The Second CIRP Conference on Biomanufacturing

Left ventricular assist devices: Impact of flow ratios on the localisation of cardiovascular diseases using computational fluid dynamics

Michael McElroy, Andres Ruiz-Soler, Amir Keshmiri*

School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, U.K.

* Corresponding author. Tel.: +44(0)161 2471695. E-mail address: a.keshmiri@mmu.ac.uk

Abstract

The use of Left Ventricular Assistive Devices (LVADs) is increasing for people with heart failure. The present computational fluid dynamics study provides insight into the significance of the flow ratio between the cannula and the aortic root on the prediction of lesion localisation in a typical LVAD configuration, which in turn affects the design and manufacture of these devices. Three cases were studied with varying percentages of flow through the two inlets; the cannula inlet was assumed steady-state, whilst the aortic root inlet had a scaled pulsatile profile, representative of the extent of heart failure. Results suggest that as the flow exiting the heart decreases in velocity, if not orientated properly, the jet exiting the cannula graft can ‘obstruct’ flow to the innominate, common carotid and left subclavian arteries. Therefore, patients with less severe heart failure will generally experience relatively good perfusion of these arteries. However, for the more severe cases of heart failure, the orientation of the cannula graft should be such that adequate perfusion to the aforementioned arteries is maintained.

Keywords: CFD; Biodesign; Left Ventricular Assistive Devices; Hemodynamics; Insertion cannula; Aorta; Boundary conditions.

1. Introduction

Cardiovascular disease causes over 4 million (47%) of all deaths in Europe each year [1]. Ventricular assist devices are an established form of treatment for patients with heart failure and result in clear survival benefit [2–6]. The INTERMACS report showed that, in 2011, roughly 1,800 patients were implanted with LVADs (95% of which were continuous flow pumps), this number is expected to increase over time [7].

A complication post-operative of LVADs is the occurrence of thromboembolic events [8]. Pump thrombosis within the LVAD is not the only origin of emboli, mobilisation of atherosclerotic plaque within the ascending aorta, common carotid and subclavian arteries may also contribute due to high Wall Shear Stress (WSS) [9]. The occurrence and mobilisation of lesions within the ascending aorta is affected by the nature of the outflow cannula placement and function. Therefore, not only is it important to consider unfavourable haemodynamics within the LVAD, but also within the aorta, cannulas, common carotid, innominate and subclavian arteries.

During the implantation of an LVAD, the inflow cannula connects the left ventricle to the LVAD, while the outflow cannula is anastomosed to the right anterior of the ascending aorta. Despite having significant effects on haemodynamics, design and placement of cannulas during both LVAD and Cardio-Pulmonary Bypass (CPB) often varies from surgeon to surgeon. The parameters to consider during cannula placement include:

- **Cannula tip design**: has been shown to have an influence on thrombus formation and mobilisation [10–12]. Altering the end-hole tip design of a diffuser plays a significant role in head-neck perfusion when compared with altering the orientation during CPB [10]. There have been proposed cannula tip designs to improve aortic cannula practice such as a novel four-lobe swirl inducer [10,13]. A diffuser tipped cannula reduces flow velocities and WSS, therefore reducing the risk of mobilising atherosclerotic or thrombotic plaque [10]. A
group at RWTH Aachen University in Germany have developed a validated Computational Fluid Dynamic (CFD) model to analyse the effect of outflow cannula shape, with the intention of reducing the jet effect and increasing cerebral perfusion during CPB [11,14]. Their work suggests that work needs to be done to determine a velocity threshold associated with plaque mobilisation.

- **Cannula insertion angle and location**: are both also crucial to reducing thrombus formation and mobilisation [10–12] and have been relatively widely studied [15–17]. Insertion angle has a significant effect significant effect on WSS [18] and flow patterns and often leads to thrombosis and emergency surgery for device replacement [19,20]. It is widely accepted that large variations in flow velocities within the ascending aorta are dependent on the angle of the outflow cannula anastomosis relative to the ascending aorta [21,22]. The normal rule is to insert the cannula high up in the ascending aorta, however, it has been shown that positioning the cannula sufficiently far away from the brachiocephalic artery branch may be crucial in reducing backflow [10]. With the exception of [23], there is still some uncertainty as to whether inflow cannula (into the apex of the left ventricle) positioning contributes to the development of thrombosis or not [19], however, this work is more concerned with the impact of haemodynamics within the aorta and it’s neighbouring branches, therefore, the inlet cannula configuration will not be discussed any further in this work.

