<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>BUVO-D-16-00106R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>MeMoVolc report on classification and dynamics of volcanic explosive eruptions</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Forum Contribution</td>
</tr>
</tbody>
</table>
| **Corresponding Author:** | Costanza Bonadonna
University of Geneva
Geneva, SWITZERLAND |
| **Order of Authors:** | Costanza Bonadonna |
| **Funding Information:** | please see email for reply to your comments |
MeMoVolc report on classification and dynamics of volcanic explosive eruptions

C Bonadonna¹, R Cioni², A Costa³, T Druitt⁴, J Phillips⁵, L Pioli⁶, D Andronico⁶, A Harris⁶, S Scollo⁶, O Bachmann⁷, G Bagheri⁸, S Biasi⁴, F Brogi¹, K Cashman⁵, L Dominguez¹, T Dürig⁸, O Galland⁹, G Giordano¹⁰, M Gudmundsson⁸, M Hort¹¹, A Hoskuldsson⁶, B Houghton¹², JC Komorowski¹³, U Kueppers¹⁴, G Lacanna², JL Le Pennece⁴,¹⁵, G Macedonio¹⁶, M Manga¹⁷, I Manzella¹, M de’ Michieli Vitturi¹⁸, A Neri¹⁸, M Pistolesi⁶, M Polacci¹⁸,¹⁹, M Ripepe⁸, E Rossi¹, B Scheu¹⁴, R Sulpizio²⁰, B Tripoli⁷, S Valade², G Valentine²¹, C Vidal²², N Wallenstein²²

¹, Department of Earth Science, University of Geneva, Geneva, 1205, Switzerland
Correspondence to: Email: Costanza.Bonadonna@unige.ch; Phone: +41 22 379 3055; FAX: +41 22 379 3601

², Dipartimento di Scienze della Terra, Università degli Studi di Firenze, 50121 Florence, Italy

³, Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, 40128 Bologna, Italy

⁴, Laboratoire Magmas et Volcans, Université Blaise Pascal-CNRS-IRD, OPGC, Campus des Cézeaux, 6 Av. Blaise Pascal, 63178 Aubière, Clermont Ferrand, France

⁵, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK

⁶, Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, 95125, Catania, Italy

⁷, Department of Earth Sciences, ETH Zurich, Zurich, 8092, Switzerland

⁸, Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland

⁹, Department of Geosciences, University of Oslo, NO-0316 Oslo, Norway

¹⁰, University Roma Tre, Roma, Italy

¹¹, Universität Hamburg, D-20146, Hamburg, Germany

¹², Department of Geology & Geophysics, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

¹³, Institut de Physique du Globe de Paris, Paris 75238, France

¹⁴, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, 80333 Munich, Germany

¹⁵, Institut de Recherche pour le Développement, LMV, 63038 Clermont-Ferrand, France

¹⁶, Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, 80124 Napoli, Italy

¹⁷, Department of Earth and Planetary Science, University of California, Berkeley CA 94720-4767, USA

¹⁸, Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, 56126 Pisa, Italy

¹⁹, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK

²⁰, Department of Earth and Geo-environmental sciences, Università degli Studi di Bari, via Orabona 4, 70125, Bari, Italy

²¹, Department of Geology, University at Buffalo, Buffalo, NY 14260-1350, USA

²², Universidade dos Açores, Centro de Vulcanologia e Avaliação de Riscos Geológicos, 9501-801 Ponta Delgada, Portugal
Abstract

Classifications of volcanic eruptions were first introduced in the early 20th century mostly based on qualitative observations of eruptive activity, and over time they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here we i) review and assess existing classification schemes, focussing on subaerial eruptions, ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism, iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions, and iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions, and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterised in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include: conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.

Keywords
Volcanism; Eruption dynamics; Eruption classification; Eruptive products; Eruptive processes; Eruptive styles
1. Introduction

Eruptive style is primarily a function of magma composition and temperature, magma volatile content and crystallinity, exsolution and degassing processes, magma feeding and discharge rates, conduit geometry and mechanical strength, magma reservoir pressure and the presence of external water. Key processes and parameters that characterize explosive eruptions are only partially understood, generating confusion in the way that we classify and categorize eruptions, especially in the cases of small-moderate-scale eruptions which, owing to their high frequency, have significant economic impact. Conversely, the classification of eruptive activity is generally based on a small, selected set of parameters, directly observed during eruptions or measured from their deposits, that only partially represent the natural complexity of the activity (e.g. Walker et al. 1973; Newhall and Self 1982; Pyle 1989; Bonadonna and Costa 2013). For example, specific classification categories, such as violent Strombolian, Vulcanian or sub-Plinian, have often been attributed to small or moderate sized eruptions based only on the eruption size (from plume height or product dispersal), without full consideration of the eruption dynamics. The lack of understanding of the diagnostic signatures of these kinds of eruptions, and the processes involved, also leads to new attempts of describing explosive eruptions that vary from volcano to volcano, e.g. the delineation of lava/fire fountaining activity at Etna with respect to that in Hawaii, the distinction between major and paroxysmal eruptions at Stromboli, or between different types of Vulcanian activity at volcanoes dominated by silicic lava domes with respect to volcanoes characterised by more mafic magmas and ash emissions. This is all symptomatic of our limited current understanding of explosive volcanism, with obvious implications for assessing hazards. It is important to stress that explosive volcanism can also include effusive phases (e.g. lava flows, dome growth) and outgassing, which should also be considered in order to develop a comprehensive understanding of the diversity of eruptive
dynamics. Of concern is that limitations in our ability to categorize and classify eruptions may hinder our progress in understanding eruptions and communication of hazards.

