Efficient Preparation of N-Phenylsulfonyl Ketimines from Oximes or Nitro Compounds without Racemization of α-Stereocenters

Jordi Burés, Carles Isart, and Jaume Vilarrasa*

Departament de Química Orgànica, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
jvilarrasa@ub.edu

Received September 8, 2007

ABSTRACT

As N-sulfinyl imines (e.g., RR’C=NS-SAr) can be readily transformed to their N-sulfinyl imines (RR’C=NS-SOAr), N-sulfonyl imines (RR’C=NS-SOAr), and N-sulfonyl oxaziridines, the very mild procedure developed to convert ketoximes and secondary nitro derivatives to N-arenesulfonyl ketimines constitutes a new and efficient route to all these series of compounds. The configuration of the α-stereocenters is retained.

N-Sulfinyl imines1,2 and N-sulfonyl imines3,4 are enjoying an increasing number of applications in asymmetric synthesis (Mannich reactions, α-alkylation via enamine anions, hetero-Diels–Alder reactions, etc.). Chiral N-sulfonyl oxaziridines are also very popular as asymmetric epoxidation and hydroxylation reagents.5 As known,6 N-sulfinyl imines such as sulfinimines I are easily oxidized with m-CPBA or other peroxyacids to N-sulfinyl derivatives (sulfinimines 2), subsequently to their N-sulfonyl derivatives (sulfonimines 3), and then to N-sulfonyl oxaziridines (4).7 Therefore, any efficient entry to 1 would be extremely useful.7 This is simplified in Scheme 1, where only one stereoisomer is drawn for each species.8 We have focused our attention on ketimines, which have been studied much less than aldimines.

In fact, the success of many asymmetric reactions involving 2-4 relies upon their preparation as stereopure substrates and their configurational stability. Usually, N-sulfinyl ketimines are prepared by condensation of ketones and sulfinamides (RSONH2 or ArSONH2) mediated by Ti(OEt)4 or other droxylation reagents.5 As known,6 N-sulfinyl imines such as sulfinimines I are easily oxidized with m-CPBA or other peroxyacids to N-sulfinyl derivatives (sulfinimines 2), subsequently to their N-sulfonyl derivatives (sulfonimines 3), and then to N-sulfonyl oxaziridines (4).7 Therefore, any efficient entry to 1 would be extremely useful.7 This is simplified in Scheme 1, where only one stereoisomer is drawn for each species.8 We have focused our attention on ketimines, which have been studied much less than aldimes.

(7) In a very recent example, in which condensation of a sulfonamide with a carbonyl group of an avermectin failed, the authors took advantage of the oxime-to-sulfenimine conversion. See: Lamy, E.; Lüthi, P.; Paturel, C.; Winkler, T.; Jung, P. M. J. Tetrahedron Lett. 2006, 47, 5657.

(8) In addition, R and/or R’ may contain stereogenic centers.
dehydronating agents in refluxing THF but also by the abovementioned oxidation of N-sulfenyl ketimines and by the reaction of metal iminides with sulfinates (RSOOR').

N-Sulfonyl ketimines are mainly obtained by condensation (with limitations) of sulfonamides and ketones, from oximes and sulfonyle cyanides, and by oxidation of N-sulfenyl ketimines.

We uncover a very mild method that gives practically quantitative yields of the desired sulfenimines at room temperature (rt) from ketoximes and from secondary nitro compounds. It is a significant practical improvement with regard to the reaction of oximes with PBu₃/PhSSPh reported by Lukin and Narayanan; these authors showed that sulfenyl ketimines are intermediates in the conversion of oximes to imines and can be cleaved in the presence of suitable acids. Our procedure can be very useful when the direct condensation to obtain 2 and 3 fails because of the steric hindrance or when it is counter-indicated as concomitant reactions (including stereocenter inversions) take place in the R or R' chains.