- **Pulsatile/continuous flow from LVAD/CPM machine**: numerical work comparing the difference between pulsatile and continuous flow during CPB has shown that WSS is remarkably higher during pulsatile flow, which may induce arteriosclerotic plaque embolism [9].

Despite there currently being a wide range of research surrounding cannula implantation, to the authors’ knowledge, there appears to be no emphasis on the ratio of blood flowing from the aortic root and that from the cannula outlet on the numerical prediction of lesion deposition. This ratio is likely to be highly dependent on the state of HF of the patient. Despite left ventricular function no longer significantly contributing to aortic flow post LVAD placement [24], it is feasible that the ratio between the flow entering the aorta via the LVAD and the native left ventricle has an impact on potential future cardiovascular complications. Therefore, there is scope for work that defines whether or not such a ratio has a significant relationship to the probability of the patient developing cardiovascular complications post LVAD implantation. If such a relationship is found to be important, it may influence the surgeon’s decisions during LVAD implantation or CPB surgery.

Therefore, the aim of this work is to quantify the impact associated with prescribing different inlet flow ratios to the aortic root and cannula in an LVAD configuration on the CFD simulation of haemodynamics within the cardiovascular system for predicting the localisation of lesion. It is worth noting that any implications that arise from this study are also applicable to CPB.

2. Method

2.1. Geometrical model

A review by [25] reveals that out of over 5000 patients with continuous-flow (second generation) LVADs, 77.7% were male. For this reason, a patient-specific model of a 23 year old male with normal aortic function was used in this work. The aorta geometry was produced using SimVascular software (Simtk.org) to process Gadolium-enhanced MRA image data (Open Source Medical Software Corp). The aorta geometry was then combined with a simplified cannula (10mm diameter) geometry of a continuous-flow LVAD (see Figure 1). An arbitrary cannula insertion angle of <20 degrees was used. The angle is relative to a surface that crosses through the centre of the anastomosis region and remains tangential to the ascending aorta wall. The cannula geometry was based on a typical continuous-flow LVAD configuration. This basis was chosen because the most common and successful second generation pump worldwide as bridge to transplant and destination therapy is the HeartMate II (Thoratec Corp, Pleasanton, CA, USA), which is a continuous-flow device [26]. The present geometry is representative of the typical configuration of a second generation pump, in which a 10mm diameter cannula is connected to the apex of the left ventricle, with the outflow graft anastomosed to the ascending aorta [26], at an angle such that the flow is directed through the aorta with even flow distribution.

![Figure 1. Schematic of the present configuration: an aorta (that of a 23 year old male) with normal aortic function with an LVAD outflow graft connected to the ascending aorta.](image)

2.2. Computational domain

The geometry was meshed using ICEM-CFD version 15.0. The mesh, which consisted of ≈4.3 million elements was based on a finite volume hybrid mesh consisting of tetrahedral elements within the core region and prism layers (3 elements thick) near the wall to allow for large spatial velocity gradients. In order to ensure the accuracy of the simulations, a series of steady-state computations with different mesh refinement were conducted to ensure grid independency prior to running the present computations. The computational domain with ≈3.8 million tetrahedron and ≈500,000 prism elements were considered to be sufficient here, as further mesh refinement could only result in less than 1% change in velocity and WSS at some examined sections.
2.3. Boundary conditions

In the present work, three cases are studied based on different combinations of inlets, as shown in Table 1. The flow ratios defined in the simulations represent the extent of heart failure of the patient.

Table 1. Summary of cases studied in the present work. Constant cannula flow rates were obtained by time-averaging the healthy pulsatile flow rate and scaling accordingly.

