Which behavior change techniques are most effective at increasing older adults’ self-efficacy and physical activity behavior? A systematic review

David P French¹*, Ellinor K Olander², Anna Chisholm³, & Jenny McSharry¹

1 Manchester Centre for Health Psychology School of Psychological Sciences, University of Manchester

2 School of Health Sciences, City University London

3 Manchester Centre for Health Psychology, Institute of Inflammation and Repair, University of Manchester

* Manchester Centre for Health Psychology
School of Psychological Sciences
University of Manchester
Coupland 1 Building
Oxford Road
Manchester
M13 9PL
Tel (0161) 275 2605
Fax (0161) 275 8487
david.french@manchester.ac.uk

Acknowledgements: This review was funded by Macmillan Cancer Support and University of Manchester School of Psychological Sciences start-up funds. We are grateful to Lou Atkinson, Stefanie Williams and Helen Fletcher for coding intervention descriptions.
Abstract

Background. Increasing self-efficacy is an effective mechanism for increasing physical activity, especially for older people.

Purpose. The aim of this review was to identify behavior change techniques (BCTs) that increase self-efficacy and physical activity behavior in non-clinical community-dwelling adults 60 years or over.

Methods. A systematic search identified 24 eligible studies reporting change in self-efficacy for physical activity following an intervention. Moderator analyses examined whether the inclusion of specific BCTs (as defined by CALO-RE taxonomy) was associated with changes in self-efficacy and physical activity behavior.

Results. Overall, interventions increased self-efficacy (d=0.37) and physical activity (d=0.14). Self-regulatory techniques such as setting behavioral goals, and prompting self-monitoring of behavior, planning for relapses, providing normative information, and providing feedback on performance, were associated with lower levels of both self-efficacy and physical activity.

Conclusions. Many commonly used self-regulation intervention techniques that are effective for younger adults may not be effective for older adults.

Key words: Self-efficacy; physical activity; systematic review; older adults; behavior change techniques; meta-analysis.
Introduction

Numerous physical and mental health benefits can be gained for older adults through physical activity [1-5]. Based on this evidence, recommendations have been issued by several national governments proposing that adults over 65 years should engage in at least 150 minutes of moderate intensity physical activity per week [1-3]. Despite this, there is evidence from several national surveys of a decline in the proportions of adults achieving national guidelines with advancing age. For example, a 2008 English national survey showed that only 20% of men and 17% of women aged 65-74 years engaged in 30 minutes of moderate or vigorous physical activity on at least five days a week [6]. This contrasts with 49% of men and 35% of women aged 25 to 34 years who met the recommended level of physical activity. Given the compelling evidence for the benefits of physical activity in older adults, and the generally low level of physical activity in this population, it is important to consider how these levels of physical activity can be increased in the longer term.

There is now strong evidence that interventions can promote increases in physical activity lasting beyond 12 months in adults aged 55 to 70 years [7]. However, it is unclear how the efficacy of such interventions can be enhanced. A promising target for physical activity interventions is self-efficacy, which has been defined as: “the belief in one’s capabilities to organize and execute the courses of action required to produce given attainments” [8]. Theoretically, those people who are high in self-efficacy regarding their capacity to be more active are more likely to initiate increases in physical activity and sustain attempts to maintain these increases in the face of obstacles and setbacks [8].
A recent major review of systematic reviews of correlates of physical activity identified self-efficacy as one of the most consistent predictors of physical activity in adults in general [9]. Despite this, the evidence that self-efficacy is a determinant [10] or mediator [11] or cause [12] of changes in adult physical activity is still not entirely compelling, at least partly because the studies needed to provide such evidence have not been conducted. Nevertheless, a review restricted to studies with a mean sample age of 50 years or above identified self-efficacy as one of the most intensively studied and consistent predictors of initiation and maintenance of physical activity in this age range [13]. There is also evidence from a longitudinal survey that there is a stronger association between self-efficacy and physical activity behavior in older adults than younger adults [14].

Previous systematic reviews have identified how best to increase self-efficacy for physical activity. These reviews have been conducted with non-clinical adult populations under the age of 60 years [15] and in obese populations of any age [16]. They have identified which behavior change techniques (BCTs) were most strongly associated with changes in physical activity self-efficacy and behavior following interventions. For example, within interventions targeting non-clinical adult populations below the age of 60 years [15], those techniques associated with the largest increases in physical activity self-efficacy were also associated with the largest increases in physical activity (r=0.69). For example, those interventions that included the technique of “action planning”, where people are promoted to form detailed plans of when, in which situation and/or where to act, produced a mean change in self-efficacy of d=0.49 and in physical activity of d=0.38. Those interventions which did not include this technique produced mean changes of d=0.11 in self-efficacy and d=0.16 in physical activity.
To date however, no systematic review has been conducted to identify which BCTs are associated with changes in self-efficacy and physical activity in non-clinical samples of older adults (60 years or above). The aim of the present study was therefore to conduct such a review using similar methods as were employed in the earlier reviews with different populations. Non-clinical samples only were included, as samples based on specific clinical populations, e.g. arthritis or cancer, were thought likely to have barriers to physical activity that were condition-specific, making it less sensible to aggregate such samples than non-clinical samples who would be expected to be more homogeneous.