Early studies of physical volcanology, and proposals of classification schemes, were mainly based on visual observations of eruptive phenomena at specific volcanoes, and eventually evolved to take into account deposit quantification (e.g. Mercalli 1907; Lacroix 1908; McDonald 1972; Williams and Mc Birney 1979; Walker 1973). In practice, due to its nearly ubiquitous presence in the different eruptive styles, tephra fallout is traditionally the main type of deposit investigated in order to provide insights into the eruptive dynamics (here tephra is considered in the sense of Thorarinsson (1944), i.e. collective term used to describe all particles ejected from volcanoes irrespective of size, shape and composition). However, by considering only the dispersal of tephra, and not, for example, the deposits' internal stratigraphy, the complex and unsteady source dynamics typical of small-moderate explosive eruptions cannot yet be fully captured post facto from the deposits. Many eruptions show hybrid features, starting with one eruptive style but terminating with another, resulting in a complex stratigraphic record that is difficult to classify. Yet, other eruptions have characteristics that are gradational between the defined eruptive styles, such as Strombolian and Vulcanian, reflecting transitions in physical phenomena that are as yet imperfectly understood and quantified. Some eruptions would be better described based on the analysis of all volcanic products (e.g. volume ratio between erupted lava and tephra, or volume ratio between fallout and pyroclastic density currents deposits), and especially of the products related to those phases of the eruption marking a shift in the eruptive style. Importantly, ignimbrite-forming eruptions, which include some of the largest on Earth, cannot be simply classified by our present schemes. Furthermore, when dealing with deposits from the rock record, there is often large uncertainty in associating a time-scale with the internal stratigraphy, so that layering and stratification could be related to changes of
dynamics during a rather continuous event but also to quite distinct eruptive pulses (e.g. 1707 eruption of Fuji volcano, Japan).

Progress in physical volcanology combined with the increased capability in monitoring and measuring explosive eruptions and in the experimental simulation and numerical modelling of the related physical processes, have highlighted how the description of eruptive behaviour should be based on a combination of deposit features, including deposit thinning, deposit grain-size, textural features, componentry, density and porosity of products (and their variation through time), together with geophysical measurements (e.g. volcanic tremor, acoustic measurements) and visual observations (e.g. explosion frequency, plume/jet description) of the eruption itself. The development of a comprehensive understanding of the parameters driving explosive volcanism covering the whole range from weak to powerful explosions, from small to lava-forming events, and from simple to complex, hybrid eruptions, represents one of the main challenges faced by the volcanological community. Present classifications are mainly based on the characteristics of tephra dispersal, or on direct observations, while relatively little attention is paid to the entire dynamics and time-related variability of different eruptions.

A comprehensive approach to the description of explosive volcanic eruptions can only result from the combined efforts of many scientists working in various sub-disciplines. A multidisciplinary group of the international volcanological community gathered at the University of Geneva on 29-31 January 2014 under the sponsorship of the MeMoVolc Research Networking Programme of the European Science Foundation and the Department of Earth Sciences of the University of Geneva in order to: i) review existing classification schemes and discuss the needs of eruption classification; ii) fill the gap between recent advances in geophysical, modelling and field strategies and current classification schemes; iii) investigate how the contributions from different sub-disciplines can be combined. Specific objectives were to: i) review new advances in our mechanistic understanding of a broad range of eruptive styles and their relation to eruption
classification; ii) identify the critical parameters that drive and characterize explosive volcanism of different types; iii) determine the main processes that control the temporal evolution of eruptions, and the frequently observed changes in eruptive style; iv) select research priorities that could allow new advances in the characterization, understanding and classification of volcanic eruptions; v) suggest a roadmap for producing a rational and comprehensive classification scheme. This consensual document attempts to summarize the outcome of two and a half days of talks, posters, break-out sessions, and plenary discussions (see also the workshop website for Program details: http://www.unige.ch/hazards/MeMoVolc-Workshop.html).

2. Main general classification schemes used to characterize volcanic eruptions

We can distinguish between “general” (those not based on specific volcanoes) and “local” classification schemes (those that mainly consider local eruptive features at specific volcanoes). General schemes are needed to make global comparisons, to better understand the general trends of explosive volcanoes, and to better identify the key processes that distinguish eruptive styles. Local classifications can capture local trends and specific eruptive patterns and, therefore, are crucial to local hazard assessments. Here we summarize the main general classification schemes used in the literature and identify some of their shortcomings.

The first general classification schemes of volcanic eruptions identified “type volcanoes”, made associations with specific eruptive features, were mostly qualitative, and were biased towards the more frequent small to moderate eruptions (e.g. Mercalli 1907; Lacroix 1908; Sapper 1927; Perret 1950). They were eventually replaced by schemes based on processes and quantitative descriptions, with special focus on the characteristics of tephra deposits (e.g. Walker 1973, 1980; Self and Sparks 1978; Wright et al. 1980). Five parameters were introduced for estimating the scale of explosive eruptions (e.g. Walker 1973): i) magnitude (volume of
erupted material typically converted to Dense Rock Equivalent, DRE); ii) intensity (volume of ejecta per unit time); iii) dispersive power (related to the total area of dispersal and, therefore, to plume height); iv) violence (related to kinetic energy); v) destructive potential (related to the extent of devastation). Eruptive styles (Table 1) were determined based on two parameters: F, fragmentation index (indicator of the explosiveness of the eruption) and D, area of pyroclastic dispersal (indicator of the column height). Specifically, D is the area enclosed by an isopach contour representing 1% of the maximum thickness (0.01 T_{max}) and F is the percent of tephra <1mm, measured along an axis of dispersal where the isopach is 10% of T_{max} (0.1 T_{max}). Eventually the styles representing violent Strombolian, ash emissions, Vesuvian and the silicic equivalent of surtseyan were discarded and new terms such as phreatoplinian and ultra-Plinian were introduced (Walker 1980; Self and Sparks 1978; Cas and Wright 1988). However, the term violent Strombolian has remained in the literature and has been preferred by Valentine and Gregg (2008) to the new term introduced by Francis et al. (1990) (i.e. microplinian) mostly because of its widespread use and because it does not suggest the injection above the tropopause as does the term Plinian.

