Upgrading of heavy oil by dispersed biogenic magnetite catalysts

DOI: 10.1016/j.fuel.2016.08.015

Document Version
Accepted author manuscript

Citation for published version (APA):

Published in:
Fuel

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date:24. Feb. 2020
Upgrading of heavy oil by dispersed biogenic magnetite catalysts

Ashley R. Browna1, Abarasi Hartb, Victoria S. Cokera, Jonathan R. Lloyda* and Joseph Woodb*

aWilliamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom.

bSchool of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.

1 Present address: Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf, Switzerland. Email: ashley.brown@eawag.ch

* Corresponding authors: ashley.r.brown@manchester.ac.uk; jon.lloyd@manchester.ac.uk; j.wood@bham.ac.uk

Keywords

THAI, CAPRI, magnetite, palladium, catalyst, heavy oil

Abstract

In situ catalytic upgrading of heavy oil offers significant cost savings and overcomes logistical challenges associated with the high viscosity, low API gravity and high molecular weight fractions of unconventional hydrocarbon resources. The THAI-CAPRI process (toe-to-heel air injection – catalytic upgrading process in situ) offers one such route to upgrading through the use of high surface area transition metal cracking catalysts surrounding the production well. Here, we describe the catalytic upgrading of heavy oil in a stirred batch reactor by a
biogenic nanoscale magnetite (BnM; Fe₃O₄). A 97.8% decrease in viscosity relative to the feed oil was achieved and coking was lower compared to thermal cracking alone (6.9 wt% versus 10.2 wt%). The activity of this catalyst was further enhanced by a simple one-step addition of surface associated Pd to achieve loadings of 4.3, 7.1 and 9.5 wt% Pd. This led to significant decreases in viscosity of up to 99.4% for BnM loaded with 9.5 wt% Pd. An increment of 7.8° in API gravity with respect to the feed oil was achieved for 9.5 wt% Pd-BnM, compared with thermal cracking alone (5.3°). Whilst this level of upgrading was comparable to commercially available and previously tested catalysts, significant decreases in the coke content (3 wt% for 9.5 wt% Pd-BnM versus 10 wt% for thermal cracking) and associated increases in liquid content (~90 wt% for 9.5 wt% Pd-BnM versus ~79 wt% for thermal cracking) demonstrate the potential for the use of Pd-augmented biogenic magnetite as a catalyst in the THAI CAPRI process.

1. Introduction

Continuing depletion of global oil reserves has led to unconventional oil resources, such as oil sands, heavy oil and bitumen becomingly increasingly attractive for exploitation. However, heavy oil and bitumen have the disadvantage of high viscosity, low API (American Petroleum Institute) gravity and high molecular weight fractions. This presents a challenge, as the transportation of these materials is both costly and energetically expensive, with heating of the pipeline or solvent addition often required to improve flow rates [1]. Furthermore, conventional oil refineries require heavy oil and bitumen to be first upgraded to a light crude oil before being distilled [2]. Again, this carries associated costs and hence previous exploitation of these resources has been limited.
This demand for enhanced oil recovery (EOR) has led to the development of in situ upgrading technologies [3]. These present the key advantage that upgrading occurs down-hole, thus, enhancing both production and oil quality whilst precluding the need for a secondary surface upgrading facility. In addition, several environmental benefits are offered as unwanted contaminants or by-products are retained in the reservoir, including heavy metals, sulphur and carbon dioxide [4].

The THAI-CAPRI process (toe-to-heel air injection; catalytic upgrading process in situ) is one such technique that combines thermally enhanced oil recovery with in situ catalysis of the heavy oil being mobilised [5–7]. First, in situ combustion is advanced by the continuous injection of air through a vertical well (THAI), which allows the combustion front to be sustained. Second, the CAPRI add-on involves the addition of a catalyst to the horizontal production well, which promotes upgrading of the mobilised oil, e.g. via hydrocracking and hydrodesulfurization. However, challenges arise from the use of fixed bed catalysts due to severe deposition of coke, asphaltenes and metals leading to catalyst deactivation [8,9].

