Performance enhancement of AlGaN/AlN/GaN high electron mobility transistors by thermally evaporated SiO passivation

DOI:
10.1063/1.4962894

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Applied Physics Letters

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Performance enhancement of AlGaN/AlN/GaN high electron mobility transistors by thermally evaporated SiO passivation

Gengchang Zhu¹, Hanbin Wang¹, Yiming Wang¹, Xianjin Feng¹,a) and Aimin Song¹,2,b)

¹Center of Nanoelectronics and School of Microelectronics, Shandong University, Jinan 250100, China
²School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, United Kingdom

A surface passivation technique has been developed for AlGaN/AlN/GaN high electron mobility transistors (HEMTs) by simple thermal evaporation of silicon monoxide (SiO) at room temperature. Detailed device characteristics were studied and compared with the most commonly used SiNx passivation grown by plasma enhanced chemical vapor deposition at elevated temperatures. Both passivation techniques lead to similar enhancement in on-state drain current and transconductance as compared with the unpassivated HEMTs. However, we discovered that the gate leakage current in SiO passivated devices was more than two orders of magnitude lower than the devices passivated by SiNx. Furthermore, while SiNx passivated HEMTs exhibited a two orders of magnitude increase in off-state drain current, SiO passivation substantially reduced it, resulting in an overall improvement by a factor of 1429. The extent of device surface damage caused by passivation was also investigated by characterizing other parameters. The subthreshold slope of SiO passivated HEMTs was 95 mV·dec⁻¹, nearly 5 times better than SiNx passivated devices. The extracted interface trap density was 1.16×10¹² cm⁻²·eV⁻¹, about ten times lower than that in SiNx passivated HEMTs. Moreover, SiO passivation was found to enhance the gate Schottky barrier height by 60 meV whereas SiNx passivation reduced it, which could partially explain the differences in gate leakage current. Finally, SiO passivation enabled twice high breakdown voltage than SiNx passivation. The relevant physical mechanisms were discussed.
ALGaN/GaN high electron mobility transistors (HEMTs) have great advantages in high power density, high frequency, and high voltage applications1-3. However, there are still some performance issues in GaN-based HEMTs, one of which is the well-known current collapse4, which refers to a significant reduction in the drain current when measured under large amplitude high-frequency gate swings. This phenomenon can be described by the concept of “virtual gate”5. Surface passivation is usually applied to suppress drain current collapse by reducing surface state densities6. In recent years, the passivation effects of different dielectrics like SiN\textsubscript{x}7,8, SiO\textsubscript{2}7,9, SiON7, Al\textsubscript{2}O\textsubscript{3}10, Sc\textsubscript{2}O\textsubscript{3}11, AlN12, and MgCaO13 deposited by plasma enhanced chemical vapor deposition (PECVD), sputtering, electron-beam evaporation, atomic layer deposition (ALD) etc. have been studied. Sputtering has been found to commonly induce surface damage due to the high sputtering power14. The process of electron-beam evaporation is complex and expensive. Despite ALD yields good quality materials, the slow growth rate prevents it from being widely used in preparation of passivation layers. So far, SiN\textsubscript{x} grown by PECVD is the most commonly used passivation technique for GaN-based HEMTs. It is typically deposited at temperatures of approximately 300 °C before or after the formation of gate in the HEMT fabrication process. Since the active layer is very thin, any plasma damage or shallow ion implantation may affect the electrical characteristics of GaN HEMTs.

Despite that drain current collapse can be mitigated to a certain extent, published data on GaN-based HEMTs performance after passivation show many controversial results. For example, an increase15 as well as a decrease7 of gate leakage current (I_g) after SiN\textsubscript{x} passivation was reported. High gate leakage current is the other major limiting factor in GaN-based HEMTs applications. Reducing gate leakage is very important for GaN-based HEMTs in noise sensitive applications, and closely related to the off-state breakdown voltage (V_b) of high power and high voltage HEMT devices16, both of which were considered to be sensitive to the method of surface preparation17. Compared with PECVD and other techniques, thermal evaporation has many advantages such as no ion damage14, 16, 18, 19, technical simplicity, and low cost. SiO has a higher dielectric constant K (5.0) and a similar breakdown field strength E_b (10 MV/cm) as compared with SiO\textsubscript{2} ($K = 3.9$, $E_b = 10$ MV/cm), which makes it an attractive material in the semiconductor fabrication. Thermally evaporated
SiO has been used in In-Ga-Zn-O thin-film transistors (IGZO TFTs), organic light-emitting diode (OLED), graphene optical devices etc. However, to date very little work has been carried out on the study of surface passivation of GaN-based HEMTs with thermally evaporated SiO. In particular, the impact of thermally evaporated SiO on the breakdown and RF characteristics of GaN-based HEMTs has not been reported yet.