This new approach to eruption classification was pioneering by linking volcanic eruptions and pyroclastic deposits, and it allowed for significant progress in physical volcanology based on the identification and analysis of common features of eruptions having similar characteristics. However, shortcomings included: i) the difficulty in determining F and D, ii) the definition of fragmentation index, which is not only controlled by magma fragmentation but also by premature fallout of fine ash due to aggregation processes; iii) the inability to coherently represent eruptions fed by low-viscosity magmas (e.g. Andronico et al. 2008; Houghton and Gonnermann 2008); iv) the difficulty of classifying eruptions with poorly preserved deposits; v) the inability to account for volcanic products other than tephra (e.g. Pioli et al. 2009); vi) the difficulty of discriminating the wide range of mid-intensity eruptions (small-moderate eruptions...
of Bonadonna and Costa (2013)); vii) the usual association between hydromagmatism and ash-dominated eruptions and viii) the absence of hybrid and multi-style eruptions.

Williams and McBirney (1979) suggested that a rigid classification of eruptions is impossible, mainly because eruptive style and products might change significantly during a single eruption, but that nevertheless classifications provide a common vocabulary for communication and comparing eruptions. They also thought that most of the existing classification schemes at the time were too complex to be used, and tried to better define existing terms in order to simplify the schemes (e.g. Table 1). Pyle (1989) and Bonadonna and Costa (2013) introduced new schemes based on the characterization of tephra deposits, which were easier to apply and mostly concerned small-moderate, sub-Plinian, Plinian and ultra-Plinian eruptions (Table 1). In fact, small-moderate eruptions and eruptions characterized by magma/water interaction were recognized as impossible to distinguish solely on the basis of the parameters considered (i.e. plume height, Mass Eruption Rate - MER, deposit thinning and grain-size decrease). These new classification schemes still neglected volcanic products other than tephra, as well as hybrid and multi-style eruptions. General shortcomings of all process-based classification schemes described above include: i) the difficulty of representing all eruptions on one single diagram (in particular effusive together with explosive events, and large explosive eruptions together with small-moderate explosive eruptions), ii) the incomplete accounting of all volcanic behaviours, duration and products (i.e. schemes are based on tephra deposits and typically neglect important other products and processes, such as pyroclastic density currents - PDCs, lava flows, gas), and iii) the impossibility of fully describing complex eruptions with variable styles.

Newhall and Self (1982) introduced a classification strategy that assigned a certain erupted volume and plume height range to the most common eruptive styles: the Volcanic Explosivity Index, VEI. This logarithmic scale ranges from “non-explosive” Hawaiian eruptions (VEI 0; volume <10,000 m3; plume height <100m) to “very large” ultra-Plinian eruptions (VEI 5-8; volume >1
This scale is widely used in global databases (e.g. GVP, http://www.volcano.si.edu; Siebert et al. 2010) and hazard/risk assessments because it offers a comforting analogue to the more widely used earthquake magnitude scale. The main shortcomings of this approach include: i) the implicit assumption of a link between magnitude and plume height, and, therefore, intensity; ii) a gap between modern eruptions that are typically defined by plume height, versus ancient eruptions that are typically defined by erupted volume; iii) impossibility of classifying effusive (lava) eruptions, which by default are assigned a VEI of 0 or 1; iv) ambiguity in the definition of VEI 0 that covers at least six orders of magnitude of eruptive volume (e.g. Houghton et al. 2013); v) ambiguity in the definition of erupted volume that in the global databases sometimes includes deposits of PDCs (as per the original definition of VEI) and sometimes only tephra-fall deposits; vi) the difficulty of characterizing long-lasting eruptions associated with multiple phases of varying style and intensity; vii) the difficulty of estimating the tephra volume of the cone edifice built during small-moderate eruptions that usually is not considered in the calculation of the total erupted mass (in fact, in this type of eruptions, the volume of the material forming the cone may be several times larger than the mappable medial to distal tephra-fall sheets).

Regardless of their shortcomings, some categories have been used by many classification schemes, while others have been abandoned in more recent works (Table 1). It is clear how classification schemes have been simplified with time, trying also to avoid nomenclature based on specific volcanoes (as suggested long ago by Rittmann 1944). Plinian is clearly universally accepted, as it is used in all classification schemes proposed, demonstrating the comparative ease of classifying relatively large eruptions. Hawaiian, Strombolian, Vulcanian, sub-Plinian and ultra-Plinian have also been used by most authors, even though their definitions can be complex and ambiguous. As an example, lava fountains frequently observed in recent years at Etna typically have been characterised by the formation of eruption columns > 2 km above the cone,
and so mostly fit in the violent Strombolian to sub-Plinian field of Walker (1973) rather than in the Hawaiian to normal Strombolian spectrum (e.g. Andronico et al. 2014). Finally, even though ultra-Plinian was used by many authors, we consider this category as a special case because it was based on only one eruption (i.e. Taupo 1800a; Walker 1980) and recent evidence shows that the large footprint of this apparently single fallout layer is an artefact of a previously unrecognized shift in the wind field during a fairly complex eruption, rather than indicating extreme eruptive vigour. When the associated deposit is subdivided into subunits, the Taupo eruption is better classified as Plinian (Houghton et al. 2014). Additional field evidence for possible ultra-Plinian deposits has been recently published for the 1257AD Samalas eruptions (Lombok, Indonesia; Vidal et al. 2015). Separate from specific examples, but in accord with the Bonadonna and Costa (2013) classification, the upper limit of ultra-Plinian eruptions can be defined on the basis of MER, based on the conditions for column collapse (i.e. greater than $\sim 10^9$ kg s$^{-1}$; e.g. Koyaguchi et al. 2010).

