Effect of oral eicosapentaenoic acid on epidermal Langerhans cell numbers and PGD$_2$ production in UVR-exposed human skin: a randomised controlled study

Suzanne M Pilkington1, Neil K Gibbs1, Patrick Costello1, Susan P Bennett3, Karen A Massey2, Peter S Friedmann4, Anna Nicolaou2, Lesley E Rhodes1,3

1Centre for Dermatology, Institute of Inflammation and Repair and 2School of Pharmacy, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK;
3Centre for Dermatology, Salford Royal Hospital, Manchester Academic Health Science Centre, Manchester, UK; and 4Faculty of Medicine, University of Southampton, Southampton, UK.

Correspondence: Prof Lesley Rhodes, Photobiology Unit, Centre for Dermatology, University of Manchester, Salford Royal Hospital, Manchester, UK.
Tel 00 44 161 206 1150; Email lesley.e.rhodes@manchester.ac.uk

Keywords: Photoimmunosuppression, dendritic cells, prostaglandin D$_2$, omega-3 fatty acids; systemic photoprotection

This study was registered at http://www.clinicaltrials.gov as NCT01032343.
Abstract

Langerhans cells (LC) are sentinels of skin’s immune system, their loss from epidermis contributing to UVR-suppression of cell mediated immunity (CMI). Omega-3 polyunsaturated fatty acids can show potential to abrogate UVR-suppression of CMI in mice and humans, potentially through modulation of LC migration. Our objectives were to examine if eicosapentaenoic acid (EPA) ingestion influences UV-mediated effects on epidermal LC numbers and levels of immunomodulatory mediators including prostaglandin (PG)D$_2$, which is expressed by LC.

In a double-blind randomised controlled study, healthy individuals took 5g EPA-rich (n=40) or control (n=33) lipid for 12-weeks; UVR exposed and unexposed skin samples were taken pre- and post-supplementation. Epidermal LC numbers were assessed by immunofluorescence for CD1a, and skin blister fluid PG and cytokines quantified by LC-MS/MS and Luminex assay, respectively. Pre-supplementation, UVR reduced mean (SEM) LC number/mm2 from 913 (28) to 322 (40) (p<0.001), and mean PGD$_2$ level by 37% from 8.1 (11.6) to 5.1 (5.6) pg/µl; (p<0.001), while IL-8 level increased (p<0.001). Despite confirmation of EPA bioavailability in red blood cells and skin in the active group, no between-group effect of EPA was found on UVR-modulation of LC numbers, PGD$_2$ or cytokine levels post-supplementation.

Thus no evidence was found for EPA abrogation of photoimmunosuppression through an impact on epidermal LC numbers. Intriguingly, UVR-exposure substantially reduced cutaneous PGD$_2$ levels in humans, starkly contrasting with reported effects of UVR on other skin PG. Lowered PGD$_2$ levels could reflect LC loss from the epidermis and/or altered dendritic cell activity, and may be relevant for phototherapy of skin disease.
Introduction

Ultraviolet radiation (UVR) suppresses cutaneous immunity (photoimmunosuppression) and this is believed to be an important contributor to the development of skin cancers [1]. In addition to the mutagenic effects of UVR on DNA which initiate carcinogenesis, inhibition of cell mediated immunity (CMI) can allow cancerous cells to escape destruction by cytotoxic lymphocytes, facilitating tumour progression. This has been elegantly demonstrated in mouse models where antigenic tumour cells were transplanted into UVR-exposed mice where they were able to progress [2]. Moreover, immunosuppressed patients have a higher incidence of skin malignancies [3].

