c}{C_j^o + \sum_k \tilde{C}_{ik}^c + C_j^s K_{ij}/\eta_i} \right| \ll 1,
\]

so that the third term on the right-hand side can be approximated by its Taylor series expansion of the form

\[
\frac{1}{1 + x} = 1 - x + O(x^2),
\]
with x equal to the term (B1),

$$
\begin{align*}
\mathcal{C}_{ij}^c + \hat{C}_{ij}^c &= \left(\frac{C_j - \sum_r C_{rj}^c + \hat{C}_{rj}^c - \sum_r \hat{C}_{rj}^c + \hat{C}_{ij}^c}{C_i^o + \sum_k C_{ik}^c + C_j^* K_{ij}/\eta_i} \right) \\
&\times \left(C_i^o + \sum_k C_{ik}^c + \sum_k \hat{C}_{ik}^c \right) \\
&\times \left(1 - \frac{\sum_k \hat{C}_{ik}}{C_i^o + \sum_k C_{ik}^c + C_j^* K_{ij}/\eta_i} + O \left(\left[\hat{C}_{ij}^c \right]^2 \right) \right).
\end{align*}
$$

The right-hand side can be linearised assuming the terms of order $O \left(\left[\hat{C}_{ij}^c \right]^2 \right)$ are negligible.

$$
\begin{align*}
\mathcal{C}_{ij}^c + \hat{C}_{ij}^c &\approx \frac{C_j - \sum_r C_{rj}^c + \hat{C}_{rj}^c}{1 + \frac{C_j^* K_{ij}/\eta_i}{C_i^o + \sum_k C_{ik}^c}} + \sum_r \frac{\hat{C}_{rj}^c + \hat{C}_{ij}^c}{1 + \frac{C_j^* K_{ij}/\eta_i}{C_i^o + \sum_k C_{ik}^c}} \\
&\times \left(\frac{C_j - \sum_r C_{rj}^c + \hat{C}_{rj}^c}{C_i^o + \sum_k C_{ik}^c + C_j^* K_{ij}/\eta_i} \right) \sum_k \hat{C}_{ik}^c \\
&- \frac{C_j - \sum_r C_{rj}^c + \hat{C}_{rj}^c}{\left(C_i^o + \sum_k C_{ik}^c + C_j^* K_{ij}/\eta_i \right)^2} \sum_k \hat{C}_{ik}^c.
\end{align*}
$$

We can factor this to give

$$
\begin{align*}
\hat{C}_{ij}^c &+ \frac{\sum_r \hat{C}_{rj}^c - \hat{C}_{ij}^c}{C_j - \sum_r C_{rj}^c + \hat{C}_{rj}^c} \\
&\approx \left[\frac{C_j - \sum_r C_{rj}^c + \hat{C}_{rj}^c}{C_i^o + \sum_k C_{ik}^c + C_j^* K_{ij}/\eta_i} \right] \sum_k \hat{C}_{ik}^c \\
&\approx \frac{C_j - \sum_r C_{rj}^c + \hat{C}_{rj}^c}{C_j^* K_{ij}/\eta_i} - \hat{C}_{ij}^c.
\end{align*}
$$

By denoting the coefficient in the square brackets by L_{ij} together with

$$
\xi_{ij} = \left(1 + \frac{C_j^* K_{ij}/\eta_i}{C_i^o + \sum_k C_{ik}^c} \right)^{-1},
$$

this expression can be made more notationally simplistic:

$$
\begin{align*}
(1 - \xi_{ij}) \hat{C}_{ij}^c + \xi_{ij} \sum_r \hat{C}_{rj}^c - L_{ik} \sum_k \hat{C}_{ik}^c \\
&\approx \frac{C_j - \sum_r C_{rj}^c + \hat{C}_{rj}^c}{C_j^* K_{ij}/\eta_i} - \hat{C}_{ij}^c.
\end{align*}
$$

It is important to note that both ξ_{ij} and L_{ij} depend on the leading-order solution but are independent of the perturbation, \hat{C}_{ij}^c, and as such this equation is now linear in these quantities.
The Supplement related to this article is available online at doi:10.5194/gmd-9-3617-2016-supplement.

Acknowledgements. The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 603445.

Edited by: G. Mann
Reviewed by: two anonymous referees

References