3. Critical processes and parameters that drive and characterize explosive volcanism of different types

A list of processes and parameters that drive and characterize explosive volcanism of different types is compiled in Table 2. All these processes are significant in controlling and defining eruption dynamics, and many of them are considered when studying the products of explosive eruptions. Despite this, a systematic and complete study of these parameters and of their interrelationships is presently lacking.

4. Research priorities

Based on Table 2, we have identified a number of key phenomena whose processes and parameters require more investigation and research. These include:
Conduit processes and dynamics

Processes and parameters that require a better understanding and characterization include: multiphase magma rheology (non-linearity on different spatial and temporal scales), volatile exsolution and vesiculation processes (kinetics, disequilibrium, and the interaction between different volatile phases), fragmentation dynamics and their relationship to pyroclast size distribution and shape, vent and conduit geometric complexity and changes to it during eruption, magma-water interaction, magma interaction with country rock, and the effects of crustal and local stresses on conduit dynamics (e.g. Costa et al. 2009; 2011; de’ Michiel Vitturi et al., 2013; Woods et al. 2006).

Abrupt transitions in eruption regime

Specific parameters causing abrupt transitions (e.g., major changes in magma composition and rheology; degassing behaviour, groundmass crystallization, dramatic changes in conduit/vent geometry) should be investigated and better defined - for example, through perturbation analysis – with the aim of identifying dimensionless scaling relationships that could characterize controls on instability. Similarly, uncertainty quantification and sensitivity analysis investigations of the effect of conduit processes on the eruptive style should be extended to identify the key controls on eruptive dynamics (e.g. Colucci et al., 2014).

Unsteadiness

Many eruptions are characterized by unsteadiness, involving fluctuations of eruption intensity on a wide range of length scales and time scales (sub-second to hours or days). For example, the scale of unsteadiness (periodicity and amplitude of fluctuations) increases when passing from Plinian (quasi-steady), through sub-Plinian (oscillating, sustained, short-lived column), to violent Strombolian (lava fountain-fed, discontinuous, pulsating column) to Vulcanian (discrete explosions separated by pauses). Unsteadiness should be quantified with continuous
measurements of MER, plume height and meteorological conditions at the highest possible resolution, or with indirect measurements of tephra bedding and grain-size variations (in particular for post-eruption analysis).

Open questions that cannot be answered until a better understanding is acquired include:

- How do we define unsteadiness (e.g. cyclic vs. irregular pulsating activity; steady, quasi-steady or highly unsteady)?

- How do we quantify unsteadiness (e.g., could we quantify unsteadiness using measurements of plume/jet height, geophysical observations and/or gas emissions? How can unsteadiness be characterized in a deposit?)?

- How do we distinguish between source-generated unsteadiness related to eruptive fluctuation at the vent and process-generated unsteadiness generated for example by changes in wind direction and speed (e.g., Houghton et al. 2014)?

- What are the causes of unsteadiness (e.g., ascent rate too low to sustain gas supply; ascent rate too low to keep pace with discharge; transition from open to closed system degassing; magma-water interaction; syn-eruptive changes in magma rheology or magma permeability able to modulate magma discharge; interaction with country rock; interaction with the atmosphere; unsteady dynamics of the column; unsteady sedimentation processes due to local instabilities)?

- What are the relevant time scales for unsteadiness? Which timescales can be measured and quantified? Can the characteristic timescale of conduit processes be defined and compared with the characteristic time of plume ascent?

Eruption energy and energy balance

The possibility of defining eruptive styles in terms of energy balance (partitioning between thermal, kinetics, fragmentation energy) and energy flux (rather than total energy) has been identified as a potential alternative to classifications based on erupted mass and plume height.
but requires further investigation (e.g. Yokoyama 1956; 1957a,b; Hedervari 1963; Garces 2013).

It is not yet practical to derive energy from deposits of past eruptions.

5. Objectives of eruption classification

The objectives of modern eruption classifications include: i) scientific understanding (i.e. to simplify a complex system by identifying leading-order processes, and to aid comparison between different eruptions or volcanoes), ii) eruption scenario reconstructions for hazard and risk assessment and iii) facilitation of science and hazard communication (i.e. communication with the scientific community, the public and civil defence institutions). In all cases, eruptions can be described differently depending on whether they are observed in real time or characterized based only on their deposits. Hazard communication should be a simple phenomenological description based on the simplification of scientific understanding. An ideal approach would be to have classification systems based on fairly easily and rapidly measured parameters, so that the system could be applied even in near-real time during an ongoing event. Tables 3 and 4 summarize the relevant parameters that can be observed, measured and derived and might be related to the scale of eruptions.