Dendritic cells, including epidermal Langerhans cells (LC) and dermal dendritic cells (DC), are antigen presenting cells (APC) and are amongst the first line of defence in the skin where they facilitate innate and adaptive immunity and promote antigenic tolerance [4, 5]. The LC reside above the basal layer of the epidermis and monitor the skin microenvironment for danger signals including pathogens, chemicals and tumour peptides. On capturing antigenic material they travel along the afferent lymphatics to the skin-draining lymph nodes (DLN) and activate differentiation of naïve T cells (Th-0) into T helper (Th)-1, Th-2, Th17, Th22 or Treg cells [5]. Following UVR-exposure LC migrate away from the epidermis [6], and their behaviour is altered, favouring activation of Th-2 immune responses and Treg cells over Th-1 driven CMI [7-10]; these changes are believed to contribute to UVR-induced suppression of skin immunity [11]. This can be observed clinically by diminished skin contact hypersensitivity (CHS) and delayed type hypersensitivity responses to allergens following UVR-exposure [12].

The response of LC and other dendritic cells to antigen are strongly influenced by signals in the skin microenvironment. Cytokines TNF-α and IL-1β stimulate LC migration from the epidermis after exposure to antigen [13, 14], and both are upregulated in the skin in response to UVR-exposure. UVR also upregulates further cytokines possessing pro-inflammatory (including IL-8, IL-6 and IFN-γ) and immunosuppressive (including IL-4 and IL-
Moreover, prostaglandins (PG) produced in the skin are reported to regulate dendritic cell activity. PGE$_2$ can modulate LC migration and maturation in mice [17] and reduces the ability of bone marrow derived dendritic cells to stimulate a CMI responses following UVR-exposure [18], indicating a potential influence on antigen presenting activity during photoimmunosuppression. Interestingly, it has also been reported that human LC and dermal dendritic cells express hematopoietic PGD synthase (hPGDS) supporting these cells as a source of PGD$_2$ in the skin, alongside mast cells and keratinocytes [19]. A role for PGD$_2$ in photoimmunosuppression has not been explored but in murine skin and lung epithelia PGD$_2$ inhibits dendritic cell migration and stimulation of T cell responses [20, 21].

The omega-3 polyunsaturated fatty acid (n-3 PUFA) eicosapentaenoic acid (EPA) reduces UVR-suppression of CMI in vivo; in mice, both topical and systemic EPA-rich lipids reduced UVR-suppression of chemically induced CHS responses by up to 90% [22, 23]. Further, we recently observed in a randomised controlled trial (RCT) in humans that oral EPA supplementation showed potential to reduce UVR-suppression of nickel CHS [24]. While the mean group difference for the 3 solar simulated radiation (SSR) doses we employed showed no statistically significant protection by EPA, ~50% reduction of photoimmunosuppression was noted with UVR dosing equivalent to brief exposure to summer sunlight (post-hoc analysis p<0.05) [24]. EPA exhibits a range of activities that may contribute to protective profile, including transcriptional activation of cytokine genes and modulation of PG synthesis [25]. EPA competes with the n-6 PUFA arachidonic acid (AA) for metabolism by cyclooxygenase (COX) enzymes, and this can reduce the levels of AA-derived PG [26].

In a double-blind RCT in 79 females, the objective of the current study was to explore the impact of dietary EPA on epidermal LC numbers as a potential mechanism of abrogation of photoimmunosuppression, and to examine for influence on levels of immunomodulatory mediators. Cutaneous samples were taken from UVR-exposed and unexposed skin pre- and post- a 12-week course of supplementation, with immunofluorescence assessment of CD1a+ cells in epidermal sheets and quantification of PG and cytokines in blister fluid.
Materials and Methods

Participants

Seventy-nine healthy female volunteers were recruited from the contact dermatitis investigation unit at Salford Royal Hospital, Manchester, UK and by open advertisement between 2008 and 2010. Inclusion criteria: age 18-60 years, female, Fitzpatrick sun-reactive skin type I or II, allergic to nickel (required for the clinical phot-immunosuppression study, reported elsewhere [24]). Exclusion criteria: taking n-3 PUFA supplements or photoactive medication, pregnancy or breast feeding, sunbathing or sun bed use in the prior 3 months, history of photosensitivity, skin cancer or atopy. They did not have active contact dermatitis at the time of the study. Written informed consent was provided by all volunteers before study inclusion. Ethical approval was granted by North Manchester local research ethics committee (08/H1006/30) and the study was performed in accordance with the Declaration of Helsinki principles (revised Seoul 2008).