Alternatively, dispersed submicron and nano-particulate catalysts may circumvent this by presenting a larger surface area distributed throughout the site of combustion, and hence, overcoming diffusion limitations and pore plugging associated with fixed bed catalysts, which may obstruct production lines [10–12]. Previous work has shown that dispersed micrometer sized Co-Mo/Al₂O₃ showed superior upgrading compared to its millimetre sized pelleted counterpart [10]. Significant upgrading has also been described for dispersed nanoparticles hematite and several un-supported transition metal nanoparticles, namely MoS₂, NiO and Fe₂O₃ [11,13]. Although the extent of upgrading was modest compared to thermal cracking, these dispersed materials significantly suppressed coke formation, with
the remaining coke having a sponge-type character which may find use as an industrial fuel compared with typical coke materials generated from thermal cracking. These studies highlight the potential for the combination of dispersed nano-sized catalysts with the in situ upgrading offered by the CAPRI process, as an alternative to previously used pelleted hydroprocessing catalysts.

Noble metals, such as palladium and platinum also exhibit catalytic upgrading of oil through the promotion of hydrogenation and hydrogenolysis reactions which add hydrogen to the oil molecule (hydrocracking) [14–16]. Supported-Pd catalysts are particularly effective, as the surface area of the palladium is maximised by a nanoparticulate support structure. Typically, this has been done with carbon, silica, alumina and recently bacterial biomass [14,16,17]. Indeed, the use of bacteria in nanocatalyst production represents a more environmentally benign synthesis route.

Further work using bacteria has demonstrated the synthesis of magnetic iron oxide nanoparticles using Fe(III)-reducing bacteria such as Geobacter sulfurreducens [18,19]. Biogenic nanoscale magnetite (bionanomagnetite; BnM) has a large surface area, high chemical reactivity and exhibits effective reduction of a range of organics and metals, being notably more efficient at reducing Cr(VI) than a commercially available synthetic Fe₃O₄ [20,21]. Importantly, the particle size of this potential catalyst support can be manipulated during its microbial synthesis, permitting its optimization for novel uses during scalable production [22].

Furthermore, biogenic magnetite is very amenable to surface functionalization with other transition metals such as palladium, mediated by reactive surface Fe(II) and an organic layer facilitating reductive precipitation and attachment of Pd(0) [19]. Pd-biomagnetite is highly
reactive toward Cr(VI) and is efficient in hydrogenation of nitroaromatic hydrocarbons and halogenated solvents [21,23,24]. Additionally, when tested in a Heck reaction, coupling iodobenzene to ethyl acrylate or styrene, reaction rates using Pd-biomagnetite were superior or equal to an equimolar amount of commercially available colloidal Pd catalyst [19]. Although Pd is expensive to apply in an oil upgrading process, the cost could potentially be reduced by utilising metal recovered from secondary sources such as electronic waste, scrap catalytic converters or even low grade road dust, which contains traces of platinum group metals exhausted from automotive catalysts [25,26]. In addition, the use of magnetite as a support offers the potential for magnetic recovery and reuse of the catalyst; a major drawback for other precious metal catalyst supports [27].

In light of the previously reported catalytic properties of Pd-bionanomagnetite, and its amenability for optimization for a range of novel uses, this study aimed to assess the catalytic upgrading of oil by biogenic magnetite supported Pd. The upgrading properties of biogenic magnetite alone, as a potential non-functionalised nano-dispersed transition metal catalyst, were also examined. Extents of oil upgrading were assessed in terms of viscosity and API gravity, whilst true boiling point distributions and liquid, gas and coke mass distributions provided important information on oil yields and catalyst efficacy.