6. A roadmap for a more comprehensive approach to eruption classification

Shortcomings of current systems of classification, in particular associated with the small-moderate eruptions and the diversity of phenomena that can occur within a single event (e.g. PDCs, lava), can be addressed by making these systems adaptable to multiple levels of detail and multi-parameter space, particularly including unsteadiness and duration. In fact, it maybe be useful to describe volcanic eruptions using a qualitative classification with numerical information (i.e. an eruption descriptor plus numerical information) following an “event-tree” approach. From the identification and analysis of common features using this kind of categorization we may find a way to classify rationally a spectrum of eruption styles using a minimal number of
descriptors. Critical parameters include: deposit geometry, dispersal, plume height, eruption duration, mass associated with each phenomenon, grain-size, presence of unsteadiness, types and characteristics of juvenile material, abundance of wall-rock fragments.

In particular, in real time, classification should be based on observations of phenomena (e.g. Table 3), while, for post-eruption descriptions, classification should be based on the quantification of volcanic products (e.g. presence of tephra deposits/PDC deposits/lava, maximum clast size, thickness distribution, layering/bedding of deposit) and deposit-derived parameters (e.g. plume height, volume, total grain-size distribution) (Table 4). In both cases, phases or layers need to be described based on an event-tree approach and to include all primary processes known, in the greatest detail possible (e.g. plume/no plume, lava flow/no lava flow, PDCs/no PDCs).

Given the limitations of current eruption classification schemes, the workshop participants emphasized the importance of continuing the practice of providing clear, objective descriptions of eruption phenomena and products, thereby avoiding the issue of pigeonholing. When available, parameters indicated in Tables 3 and 4 should be provided as a priority. The strategy used to derive these parameters and the classification scheme used (if the eruption was classified) should also be indicated. When possible, real-time and post-eruption deposit-based descriptions should be integrated, because they often provide different and complementary information. Some detailed examples are provided in Appendix A.

7. Concluding remarks and open questions

This workshop allowed participants to assess the main advantages and shortcomings of existing eruption classification schemes and to identify open questions and research priorities that could help improve our understanding of volcanic explosive eruptions. Based on our thematic break-out sessions and plenary discussions we reached a number of conclusions:
1) All existing classification schemes fail to collate all volcanic eruptions in one simple diagrammatic form, and do not account for all volcanic behaviours and products. In addition, we identified that eruption categories used by most schemes include: Hawaiian, Strombolian, Vulcanian, sub-Plinian, Plinian and ultra-Plinian. There is a need for the community as a whole to work collectively towards improved classification of eruptions and their deposits.

2) The main parameters and processes characterizing volcanic eruptions include: initial conditions, conduit-related magma dynamics, and external factors (see Table 2).

3) Classification schemes need to be objective, focused and designed for specific goals (e.g. scientific understanding, hazard/risk assessment, communication with the public, civil defence institutions and the scientific community) and sufficiently clear and simple to promote accurate transfer of knowledge and scientific exchange.

4) Classification should be based on clearly defined observables, and aimed at identifying the main processes. We found that most existing classification schemes are based on processes (e.g. Walker 1973, 1980; Pyle 1989; Bonadonna and Costa 2013) but the parameters do not capture all relevant volcanic phenomena and are too broad to distinguish between transient versus sustained eruptions or steady versus unsteady behaviours.

5) Classification schemes should be comprehensive and encompass a variety of eruptive styles and volcanic products, including for example, lava flows, PDCs, gas emissions and cinder cone or caldera formation. While we have focussed on subaerial eruptions, classification should extend to submarine eruptions.

6) Real-time classifications should be based on quantitative observations of phenomena (Table 3), whereas post-eruption classifications should be based on the quantification of volcanic products and deposit-derived parameters (Table 4). Both real-time and post-eruption descriptions should include uncertainty estimates. When possible, real-time and post-
eruption descriptions should be integrated because they often provide different and complementary information.

7) Currently we do not have a system that can be used for all eruptions. It might be possible in the future to have a more comprehensive classification scheme, but it is likely that it will be associated with a different way of measuring eruptions (e.g. energy balance) instead of evolving from existing schemes.

8) None of the existing schemes consider the distinction between steady and unsteady processes. We identified that unsteadiness is, in fact, a key factor for describing volcanic eruptions, but also concluded that we do not yet have effective means of classifying unsteadiness itself. Future eruption classification schemes should incorporate the concept of unsteadiness.

9) Classification schemes should also describe eruption duration to distinguish between short-lived and long-lasting eruptions (e.g. Calbuco 2015, Chile versus Cordón Caulle 2011, Chile).

10) Open questions, processes and parameters that need to be addressed and better characterised in order to develop more comprehensive classification schemes and to progress in our understanding of volcanic eruptions include: conduit processes and dynamics, and of abrupt transitions in eruption regime, unsteadiness, eruption energy, and energy balance.

Finally, we note the advice of Williams and McBirney (1979) who recognised that, even though some specific nomenclature to classify volcanic eruptions is poorly defined, it has become too firmly entrenched in volcanological literature to abandon. The best improvements are to define old terms more clearly, and introduce new ones only when necessary. As a result, we envisage that a future classification scheme will retain some existing terms, but will need to better define them based on the parameters we identify for the classification of eruptions in real time and for post-eruption classification (Tables 3 and 4). Based on the frequency of use (Table 1), we expect
terms such as Hawaiian, Strombolian, Vulcanian, sub-Plinian, Plinian and ultra-Plinian to be part of future classification, but we suggest that they be combined with a phenomenological and quantitative description (possibly including uncertainty estimates), such as that reported in Appendix A, which provides key parameters including: i) plume/jet height, duration, MER, erupted mass/volume, energy, exit velocity, gas flux and composition, atmospheric conditions and unsteadiness for real-time classification and ii) thickness and maximum clast size distribution, deposit density, deposit componentry, shapes of juvenile clasts, deposit layering, pyroclast composition/crystallinity, erupted mass/volume of different volcanic products, total grain-size distribution, plume height, MER, duration, exit velocity, and wind direction and speed for post-eruption classification. In addition, information to identify magma/water interaction and quantify componentry should be provided together with the key parameters listed above. We also conclude that a few additional eruption categories might need to be added, because some eruptions cannot be described by the five most commonly used categories identified in Table 1, e.g. non-explosive, phreatic, continuous ash emissions/ash venting.

