Search for a muonic dark force at BABAR

DOI:
10.1103/PhysRevD.94.011102

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Physical Review D - Particles, Fields, Gravitation and Cosmology

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Search for a muonic dark force at BABAR

(The BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3INFN Sezione di Bari and Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Novosibirsk State University, Novosibirsk 630090, Russia
9Novosibirsk State Technical University, Novosibirsk 630092, Russia
10University of California at Irvine, Irvine, California 92697, USA
11University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
12California Institute of Technology, Pasadena, California 91125, USA

Many models of physics beyond the Standard Model predict the existence of new Abelian forces with new gauge bosons mediating interactions between “dark sectors” and the Standard Model. We report a search for a dark boson Z' coupling only to the second and third generations of leptons in the reaction $e^+ e^- \rightarrow \mu^+ \mu^- Z'$, $Z' \rightarrow \mu^+ \mu^-$ using 514 fb$^{-1}$ of data collected by the BABAR experiment.
No significant signal is observed for Z' masses in the range 0.212 – 10 GeV. Limits on the coupling parameter g' as low as 7×10^{-4} are derived, leading to improvements in the bounds compared to those previously derived from neutrino experiments.

PACS numbers: 12.60.-i, 14.80.-j, 13.66.Hk, 95.35.+d

In spite of the many successes of the Standard Model (SM), the known particles and interactions are insufficient to explain cosmological and astrophysical observations of dark matter. This motivates the possibility of new hidden sectors that are only feebly coupled to the SM; by analogy with the SM, such sectors may contain their own interactions with new gauge bosons (Z'). In the simplest case of a hidden $U(1)$ interaction, SM fields may directly couple to the Z', or alternatively the Z' boson may mix with the SM hypercharge boson, which typically results from an off-diagonal kinetic term Λ. In the latter case, the Z' inherits couplings proportional to the SM gauge couplings; due to large couplings to electrons and light-flavor quarks, such scenarios are strongly constrained by existing searches [2–8].

When SM fields are directly charged under the dark force, however, the Z' may interact preferentially with heavy-flavor leptons, greatly reducing the sensitivity of current searches. Such interactions could account for the experimentally measured value of the muon anomalous magnetic dipole moment μ, as well as the discrepancy in the proton radius extracted from measurements of the Lamb shift in muonic hydrogen compared to observations in non-muonic atoms [10] [11]. Direct Z' couplings to left-handed leptons also lead to new interactions involving SM neutrinos that increase the cosmological abundance of sterile neutrinos mixing with SM neutrinos, consistent with the observed dark matter abundance [12].

We report herein a search for dark bosons Z' with vector couplings only to the second and third generations of leptons [13] [14] in the reaction $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-$. While such a scenario can be additionally constrained by neutrino-nucleus scattering at neutrino beam experiments, the measurement presented here is also sensitive to models where couplings to neutrinos are absent, such as a gauge boson coupled exclusively to right-handed muons [15]. This search is based on 514 fb$^{-1}$ of data collected by the BaBar detector at the PEP-II e^+e^- storage ring, mostly taken at the $\Upsilon(4S)$ resonance, but also at the $\Upsilon(3S)$ and $\Upsilon(2S)$ peaks, as well as in the vicinity of these resonances [16]. The BaBar detector is described in detail elsewhere [17] [18]. Dark boson masses between the dimuon threshold and 10 GeV are probed [19]. To avoid experimental bias, the data are only examined after finalizing the analysis strategy. A sample of about 5% of the dataset is used to optimize and validate the analysis strategy, and is then discarded.

Signal events are simulated by MadGraph 5 [20] and hadronized in Pythia 6 [21] for Z' mass hypotheses ranging from the dimuon mass threshold to 10.3 GeV. The background arises mainly from QED processes. The $e^+e^- \rightarrow \mu^+\mu^- \mu^+\mu^-$ reaction is generated with Diag36 [22], which includes the full set of lowest order diagrams, while the $e^+e^- \rightarrow \mu^+\mu^- (\gamma)$ and $e^+e^- \rightarrow \pi^+\pi^- (\gamma)$ processes are simulated with KK [23]. Other sources of background include $e^+e^- \rightarrow q\bar{q} \ (q = u, d, s, c)$ continuum production, simulated with JETSET [24], and $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ events, generated using EvtGen [25] with a phase-space model. The detector acceptance and reconstruction efficiencies are determined using a Monte Carlo (MC) simulation based on GEANT4 [26].

