Influencing Absorption and Desorption of Ions in Human Hair

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Changing the Absorption and Desorption Properties of Human Hair by Ion-Induced Matrix Modification

Erik Schulze zur Wiesche (Henkel)
Rene Krohn (Henkel)
Stefanie Freye (University Manchester)
Franz Josef Wortmann (University Manchester)
Content

• Keratin composition of hair
• Chemical oxidation of hair
• Effects of pH adjustments on the hair matrix
• Modification of absorption and desorption properties of hair
• Conclusions
Morphological Structure of Human Hair

- Semi-crystalline intermediate filaments (IFs) are embedded in an amorphous matrix
Morphological Structure of Human Hair

“Simplified Models”

Two-phase model (2PM)
Feughelman 1959

C: crystalline filaments
M: amorphous matrix

Three-phase model (3PM)
Popescu 2012

Amorphous Matrix (IFAP)
Crystalline Rod (IF) (Side chains)

- 2PM: IFs and amorphous matrix are mainly responsible for the hair strength
- 3PM: The interface contributes significantly to the fiber stability
Composite structure of Human Hair

Fiber reinforced composite

- Semi crystalline IFs are embedded in the amorphous protein matrix

SEM of transverse section of sheeps wool: IFs (approx. 8 nm diameter) by Parry 1997
Composite Structure of Human Hair

Matrix

- KAP – keratin associated proteins with high content of cystine
- Matrix stabilizes the embedded semi crystalline IFs
- Formation of cysteic acid due to chemical treatments
- Penetrable by water and the swelling component in hair
- Area for oxidative dye reactions
Bleaching Stress on Hair
Materials and formulation

• **Hair Samples:**
 Kerling European Hair 7.0

• **“Ultra Bleaching” (commercial product):**
 potassium persulphate mixed with a hydrogen peroxide solution (9%) in a ratio of 1:2, pH-value of 10.2-10.5 for 45 minutes
Bleaching Stress on Hair
Cleavage of S-S bonds in the KAP-Matrix

• Bleaching leads to cleavage of cystine and the formation of cysteic acid (pKa1.3)
Bleaching Stress on Hair
Formation of cysteic acid

\[R-S-S-R \rightarrow \ldots \rightarrow 2 \times R-SO_3^- \]

Cystine \hspace{5mm} Cysteic acid

![Bar chart showing the formation of cysteic acid in different bleaching conditions.](chart.png)
Bleaching Stress on Hair
Effects on the swelling behavior

- Bleached hair swells approx. 50% more than virgin hair
Bleaching Stress on Hair
Effects on color retention

- Bleached hair losses approx. 50% more color than virgin hair
Bleaching Stress on Hair
Effects on the thermal stability

- The denaturation temperature decreases strongly with bleaching
The “Self Recovery Phenomenon”
Tensile and DSC measurements on ultra bleached hair

- \(T_D \) increases and break extension decreases over a period of 6 months

\[
y = -0.0216x + 15.356 \\
R^2 = 0.8161; p = 0.00
\]

\[
y = 0.0245x + 140.44 \\
R^2 = 0.9272; p = 0.00
\]
Time-Related Inner Structural Changes

Hypothesis

- Formed cysteic acid dives a reorganization process of the secondary protein structure within the amorphous matrix.
Ionic-Modification of Matrix
Influence on the uptake of Cu$^{2+}$ ions

- EDX analysis of Cu atoms on 2 x bleached hair with and without pretreatment of 1 % EDTA before applying 1 % Cu(II)SO$_4$

- EDTA and acetic acid pretreatments at pH 4.4 reduces the Cu uptake of hair up to 65 %
Ionic-Modification of Matrix

Hypothesis

- Adjustment of an isoionic pH value and the presence of multivalent ions stabilizes the hair matrix by the formation of ionic bonds
Determination of Color Retention

Method

Hair Color: Schwarzkopf Igora Royal
Shades: 6-88 (dark red), 6-99 (violet), 9-98 (violet red)
7-77 (copper), 4-88 (dark red), 5-88 (dark red)
6-68 (red brown), 0-88 (light red)

Shampoo: 2% cocoyl amphotacetate, 4%
cocoamidopropyl betain, 8.8 % LES

Beaker Screening test:
20 % shampoo solution for 4 hours stirring

Ultra sonic washing simulation: 2,5 % shampoo
solution 5 min ultra sonic bath (3 hand washes)

Hand washes on strands: 0,05 g shampoo/g hair, 30
sec shampooing, 30 sec application, 1 min rinse off
Color Retention and Color Shift
CIE-L-a-b Color Analysis

\[dE = \sqrt{\left((L_C - L_s)^2 + (a_c - a_s)^2 + (b_c - b_s)^2 \right)} \]
Color Retention and Color Shift
CIE-L-a-b Color Analysis

Color Retention: $\Delta E_{CR} = \Delta E_{01} - \Delta E_{02}$
Color Shift: ΔE_{CS}
 Ionic-Modification of Matrix

Influence of pH on color shift ΔE_{CS} and color retention ΔE_{CR}

- Strong differences between ΔE_{CS} and ΔE_{CR}
- Highest color stability at pH 4.5 in the range of the isionic point of hair
Ionic-Modification of Matrix

Influence of pH on color ΔE_{CS} and denaturation T_D

- Thermal stability and color stability show maxima at pH 4.5

DSC measurement of 2 x bleached hair 24 h in pH controlled aqueous solution
Ionic-Modification of Matrix
Influence of organic acids on the color shift ΔE_{CS}

- Significant differences between organic acids
- Ca lactate shampoo shows the strongest effect
Ionic-Modification of Matrix

Influence of organic acids on the color shift ΔE_{CS}

<table>
<thead>
<tr>
<th>Condition</th>
<th>pH</th>
<th>Acid</th>
<th>pH</th>
<th>Acid</th>
<th>pH</th>
<th>Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>sham</td>
<td>5.5</td>
<td></td>
<td>4.5</td>
<td></td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>tartaric acid 2%</td>
<td></td>
<td></td>
<td>malic acid 2%</td>
<td></td>
<td>lactic acid 2%</td>
<td></td>
</tr>
</tbody>
</table>

Henkel
Ionic-Modification of Matrix
Influence of oxidative hair color

- Effects based on pH depend strongly on the hair color
- Ca lactate shows an increase of color retention on all tested shades
Ionic-Modification of Matrix

Hand washes with commercial shampoos

- hair strands after 12 hand washes with commercial shampoos

without Ca lactate at pH 4.75 with Ca lactate at pH 4.5
Conclusion

- The amorphous matrix is the key target of the inner hair structure for cosmetic treatments.
- Oxidative treatments lead to unstable matrix conditions.
- Ionic induced matrix modification can re-stabilize the inner hair structure and improve the retention of oxidative colors at the same time.
- Hair treatments of pH 4.5 show a maximum effect on bleached hair.
- The color retention strongly depends on the choice of organic acid and the ions.
- Strong effects could be found for **Ca lactate**.