Acknowledgements

The workshop was made possible by the financial support of the Measuring and Modelling of Volcano Eruption Dynamics (MeMoVolc) ESF Network and of the Earth Sciences Department of the University of Geneva. We thank also Ray Cas and James White for constructive comments that improved the final manuscript.
Appendix A

Examples of descriptions and classifications of volcanic eruptions

Eruption classification needs to be fit-for-purpose (e.g. scientific understanding, hazard/risk assessment, communication with public, civil defence institutions and scientific community) and clear and simple enough to promote accurate transfer of knowledge and scientific exchange. It might vary depending on whether the classification is based on direct observations (i.e. real time) or on volcanic deposits (i.e. post eruption). In particular, in real time, classification should be based on quantitative observations of phenomena (Table 3), while, for post-eruption descriptions, classification should be based on the quantification of volcanic products and deposit-derived parameters (Table 4). Here we present some concrete examples developed by workshop participants. For two eruptions (i.e., Montserrat, 17th September 1996; Etna, 12th January 2011) we provide both types of descriptions (real time and post-eruption).

A.1 Examples of real-time descriptions

A.1.1 Gas Piston event at Pu‘u ‘O’o, Hawaii (23rd February 2002)

Basaltic lava flow from vent at foot of Pu‘u ‘O’o south wall begins at 19:59 and extends 100 m east by 20:15 (5 m wide proximally). A bulk volume flow rate of 0.26 m3 s$^{-1}$ for the lava flow was derived based on an emplacement duration of 16 minutes, which can be converted into a MER value of 414 ± 219 kg s$^{-1}$ using the vesicle corrected density of Harris et al. (1998) (i.e. 1590 ± 840 kg m$^{-3}$). Continuous spattering at vent was observed throughout emplacement. Spattering transits to bubble bursts at 20:41. Bursts increase in frequency to more than 1 per second by 20:45. At 20:45 bubble bursting and lava emission terminated by onset of gas jet with loud roar to 25(?) m. Waning gas jet until 20:15. Vertical blue gas jet with few diffuse, small (cm-sized) incandescent particles. Spatter-bubble-jet cycle recommences; next jet at 21:16. It was classified as gas piston event type “c” according to Marchetti and Harris (2008). Gas flux was not measured.
A.1.2 Montserrat, West Indies (17th September 1996)

A major phase of lava dome collapse began at 11:30 am on the 17 September 1996, continued for 9 hours and waned after 8:30 pm. The explosive eruption began at 11:42 pm and had finished by 00:30 am on 18 September. Seismic energy on the RSAM record peaked at about midnight and then declined exponentially. A vertical plume was intercepted by a commercial jet at 11.3 km, which is associated with a Dense Rock Equivalent (DRE) discharge rate of magma of 1300 m3 s$^{-1}$ (based on Sparks et al. 1997). Assuming a constant discharge rate over the whole 48-minute duration, a DRE volume of about 3.7 x 106 m3 was obtained. From weather satellite images (Satellite Analysis Branch of NOAA/NESDIS) plume transport was both to the west and to the east by regional trade and antitrade winds with a maximum speed at tropopause of 17 m s$^{-1}$. Pumice and lithic lapilli fell widely across southern Montserrat. Classified as small-moderate based on plume height and MER according to Bonadonna and Costa (2013).

A.1.3 Etna, Italy (12th January 2011)

The eruption began with intermittent bubble explosions with increasing frequency and intensity from the evening of 11th January to 21:40 GMT of 12th January and intermittent fountains from 21:40 to 21:50 GMT (first phase). From 21:50 to 23:15 GMT a transition to sustained fountains was observed with a peak magma jet height of 800 m and tephra plume height 9 km (second – paroxysmal- phase); a lava flow was also observed in the evening of 12th January. Small intermittent bubble explosions were again observed from 23:15 to 23:30 GMT and low-intensity effusive activity and irregular low-frequency bubble explosions were observed up to 04:15 GMT (third phase).

A.2 Examples of post-eruption descriptions

A.2.1 Montserrat, West Indies (17th September 1996)

On 17 September 1996 the Soufriere Hills Volcano started a period of dome collapse involving about 12 x 106 m3 (DRE) of andesitic lava. A peak plume height of 14-15 km was derived based
on the largest pumice clasts (from the model of Carey and Sparks 1986). The height estimate indicates a DRE discharge rate of magma of 4300 m3 s$^{-1}$ (based on Sparks et al. 1997). Wind speed averaged over plume rise was about 6-8 m s$^{-1}$. An approximate DRE volume of andesitic tephra of about 3.2 x 106 m3 was derived assuming a peak discharge rate of 4300 m3 s$^{-1}$ and an exponential decay of discharge rate with a decay constant of 12 ± 3 minutes. Magma water content was of 2.5-5%. Ejecta consists of moderate (density = 1160 kg m$^{-3}$) to poorly (density = 1300 to 2000 kg m$^{-3}$) vesicular juveniles, dense non-vesicular glassy clasts (density = 2600 kg m$^{-3}$), breccias cut by tuffisite veins and hydrothermally altered lithics (mean density = 2480 kg m$^{-3}$).