Specific objectives of this study were: (i) To identify which BCTs were associated with changes in self-efficacy for physical activity in non-clinical samples of older adults (60 years or above), (ii) To identify which BCTs were associated with changes in physical activity behavior in this population, and (iii) To assess the extent to which those BCTs that were associated with changes in self-efficacy were also associated with changes in physical activity

Methods

Inclusion criteria

Eligible studies were required to include community dwelling samples of older adults (mean age ≥60 years old) that were not defined by a clinical condition. Eligible studies were those reporting on a change in self-efficacy following an intervention to increase frequency or duration of lifestyle or recreational physical activity. Interventions focussing on improving competitive sports performance or performance on walking tests were excluded. Included study designs were randomised controlled trials, non-randomised controlled trials, or studies
with a pre-post design. Authors were contacted when further information was required to clearly determine study eligibility. Only English language articles were included.

Search method

Searches were conducted using the Scopus and PsycInfo electronic databases in April 2012. Appendix 1 displays the full search strategy used which included keywords relating to self-efficacy, physical activity, and study design terms. In addition to initial database searches, forward and backward citation searches were conducted, and the database searches were updated in November 2013. See Appendix 2 for a flowchart illustrating the review process.

Data extraction

Study and intervention characteristics, sample sizes, means and standard deviations of relevant outcomes (i.e. physical activity self-efficacy, and physical activity behavior measures) were extracted by the second author. Intervention descriptions were taken from the primary studies, and from other papers describing the same studies where available. Descriptions were double coded using the standardised CALO-RE taxonomy [17]. This standardised taxonomy was a refined version of an earlier taxonomy developed by Abraham and Michie [18]. The CALO-RE taxonomy was developed to identify theory-linked BCTs within physical activity or healthy eating interventions and contains established standardised definitions of 40 different BCTs, listed in Appendix 3. Inter-rater reliability assessed by chance-corrected kappa was $k=0.65$, indicating “substantial” agreement according to conventional criteria [19]. All disagreements were resolved via discussion between coders.

Data analysis

Cohen’s d (standardised mean difference) effect sizes [20] were calculated for change in self-efficacy in each study, and change in physical activity behavior where available. Meta-
analyses were conducted separately for self-efficacy and physical activity using a random-effects model, with weighting by sample size, computed with Schwarzer’s Meta computer program [21]. Random effects models assume that effect size estimates can vary across studies because of real differences in treatment effect, as well as due to chance alone [75]: this is the most reasonable assumption when examining the effects of a varied group of interventions. Effects size estimates were calculated for all experimental groups within each study. Where studies reported post-intervention measures at multiple time points, the earliest post-intervention measure was used in line with the assumption that this would indicate the largest effect attributable to the intervention.

Testing for moderators, even when no significant heterogeneity is present, has been advocated as providing testing of theory and a better route to understanding of a literature, and the approach taken in the present study has been endorsed as the simplest approach [79]. Thus, moderator analyses with pairwise Z tests compared self-efficacy effect sizes for groups of studies characterised by the presence or absence of each BCT in turn. Further moderator analyses were then conducted for physical activity effect sizes. Moderator analyses were not conducted for those BCTs that were not coded as present in only one or no intervention group (listed at end of table 2).

Spearman’s Rho correlation coefficient was used to assess whether change in physical activity self-efficacy was associated with change in physical activity behavior across studies.

Results

The electronic search identified 5547 potential publications, of which 773 were retrieved for full text examination (some of these were retrieved with the intention of identifying studies
with an obese sample [16] as well as an older adult sample). A total of 25 comparisons based on 24 unique studies provided usable data on changes in self-efficacy data [22-57,70-74] and were included. Of these 25 comparisons, 20 were from randomised controlled trials, one was a non-randomized controlled trial, and four were pre-post designs. Of these, 16 unique studies provided usable data on changes in physical activity [22-28, 38-41, 44-49, 53-57, 70-71, 73-74].