When the oximes in Table 1 (usually equilibrium Z/E mixtures) were treated with commercially available N-(phenylsulfenyl)phthalimide, that is, N-(phenylthio)phthalimide (PhthN-SPh, a non-stinking solid) and trimethylphosphine (PMe₃), N-phenylsulfenyl ketimines were formed quickly. Direct separation and purification of the final mixtures through a short pad of alumina, with hexane as the eluent, afforded excellent isolated yields (86–97%, see Table 1), with no stench, as PhSH was not formed as a co-product or during the workup. R-Stereocenters did not epimerize (entry 5), as expected, or did not racemize at all (entries 6 and 7), as checked for 1f and 1g by oxidation to the known, corresponding ketones with oxone (Oxone, 2KHSO₅ â KHSO₄ â K₂SO₄) or with ozone; the enantiomeric purities of both ketones were confirmed by polarimetry and chiral HPLC (Chiralpak AD-H column).

In parallel experiments with PBu₃ (220 mol %), only 70% of 1a was obtained after 15 h. With an excess of an aromatic phosphine, such as PPh₃ or 1,1'-bis(diphenylphosphino)-ferrocene (dppf), no reaction was observed at rt after 15 h.

To achieve a total absence of starting materials in the final products, we had to use stoichiometric amounts of PhthN-SPh. For example, with 0.4 equiv of PhthN-SPh, only 40% of the oximes were converted to sulfenimines; with 0.6 equiv of PhthN-SPh, ca. 60% of conversion occurred. Turnover did not take place, even with an excess of PMe₃.

(14) The oxidation of sulfenyl imines with ozone or with ozone was quantitative, and no epimerization of α-stereocenters was observed.

Scheme 1. From Sulfenyl Imines to N-Sulfonyl Oxaziridines

Table 1. Conversion of Ketoximes to Sulfenyl Ketimines

<table>
<thead>
<tr>
<th>entry ketoxime<sup>a</sup></th>
<th>product<sup>a</sup></th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5a</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>5b, Z/E 2:5</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>5c</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>5d</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>5e, Z/E 1:6</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>5f, Z/E 1:5</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>5g, Z/E 1:12</td>
<td>86</td>
</tr>
</tbody>
</table>

^a The oxime (1.0 mmol) was added to a commercially available solution of PMe₃ in THF (1.0 M, 1.1 mL). PhthN-SPh (1.2 mmol) was added, and the mixture was stirred at rt for 30 min. ^b The Z/E ratios are those observed (400 MHz 1H NMR spectra) in CDCl₃ at rt. ^c Equilibrium mixture from 5g prepared in pyridine. When the oxime was prepared from NH₃·OH±Cl and NaHCO₃ in MeOH·H₂O, isomer Z largely predominated.

Scheme 2. Fragmentation Byproducts

Table 1. Conversion of Ketoximes to Sulfenyl Ketimines^a
reached a maximum of 70%. A fragmentation product (the thioacetal shown in Scheme 2) was always formed, even at 0 and −20 °C, in 20–30% yields. It may come from the decomposition of the common intermediate via a benzyl-type cation, which may be trapped by PhSH. Thus, prone to fragmentation oximes (on protonation or by reaction with electrophiles, giving rise to stable carbenic or oxocarbenic cations) may not afford high yields of sulfenimines 1.

Even in this last case (1h), in which the α-stereocenter position is benzylic, no racemization took place. In fact, the oxidation of 1h with oxone gave the corresponding enantiopure ketone, as shown by chiral HPLC.

Secondary nitro groups (6) can also be converted to sulfenimino groups (1) at rt by the same procedure, using 2.2 equiv of PMe 3 instead of 1.1 equiv, as shown in Table 2. One equivalent of PMe 3 is consumed in the first step, that is, the reduction of R 2 CH−NO 2 to R 2 CH−N=O/R 2 C=N−OH catalyzed by PhthN-SPh, which is slower than the second step, the sulfenylation of the oxime group. After 1–3 ho of reaction, sulfenimines 1 were isolated in excellent yields. Stereocenter α of 1m did not epimerize.

To our knowledge, this is the first reported method for obtaining N-sulfenyl imines directly from nitro compounds. Moreover, the reaction works in one pot, at rt, in a short time, and using very small amounts of commercially available reagents. The only exception was converting 6m to 1m, as 3.0 equiv of N-(phenylsulfenyl)phthalimide, 6.0 equiv of PMe 3, and 24 h were needed to obtain a good yield.