<table>
<thead>
<tr>
<th>Flow based on healthy heart flow rate</th>
<th>Aortic root (pulsatile)</th>
<th>Cannula (constant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1 40%</td>
<td>1.60 cm/s, 60%</td>
<td></td>
</tr>
<tr>
<td>Test 2 50%</td>
<td>1.34 cm/s, 50%</td>
<td></td>
</tr>
<tr>
<td>Test 3 60%</td>
<td>1.07 cm/s, 40%</td>
<td></td>
</tr>
</tbody>
</table>

Steady, uniform mass influx were imposed over the entire cannula inlet boundary. Due to the pulsatile nature of the heart, a flat, pulsatile velocity waveform based on experimental data by [27] was applied at the aortic root and scaled to 40, 50 and 60% of the normal magnitudes reach by a healthy heart to simulate various extent of HF. The assumption of a flat velocity profile at the aortic inlet has been verified by various in vivo measurements using different animal models, which have demonstrated that the velocity profile distal to the aortic valve is essentially flat in the ascending aorta and only consisted of a weak helical component [27].

2.4. Numerical procedure

Blood flow was defined as a three-dimensional, incompressible, isothermal, and laminar flow, whose governing equations are:

\[\nabla \cdot \mathbf{u} = 0 \] \hspace{1cm} (1)

\[\nabla \cdot (\rho \mathbf{u}) + \rho \nabla p = \nabla \cdot \tau \] \hspace{1cm} (2)

\[\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \eta \nabla^2 \mathbf{u} \]

where \(\mathbf{u} \) is the velocity vector, \(t \) is the time, \(\rho \) is the pressure, and \(\eta \) is the dynamic viscosity of blood set to 4.043 g/ms. The density \(\rho \) of blood is assumed to be 1044 kg/m³. Non-Newtonian fluid properties of the blood were neglected.

The governing equations are solved numerically by a finite volume method and the CFD code, ANSYS-CFX (Version 15.0), using a fully implicit second-order backward Euler differencing scheme. Each simulation ran for one period (\(T \)) of 0.8s, with a time-step size of 0.032s. The convergence criterion (a normalised residual, obtained based on the imbalance in the linearised system of discrete equations) is set to \(10^{-5} \) in this study. Commercial visualisation tool, Ensight (CEI Inc., Research Triangle Park, NC, USA) was used to post-process the results.

3. Results and Discussion

3.1. Haemodynamic parameters

The localisation of various lesions including atherosclerosis, intimal hyperplasia and intimal thickening have been extensively studied and are related to different local haemodynamic metrics [32–34]. These haemodynamic parameters can be directly derived from the flow velocity fields obtained by CFD-based simulation tools. Whilst the performance of these parameters on predicting the localisation of atheroma is important in this study, the focus is on the sensitivity of these parameters to the BCs prescribed during the numerical simulation.

The parameters chosen for the present analyses include WSS, Time-Averaged WSS (TAWSS) [35], TAWSS Gradient (TAWSSG) [36], Oscillatory Shear Index (OSI) [35], and Relative Residence Time (RRT) [37], calculated according to Eqs. (3)-(6), below. These parameters have been chosen because i) localised distribution of low-WSS and high-OSI strongly correlate with the locations of atheroma [35], ii) large spatial TAWSSG contributes to elevated wall permeability and atherosclerotic lesions [38], iii) platelet activation may be induced by the combination of large exposure time and high shear stress [39–42], iv) stagnant and recirculating flow regions can cause platelet aggregation and thrombogenesis.

\[TAWSS = \frac{1}{T} \int_0^T \left| F_{\mathbf{u}} \right| dt \]