1. Material and Methods

2.1. Bionanomagnetite (BnM) catalyst preparations.

Biogenic magnetite was synthesised by the dissimilatory reduction of Fe(III) in a ferrihydrite suspension, by late-log phase cultures of Geobacter sulfurreducens as described previously [19,23,24,28,29].
First, ferrihydrite was synthesised by the rapid hydrolysis of a 0.6 M Fe(III) chloride solution via the dropwise addition of 1 M NaOH to pH 7, whilst stirring vigorously [30]. The resultant precipitate was washed six times by centrifugation at 5000g for 20 min, followed by removal of the supernatant and resuspension in 18 MΩ de-ionised water.

A culture of *G. sulfurreducens* was grown in a modified freshwater basal medium containing 20 mM acetate and 40 mM fumarate as electron donor and acceptor respectively [31]. Cultures were grown to late log-early stationary phase at 30°C under an 80:20 N₂-CO₂ atmosphere [31]. Cells were then harvested by centrifugation at 5000g for 20 min and washed three times in sterile 30 mM NaHCO₃ at pH 7.

For magnetite production, 1 L of autoclaved medium was prepared containing 20 mM acetate, 100 mM Fe (as ferrihydrite), 30 mM NaHCO₃ and 10 µM anthraquinone-2,6-disulfonate (AQDS) as an electron mediator. As before, the medium was sparged with an 80:20 N₂-CO₂ gas mix and adjusted to pH 7. A suspension of the harvested *G. sulfurreducens* culture was added to a final optical density (at 600 nm) of 0.6. The preparation was then incubated at 30 °C for two days in the dark, during which a black magnetic precipitate was produced. This precipitate was then magnetically separated and washed 3 times in 18 MΩ de-ionised water to remove bacterial cells. The production and purity of the magnetite was confirmed by powder X-ray diffraction (XRD) using a Bruker D8 Advance instrument with Cu Kα₁ radiation. Transmission electron microscopy (TEM) analysis was performed using a Philips microscope equipped with a 200 keV field emission gun and Gatan imaging filter (GIF200). Samples were prepared by suspending in ethanol prior to drop-casting onto holey carbon support films (Agar Scientific).

2.2. Functionalization of biogenic magnetite with palladium.
The surface of biogenic magnetite crystallites was functionalized with various wt% Pd loadings (% Pd by mass of BnM) according to methods described previously [19,23]. Precipitation of Pd onto magnetite was achieved via surface Fe(II)-mediated reductive precipitation from a N₂ sparged solution of Na₂Pd(II)Cl₄. Bottles containing the magnetite suspended in Pd(II)-containing solutions were agitated on rollers for 12 h in the dark. Excess ions were then removed by washing three times in 18 MΩ de-ionised water under an N₂ atmosphere. Suspensions were then re-suspended in acetone so that the suspensions would be miscible with the oil for reactor tests. Prior to testing, 1 mL aliquots were removed, centrifuged at 5000g for 5 min and the supernatant aliquots were analysed by ICP-AES to confirm the removal of Pd from solution. The remaining solid material was digested in 3 M HCl and again analysed by ICP-AES to determine the final Fe concentrations and Pd wt% loadings achieved.

2.3. Optimization of Pd loading and reactivity on BnM.

To optimize the wt% Pd loading and reactivity on magnetite surfaces, materials were produced as before but with the inclusion of H₂ sparging steps, followed by the addition of Fe(II) aqueous solutions in order to increase surface-sorbed Fe(II). These two steps aimed to provide excess electron donors for the enhanced reductive precipitation of Pd on to the magnetite surfaces. First, magnetite suspensions were dispersed by sonication in a water bath for 5 min and then sparged with H₂ for 1 min. A 1 mL solution of N₂ sparged 100 mM Fe(II)SO₄·7H₂O was then added to the suspensions, followed by sonication for 5 mins and sparging with H₂ for 1 min. An N₂ sparged solution of Na₂Pd(II)Cl₄ was added, providing sufficient Pd to achieve a loading of 20 wt% Pd. As before, bottles were agitated on rollers for 12 hours in the dark. Finally, the suspensions were washed three times in 18 MΩ de-
ionised water, and three times in acetone to suspend the Pd-BnM in an oil miscible solvent and to remove excess ions. Pd loadings were confirmed as described above.