Study and participant characteristics

The mean number of participants in the comparisons included in the self-efficacy analysis was 247 (range 5 to 1011); the mean number included in the physical activity analysis was 349, as the smaller studies tended to report self-efficacy only. The overall mean age of participants was 69 years (study means ranged from 60 to 84 years), with 76% female and 61% white for those samples that reported this information. Details of each included study are given in Appendix 4.

Intervention characteristics

An explicit theoretical basis was mentioned for 18 of 25 comparisons included, with the most frequent being Social Cognitive Theory [8] (see table 1). Interventions were most commonly delivered face-to-face by a nurse or general practitioner or a health and fitness professional to groups in a community centre. Most commonly, the interventions aimed to increase lifestyle physical activity, such as walking.

A mean of 7.6 (SD = 4.1) BCTs were identified for the 25 interventions included in the self-efficacy analysis. The control group interventions had a mean of 0.28 BCTs (SD = 1.0). The most commonly used BCTs were “prompt practice”, and “provide instruction on how to
perform the behavior”, with 11 of the 40 BCTs in the CALO-RE taxonomy not included in any study included (see table 2).

Changes in self-efficacy

For the analysis of change in self-efficacy, 25 comparisons were included, indicating a small to medium sized effect of the interventions on self-efficacy ($d=0.37$, 95% confidence intervals (CI): 0.22 to 0.52, $p<0.001$). A greater variability in effect size estimates existed than could be explained by random sampling error alone ($Q=153.3$, $p<0.001$). The amount of variance attributable to sampling error was 35%. Effect sizes for self-efficacy ranged from $d=-0.42$ [70] to $d=1.78$ [71].

In total, 25 moderator analyses were conducted to investigate differences in self-efficacy according to presence or absence of BCTs (see table 2). Six BCTs were significantly associated with higher self-efficacy effect sizes when present. The greatest difference in effect size occurred when the following techniques were present: “set graded tasks”, “prompt self-monitoring of behavioral outcome”, “provide information on where and when to perform the behavior” and “motivational interviewing” (see table 2). Eleven BCTs were significantly associated with lower self-efficacy effect sizes when present. The greatest difference in effect size occurred when the following techniques were present: “goal setting (behavior)”, “prompt self-monitoring of behavior”, “plan social support/social change”, and “relapse prevention/coping planning”.

Changes in physical activity

The interventions had an effect on physical activity that was small in size ($d=0.14$, 95% CI: 0.09 to 0.20, $p<0.001$), based on 16 comparisons. A greater variability in effect size estimates existed than could be explained by random sampling error alone ($Q=33.7$, $p<0.01$),
although all variance could be explained by sampling error alone. Effect sizes ranged from $d = -0.02$ [28] to $d = 0.63$ [22].

In total, 23 moderator analyses were conducted to investigate differences in physical activity according to presence or absence of BCTs (see table 2). Three BCTs were significantly associated with higher physical activity behavior effect sizes when present: “barrier identification/ problem solving”, “provide rewards contingent on successful behavior” and “model/ demonstrate the behavior” (see table 2). Ten BCTs were significantly associated with lower physical activity behavior effect sizes when present. The greatest difference in effect size occurred when the following BCTs were present: “provide normative information about others’ behavior”, “provide information on where and when to perform behavior”, and “plan social support/ social change”.

Comparison of techniques associated with self-efficacy and physical activity

A positive but non-significant relationship of medium size was found between the change in self-efficacy and change in physical activity across the 16 comparisons for which full data was available (Spearman’s Rho = 0.439, p = 0.089).

Of the 23 BCTs included in both moderator analyses, none were associated with significantly larger effect sizes for both self-efficacy and physical activity. However, of the ten BCTs that were associated with smaller effect sizes for physical activity, six were also associated with smaller effect sizes for self-efficacy: “provide normative information about others’ behavior”, “goal setting (behavior)”, “prompt self-monitoring of behavior”, “provide feedback on performance”, “plan social support/ social change”, and “relapse prevention/ coping planning”.
Discussion

The interventions included produced changes with the following overall effect sizes: \(d=0.37\) for self-efficacy and \(d=0.14\) for physical activity. Despite this, only six BCTs were associated with higher self-efficacy effect sizes when included, and only three BCTs were associated with higher physical activity effect sizes. By contrast, eleven BCTs were associated with lower self-efficacy effect sizes when included, and ten BCTs were associated with lower physical activity effect sizes when included. Of these, six BCTs were associated with both lower self-efficacy and lower physical activity effect sizes when included: “plan social support/ social change” (promoting a person to plan how to elicit social support to help him/her achieve their target behavior), “provide normative information about others’ behavior” (providing information about what other people are doing), “goal setting (behavior)” (encouraging a person to make a behavioral resolution), “relapse prevention/coping planning” (prompting a person to identify in advance situations where their new behavior may not be maintained and develop strategies to avoid or manage those situations), “provide feedback on performance” (providing a person with recorded data about their own behavior), and “prompt self-monitoring of behavior” (the person is asked to keep a record of a specified behavior as a method of change behavior, not for research purposes).