(3)
Figure 3 shows the distribution of the above metrics for all three tests and in what follows, each hemodynamic metric will be discussed separately:

\[TAWSS = \frac{1}{T} \int \left(\left(\frac{\partial \tau_x}{\partial x} \right)^2 + \left(\frac{\partial \tau_y}{\partial y} \right)^2 + \left(\frac{\partial \tau_z}{\partial z} \right)^2 \right) \, dt \]

\[OSI = \frac{1}{2} \left[\int_0^T \left| \frac{\tau_x}{T} \right| \, dt \right] \left[\int_0^T \left| \frac{\tau_y}{T} \right| \, dt \right] \]

\[RRT = \frac{1}{\left(1 - 2 \times OSI \right) \times TAWSS} - \frac{1}{\frac{1}{\tau_W} \int_0^T \, dt} \]

\[TAWSSG = \frac{1}{T} \int_0^T \frac{1}{2} \left[\int_0^T \tau_{xy} \, dt \right] \]

\[
\frac{1}{T} \left. \left(\frac{\partial \tau_x}{\partial x} \right)^2 + \left(\frac{\partial \tau_y}{\partial y} \right)^2 + \left(\frac{\partial \tau_z}{\partial z} \right)^2 \right) \, dt
\]

\[
\frac{1}{2} \left[\int_0^T \left| \frac{\tau_x}{T} \right| \, dt \right] \left[\int_0^T \left| \frac{\tau_y}{T} \right| \, dt \right]
\]

\[
\frac{1}{\left(1 - 2 \times OSI \right) \times TAWSS} - \frac{1}{\frac{1}{\tau_W} \int_0^T \, dt}
\]

\[
\frac{1}{T} \left(\frac{\partial \tau_x}{\partial x} \right)^2 + \left(\frac{\partial \tau_y}{\partial y} \right)^2 + \left(\frac{\partial \tau_z}{\partial z} \right)^2 \right) \, dt
\]

\[
\frac{1}{2} \left[\int_0^T \left| \frac{\tau_x}{T} \right| \, dt \right] \left[\int_0^T \left| \frac{\tau_y}{T} \right| \, dt \right]
\]

Figure 3. Distributions of different haemodynamic parameters calculated for the aortic arch and descending thoracic aorta, viewed from outside the vessel.
TAWSS: overall, TAWSS values increased when progressing from Test 1 to Test 3, with Tests 2 and 3 experiencing increases of 21% and 44%, respectively when compared to Test 1. With the exception of TAWSS decreasing by 5% and 9% within the cannula graft in Tests 2 and 3, respectively, this is likely caused by the reduced imposed graft inlet velocity.

TAWSSG: values again, progressively increased from Test 1-3, Test 2 (+33%), Test 3 (+71%). Peak magnitudes occurred within the ascending aorta and ascending branches.

OSI: distribution remained relatively unaffected by the imposed flow ratios, with values of +2% and +3% for Tests 2 and 3, respectively, in comparison with Test 1. However, OSI progressively increased within the cannula graft, this is most likely due to the increasing magnitude of the pulsatile flow flowing from the aortic root having more influence on the haemodynamics within the cannula graft as the velocity imposed within the cannula decreases.

RRT: overall, values decrease within the aorta and ascending branches as tests progress (-13% and -20% for Test 1 and Test 2, respectively). The opposite, however, occurs with the cannula graft (+23% and +56% in Test 1 and 2, respectively), this pattern is due to the flow ratios switching over, where the dominant flow effects change from being caused by the cannula to the aortic root flow.

For more quantitative comparison, Figure 4 shows area-weighted average values of TAWSS, TAWSSG, OSI and RRT evaluated over various locations within the aortic model.

Time-averaged Velocity (TAV) distributions are shown on a monitoring plane within the aortic arch in Figure 5(b). A three-colour contour of TAV is also shown on the same monitoring plane (Figure 5c). Blue and red areas represent WSS<75% and WSS>125% of the average value evaluated over the shown area, respectively. Average values of Tests 1-3 are 2.39, 2.81 and 3.23 cm/s, respectively. This figure suggests that with severe HF (40% of normal function) the high velocity jet from the cannula focuses most of the flow onto the wall directly opposite the cannula anastomosis location. Whilst as the function of the heart increases, the flow from the heart more evenly distributes the flow through the aortic arch.

Figure 4. (a) Areas (A) on which area weighted average values are calculated. (b) Charts of area weighted average values of the metrics studied. Specific values for each area are shown in Appendix A.