2.4. Reactor tests.

The heavy oil used in this study was supplied by Petrobank Energy and Resources Ltd (now Touchstone Exploration Inc.), Canada. The initial API gravity and viscosity were 13.9° and 952 mPa·s. Prior to addition of the Pd-BnM preparations to the batch catalytic reactor, the suspensions were shaken, vortexed for 30 s, sonicated in a water bath for 5 min after which an aliquot was rapidly added to the reactor.

2.5. Reactor conditions.

Upgrading experiments were carried out in a 100 mL capacity stirred batch reactor (Baskerville, United Kingdom) using an experimental procedure described in detail previously [10,32]. The experimental conditions, chosen to match typical *in situ* combustion conditions for the THAI process, were as follows: 425 °C, 20 bar initial pressure (N₂), 500 rpm stirring speed, 15 g oil with a 1 mg g⁻¹ catalyst-to-oil ratio and a 30 min reaction time. The experiments were also carried out for thermal upgrading alone (without catalyst) and with addition of biomagnetite without palladium as control conditions.

2.6. Analysis of oil.

Before and after upgrading tests, an advanced rheometer AR 1000 (TA Instruments Ltd, United Kingdom) was used to measure oil viscosity, an Anton Paar DMA 35 density meter was used to determine the density and API gravity, and the True Boiling Point (TBP) distribution was obtained using an Agilent 6850N gas chromatograph (GC) in accordance with the ASTM D2887 standard test method. Macromolecules, such as resins and asphaltenes, cannot be accounted for in this method, since the calibration mix contained
only hydrocarbons from C_5 to C_{40}). A detailed description of these instruments and techniques can be found in [9,32,33].

The portion of the carbonaceous deposit after reaction that represented coke was determined using thermogravimetric analysis (TGA). The carbonaceous deposits left in the reactor, which are a composite of coke, residual oil, asphaltenes and catalyst nanoparticles, were collected and burnt off in a Thermogravimetric Analyser (NETZSCH-Geratebau GmbH, TG 209 F1 Iris®). The analysis was performed using a ramp temperature increase from 25 to 900 °C with an air flow rate of 50 mL min$^{-1}$. The amount of coke in the deposit was determined from the temperature-weight loss curve. Previous analyses under the same experimental conditions have established the temperatures at which residual oil (25 to 410 °C), resins and asphaltenes (410 to 620 °C) and coke (>620 °C) are burnt-off [32–34]. Upon heating, it is possible that the remaining catalyst may undergo modification, e.g. by oxidation of Pd(0) or oxidation of magnetite to hematite [35]. However, the catalyst/oil ratio of 0.001 used here means that any mass differences due to catalyst phase changes would result in only negligible effects on the recorded mass distributions of reaction products.

The non-condensable gas yields after the upgrading reaction was determined by subtracting the mass of the autoclave contents after reaction from the mass of heavy oil prior to reaction.

3. Results and Discussion

The microbial production of nano-scale magnetite was achieved via the respiratory reduction of Fe(III), present as a ferrihydrite “gel”, by anoxic washed cell suspensions of the
subsurface Fe(III)-reducing bacterium G. sulfurreducens. Complete conversion to magnetite occurred in less than 24 h. The biosynthesis of a pure magnetite product was confirmed by both TEM and powder XRD (Figure 1). TEM further confirmed that the morphology and particle size (15 to 30 nm) was very similar to that reported previously [19,20,23,29]. The surface area of biomagnetite, generated using the same production methods, has been reported previously by our laboratory as 17.1 m² g⁻¹ [29]. However, this figure should be regarded as an estimate due to particle aggregation that routinely arises during preparation and measurement using the BET N₂ adsorption method.