Strengths and weakness of study

This study has several strengths, mainly due to the use of robust systematic review methodology, thereby limiting bias in identifying, selecting and analysing relevant studies at each stage of the review process. The present study also has the advantage of using the same methods as two previous reviews examining which BCTs are associated with change in self-efficacy and physical activity in intervention studies [15, 16]. Importantly it used the same
CALO-RE taxonomy [17] to reliably code intervention contents, making the results of the present review directly comparable with these previous reviews.

The review also has several limitations, which indicate caution when interpreting the results. Firstly, a review is limited by the primary studies that are eligible for inclusion. The limited number of studies identified made it less sensible to perform more complex analyses than those reported here, e.g. meta-regression, as such analyses would have low power. Second, BCTs clearly cannot be coded when the reports of intervention studies do not adequately report intervention contents, although we should note that this is a common problem in conducting reviews such as these [58,59], and that the reports were reliably coded by two independent raters.

In relation to the methods of the review itself, there were 25 moderator analyses conducted to examine which BCTs were related to self-efficacy, and 23 moderator analyses conducted to examine which BCTs were related to physical activity. Consequently, it is entirely possible that some of the associations between BCTs and both self-efficacy and physical activity were entirely due to chance. It is also entirely possible that some of the associations identified were due to confounding variables such as characteristics of population, or intervention characteristics other than BCTs included, such as how well the BCTs were delivered. For example, another review found that the extent dropout of HIV patients from included trials was associated with both the number of intervention BCTs and the study effect sizes [76]. Further, BCTs are usually delivered in combinations, and the analyses reported do not take into account any clustering of BCTs. Thus, ineffective BCTs that appear in interventions with effective BCTs may appear effective simply due to this co-occurrence.

Despite all these limitations noted, to refrain from conducting such reviews due to the limitations noted above would be in effect to write off the existing literature as not being able
to teach us anything. A more balanced position is to conduct such reviews, but to use caution in their interpretation. The value of this review lies primarily in describing regularities in the literature as it currently exists, and generating hypotheses based on these regularities (described below). Ultimately, the validity of this approach will be borne out or not by direct empirical testing of the hypotheses generated, which suggest several novel directions for research on physical activity interventions in older people.

Relationship with other relevant literature

The contrast with the findings of other similar reviews is fairly stark. Most notably, a previous review [59] focussed on both healthy eating and physical activity found that interventions containing self-monitoring and one of four other BCTs consistent with control theory [60] or other self-regulation approaches were associated with larger changes in physical activity and healthy eating. These approaches propose that much behavior is goal oriented and people self-regulate their behavior to achieve these goals, through a feedback loop involving setting goals, identifying discrepancies between goals and current status based on feedback, and making plans to reduce these discrepancies [60]. Similar findings have been produced by previous reviews focussing on the association of BCTs and physical activity self-efficacy and behavior [15,16]. By contrast, in the present review, BCTs involved in self-regulation were associated with lower levels of both self-efficacy and physical activity. Specifically, BCTs associated with lower self-efficacy and physical activity involved setting behavioral goals, self-monitoring, receiving feedback on the behavior of self or others, and planning social support or making plans to cope with future relapses.

There are several possible explanations for why the results of the present review and previous reviews with different populations might differ. These include differences in scope, such as
the inclusion of healthy eating in one previous review [59] and the presence of opposing spurious associations due to chance in other reviews [15,16]. However, explanations of most substantive interest focus on the present review including studies involving older adults, which may render interventions based on self-regulatory or planning principles less effective. These explanations concern older people finding self-regulatory BCTs either more cognitively difficult, or less acceptable.

There is a good deal of evidence that as adults age, they show decreases in executive functioning [61]. Executive functioning refers to higher-order cognitive processes involved in the control and instigation of thoughts and behaviors that require effort, including planning, sequencing of actions, attentional capacity, inhibition of habitual responses, or novel actions [62]. Of particular relevance here, there is evidence that the size of the “gap” between intentions and behavior [63] can be predicted by measures of executive control [64]. Further, the ability to form and implement intentions [65,66] is a key component of executive control, and those people low in this ability spontaneously produce poorer implementation intentions, than those higher in such ability [67, study one].