In this letter, we have investigated the influence of thermally evaporated SiO on the performance of AlGaN/AlN/GaN HEMTs and compared with SiNx deposited by PECVD. The room-temperature Hall effect measurements, DC characteristics and RF performance of the HEMT devices with and without passivation are analyzed in detail. Apart from the expected improved drain current and transconductance, our SiO passivation has resulted in a one order of magnitude decrease in both \(I_g \) and \(I_{on} \), demonstrating that thermally grown SiO is a very promising passivation material for GaN-based HEMTs.

The AlGaN/AlN/GaN heterostructure was grown on 2-inch-diameter 6H-SiC using metal-organic chemical vapor deposition (MOCVD). The epi-layers consisted of a 100 nm AlN nucleation layer, a 1.8 \(\mu \)m semi-insulating GaN layer, a 1 nm AlN interlayer and a 25 nm unintentionally doped AlGaN layer with Al content of 22%. Hall effect measurements at room temperature revealed a sheet carrier density \(n_s \) of \(1.05 \times 10^{13} \) cm\(^{-2} \), a sheet resistance of 298 \(\Omega \)/Sq and a carrier mobility \(\mu_n \) of 1810 cm\(^2\)·V\(^{-1}\)·s\(^{-1} \). The device fabrication process started with inductively coupled plasma reactive ion etching (ICP-RIE) for device isolation using BCl3/Cl2 gas mixture. Then, Ti/Al/Ni/Au (30/150/50/60 nm) source and drain ohmic contacts were defined by conventional lithography and electron-beam evaporation, and subsequently alloyed using rapid thermal annealing (RTA) at 900 °C for 50 s in the nitrogen ambient. The measured ohmic contact resistivity \(\rho_c \) was \(3.0 \times 10^{-6} \) \(\Omega \)·cm\(^2\) using the transmission-line method (TLM) at room temperature. The Ni/Au (50/60 nm) Schottky gate was also achieved by conventional lithography and e-beam evaporation. And then, a 100-nm-thick SiO passivation layer was deposited on the surface of HEMTs by conventional lithography, thermal evaporation and subsequent lift-off processes. As a comparison, a 100-nm-thick SiNx passivation layer was deposited on the same sample by PECVD at 300 °C. Openings of contact pads were made by ICP etching to enable on-wafer measurements. The schematic cross-section of our device is shown in Fig. 1(a). The dimensions of the devices
used in this study are as follows: $L_g/L_{ad}/L_{gd}/W_g = 2/13/6/100$ μm. The DC characteristics of the HEMTs were measured using a Keysight (Agilent) B2902A Precision Source/Measure Unit at room temperature. RF characteristics of the devices were examined by S-parameter measurements using a Keysight (Agilent) N5247A PNA Vector Network Analyzer at room temperature.