Figure 5. (a) Monitoring place within the aortic arch. (b) Distributions of TAV shown on the monitoring plane. (c) Three-colour contour of TAV shown on the monitoring plane within the aortic arch. Blue and red areas represent TAV<75% and TAV>125% of the average value evaluated over the shown area respectively. Average values of Test 1, Test 2 and Test 3 are 2.39, 2.81 and 3.23 cm/s respectively.
3.2. Limitations of this study

Non-Newtonian fluid properties and fluid-structure interaction were neglected in this study with the intention of explicitly analysing the effects due to the flow split ratio between the cannula and aortic root boundary. However, there are a number of other limitations to this study that will have an effect on explicitly analysing the effects of the flow split ratios, hence, the following limitations offer potential further work:

- The section of geometry consisting of the cannula graft and anastomosis was a simplified model of the normal location, orientation, angle and curvature. Hence, if MRI obtained geometry of a patient with an implanted LVAD would have been used, the haemodynamics would be more physiologically accurate.
- The results were not validated against in vivo data, however, this study aimed to draw attention to this area of research and assess its potential rather than in-depth and validated analysis.
- Each simulation was ran for one pulse period, ideally, the simulation will run for at least 3 periods, and results are recorded during the final period, this is to allow any start-effects to be negated.
- To reduce solution time, the time increment in this study was relatively large, reducing the increment size would produce more accurate and stable results. However, the time increment size was found to be fair as it produced realistic results and this work is intended as a preliminary study to investigate this area’s worthiness of further study.
- As alluded to earlier, research concerning the implantation of LVAD outflow cannula is also applicable to CPB to some degree, and vice versa. However, it is worth noting that the velocity from the cannula returning blood during CPB is often significantly higher than LVADs, thus increasing the risk of dislodging parts of atherosclerotic lesions, creating an emboli, which can ultimately result in stroke [10]. The results in this study are not representative of such a high jet velocity as it is focused on the flow from an LVAD.

4. Conclusion

These results suggest that patients with less severe extent of HF will generally experience good perfusion of innominate, common carotid and left subclavian arteries, however, for the more severe cases of HF, the orientation of the graft anastomosis should be such to maintain adequate perfusion to these arteries, as the flow exiting the heart decreases, if not orientated properly, the jet of the cannula perfusion to these arteries, as the flow exiting the heart can ‘obstruct’ flow to the aforementioned arteries.

This work does however require more extensive investigation to more reliably define the effects flow ratios between the cannula jet and the heart output have on the deposition of CVDs, particularly; results require validation against in vivo data; finer time step sizes and a greater number of time periods.

This work is a good preliminary study for further investigation into the optimal combination of cannula tip design and cannula location relative to the condition of the patient. The data from such a study could prove useful for pre-operative planning, whether the patient has total or partial HF, the data will be able to direct the surgeon to an optimal surgical strategy in order to reduce post-operative risk of CVDs.

Acknowledgements

The authors would like to thank Dr Glen Cooper and Prof Neil Reeves for their support throughout this work along with the Manchester Metropolitan University School of Engineering for funding this research.

Appendix A. Area weighted average values of metrics studied

Table 2. Area weighted average values of TAWSS, TAWSSG, OSI and RRT evaluated over various locations shown in Figure 4.

<table>
<thead>
<tr>
<th>Area</th>
<th>TAWSS</th>
<th>TAWSSG</th>
<th>OSI</th>
<th>RRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A2 A3</td>
<td>+48.0</td>
<td>+24.2</td>
<td>+36.2</td>
<td>+53.8</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.4</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>A4 A5 A6</td>
<td>+45.9</td>
<td>+25.6</td>
<td>+35.7</td>
<td>+53.8</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>A7 A8 A9</td>
<td>+48.9</td>
<td>+24.3</td>
<td>+35.7</td>
<td>+53.8</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>A10</td>
<td>+48.0</td>
<td>+22.9</td>
<td>+35.7</td>
<td>+53.8</td>
</tr>
</tbody>
</table>

References