Previous studies have demonstrated that the surface of biogenic magnetite can be functionalised with Pd(0) via surface Fe(II)-mediated reductive precipitation from a N₂-sparged solution of Na₂Pd(II)Cl₄ [19,23]. Initially, two loadings of 4.3 and 7.1 wt% Pd were achieved by supplying magnetite with Pd(II) concentrations that should have been sufficient for 5 and 20 wt% Pd, respectively, if all the supplied Pd(II) was reduced. This suggests that 7.1 wt% Pd was the maximum Pd loading achievable via this first method. XRD confirmed that solid phase Pd was associated with the magnetite (Figure 2). Using the same synthesis methods as used here, Coker et al. (2010) report that for bionanomagnetite augmented with 5 mol.% Pd, particles of palladium (approx. 5 nm) were precipitated onto the larger magnetite structures (approx. 20 nm), as observed via TEM.

After further optimization, involving H₂ sparging steps followed by addition of aqueous Fe(II) to magnetite suspensions (described in detail above), a Pd loading of 9.5 wt% Pd was achieved. This increased loading is likely a result of the addition of these reductants, with both H₂ and Fe(II) enhancing the reductive precipitation of Pd onto magnetite surfaces.
Despite an excess of Pd(II) supplied, the final loading of 9.5 wt% Pd likely represents the upper limit of Pd-loading achievable using the protocols described here.

3.2. Catalytic upgrading of oil by palladised biogenic magnetite.

The yield balance between liquid (upgraded oil), gas and coke as well as the upgraded oil API gravity and viscosity relative to the feed oil after upgrading experiments are displayed in Table 1. It can be seen that the liquid and coke yields after upgrading are inversely correlated, as an increase in liquid yield correspond to a decrease in coke yield. Whilst thermal cracking produced the lowest yield of upgraded oil (78.8 wt%) and the highest coke yield (10.2 wt%), catalytic upgrading with bionanomagnetite (BnM) yielded 82.3 wt% upgraded oil and 6.9 wt% coke. Increasing the loadings of palladium (Pd) onto the BnM from 4.3 to 9.5 wt%, led to a corresponding increase in the upgraded oil yield from 82.3 to 89.6 wt%, and a decrease in coke from 6.9 to 3.0 wt%. A similar observation has been reported for thermal cracking relative to catalytic upgrading by Hart et al. [9] and Al-Marshed et al. [13]. It has been reported that thermal cracking proceeds by a free radical mechanism that promotes the precipitation of coke precursors, such as resins and asphaltenes. Consequently, polymerisation and condensation occurs, as the abstraction of hydrogen, methyl, ethyl and other material from deposited polyaromatic species to the gas phase occurs, resulting in significant coke formation. However, previous work has demonstrated that catalysts bearing various transition metals display reduced coke yields and corresponding increases in upgraded oil yields. As such, the addition of BnM augmented with Pd may also exhibit the ability to transfer hydrogen, methyl and other material from the gas into the oil phase [13]. This is consistent with the observation that thermal cracking
alone produced more gas (11 wt%) relative to upgrading by BnM (10.8 wt%) and BnM + 9.5 wt% Pd (7.4 wt%).