TABLE I. Summary of measurement results.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unpassivated</th>
<th>SiO</th>
<th>SiNx</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_s (10^{13}\text{cm}^{-2})</td>
<td>1.05</td>
<td>1.25</td>
<td>1.32</td>
</tr>
<tr>
<td>μ_n (\text{cm}^2\text{V}^{-1}\text{s}^{-1})</td>
<td>1810</td>
<td>1760</td>
<td>1690</td>
</tr>
<tr>
<td>I_{Dmax} (\text{mA} \cdot \text{mm}^{-1})</td>
<td>309</td>
<td>369</td>
<td>385</td>
</tr>
<tr>
<td>g_m (\text{mS} \cdot \text{mm}^{-1}) @ $V_{DS} = 10$ V</td>
<td>116</td>
<td>137</td>
<td>144</td>
</tr>
<tr>
<td>I_{off} (\text{mA} \cdot \text{mm}^{-1}) @ $V_{GS} = -5$ V</td>
<td>2.0×10^{-3}</td>
<td>2.1×10^{-4}</td>
<td>3.0×10^{-1}</td>
</tr>
<tr>
<td>$I_{\text{on}}/I_{\text{off}}$</td>
<td>1.5×10^5</td>
<td>1.8×10^6</td>
<td>1.3×10^3</td>
</tr>
<tr>
<td>SS (\text{mV} \cdot \text{dec}^{-1})</td>
<td>181</td>
<td>95</td>
<td>447</td>
</tr>
<tr>
<td>D_{it} (10^{12}\text{cm}^{-2} \cdot \text{eV}^{-1})</td>
<td>3.76</td>
<td>1.16</td>
<td>11.30</td>
</tr>
<tr>
<td>I_g (\text{mA} \cdot \text{mm}^{-1}) @ $V_{GS} = -5$ V</td>
<td>3.3×10^{-3}</td>
<td>3.3×10^{-4}</td>
<td>4.1×10^{-2}</td>
</tr>
<tr>
<td>n</td>
<td>1.77</td>
<td>1.75</td>
<td>1.83</td>
</tr>
<tr>
<td>Φ_B (\text{eV})</td>
<td>0.79</td>
<td>0.85</td>
<td>0.73</td>
</tr>
<tr>
<td>V_b (\text{V}) @ $V_{GS} = -5$ V</td>
<td>175</td>
<td>206</td>
<td>111</td>
</tr>
<tr>
<td>f_t (\text{GHz}) @ $V_{DS} = 10$ V, $V_{GS} = 0$ V</td>
<td>4.0</td>
<td>5.2</td>
<td>5.8</td>
</tr>
</tbody>
</table>

The n_s and μ_n measured before and after passivation at room temperature are shown in Table I, which summarizes the main measurement results of our study. The n_s of the unpassivated sample is 1.05×10^{13} cm$^{-2}$, which increases to 1.25×10^{13} and 1.32×10^{13} cm$^{-2}$ after passivated with SiO and SiN$_x$, respectively. This indicates that the electron trapping by the surface states at the device surface has been alleviated by passivation. On the other hand, the electron mobility decreases from 1810 to 1760 and 1690 cm2·V$^{-1}$·s$^{-1}$ after passivated with SiO and SiN$_x$, respectively, possibly due to the enhanced Coulomb scattering in the 2-DEG channel with a higher electron sheet concentration. As a whole, a larger product of $n_s \cdot \mu_n$ in the conducting channel for passivated HEMTs relative to the unpassivated HEMTs has been obtained, indicating better electron conduction characteristics for the passivated HEMTs.
Fig. 1. (a) Schematic cross-section of AlGaN/AlN/GaN HEMTs. (b) Output and (c) transfer characteristics of unpassivated, SiO passivated and SiN_x passivated AlGaN/AlN/GaN HEMTs.

The typical output and transfer characteristics of the unpassivated, SiO passivated and SiN_x passivated AlGaN/AlN/GaN HEMTs are displayed in Fig. 1(b) and (c), respectively. The drain current versus drain voltage (I_{DS}-V_{DS}) characteristics were measured with the gate bias (V_{GS}) ranged from +1 V to -4 V ($\Delta V_{GS} = 1$ V). Increases in the maximum drain current (I_{Dmax}) and transconductance (g_m) of 19% and 18% for SiO, and 25% and 24% for SiN_x passivated HEMTs, respectively, are obtained when compared with the unpassivated HEMTs (see Table I). The I_{Dmax} of the devices without passivation is 309 mA·mm⁻¹ and increases to 369 and 385 mA·mm⁻¹ after passivated with SiO and SiN_x, respectively, as shown in Fig. 1(b), which corresponds well to the larger product of $n_s \mu_n$ in the 2-DEG channel of the passivated HEMTs as indicated by Hall data. Similarly, the g_m (at $V_{DS} = 10$ V) of the unpassivated devices increases from 116 mS·mm⁻¹ to 137 and 144 mS·mm⁻¹ after passivated with SiO and SiN_x, respectively, as shown in Fig. 1(c), which clearly demonstrates that a
better gate control has been resulted from passivation of the surface states. In addition, the threshold voltage (V_{th}) of the HEMTs decreases in the sequence of unpassivated, SiO and SiNx passivated devices, which corresponds to the different carrier concentrations in the 2-DEG channel as a result of surface passivation, as shown from Hall data. Due to the reduction of surface traps, increases in $I_{D_{max}}$ and g_{m} of GaN-based HEMTs after surface passivation have also been reported by many others $^{7, 22, 23}$.