Study Design and Intervention

The double-blind randomised (1:1) controlled parallel-group study took place in the Photobiology Unit, Dermatology Centre, Salford Royal Hospital (Manchester, UK). Treatment allocation sequence was permuted block design (mixed blocks of 4 to 6) and produced by the study biostatistician using statistical software (v2.7.7; StatsDirect Ltd, Altrincham, UK). Encapsulated active and control lipid supplements, identical in appearance, were packaged and labeled according to the allocation sequence by GP solutions Ltd (Manchester, UK), and the code held by the study biostatistician until study completion. All volunteers and researchers were blinded and volunteers were assigned the intervention on study enrolment and concurrently randomised to have either suction blister fluid sampled for analysis of eicosanoids and cytokines or skin punch biopsies taken for assessment of epidermal LC. Skin sampling was performed on both unexposed and UVR-exposed skin. All volunteers provided blood samples pre- and post-supplementation and
compliance with supplementation was confirmed through measurement of red blood cell (RBC) EPA levels (reported in [24]). The parameters assessed here were secondary outcome measures in a larger clinical trial of oral EPA supplementation that primarily assessed impact on clinical photoimmunosuppression (nickel CHS; reported in [24]). Procedures in the different studies involved UVR-exposure to small skin areas only, at separate body sites and times, with the CHS study performed post-supplementation after completion of the current study. The n-3 PUFA supplements were 1g gelatine capsules containing Incromega E7010 SR ethyl ester (~70% EPA and 10% DHA; Croda Chemicals Leek Ltd, Staffordshire, UK). Control supplements comprised 1g gelatine capsules of identical appearance containing glycercyl tricoprylate coprate (GTCC; Croda Chemicals Leek Ltd), a medium chain triglyceride found in coconut oil, and previously used as control oil in human supplement studies [27-29]. Both supplements were taken 5 capsules daily with breakfast for 12 weeks.

UVR-exposure and Skin Sampling
All volunteers were exposed to broadband UVR (270-400nm, peak 310nm; 44% UVB, 56% UVA, 1% UVC; TL12, Philips GmbH, Hamburg, Germany or UV21, Waldmann Co., VS-Schwenningen, Germany). Lamp irradiance was monitored during each exposure using radiometers (Medical Physics Department, Dryburn Hospital and Waldmann IL730A, International Light, Newburyport, USA) traceable to the UK National Physical Laboratory. The individual’s minimal erythemal dose (MED) was determined on study enrolment. Pre and post-supplementation, upper buttock sites were exposed to 4x the individual’s MED. After 24h, skin suction blistering and skin punch biopsy were performed from UVR-exposed and unexposed sites (methods as described in [30]). The 4x MED dose was chosen to provide a sufficient challenge to produce quantifiable increases in cytokine and eicosanoid expression in human skin in vivo [31, 32].
Epidermal Langerhans Cell Counting

Skin punch biopsies (5mm) from unexposed and UVR-exposed sites were immediately placed in 0.02M ethylene diamine tetra acetic acid (EDTA) in phosphate-buffered saline (PBS). After 2h incubation at 37°C, epidermis was carefully peeled from dermis using forceps. Epidermal sheets were washed in PBS, fixed in ice-cold acetone (20 minutes) and re-washed in PBS, prior to incubation with mouse CD1a monoclonal primary antibody (clone NA1/34; IgG2a (Dako, Stockport, UK)) diluted to 10µg/ml in PBS (0.1 % bovine serum albumin (BSA; Sigma-Aldrich, MO, USA) and with fluorescein isothiocyanate (FITC) conjugated goat anti-mouse secondary antibody (Dako; 1/100 in PBS (0.1% BSA)), before mounting in Citifluor media (Citifluor, London, UK). LCs were counted using an Olympus BX50 fluorescence microscope fitted with an eyepiece graticule at 40x magnification. Fifty fields per graticule were counted for each epidermal sheet.