The previous evidence suggests the hypothesis that older adults, who tend to have poorer executive functioning, may derive less benefit from BCTs which involve goal setting, receiving feedback on performance, and planning how to elicit social support or overcome barriers. It should be noted that there is empirical evidence that those who are lower in ability benefit most from planning interventions such as forming implementation intentions (similar to action plans) [67, study two]. However, it should be noted that in this study, poor planners who formed implementation intentions still were less successful at enacting their intentions than good planners who were not asked to form implementation intentions [67]. Thus, although older adults (who have reduced executive control) may derive benefit from
self-regulatory interventions, they would be expected to derive less benefit than younger adults.

It is also possible that interventions based on self-regulatory or planning principles are less effective with older adults than younger adults because they are less acceptable. Many of these BCTs are concerned with finding ways to fit in physical activity, in the face of competing demands from work or family. That is, such techniques are effective at translating motivation into action [66]. Competing demands on time may, however, be less of an issue for many older people, as reflected in the stronger relationship between physical activity intentions and behavior in older people [68]. For older people, it may be simply that the motivation to increase physical activity is lacking. There is now a wealth of evidence that in later life, life goals and motivations become more focussed on maximising meaning and positive emotions, and less concerned with delayed future payoffs, such as improving health [77].

BCTs such as prompting self-monitoring and receiving feedback are essentially concerned with reaching a particular level of performance with regard to physical activity. It may be that such achievements are not particularly salient for many older people, who may be more concerned with enjoyable activities, and/ or those that involve social activities [78]. Relatedly, it may be that, as many older people are fairly inactive and hence in poor cardiovascular condition, interventions involving identifying current levels of physical activity or receiving normative feedback may be demoralising, as this may involve becoming more aware of current low levels of actual efficacy with regard to physical activity. It is also possible that, if BCTs involving planning are cognitively difficult for many older adults, they are unacceptable for this reason.

Implications
The main implication of the present research is that caution is needed in applying BCTs that are generally effective at increasing physical activity in younger and middle-aged adults, especially those involving planning or other forms of self-regulation. It is important to note, however, that the interventions as a whole were successful at increasing self-efficacy and physical activity generally, albeit with small effect sizes. In the present sample, the BCT involving self-monitoring of a behavioral outcome involved heart-rate monitoring, and was associated with higher levels of self-efficacy. This is in line with the contention of social cognitive theory that physiological feedback can increase self-efficacy: when participants see that they can increase their physical activity and raise heart-rate without adverse effects, they appear to be more confident about doing so. Similarly, seeing a similar other modelling the behavior was associated with increased physical activity. This may reflect the generally good efficacy of walking groups at increasing physical activity [69], including those in the present review [38].

The present review has flagged up several important issues that warrant further research. First, there is a need for more research on what exactly older adults want from physical activity interventions. It may be that as a whole, older adults are not interested in the instrumental benefits of physical activity per se, but instead in other benefits, such as participating in enjoyable and sociable activities. There is also a dearth of information on how acceptable commonly-used BCTs are for older people: it may be that self-regulatory BCTs are too complex for declining executive functioning or otherwise do not appeal. Consequently, there is a need for future research to assess the association between executive functioning and capacity to effectively use BCTs involving planning, as well as qualitative research to assess acceptability of BCTs in older adults. There is also a need to examine the relationship between executive control and self-efficacy with regard to physical activity: it is
currently not clear whether these constructs are related, and if they are, the extent to which one causes the other.

It is also important for experimental studies to systematically consider the effectiveness for older people of self-regulatory techniques that have demonstrated utility in younger samples. Further consideration of the role of executive functioning in the success of planning or other self-regulatory techniques in older adults also seems warranted. If future research indicates that executive functioning is an important determinant of capacity to use planning BCTs, a position for which there is some evidence [67], then there is a need for further development of common BCTs that reduce the demands on executive function, or those elements of cognition, such as prospective memory, that are most impaired due to aging.

Conclusion

The findings of the present research indicate that many BCTs that are effective at increasing the physical activity of younger adults may not be effective for older adults. Future experimental research should consider whether this finding is spurious or real, and if real, to identify whether such BCTs are too cognitively complex or simply not acceptable. Generally, there is a need for research to systematically elicit what is acceptable and what is unacceptable to older adults about interventions to increase physical activity, including identifying effective BCTs that this population would find acceptable.

References

2. UK Department of Health, Start active, stay active. A report on physical activity for health from our four home countries' Chief Medical Officer. UK Department of Health London; 2011.