![Fig. 2. (a) Subthreshold drain current and (b) gate leakage current characteristics of unpassivated, SiO passivated and SiNx passivated AlGaN/AlN/GaN HEMTs.](image)

Fig. 2. (a) Subthreshold drain current and (b) gate leakage current characteristics of unpassivated, SiO passivated and SiNx passivated AlGaN/AlN/GaN HEMTs.

Though the same trend in $I_{D_{max}}$ and g_{m} is observed after passivation with SiO and SiNx, the subthreshold and Schottky characteristics are quite different for the two passivations. Fig. 2(a) shows the subthreshold drain current characteristics of the unpassivated, SiO passivated and SiNx passivated AlGaN/AlN/GaN HEMTs (at $V_{DS} = 10$ V). The I_{off} increases by almost two orders of magnitude after SiNx passivation but decreases by one order of magnitude after SiO passivation (see Table I). The different values of I_{off} of the HEMTs may be caused by different activation energies of the electron hopping conduction at the device surface 24. Due to the slight change of I_{on} caused by passivation, the highest I_{on}/I_{off} ratio of 1.8×10^6 is obtained for the SiO passivated HEMTs. The subthreshold slope (SS) and interface trap density (D_{it}) calculated from SS at 300 K are shown in the inset of Fig. 2(a). The SS of the devices without passivation is 181 mV·dec$^{-1}$, which decreases to 95mV·dec$^{-1}$ and increases to 447 mV·dec$^{-1}$ after passivated with SiO and SiNx, respectively. The change of SS is associated with the interface traps and can be expressed in terms of the barrier capacitance C_b and the interface trap density D_{it} as
where k is the Boltzmann constant, T is the temperature in Kelvin, and q is the electronic charge. An obvious decrease from 3.76×10^{12} to 1.16×10^{12} cm$^{-2}$·eV$^{-1}$ for D_{it} is obtained after SiO passivation, while the D_{it} of SiN$_x$ passivated HEMTs increases to 1.13×10^{13} cm$^{-2}$·eV$^{-1}$. The increased density of interface taps for SiN$_x$ passivated HEMTs is probably caused by the ion bombardment during the PECVD process, which can be avoided by applying the thermally evaporated SiO. Better subthreshold behavior is clearly shown for the SiO passivated devices.

The gate leakage current (I_g) characteristics of the passivated and unpassivated AlGaN/AlN/GaN HEMTs are plotted in Fig. 2(b). During the measurements of gate leakage current, the source was shorted to the drain. Similar with I_{off}, compared to the unpassivated HEMTs, an increase of about one order of magnitude in the I_g is observed after SiN$_x$ passivation. In contrast, the I_g decreases by an order of magnitude for SiO passivated HEMTs (Table I). From the forward gate leakage current characteristics, the Schottky barrier height (Φ_B) and ideality factor (n) are extracted using the standard thermionic emission (TE) theory for electron transport from a metal-semiconductor. The Φ_B and n are $0.79/0.85/0.73$ eV and $1.77/1.75/1.83$ for unpassivated, SiO passivated and SiN$_x$ passivated HEMTs, respectively. An increase in barrier height can lead to a reduction of gate leakage. It should be pointed out that the n of HEMTs with or without passivation is not close to 1, which means that it is not the ideal TE current. Another leakage current mechanism such as trap-assisted tunneling (TAT) may also be taken into account25. The leakage current caused by TAT is associated with the trap density and the trap energy. Reduction in trap density can lead to gate leakage current reduction. It has been demonstrated that the surface related traps with activation energy of 0.21 eV are accounting for the gate leakage current mechanism of the GaN HEMTs17, which can be influenced by the different passivation processes. The ion damage of semiconductors caused by PECVD is much more severe than that caused by thermal evaporation14,16, which may lead to different densities and activation energies of the gate leakage related surface traps. The low I_g of SiO passivated HEMTs would probably result in a high breakdown voltage and low RF noise.
Fig. 3. Off-state ($V_{GS} = -5\, \text{V}$) breakdown characteristics of unpassivated, SiO passivated and SiN$_x$ passivated AlGaN/AlN/GaN HEMTs.