Table 1. Mass distributions of liquid, gas and coke, and API gravity and viscosity of oil before and after thermal cracking or reaction with BnM, with and without added Pd. Results for CoMo/Al₂O₃ [34] and NiMo/Al₂O₃ [36], as typical refinery catalysts are shown for comparison.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Liquid (wt%)</th>
<th>Gas (wt%)</th>
<th>Coke (wt%)</th>
<th>API gravity (°)</th>
<th>Viscosity (mPa·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed oil</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td>1031</td>
</tr>
<tr>
<td>Thermal cracking</td>
<td>78.8 ± 0.2</td>
<td>11.0 ± 0.3</td>
<td>10.2 ± 0.6</td>
<td>18.5 ± 0.5</td>
<td>28.3 ± 2.1</td>
</tr>
<tr>
<td>Co-Mo/Al₂O₃</td>
<td>80.8 ± 0.1</td>
<td>7.1 ± 0.5</td>
<td>12.2 ± 0.1</td>
<td>23.6 ± 0.2</td>
<td>4.4 ± 1.3</td>
</tr>
<tr>
<td>Ni-Mo/Al₂O₃</td>
<td>87.3 ± 0.5</td>
<td>7.7 ± 0.7</td>
<td>5.0 ± 0.8</td>
<td>24.9 ± 0.3</td>
<td>3.7 ± 0.6</td>
</tr>
<tr>
<td>BnM</td>
<td>82.3 ± 0.3</td>
<td>10.8 ± 0.2</td>
<td>6.9 ± 0.4</td>
<td>18.7 ± 0.3</td>
<td>22.6 ± 1.7</td>
</tr>
<tr>
<td>BnM + 4.3 wt% Pd</td>
<td>85.2 ± 0.2</td>
<td>8.9 ± 0.1</td>
<td>5.9 ± 0.3</td>
<td>20.6 ± 0.3</td>
<td>17.8 ± 1.1</td>
</tr>
<tr>
<td>BnM + 7.1 wt% Pd</td>
<td>83.7 ± 0.4</td>
<td>10.9 ± 0.6</td>
<td>5.4 ± 0.2</td>
<td>19.9 ± 0.4</td>
<td>15.6 ± 2.3</td>
</tr>
<tr>
<td>BnM + 9.5 wt% Pd</td>
<td>89.6 ± 0.7</td>
<td>7.4 ± 0.3</td>
<td>3.0 ± 0.4</td>
<td>21.0 ± 0.2</td>
<td>5.9 ± 0.8</td>
</tr>
</tbody>
</table>

The viscosity and API gravity of crude oil are properties that determine its value, refi ne-ability and ease of pipeline transportation. The API gravity of the upgraded oil improved from 13.2° (feedstock) to 18.5° (thermal cracking), 18.7° (BnM only) and 21.0° (BnM + 9.5
wt% Pd), a 159% increase in the case of the latter. Conversely, the viscosity of upgraded oil decreased significantly from 1031 mPa·s (feedstock) to 28.3 mPa·s (thermal cracking), 22.6 mPa·s (BnM only) and 5.9 mPa·s (BnM + 9.5 wt% Pd), a 99.4% decrease. This magnitude of viscosity reduction is capable of improving production and pipeline transportation owing to the level of fluidity experienced at lower viscosity [37]. Similar improvements in catalytically upgraded oil versus thermally cracked heavy oil using conventional, chemically synthesised catalysts has been reported by Hart et al. [9,32,33]. In the absence of a transition metal oxide catalyst, free radicals lead to adduct formation as a result of the addition reaction between two or more active hydrocarbon chains. This, in turn, leads to the formation of larger molecular weight hydrocarbons, which limits any increase in the API gravity or decreases in viscosity of the produced oil [37,38]. However, the presence of a transition metal oxide catalyst, such as BnM, likely promotes hydrogen-transfer reactions between hydrocarbons in the gas and liquid phases, which helps to cap free radicals once they are formed, thus moderating the adduct formation. The augmentation of BnM with surface associated Pd likely promotes further hydrogenation reactions, which produces significant improvements in API gravity and viscosity of the upgraded oil as the percentage loading of Pd on BnM increases from 4.3 to 9.5 wt%.

The extent of the improvement in API gravity and viscosity with increasing Pd loading may be limited due to the sulfur content of the heavy oil (3.52 wt%). It has been reported that sulfur and sulfur-containing species (e.g. H$_2$S, RSH, RSSR) may lead to poisoning of Pd-surfaces [39], which may have impeded the activity and performance of the particles. Indeed a similar effect was observed in the testing of palladized iron for the dechlorination of groundwater [40]. The experiments demonstrated that the dechlorination reaction occurred efficiently until the surface of the Pd/Fe became fouled. It was found that reduced
sulfur species could eventually lead to permanent poisoning of the palladium. Contrary to this, other studies have shown that sulfur may prolong the life of platinum group metal catalysts and even promote activity and enhance selectivity [39,41,42]. However this phenomenon is typically noted for sulfur concentrations on catalyst surfaces that are significantly lower than that reported for the bulk sulfur content of the heavy oil used in this study (e.g. <0.5 wt.%). Despite this, the authors of a previous study utilising the same native oil and reactor conditions as used here, assumed that although sulfur is present in potentially inhibitory concentrations, it may be present in non-available forms due to its association with other metals present in the native feed oil [34]. Although the extent of sulphur deactivation was not evaluated in this study, the data suggest that the Pd-BnM catalyst performed comparably with typically refinery catalysts (table 1).