15. Williams SL, French DP. What are the most effective intervention techniques for changing physical activity self-efficacy and physical activity behaviour-and are they the same? Health Educ Res. 2011; 26:308-322.

19. Landis JR, Koch GG. Measurement of observer agreement for categorical data.
 Biometrics. 1977; 33:159-174.

22. Aree-Ue S, Pothiban L, Belza B, Sucamvang K, Panuthai S. Osteoporosis preventive
 behavior in Thai older adults: feasibility and acceptability. J Gerontol Nurs. 2006;

 maintenance of physical activity with older adults: A randomized controlled trial. J

24. Clark DO, Stump TE, Damush TM. Outcomes of an exercise program for older

25. Connell CM, Janevic MR. Effects of a Telephone-Based Exercise Intervention for
 Dementia Caregiving Wives: A Randomized Controlled Trial. J Appl Gerontol. 2009;
 28:171-194.

 intervention for changing exercise intentions and behavior in older adults.

27. Clark PG, Rossi JS, Greaney ML, et al. Intervening on exercise and nutrition in older

28. Clark PG, Nigg CR, Greene G, Riebe D, Saunders SD. Study of Exercise and
 Nutrition in Older Rhode Islanders (SENIOR): Translating theory into research.

76. Peters GJY, de Bruin M, Crutzen R (in press). Everything should be as simple as possible, but no simpler: towards a protocol for accumulating evidence regarding the active content of health behaviour change interventions. Health Psychol Rev. DOI: 10.1080/17437199.2013.848409.

Table one – summary of intervention characteristics for studies included in self-efficacy analysis

<table>
<thead>
<tr>
<th>Intervention characteristics</th>
<th>Frequencies for self-efficacy analysis (k=25)</th>
<th>Frequencies for physical activity analysis (k=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical basis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical basis explicitly mentioned</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Some theory mentioned</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>No theoretical basis explicitly mentioned</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Social Cognitive Theory</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Transtheoretical Model</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Type of self-efficacy measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrier self-efficacy</td>
<td>14</td>
<td>N/A</td>
</tr>
<tr>
<td>Task self-efficacy</td>
<td>7</td>
<td>N/A</td>
</tr>
<tr>
<td>Combined barrier and task self-efficacy</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Other/unclear</td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>Type of activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Individual</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Unclear</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Intervention focus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifestyle physical activity (e.g. gardening, walking etc)</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Exercise (e.g. aerobics class, gym, jogging)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Unclear</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Delivered by

<table>
<thead>
<tr>
<th>Deliverer</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurse or GP</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Health and fitness professional</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Researcher</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Peers</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Not stated</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Not applicable</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>9</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Centre</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Participants home</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>GP Surgery/Hospital</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Unclear</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Delivery mode

<table>
<thead>
<tr>
<th>Delivery mode</th>
<th>18</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face-to-face</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Web-based</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Telephone</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not stated</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table two: Comparison between mean effect sizes for self-efficacy and physical activity behavior, according to whether specific BCTs are included in the intervention or whether they are not

<table>
<thead>
<tr>
<th>Technique</th>
<th>Self-efficacy</th>
<th>Physical Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
<td>Not present</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>k</td>
</tr>
<tr>
<td>1. Provide information on consequences of behavior in general</td>
<td>3311</td>
<td>15</td>
</tr>
<tr>
<td>2. Provide information on consequences of behavior for the individual</td>
<td>2629</td>
<td>7</td>
</tr>
<tr>
<td>4. Provide normative information about others’ behavior</td>
<td>2975</td>
<td>4</td>
</tr>
<tr>
<td>5. Goal setting (behavior)</td>
<td>3334</td>
<td>12</td>
</tr>
<tr>
<td>7. Action planning</td>
<td>4058</td>
<td>9</td>
</tr>
<tr>
<td>8. Barrier Identification/Problem solving</td>
<td>1601</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9. Set graded tasks</td>
<td>449</td>
<td>5</td>
</tr>
<tr>
<td>10. Prompt review of behavioral goals</td>
<td>981</td>
<td>6</td>
</tr>
<tr>
<td>12. Provide rewards contingent on effort or progress towards behavior</td>
<td>463</td>
<td>3</td>
</tr>
<tr>
<td>13. Provide rewards contingent on successful behavior</td>
<td>696</td>
<td>3</td>
</tr>
<tr>
<td>15. Prompt generalisation of a target behavior</td>
<td>106</td>
<td>2</td>
</tr>
<tr>
<td>16. Prompt self-monitoring of behavior</td>
<td>3493</td>
<td>12</td>
</tr>
<tr>
<td>17. Prompt self-monitoring of behavioral outcome</td>
<td>820</td>
<td>6</td>
</tr>
<tr>
<td>18. Prompting focus on past success</td>
<td>384</td>
<td>3</td>
</tr>
<tr>
<td>19. Provide feedback on performance</td>
<td>3625</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20. Provide information on where and when to perform the behavior</td>
<td>1987</td>
<td>3</td>
</tr>
<tr>
<td>21. Provide instruction on how to perform the behavior</td>
<td>4330</td>
<td>17</td>
</tr>
<tr>
<td>22. Model/demonstrate the behavior</td>
<td>1929</td>
<td>12</td>
</tr>
<tr>
<td>26. Prompt practice</td>
<td>5326</td>
<td>19</td>
</tr>
<tr>
<td>27. Use of follow up prompts</td>
<td>439</td>
<td>2</td>
</tr>
<tr>
<td>29. Plan social support/social change</td>
<td>3750</td>
<td>11</td>
</tr>
<tr>
<td>34. Prompt use of imagery</td>
<td>91</td>
<td>2</td>
</tr>
<tr>
<td>35. Relapse prevention/coping planning</td>
<td>2087</td>
<td>4</td>
</tr>
<tr>
<td>36. Stress Management/emotional control training</td>
<td>537</td>
<td>3</td>
</tr>
</tbody>
</table>
Motivational interviewing