The influence of SiO and SiN$_x$ passivations on the off-state breakdown voltage (V_b) of the devices was also investigated. Fig. 3 plots the off-state breakdown characteristics of SiO, SiN$_x$ passivated, and unpassivated AlGaN/AlN/GaN HEMTs, which were measured at $V_{GS}= -5\, \text{V}$ to fully turn off the conducting channel. In order not to destroy the devices, the compliance drain current was set to $10^{-4}\, \text{A}$. The HEMTs with SiO passivation exhibit a higher V_b (206 V) when compared with the unpassivated (175 V) and SiN$_x$ passivated (111 V) HEMTs (see Table I). The higher V_b for SiO passivated HEMTs is in agreement with the lower I_g and I_{off} values.

Fig. 4. Current-gain cut off frequency (f_T) of unpassivated, SiO passivated and SiN$_x$ passivated AlGaN/AlN/GaN HEMTs.

In addition to the DC characteristics, the current-gain cut off frequency (f_T) of the HEMTs with and without passivation were also studied and measured at $V_{DS}= 10\, \text{V}$ and $V_{GS}= 0\, \text{V}$, as shown in Fig. 4. Significant increases of f_T value from 4.0 GHz to 5.2 and 5.8 GHz are
observed after passivated with SiO and SiNx, respectively (see Table I). This is the only study available on the effect of SiO passivation on RF characteristics of GaN-based HEMTs until now. On the other hand, previous reports on the effect of SiNx passivation on RF characteristics of GaN-based HEMTs are controversial. An increase as well as a decrease of \(f_T \) were both observed after SiNx passivation\(^{23,26} \). Since \(f_T \) can be expressed by

\[
f_T = \frac{g_m}{2\pi(C_{GD} + C_{GS})},
\]

(2)

where \(C_{GD} \) is the parasitic gate-drain capacitance, and \(C_{GS} \) is the parasitic gate-source capacitance. Increase of \(f_T \) for SiO passivated and SiNx passivated HEMTs is attributed to the increased \(g_m \) and decreased overall capacitance of \(C_{GD} \) and \(C_{GS} \). These results are associated with the different passivation materials and deposition methods.

In conclusion, we have investigated the surface passivation effects of the thermally evaporated SiO on the performance of AlGaN/AlN/GaN HEMTs and compared with the PECVD grown SiNx. Obvious increases in \(I_{D\max} \) and \(g_m \) were observed for both the SiO and SiNx passivated HEMTs when compared with unpassivated HEMTs. However, the SiO passivated devices showed better subthreshold and Schottky characteristics as well as higher \(V_b \). The SiO passivation was found to decrease the \(I_g \) by two orders of magnitude and decrease the \(I_{off} \) by a factor of 1429, when compared with SiNx passivated HEMTs. Furthermore, the HEMTs passivated with SiO exhibited three orders of magnitude higher \(I_{on}/I_{off} \) ratio (1.8×10^6), five times better \(SS \) (95 mV·dec^-1), ten times lower \(D_{it} \) (1.16×10^{12} cm^{-2}·eV^{-1}) than SiNx passivated devices. Moreover, SiO passivation enhanced the gate Schottky barrier height by 60 meV while SiNx passivation reduced it, which could partially explain the differences in gate leakage current. Besides, SiO passivation enabled twice-high breakdown voltage (206 V) than SiNx passivation (111 V). Because of the good passivation effectiveness, no ion damage, simple preparation technology and low cost, the thermally evaporated SiO is a promising candidate as a surface passivation for GaN-based HEMTs, especially for the high power and noise sensitive applications.

This work was supported by the CAEP THz Science and Technology Foundation under Grant No. CAEPTHZ201409 and the Developing Foundation of CAEP (key project) under Grant No. 2014A05011.
References:

$V_{DS} = 10 \text{ V}$
$V_{DS} = 10 \text{ V}$

$V_{GS} = 0 \text{ V}$

Unpassivated

SiO

SiNx

$|h_{21}|^2$ (dB)

Frequency (GHz)