The true boiling point (TBP) distribution curves obtained from simulated distillation (SIMDIS) of the feed oil and oils upgraded by thermal cracking and BnM are presented in Figure 3. The TBP curves show the cumulative volume distilled as a function of temperature. The shift of the TBP curves from reactor tests containing added catalyst to the left of the TBP curve of the feed oil indicate that the upgraded oil contains lighter hydrocarbon components compared to the feed oil.

A noticeable improvement in the amount of distillate obtainable can be observed between the temperature ranges of 230 to 430 °C, for all reactor tests relative to the feed oil. The TBP curves of the upgraded oils by thermal cracking and BnM only are approximately identical, which is in line with their similar API gravities and viscosities reported in Table 1. However, the addition of Pd to BnM produced a further increase in the amount of distillate fractions distilled between the boiling temperature range of 200 to 450 °C, with significant
increase recorded when the Pd loading of the BnM was increased to 9.5 wt% Pd. This observed increase in naphtha and middle distillate fractions upon the increasing addition of Pd to BnM can be attributed to the enhanced ability of Pd to facilitate hydrogenation reactions, compared with Fe. Hence, the synergistic effect of Fe plus Pd enhanced the conversion of high boiling hydrocarbon components into lighter hydrocarbon fractions, relative to that observed for BnM alone. These trends in TBP curves are in line with the API gravities and viscosities of the upgraded oils, relative to the feed oil, shown in Table 1.

3.3. Outlook and comparison with commercially available catalysts.

In summary, the experiments reported here have demonstrated that both biogenic magnetite augmented with Pd and biogenic magnetite alone are capable of significant catalytic upgrading of oil, as measured by increases in liquid yield, API gravity and corresponding decreases in viscosity. A reduction in coke content and an increase in lighter hydrocarbon fractions further demonstrate the potential for its use as a catalyst in the THAI CAPRI process.

Dispersed nanoparticulate magnetite offers increased oil contact through a large surface-area-to-volume ratio and decreased diffusion path lengths compared with using fixed-bed reactors [10,43]. Indeed, the use of biomagnetite as the catalyst support not only offers catalytic properties itself but also provides a large surface area over which the Pd is precipitated, facilitated by the large pool of surface associated Fe(II) that serves as the reductant. As Pd also promotes hydrogenation and hydrogenolysis reactions [14–16], Pd-augmented bionanomagnetite represents a bi-functional catalyst with increased activity and performance.
Indeed, previous studies have shown that commercially available Ni-Mo/Al₂O₃ and dispersed ultrafine Co-Mo/Al₂O₃ achieved a higher API gravity increase than the tested catalysts in this study under the same conditions as used here (23.6 and 22.5° respectively) [34,36]. However, lower coke contents and a higher liquid yield of 89.6 wt% using 9.5 wt% Pd-BnM were achieved in this study, compared with 87.3 and 80.8 wt% for Ni-Mo/Al₂O₃ and dispersed ultrafine Co-Mo/Al₂O₃, respectively. The coke content of 12.15 wt% for Co-Mo/Al₂O₃ was higher than achieved for all the tested materials reported here, and lower coking was achieved using 9.5 wt% Pd-BnM (3.0 wt%) than was reported for Ni-Mo/Al₂O₃ (5.0 wt %). As coke production reduces both the liquid yield and the lifetime of the catalyst [44], decreases in the coke levels achieved by Pd-BnM are a favourable result. However, it is not clear whether such gains in coke reduction are able to off-set the lower levels of API gravity and viscosity achieved.