We select events containing two pairs of oppositely-charged tracks, where both positively-charged or both negatively-charged tracks are identified as muons by particle identification algorithms (PID). Identifying only two negatively-charged tracks are identified as muons by par-

detector efficiencies are determined using a Monte Carlo (MC) simulation based on GEANT4 [26].
reduced mass has a smoother behavior near threshold and is easier to model than the dimuon mass. The spectrum is dominated by $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ production, with additional contributions from $e^+e^- \rightarrow \pi^+\pi^-\rho, \rho \rightarrow \pi^+\pi^-, e^+e^- \rightarrow \mu^+\mu^-\rho, \rho \rightarrow \pi^+\pi^-$, and $e^+e^- \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$ events, where one or several pions are misidentified as muons. A peak corresponding to the ρ meson is visible at low mass; the second Z' candidate reconstructed in these events generates the enhancement near 9.5 GeV. Other than the J/ψ, no significant signal of other narrow resonances is observed.

![Graph](image1.png)

FIG. 1: The distribution of the four-muon invariant mass, $m(4\mu)$, for data taken at the $\Upsilon(4S)$ peak together with Monte Carlo predictions of various processes normalized to data luminosity. The $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ Monte Carlo does not include ISR corrections.

The signal efficiency rises from ~35% at low masses to ~50% around $m_R = 6 - 7$ GeV, before dropping again at higher masses. The signal efficiencies include a correction factor of 0.82, which primarily accounts for the impact of ISR not included in the simulation, as well as differences between data and simulation in trigger efficiency, charged particle identification, and track and photon reconstruction efficiencies. This correction factor is derived from the ratio of the m_R distribution in simulated $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ events to the observed distribution in the mass region 1–9 GeV, excluding the J/ψ region (light blue line in Fig. 2). An uncertainty of 5% is propagated as a systematic uncertainty, covering the small variations between data-taking periods and the uncertainties on the $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ cross-section.

We extract the signal yield as a function of $m_{Z'}$, by performing a series of unbinned maximum likelihood fits to the reduced dimuon mass spectrum, covering the mass range $m_R < 10$ GeV for the data taken near the $\Upsilon(4S)$ resonance, and up to 9 GeV for the datasets collected near the $\Upsilon(2S)$ and $\Upsilon(3S)$ resonances. The search is conducted in varying mass steps that correspond to the dark boson mass resolution. Each fit is performed over an interval 50 times broader than the signal resolution at that mass for $m_{Z'} > 0.2$ GeV, or over a fixed interval $0 - 0.3$ GeV for $m_{Z'} < 0.2$ GeV. We estimate the signal resolution by Gaussian fits to several simulated Z' samples for the purpose of determining the scan steps, and interpolate the results to all other masses. The resolution varies between 1–9 MeV, dominated by experimental effects. We probe a total of 2219 mass hypotheses. The bias in the fitted values, estimated from a large ensemble of pseudo-experiments, is negligible.

![Graph](image2.png)

FIG. 2: The distribution of the reduced dimuon mass, m_R, together with Monte Carlo predictions of various processes normalized to data luminosity. Four combinations per event are included. The fit of the ratio between reconstructed and simulated events is shown as a light blue dashed line. The $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ Monte Carlo does not include ISR or other efficiency corrections (see text).
The background is described by a function of the form $\arctan(ax + bx^2 + cx^3)$ for fits in the low mass region, where a, b, c are free parameters, and by a second order polynomial above $m_Z = 0.2$ GeV. The two methods give similar signal yields at the transition point. Peaking contributions from the J/ψ resonance are modeled from the mass distribution extracted from the corresponding Monte Carlo, leaving the yield as a free parameter. We exclude the resonant region from the search, vetoing a range of ±30 MeV around the nominal J/ψ mass. The contribution from ρ-meson decay is very wide and easily absorbed by the background fit in each narrow window. We estimate the uncertainty associated with the background model by repeating the fit using a third order polynomial in the high-mass region or a fourth-order polynomial constrained to pass through the origin in the low mass range. This uncertainty is as large as 35% of the statistical uncertainty in the vicinity of the dimuon threshold and high-mass boundary, but remains at a level of a few percent outside these regions.