Suction Blister Fluid Prostaglandin Measurement

Lipidomic analysis by mass spectrometry was performed as described previously [33, 34]. In summary, blister fluid eicosanoids (50-200µl) were extracted in methanol-water (15% wt/wt) and internal standard PGB$_2$-d$_4$ (40ng) (Cayman Chemicals, Ann Arbor, MI, USA) was added. The extract was acidified to pH3.0 and applied to preconditioned solid-phase extraction (SPE) cartridge (C18-E 500 mg, 6 mL) (Phenomenex, Macclesfield, UK) and eluted with methyl formate. Chromatographic analysis was performed on a C18 column (Luna, 5µm, 2.0mm, Phenomenex, Macclesfield, UK) using HPLC (Alliance 2695, Waters, Elstree, Hertfordshire, UK) coupled to a triple quadrupole mass spectrometer with electrospray ionisation (ESI) (Quattro Ultima, Waters). Multiple reaction monitoring transitions were used to assay for the presence of PGD$_2$ (m/z 351 >271) and its metabolites PGJ$_2$, Δ12-PGJ$_2$ (m/z 333 >271) and 15-deoxy-Δ12,14 PGJ$_2$ (m/z 315 >271). Results are expressed as pg/µl of blister fluid, based on calibration lines constructed from commercially available standards (Cayman Chemicals).
Suction Blister Fluid Cytokine Measurement

A panel of cytokines (IL-8, IFN-γ, TNF-α, IL-1β, IL-4, IL-10, IL-23 and IL-17) was simultaneously quantified in suction blister fluid using the Bio-Plex™ cytokine array system (Bio-Rad Laboratories, Hercules, CA, USA) in accordance with manufacturer’s instructions, as described previously [35].

Statistical analysis

The study was powered to detect a difference in clinical photoimmunosuppression responses between EPA and control supplemented groups, as previously detailed [24]. Statistical analysis was performed in SPSS 20.0. Non-normally distributed data was transformed using natural log. ANCOVA analyses compared EPA and control groups post-supplementation with baseline (pre-supplementation) data as the covariate. Paired t-tests were performed to make within-group comparisons between unexposed and UVR-exposed skin. A p value of <0.05 was considered statistically significant.
Results

Volunteers and compliance

Seventy-nine volunteers were recruited and randomised to the oral intervention: 6 did not proceed to take supplements and discontinued the study for personal reasons; no data was collected from them. Of the 73 who took supplements, 33 were randomised to control and 40 to EPA; baseline characteristics are shown (Table 1). Baseline dietary intake assessed by food frequency questionnaire was below current UK recommendations of 450mg/day total long chain n-3 PUFA [36, 37]. The EPA supplement was bioavailable in both RBC and skin (p<0.001) as previously reported [30]. Three volunteers in the EPA group (all suction blister subgroup) who showed no increase in RBC EPA levels post-supplementation were excluded from analyses for poor compliance (Fig 1). One individual in the EPA group declined biopsies post-supplementation and data was excluded from analyses. Of the remaining 69 volunteers, 33 were in the control and 36 in the EPA group (Fig 1). No adverse effects were reported for either supplement.

Langerhans cells

To assess the effect of UVR exposure on epidermal LC density pre-supplementation, baseline data of the two supplement groups was combined. UVR challenge produced a reduction of ~65% in mean (SEM) LC number in the epidermis at 24 hours post-exposure, from 920 (28) to 318 (39) per mm2 (p<0.001) (Fig 2A). Following supplementation, the UVR-induced reduction in LC number was similar to baseline for both control (881 (46) to 218 (44) cells per mm2; p<0.001) and EPA group (856 (55) to 191 (26) cells per mm2; p<0.001), decreases of 75% and 78%, respectively (Fig 2A). There was no significant difference in epidermal LC numbers between control and EPA groups post-supplementation, in unexposed or UVR-exposed skin. Visualisation of LC in epidermal sheets revealed that following UVR the majority of LC lost their dendritic projections and appeared in a more rounded, migratory form. There was no apparent effect of EPA on LC morphology (Fig 2B) in unexposed or UVR-exposed skin.
Prostaglandin production

PGD₂ and its metabolites PGJ₂, Δ¹²-PGJ₂ and 15-deoxy-Δ^{12,14}-PGJ₂ were measured in skin blister fluid to explore impact of UVR and EPA; Δ¹²-PGJ₂ was detected but below the limit of quantitation and 15-deoxy-Δ^{12,14}-PGJ₂ was below limit of detection. At baseline, data from both supplement groups was combined to examine effect of UVR exposure.