A maximum launch velocity of 180 m s$^{-1}$ is estimated for 1.2 m diameter dense blocks ejected to 2.1 km distance using projectile models (Fagents and Wilson, 1993; Bower and Woods, 1996).

Based on plume height and magma discharge rate, the explosive eruption can be classified as small-moderate to sub-Plinian based on plume height and MER according to Bonadonna and Costa (2013).

More details in Robertson et al. (1998)

A.2.2 Etna, Italy (12th January 2011 – paroxysmal phase)

Sustained fountains of potassic trachybasaltic magma occurred between 21:50 to 23:15 GMT on 12th January 2011 that were associated with a peak magma jet height of 800 m, a tephra plume height 9 km and the emplacement of a lava flow. A mass of erupted tephra of 1.5±0.4 x 108 kg was derived averaging values obtained from the method of Pyle (1989), Fierstein and Nathenson (1992), Bonadonna and Houghton (2005) and Bonadonna and Costa (2012) (without considering the cone fraction) and a MER of 2.5±0.7 x 104 kg s$^{-1}$ was obtained dividing the erupted mass by the duration of the paroxysmal phase (100 minutes). The total grain-size distribution peaked at -3 φ with a range between -5 and 5 φ was derived applying the Voronoi Tessellation of Bonadonna and Houghton (2005). Winds were blowing with almost constant direction from the NNE and intensity of 16, 15, 86, and 95 knots, at 3, 5, 7, and 9 km a.s.l.
It was classified as violent Strombolian based on Walker (1973) and small-moderate based on plume height and MER according to Bonadonna and Costa (2013).

More details in Calvari et al. (2011), Andronico et al. (2014) and Viccaro et al. (2015)

A.2.3 Vesuvius, Italy (Plinian phase of the AD 79 Pompeii eruption)

The fallout deposit associated with the AD 79 Pompeii eruption consists of two main units, compositionally zoned and south-easterly dispersed, intercalated with PDC deposits in proximal areas. Deposit density for both units is: 490 kg m\(^{-3}\) in proximal area (<20km, Mdphi<-2) and 1020 kg m\(^{-3}\) in distal area (>20km, Mdphi>-1). A polymodal cumulative total grain-size distribution was derived based on the integration of isomass maps of individual size categories and on the method of crystal concentration of Walker (1980). Mode values of individual grain-size populations are -2.8, -0.8 and 5 \(\phi\), respectively.

White pumice fallout: simple, massive, reversely graded, bearing accidental lithic fragments (mainly limestone and marbles) from the volcano basement, and cognate lithics (mainly lava) (wt% lithics averaged over the whole deposit=10.3). Magma composition= K-phonolite; 10-15 vol% phenocrysts; peak plume height= 26 km (based on the method of Carey and Sparks 1986); MER=8x10\(^{7}\) kg s\(^{-1}\) (derived from plume height applying the model of Sparks 1986); tephra volume=1.1 km\(^3\) (applying the method of Fierstein and Nathenson 1992); wind direction= N145; wind speed=28 m s\(^{-1}\) (based on the method of Carey and Sparks 1986); maximum measured thickness= 120 cm at 10 km from vent. Classified as Plinian based on the diagram of Walker (1973).

Grey pumice fallout: simple stratified pumice-rich deposit with four ash-bearing, plane to cross laminated, PDC beds interlayered (wt% lithics averaged over the whole deposit=11.8). Magma composition= K-tephritic phonolite; 16-20%vol phenocrysts; peak plume height= 32 km (based on the method of Carey and Sparks 1986); MER=1.5x10\(^{8}\) kg s\(^{-1}\) (derived from plume height applying the model of Sparks (1986)), tephra volume=1.8 km\(^3\) (applying the method of...
Fierstein and Nathenson 1992); wind direction= N145°; wind speed=31 m s⁻¹ (based on the method of Carey and Sparks 1986); max measured thickness= 160 cm at 10 km from vent. Classified as Plinian based on the diagram of Walker (1973).

References

Houghton BF, Carey RJ and Rosenberg MD (2014) The 1800a Taupo eruption: "Ill wind" blows the ultraplinian type event down to Plinian, Geology, G35400.1

Houghton BF, Swanson DA, Rausch J, Carey RJ, Fagents SA, and Orr TR (2013) Pushing the Volcanic Explosivity Index to its limit and beyond: Constraints from exceptionally weak explosive eruptions at Kilauea in 2008, Geology, GX34146.1

Lacroix (1908) La Montagne Pelee Apres Ses Eruptions, Kessinger Publishing, 146p

Mercalli (1907) I vulcani attivi della terra: morfologia - dinamismo - prodotti - distribuzione geografica – cause, Ulrico Hoepli, Milan, 421 p

McDonald (1972) Volcanoes, Prentice Hall PTR, 510p

Perret FA (1950) Volcanological observations, Carnegie Institution of Washington, Publication 549, Washington DC, 162 p

Rittmann (1944) Vulcani attività e genesi, Naples, Editrice Politecnica

Sonder (1937) Zur Theorie und Klassifikation der eruptiven vulkanischen Vorgänge, Geol. Rundschau, 27, 499-458

Williams H and McBirney AR (1979) Volcanology, Freeman, Cooper (San Francisco, CA), 397 p.