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37. Motivational interviewing</td>
<td>1103</td>
<td>2</td>
<td>0.684</td>
<td>5071</td>
<td>23</td>
<td>0.337</td>
<td>5.049***</td>
<td>1103</td>
<td>2</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01, ***p<0.001.

BCTs were not included in moderator analyses if they were not coded as present at all (3: “provide information about others’ approval; 6: “goal setting (outcome)”); 11: “prompt review of behavioral goals”; 14: “shaping”; 23: “teach to use prompts/ cues”; 24: “environmental restructuring”; 31: “prompt anticipated regret”; 32: “fear arousal”; 33: “prompt self-talk”; 38: “time management”; 40: “stimulate anticipation of future rewards”) or on only one occasion (25: “agree behavioral contract”; 28: “facilitate social comparison”; 30 “prompt identification as role model/ position advocate” 39: “general communication skills training”)

Appendix one – search strategy

Scopus (1960 – 2013): Terms in title, abstract or keyword

Self-efficacy or Bandura or social cognitive theory
OR
Theory of planned behaviour or theory of planned behavior or theory of reasoned action or perceived behavioural control or perceived behavioral control
AND
Clinica* tria* or Randomised controlled trial* or Randomized controlled trial* or Blind or Controlled clinical trial or Mask or Random allocation or Double blind method or Intervention or Evaluation or Progra* or Follow-up study or Experiment
AND
Physical activity or exercise or fitness or exertion

PsycInfo (1966-2013): Search terms

Self-efficacy or Bandura or social cognitive theory
OR
Theory of planned behaviour or theory of planned behavior or theory of reasoned action or perceived behavioural control or perceived behavioral control
AND
Clinica* tria* or Randomised controlled trial or Randomized controlled trial or Blind or Controlled clinical trial or Mask or Random allocation or Double blind method or Intervention or Evaluation or Progra* or Follow-up study or Experiment
AND
Physical activity or exercise or sport or fitness
Appendix two – flowchart listing the number of articles retrieved, and numbers included and excluded at each stage of the review process.

Potentially relevant publications identified and screened for retrieval ($N = 5,547$)

- Publications excluded on the basis of duplication ($N = 654$)
- Publications excluded because they did not meet inclusion criteria. Excluded on the basis of title or abstract ($N = 4,120$)

Full text publications retrieved for more detailed evaluation ($N = 773^a$)

- Publications excluded because they did not meet inclusion criteria ($N = 126$)

Publications to be included in the review ($N = 19$)

Forward and backward search of included publications yielded an additional 5 publications

Papers included in the review ($N = 24$) – reporting 25 comparisons

aThis number includes studies, some of which were retrieved with the intention of identifying studies with an obese sample as well as an older adult sample in the first search in April 2012.
Appendix three – brief definitions of Behavior Change Techniques in the Coventry- Aberdeen—London—Revised (CALO-RE) taxonomy [17]

1. Provide information on consequences of behaviour in general
Information about the relationship between the behaviour and its possible or likely consequences in the general case.

2. Provide information on consequences of behaviour to the individual
Information about the benefits and costs of action or inaction to the individual or tailored to a relevant group based on that individual’s characteristics.

3. Provide information about others’ approval
Involves information about what other people think about the target person’s behaviour. It clarifies whether others will like, approve or disapprove of what the person is doing or will do.