PGD₂: At baseline, median (IQR) PGD₂ was decreased in UVR-exposed versus unexposed skin (from 8.1 (11.6) pg/µl to 5.1 (5.6) pg/µl; p<0.001) (Fig 3A). Post-supplementation, control group PGD₂ level was similarly decreased in UVR-exposed versus unexposed skin (from 8.6 (6.3) to 4.1 (4.7) pg/µl; p<0.01). In contrast in the EPA group post-supplementation, no statistically significant reduction in PGD₂ occurred post-UVR. Comparison of groups post-supplementation revealed that in unexposed skin PGD₂ was ~40% lower in the EPA-unexposed versus control group (5.2 (4.8) vs 8.6 (6.3) non-significant), while in UVR-exposed skin, levels were similar (4.0 (5.3) vs 4.1 (4.7) pg/µl in control group).

PGJ₂: At baseline, PGJ₂ was significantly increased in UVR-exposed versus unexposed skin (from 1.2 (1.3) to 2.1 (2.0); p<0.05) (Fig 3B). Post-supplementation small apparent increases in PGJ₂ were seen in UVR-exposed skin in control and EPA groups (non-significant). There were no significant differences in PGJ₂ levels between control and EPA groups post-supplementation.

Cytokine expression

Of the panel of cytokines assessed, IL-10, TNFα and IL-8 were quantifiable. Whilst IFN-γ was detected, levels were below the limit of quantitation, and IL-1β, IL-4, IL-17 and IL-23 were not detected. Due to low blister fluid volumes, five individuals (two in EPA group and three in control group) were excluded from cytokine analyses, resulting in n=16 for the
control and n=15 for the EPA group. IL-10 levels for two individuals in the control group were
out of range and excluded, resulting in n=14 in the control group. Baseline data for EPA and
control groups were combined to assess effect of UVR on cytokine levels pre-
supplementation.

IL-8: At baseline, median (IQR) IL-8 increased in UVR-exposed versus unexposed skin
(791.9 (798.9) vs 238.1 (314) pg/ml; p<0.001; Fig 3D). Similarly, post-supplementation, a
statistically significant UVR-induced rise in IL-8 was seen in the control group (from 162.3
(304.2) to 827.1 (443) pg/ml; p<0.001) and EPA group (from 244.5 (277.3) to 591.7 (970.9)
pg/ml; p<0.01). There was no significant difference in IL-8 concentration in unexposed or
UVR-exposed skin in control versus treatment groups post-supplementation.

IL-10: At baseline, median (IQR) IL-10 concentration apparently increased following UVR
exposure, but this was not statistically significant (82 (153) vs 68.3 (142) pg/ml; Fig 3E).
Similarly post-supplementation, there was an apparent increase in IL-10 concentration post-
UVR in the control (90.3 (142) vs 79.6 (98) pg/ml) and EPA groups (95.8 (148) vs 70 (115)
pg/ml). There was no significant difference in IL-10 concentration in unexposed or UVR-
exposed skin when comparing control and EPA groups post-supplementation.