To gain more insight into the mechanism, the reaction of nitrocyclohexane (6a) with 3 equiv of PMe 3 and 0.2 equiv of PhthN-SPh was followed by 13C NMR spectroscopy in THF (Figure 1). (16) For the sake of simplification, only the signals of the methylene carbons vicinal to the CH−NO 2/\(C=\text{NOH/C=NSPh}\) groups are shown. The disappearance of the oxime intermediate was so quick that it could not be detected under these conditions.

However, even with large amounts of PMe 3, sulfenimine (1a) was not cleaved. In fact, acidic species must be present.

Table 2. From Nitro Compounds to Sulfenyl Ketimines

<table>
<thead>
<tr>
<th>entry</th>
<th>nitro compd</th>
<th>product</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a</td>
<td>1a</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>PhNO 2</td>
<td>1b, Z/E 1:4</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>PhCH 2 OMe</td>
<td>6i</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>PhNO 2</td>
<td>6j</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>PhNO 2</td>
<td>6k</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>PhNO 2</td>
<td>6l</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>PhNO 2</td>
<td>1m, Z/E 1:1</td>
<td>84</td>
</tr>
</tbody>
</table>

*a The nitro compound (1.0 mmol) was added to a solution of PMe 3 in THF (1.0 M, 1.1 mL). PhthN-SPh (1.2 mmol) was added, and the mixture was stirred at rt for 30 min. b The Z/E ratios are those observed (400 Mz 1H NMR spectra) in CDCl 3 at rt. c With 3 equiv of PhthN-SPh and 6 equiv of PMe 3 for 24 h.

Figure 1. (a) 13C NMR spectra of nitrocyclohexane (6a) and excess of PMe 3 (3 equiv) in THF. (b–e) After successive additions of 0.2 equiv of PhthN-SPh, only the appearance of sulfenimine 1a was observed. (f) Addition of 0.5 equiv of PhSH to (e); spectrum registered after 10 min. (g) Spectrum registered 30 min after the addition of 0.5 equiv of PhSH.

in the reaction media or water must be added to catalyze or mediate such a N–S bond cleavage.13a

Thus, “the secret of the success” is that the phthalimide anion of [PhthN–PMe3(SPh)+] traps the oxime proton, but PhthNH, in contrast to ArSH, is not acidic enough to help the conversion of sulfinimines 1 to ketimines.

It is likely that many other aromatic and heteroaromatic phthalimide derivatives (PhthN–SAr or PhthN–SHet) may behave similarly. On the other hand, PhthN–S’Bu does not work, as no reaction with nitroalkanes or oximes was observed under our conditions; thus, our method is not useful for the preparation of Ellman’s substrates.1c

In summary, efficient and mild conditions (short times, rt, 84–98% yields) for the conversion of ketoximes and secondary nitro compounds to sulfinyl ketimines (1) have been uncovered. No epimerization of α-stereocenters takes place. The role of PMe3 is outstanding (in relation to Bu3P and aromatic phosphines). In principle, a plethora of arylsulfinyl ketimines (2), arylsulfonyl ketimines (3), and arylsulfonyl oxaziridines (4) are available via the new route.

Acknowledgment. The Ministerio de Educación y Ciencia of Spain (Madrid) is acknowledged for the grants SAF02-02728 and CTQ2006-15393 as well as for a studentship to J.B. The Universitat of Barcelona is acknowledged for a studentship to C.I. The Generalitat de Catalunya (Barcelona) contributed also partially (grant 2001SGR065, 2002–2005, Grup de Síntesi Estereoselectiva d’Antibiòtics i Antivírics). The ketone of 5f was prepared by Carmen Jiménez, of our Department. The senior author dedicates this work to Prof. Joan Bosch (Facultat de Farmàcia, Universitat de Barcelona) on the occasion of his 60th birthday.

Supporting Information Available: Experimental procedures and NMR spectra of the new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL702212N