Similar comparisons can be made with dispersed transition metal catalysts. Fe₂O₃, MoS₂, MoO₃, FeS and NiO have all shown slightly higher levels of upgrading in terms of API gravity (typically ~21°) [11,13]. However, viscosities were all significantly higher for these materials (typically 70 to 140 mPa-s; though this may be due to the slightly different reactor conditions used) and coke levels (>4.3wt% coke) were again, not as low as for 9.5 wt% Pd-BnM (3.0wt% coke).

Recent work has investigated upgrading using nanoparticulate Pd and Pt supported on bacterial cell scaffolds, under the same reactor conditions used here [34,36]. Using similar Pd loadings, the authors achieved very similar improvements in yields, coking and viscosity, supporting our finding that biotechnological approaches to catalyst synthesis can generate commercially competitive catalysts using “green” biosynthesis routes.
Whilst such improvements in oil upgrading by Pd-BnM, compared to those of commercial and other tested materials, may appear modest at the laboratory scale tested here, such incremental changes may lead to significant benefits in process economics at full scale. Recent work has demonstrated that biogenic magnetite production can be successfully scaled up from laboratory to pilot plant-scale whilst controlling its reactivity, magnetic properties and particle size, suggesting that its exploitation in commercial settings are achievable [45]. In addition, the production process may offer a more environmentally benign route to catalyst production than established chemical methods and thus, such environmental benefits may offset the cost of using expensive precious metals, such as palladium [27]. Indeed, recent work suggests that this cost may be further reduced by sourcing metals from electronic waste, scrap catalytic converters or road dust, which contains platinum group metals exhausted from automotive catalysts [25,26]. In this context, the competitive results reported here suggest that an economic cost analysis may be warranted.

Finally, our experiments have relied on the laboratory production of magnetite using a pure culture of a model Fe(III)-reducing bacterium. However, the natural occurrence of such species in sub-surface sediments, alongside native Fe(III)-bearing oxides, may represent the potential for the in situ generation of a catalyst. Future experiments will, therefore, focus on achieving the stimulation of such organisms in relevant geological formations and, thus, eliminating the need for delivery of a catalyst to the reaction front of the THAI process. Enhanced oil recovery by such means may further reduce financial overheads associated with the THAI-CAPRI process.
4. Acknowledgements.

Funding: This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC; grant number EP/J008303/1). The data from this study are available online via epapers.bham.ac.uk. The authors would like to thank Petrobank Energy and Resources Ltd. and Touchstone Exploration Inc., Canada for supplying the heavy oil used in these experiments. We also thank Prof. Lynne Macaskie, University of Birmingham, for advice and helpful discussions; Paul Lythgoe, Manchester Analytical Geochemistry Unit, for ICP-AES analyses; Dr. John Waters for XRD and Dr. Mike Ward, University of Leeds EPSRC Nanoscience and Nanotechnology Facility, for TEM.

5. References

[12] Hashemi R, Nassar NN, Pereira Almato P. Nanoparticle technology for heavy oil in-situ

Hart A, Omajali JB, Murray AJ, Macaskie LE, Greaves M, Wood J. Comparison of the
effects of dispersed noble metal (Pd) biomass supported catalysts with typical hydrogenation (Pd/C, Pd/Al2O3) and hydrotreatment catalysts (CoMo/Al2O3) for in-situ heavy oil upgrading with Toe-to-Heel Air Injection (THAI). Fuel 2016;180:367–76.

Fig. 1. Bright field TEM and powder XRD diffractogram of biogenic magnetite.

Fig. 2. XRD diffractogram of 9.5 wt. % Pd-coated biogenic magnetite.
Fig. 3. True boiling point distribution curves of feed and upgraded oils after thermal cracking and after reaction with Pd-coated biomagnetite (BnM).