TNFα: At baseline, median (IQR) TNFα concentration was not significantly altered in UVR-
exposed versus unexposed skin (67.2 (98.5) pg/ml vs 57.7 (101.8) pg/ml) at baseline (Fig
3F). Post-supplementation, there were apparent rises in TNFα in UVR-exposed versus
unexposed skin, in control (84.8 (107.2) vs 54.7 (139.7)) and EPA (88.1 (149.9) vs 36.6
(66.2)) groups (both non-significant). There was no significant difference in TNFα
concentration in unexposed or UVR-exposed skin when comparing control and EPA groups
post-supplementation.
In this study UVR exposure of human skin in vivo at baseline (pre-supplementation) significantly reduced epidermal LC density and altered the morphology of remaining LC, in association with a notable reduction in PGD$_2$. This significant UVR impact on PGD$_2$ production (Fig 3A) is in stark contrast to the well-described increase in skin PGE$_2$ and other eicosanoids examined following UVR-exposure to humans in vivo [30, 31], and this could have implications for health, including during sun-exposure and for the phototherapy of skin disorders. The subsequent investigation of the impact of 12 weeks EPA supplementation employed a robust study design and adequate sample size, and importantly, oral EPA compliance and skin bioavailability was demonstrated in these volunteers [24, 30]. No impact of EPA supplementation versus control was found on epidermal LC numbers, either in unexposed or UVR-exposed skin, and hence we found no evidence that EPA abrogates UVR-suppression of skin immunity through this mechanism in humans.

UVR induced loss of LC from the epidermis contributes to local UVR-induced immunosuppression of the skin, which is partially mediated through induction of T-reg [11]. Langerhans cell loss from the epidermis can be stimulated by a range of UVR doses, with LC cell density and size reduction occurring in a UVR-dose dependent manner [38, 39]. We observed a notable reduction in epidermal LC number of ~65% following a pro-inflammatory (4xMED) UVR exposure. This magnitude of response is in line with a previous report in human skin, where LC apoptosis in the epidermis was barely detectable after a very high (6xMED) UVR challenge, while migration was observed [6], supporting that the UVR-induced epidermal loss of LC observed in our study could be due to migration. The current study provides substantially the largest dataset to-date examining UVR-induced reduction in LC number in human epidermis. Consistent with previous observations [40, 41], notable inter-subject variation was seen in LC numbers under all treatment conditions.

While most skin blister fluid cytokines assessed in our study were below the assay detection limit, the chemokine IL-8 showed a large induction in response to UVR-exposure, in keeping with previous studies [16, 32]. TNF-α and IL-β are key cytokines involved in LC
mobilisation following exposure to UVR [13, 42], however, IL-1β was not detected and while TNF-α was present, no significant UVR-induced increase was found in blister fluid. A major source of UVR-induced TNF-α is purported to be basal keratinocytes [43], where UVR-induced nuclear DNA damage may stimulate its release [44]. The dermal neutrophil infiltrate, which is reported to peak from 14 hours post-UVR may also contribute to TNFα increase [45]. The immunosuppressive cytokine IL-10 inhibits dendritic cell IFN-γ production and initiation of CMI responses and induces tolerance [46-48]. In UVR-irradiated human skin, IL-10 is reported to be preferentially induced in infiltrating CD11b+ macrophages which peak in the dermis during the first 24 hours and in epidermis at 72 hours [49]; as blister fluid is primarily of epidermal origin [34] this might contribute to lack of significant IL-10 increase observed in this study. No effect of EPA on cytokine levels was observed. A 24 hour post-UVR time point was selected as the most appropriate for assessing cytokines and prostaglandins simultaneously [16, 31], however, other time points might reveal differences.

We previously reported the skin PGE₂ level in this group of individuals was augmented at 24 hours post UVR challenge [30]. PGE₂ stimulates IL-10 production in mouse and human model systems, favouring a Th2 response, Treg activation and immune-suppression [15, 50, 51]. In contrast to the 127% rise in PGE₂, we found skin PGD₂ levels in the same volunteers were significantly reduced by 37% after UVR-exposure (Fig 3C). PGD₂ is associated with allergic inflammatory disorders in the respiratory tract [52] and skin [53], including mast cell disorders [54] and atopic dermatitis [55, 56], and has potential relevance to the novel treatment of other conditions featuring raised cutaneous PGD₂, including hair-loss [57]. PGD₂ differentially regulates T cell responses via two receptors; the DP1 receptor mediates inhibition of Th1 functions, while the DP2 (CRTH2) receptor promotes Th2 activity [58]. In inflammatory skin disorders the contrasting effect of acute UVR exposure on PGD₂ and PGE₂ may contribute to the therapeutic effects of phototherapy. Increased levels of the PGD₂ dehydration product, PGJ₂, in UVR-exposed skin is also interestingly, as J ring
metabolites, in particular 15-deoxy-\(\Delta^{12,14}\)-PGJ\(_2\), reportedly exert anti-inflammatory effects [59]. Further assessment of these metabolites in cutaneous inflammation could be valuable.