Yokoyama (1956) Energetics in active volcanoes. 1st Paper (Activity of volcano Mihara, Ooshima Island during the period 1953-54) Tokyo University Earthquake Research Institute Bulleting, 34, 185-196

Yokoyama (1957a) Energetics in active volcanoes. 2nd Paper Tokyo University Earthquake Research Institute Bulleting, 35, 75-97

Yokoyama (1957b) Energetics in active volcanoes. 3rd Paper Tokyo University Earthquake Research Institute Bulleting, 35, 99-107
Table captions

Table 1. Categories used to classify explosive volcanic eruptions as reported in main “general” classification schemes (the most used categories are highlighted in grey).

Mcdonald (1972) is adjusted from Mercalli (1907), Lacroix (1908) and Sapper (1927); Williams and Mc Birney (1979) is a simplification of Mercalli (1907), Sonder (1937), Rittmann (1962), Gèze (1964) and Walker (1973); Francis (1990*) indicates Francis et al. (1990).

Table 2. Main processes and parameters characterizing volcanic explosive eruptions

Table 3. Relevant parameters to be described in real-time analysis (observation/monitoring based) and to be possibly associated with uncertainty estimates.

Table 4. Relevant parameters to be described in post-eruption analysis (deposit based) and to be possibly associated with uncertainty estimates. Derived parameters are estimated based on dedicated models.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lava lake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basaltic flood</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaiian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strombolian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Violent Strombolian</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microplinian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strombolian paroxysm</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulcanian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Peléean</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subplinian</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plinian</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ultraplinian</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rhyolitic flood</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash emission</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultravulcanian</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas eruption</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fumarolic</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phreatic</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surtseyan</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Phreato-magmatic</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PhreatoPlinian</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Shallow submarine eruptions</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subglacial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Initial conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Magma reservoir size, shape and overpressure and evolution with time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Magma properties (e.g., composition, temperature, phenocryst content, dissolved volatiles, exsolved gas) and their evolution with time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Magma mixing and mingling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conduit magma dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Conduit width, length, shape, pressure and their evolution with time</td>
</tr>
<tr>
<td>5. Magma supply rate and relationships with magma reservoir dynamics</td>
</tr>
<tr>
<td>6. Magma decompression rate</td>
</tr>
<tr>
<td>7. Magma crystal content and crystallization kinetics</td>
</tr>
<tr>
<td>8. Magma outgassing (through the conduit walls or at the vent)</td>
</tr>
<tr>
<td>9. Porosity and permeability and their evolution with time</td>
</tr>
<tr>
<td>10. Dynamic changes in magma rheology (e.g., shearing, degassing, crystallization, viscous heating)</td>
</tr>
<tr>
<td>11. Fragmentation level, mechanisms and efficiency</td>
</tr>
<tr>
<td>12. Plug formation (shallow viscosity and pressure gradients)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eruptive processes and parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Crater/vent geometry and its evolution with time</td>
</tr>
<tr>
<td>14. Pressure, velocity, gas content, temperature and density of erupted mixture at vent and their evolution with time</td>
</tr>
<tr>
<td>15. Mass eruption rate and its evolution with time</td>
</tr>
<tr>
<td>16. Total grain size distribution and its evolution with time</td>
</tr>
<tr>
<td>17. Equilibrium or non-equilibrium between particles and gas (controls generation of shocks, thermal structure and time scale)</td>
</tr>
<tr>
<td>18. Plume height, temperature, density and collapse conditions</td>
</tr>
<tr>
<td>19. Partitioning of mass into plume, pyroclastic density currents and lava flows</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Atmospheric conditions (e.g., wind direction and speed, air entrainment, humidity, temperature, density)</td>
</tr>
<tr>
<td>21. Magma/water-ice interaction</td>
</tr>
<tr>
<td>22. Crustal stress/earthquakes</td>
</tr>
<tr>
<td>23. Thermo-mechanical interaction with country rock (including country rock entrainment and conduit wall collapse)</td>
</tr>
<tr>
<td>24. Caldera collapse timing, mechanism and extent</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Eruption onset and duration</td>
</tr>
<tr>
<td>Plume/jet height</td>
</tr>
<tr>
<td>Mass Eruption Rate (MER)</td>
</tr>
<tr>
<td>Erupted volume/mass</td>
</tr>
<tr>
<td>Exit velocity</td>
</tr>
<tr>
<td>Energy (seismic, infrasonic, thermal, potential/kinetic). energy flux and ratios between the different types of energy</td>
</tr>
<tr>
<td>Unsteadiness (number/frequency of pulses)</td>
</tr>
<tr>
<td>Relevant atmospheric parameters (e.g., wind, humidity, lightning)</td>
</tr>
<tr>
<td>Sedimentation rate</td>
</tr>
<tr>
<td>Gas flux and composition</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Erupted volume/mass of different volcanic products</td>
</tr>
<tr>
<td>Plume height</td>
</tr>
<tr>
<td>Mass Eruption Rate (MER)</td>
</tr>
<tr>
<td>Duration</td>
</tr>
<tr>
<td>Exit velocity</td>
</tr>
<tr>
<td>Total grain-size distribution</td>
</tr>
<tr>
<td>Thickness and maximum clast size distribution</td>
</tr>
<tr>
<td>Deposit density</td>
</tr>
<tr>
<td>Componentry</td>
</tr>
<tr>
<td>Shape, texture, cristallinity and density of juvenile clasts</td>
</tr>
<tr>
<td>Unsteadiness</td>
</tr>
<tr>
<td>Wind direction and speed</td>
</tr>
<tr>
<td>Magma composition</td>
</tr>
<tr>
<td>Magma rheology</td>
</tr>
</tbody>
</table>