The $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-$ cross-section is extracted for each dataset as a function of the Z' mass by dividing the signal yield by the efficiency and luminosity. The uncertainties on the luminosity (0.6%) [16] and the limited Monte Carlo statistics (1-3%) are propagated as systematic uncertainties. The cross-sections are finally combined and displayed in Fig. 3. We consider all but the uncertainties on the luminosity and the efficiency corrections to be uncorrelated. The statistical significance of each fit is taken as $S = \text{signal yield} \times \sqrt{2 \log(\mathcal{L}/\mathcal{L}_0)}$, where N_{sig} is the fitted signal yield, and \mathcal{L} (\mathcal{L}_0) is the maximum likelihood value for a fit including (excluding) a signal. These significances are almost Gaussian, and the combined significance is derived under this assumption.

A large sample of Monte Carlo experiments is generated to estimate trial factors. The largest local significance is 4.3σ, observed near $m_{Z'} = 0.82$ GeV, corresponding to a global significance of 1.6σ, consistent with the null hypothesis.

We derive 90% confidence level (CL) Bayesian upper limits (UL) on the cross-section $\sigma(e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-)$, assuming a uniform prior in the cross-section by integrating the likelihood from zero up to 90% of its area. Correlated (uncorrelated) systematic uncertainties are included by convolving the combined (individual) likelihood with Gaussian distributions having variances equal to the corresponding uncertainties. The results are displayed in Fig. 4 as a function of the Z' mass. The corresponding 90% CL upper limits on the coupling parameter g' in the scenario with equal magnitude vector couplings to muons, taus, and the corresponding neutrinos are shown in Fig. 5 together with constraints derived from neutrino experiments [29]. Upper limits down to 7×10^{-4} near the dimuon threshold are set.

In summary, we report the first search for the direct production of a new muonic dark force boson, providing a model-independent test of theories with new light particles coupled to muons. For identical coupling strength to muons, taus, and the corresponding neutrinos, we exclude all but a sliver of the remaining parameter space preferred by the discrepancy between the calculated and measured anomalous magnetic moment of the muon above the dimuon threshold [29], and we set the strongest bounds for nearly all of the parameter space below ~ 3 GeV. Because this search relies only on the Z' coupling to muons, the result can also be interpreted giving powerful constraints on other new vectors and scalars that interact exclusively with muons.

ACKNOWLEDGMENTS

We thank Maxim Pospelov for helpful conversations. We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsge-
FIG. 4: The 90% CL upper limits on the cross-section \(\sigma(e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-)\) as a function of the \(Z'\) mass. The dark gray band indicates the region excluded from the analysis.

FIG. 5: The 90% CL upper limits on the new gauge coupling \(g'\) as a function of the \(Z'\) mass, together with the constraints derived from the production of a \(\mu^+\mu^-\) pair in \(\nu_e\) scattering (“Trident” production) [29, 30]. The region consistent with the discrepancy between the calculated and measured anomalous magnetic moment of the muon within 2\(\sigma\) is shaded in red.

meinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economía y Competitividad (Spain), the Science and Technology Facilities Council (United Kingdom), and the Binational Science Foundation (U.S.-Israel). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA).

1 Now at: Università di Bologna and INFN Sezione di Bologna, I-47921 Rimini, Italy
2 Now at: University of Huddersfield, Huddersfield HD1 3DH, UK
3 Now at: University of South Alabama, Mobile, Alabama 36688, USA
* Also at: Università di Sassari, I-07100 Sassari, Italy
[19] Natural units (\(\hbar = c = 1\)) are used throughout this paper.

* Now at: Wuhan University, Wuhan 43072, China