In human skin, LC, mast cells and dermal dendritic cells are primary sources of PGD\(_2\) [19]. Post UVR-exposure of human skin, mast cell infiltration and degranulation occurs as early as 4 hours post-challenge, but by 24 hours mast cell numbers and activity have returned to normal [60], while epidermal LC are depleted. We propose that the UVR-reduction in cutaneous PGD\(_2\) could partially reflect loss of LC from the epidermis. This is supported by our observation of no UVR-induced PGD\(_2\) reduction in human primary keratinocytes and fibroblasts (unpublished data), or in the dermal fraction of human skin [61].

In mice ageing-associated increases in local PGD\(_2\) correlate with impaired migration of respiratory DC, and antagonism of the DP1 receptor restores migration [16]. Constitutive levels of PGD\(_2\) may provide an inhibitory signal to migration which can be downregulated by UVR. While we did not find an effect of EPA on PGD\(_2\) levels in UVR-exposed skin, an apparent fall in unexposed skin compared to control (Fig 3A) was consistent with \textit{in vitro} findings of EPA reduction of PGD\(_2\) production in niacin-stimulated human LC [62].

Our recently reported assessment of a clinical CHS end-point in the same volunteers suggested that 12 weeks oral EPA supplementation has the potential to reduce UVR-suppression of nickel CHS [24]. However, we have found EPA to have no impact on LC number in unexposed and UVR-exposed skin when compared to the control group, when using a high UVR-dose sufficient to produce a measurable increase in PG [30, 31] Thus, our study did not support the mediation of immune-protective effects of EPA by changes in the numbers of epidermal LC, although it is conceivable there may still have been changes in LC activity. EPA may potentially exhibit greater protection with UVR at lower doses or different spectra. This could be addressed in future studies, alongside examination of impact on other DC subsets as understanding of their significance in human skin immunity becomes better understood.

In conclusion, our double blind RCT did not find evidence for an impact of oral EPA on UVR-induced reduction of epidermal LC. The significant UVR-induced fall in PGD\(_2\) level...
may have an immunomodulatory effect of relevance to the phototherapy of skin disease, and warrants further investigation.

Acknowledgements
LER, NKG and PSF designed the study, SMP, PC, SPB and KAM performed the study and data analysis, AN contributed essential equipment and reagents, SMP and LER wrote the paper and PSF and AN critically revised the paper. We acknowledge the Association of International Cancer Research for funding this study. We thank Rebecca Dearman and Ian Kimber in the Faculty of Life Sciences at the University of Manchester for use of their Luminex analyser, Donald Allan for technical support, Croda Chemicals Ltd for freely supplying the active and control lipid supplements and GP solutions Ltd for packaging the supplements. We also thank all the volunteers who took part in the study.

Conflict of Interests
The authors have no conflicts of interest.
References

56. Iwasaki, M., K. Nagata, S. Takano, K. Takahashi, N. Ishii, Z. Ikezawa, Association of a
new-type prostaglandin D2 receptor CRTH2 with circulating T helper 2 cells in patients with

57. Nieves, A.L. A. Garza, Does Prostaglandin D(2) hold the cure to male pattern

59. Harris, S. G., J. Padilla, L. Koumas, D. Ray, R. P. Phipps, Prostaglandins as

60. Gilchrest, B. A., N. A. Soter, J. S. Stoff, M. C. Mihm, Jr., The human sunburn reaction:

61. Kendall, A. C., S. M. Pilkington, G. Sassano, L. E. Rhodes, A. Nicolaou, N-acyl

62. VanHorn, J., J. D. Altenburg, K. A. Harvey, Z. Xu, R. J. Kovacs, R. A. Siddiqui,
Attenuation of niacin-induced prostaglandin D(2) generation by omega-3 fatty acids in THP-1

63. Judson, B. L., A. Miyaki, V. D. Kekatpure et al., UV Radiation Inhibits 15-
Hydroxyprostaglandin Dehydrogenase Levels in Human Skin: Evidence of Transcriptional

64. Kalinski, P., J. H. Schuitemaker, C. M. Hilkens, M. L. Kapsenberg, Prostaglandin E2
induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-
12 are determined during the final dendritic cell maturation and are resistant to further
Table 1. Baseline characteristics of participants.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control</th>
<th>EPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs) (median (range))</td>
<td>45 (22-60)</td>
<td>43 (21-60)</td>
</tr>
<tr>
<td>BMI(^1) (Kg/m(^2)) (mean (SD))</td>
<td>25.9 (4.4)</td>
<td>27.8 (5.3)</td>
</tr>
<tr>
<td>Skin type(^2) (no./total (%))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2/33 (6)</td>
<td>6/40 (15)</td>
</tr>
<tr>
<td>II</td>
<td>31/33 (94)</td>
<td>34/40 (85)</td>
</tr>
<tr>
<td>HRT/OCP(^3) (no./total (%))</td>
<td>2/33 (6)</td>
<td>6/40 (15)</td>
</tr>
</tbody>
</table>

\(^1\) BMI data from n=31 in the EPA group and n=31 in the control group

\(^2\) Fitzpatrick skin type classification: I- always burns, never tans, II- usually burns, tans with difficulty

\(^3\) Hormone replacement therapy/ oral contraceptive pill
Figure legends

Fig 1. Flow diagram of study design and participants.

Fig 2. UVR induces LC loss from epidermis but EPA supplementation has no impact on epidermal LC numbers. (A) LC count (mean) per mm² of epidermis and (B) images of CD1a positive LC in epidermal sheets in unexposed (open circles) and UVR-exposed skin (closed circles) at baseline (n=30) and post-supplementation (control n=12, EPA n=18); ***p<0.001 (scale bar 50µm).

Fig 3. UVR reduces PGD₂ and increases IL-8 level in skin blister fluid. Concentration (median) of (A) PGD₂, and (B) its metabolite PGJ₂ in skin blister fluid taken from unexposed (open circles) and UVR-exposed (closed circles) skin at baseline (n=36) and post-supplementation (control n=19, EPA n=17); *p<0.05, **p<0.01. (C) % change in PGD₂ in UVR-exposed skin in comparison with UVR–induced % change in PGE₂ [24], in skin blister fluid at baseline (n=36). Concentration of (D) IL-8, (E) IL-10 and (F) TNF-α in skin blister fluid taken from unexposed (open circles) and UVR-exposed (closed circles) skin at baseline (n=31) and post-supplementation (control n=16 (IL-10 n=14), EPA n=15); *p<0.05, **p<0.01, ***p<0.001.
Fig 1.

EPA group (n=40)
- Skin biopsies n=20
- Suction blisters n=20

Control group (n=33)
- Skin biopsies n=14
- Suction blisters n=19

12 weeks supplementation with EPA or control lipid

All biological sampling repeated

Excluded for poor compliance n=3
- Damaged epidermal sheets n=1
- Skin biopsies declined; data excluded n=1
- Insufficient suction blister volume for cytokines n=2

Damaged epidermal sheets n=2
- Insufficient suction blister volume for cytokines n=3

LC counts n=18
- Cytokine analyses n=15
- Eicosanoid analyses n=17

LC counts n=12
- Cytokine analyses n=16
- Eicosanoid analyses n=19
Fig 2.

A

B

No UVR

Baseline

Post EPA

UVR
Fig 3.