4. Provide normative information about others’ behaviour
Involves providing information about what other people are doing, i.e., indicates that a particular behaviour or sequence of behaviours is common or uncommon amongst the population or amongst a specified group.

5. Goal setting (behaviour)
The person is encouraged to make a behavioural resolution (e.g. take more exercise next week). This is directed towards encouraging people to decide to change or maintain change, but does not involve planning exactly how the behaviour will be done and either when or where the behaviour or action sequence will be performed.

6. Goal setting (outcome)
The person is encouraged to set a general goal that can be achieved by behavioural means but is not defined in terms of behaviour (e.g. to reduce blood pressure or lose/maintain weight), as opposed to a goal based on changing behaviour as such.

7. Action planning
Involves detailed planning of what the person will do including, as a minimum, when, in which situation and/or where to act.

8. Barrier identification/Problem solving
This presumes having formed an initial plan to change behaviour. The person is prompted to think about potential barriers and identify ways of overcoming them.

9. Set graded tasks
Breaking down the target behaviour into smaller easier to achieve tasks and enabling the person to build on small successes to achieve target behaviour. This may include increments towards a target behaviour, or incremental increases from baseline behaviour.

10. Prompt review of behavioural goals
Involves a review or analysis of the extent to which previously set **behavioural** goals (e.g. take more exercise next week) were achieved.

11. **Prompt review of outcome goals**
Involves a review or analysis of the extent to which previously set **outcome** goals (e.g. to reduce blood pressure or lose/maintain weight) were achieved.

12. **Prompt rewards contingent on effort or progress towards behaviour**
Involves the person using praise or rewards for attempts at achieving a behavioural goal. This might include efforts made towards achieving the behaviour, or progress made in preparatory steps towards the behaviour, but not merely participation in intervention.

13. **Provide rewards contingent on successful behaviour**
Reinforcing successful performance of the specific target behaviour. This can include praise and encouragement as well as material rewards but the reward/incentive must be explicitly linked to the achievement of the specific target behaviour.

14. **Shaping**
Contingent rewards are first provided for any approximation to the target behaviour e.g., for any increase in physical activity.

15. **Prompting generalization of a target behaviour**
Once a behaviour is performed in a particular situation, the person is encouraged or helped to try it in another situation.

16. **Prompt self-monitoring of behaviour**
The person is asked to keep a record of specified behaviour/s as a method for changing behaviour. This should be an explicitly stated intervention component, as opposed to occurring as part of completing measures for research purposes.

17. **Prompt self-monitoring of behavioural outcome**
The person is asked to keep a record of specified measures expected to be influenced by the behaviour change, e.g. blood pressure, blood glucose, weight loss, physical fitness. **NB** It must be reported as part of the intervention, rather than only as an outcome measure.

18. **Prompting focus on past success**
Involves instructing the person to think about or list previous successes in performing the behaviour (or parts of it).

19. **Provide feedback on performance**
This involves providing the participant with data about their own recorded behaviour.

20. **Provide information on where and when to perform the behaviour**
Involves telling the person about when and where they might be able to perform the behaviour this e.g. tips on places and times participants can access local exercise classes.

21. **Provide instruction on how to perform the behaviour**
Involves **telling** the person **how** to perform a behaviour or preparatory behaviours, either verbally or in written form. Examples of instructions include; how to use gym equipment (without getting on and showing the participant), instruction on suitable clothing, and tips on how to take action.
22. **Model/ Demonstrate the behaviour**
Involves *showing* the person how to perform a behaviour e.g., through physical or visual demonstrations of behavioural performance, in person or remotely.

23. **Teach to use prompts/ cues**
The person is taught to identify environmental prompts which can be used to *remind* them to perform the behaviour (or to perform an alternative, incompatible behaviour in the case of behaviours to be reduced).

24. **Environmental restructuring**
The person is prompted to alter the environment in ways so that it is more *supportive* of the target behaviour e.g. altering cues or reinforcers.

25. **Agree behavioural contract**
Must involve written agreement on the performance of an explicitly specified behaviour so that there is a written record of the person’s resolution witnessed by another.

26. **Prompt practice**
Prompt the person to rehearse and repeat the behaviour or preparatory behaviours numerous times. Note this will also include parts of the behaviour e.g., refusal skills in relation to unhealthy snacks.

27. **Use of follow up prompts**
Intervention components are gradually reduced in intensity, duration and frequency over time, e.g. letters or telephone calls instead of face to face and/or provided at longer time intervals.

28. **Facilitate social comparison**
Involves explicitly drawing attention to others’ performance to elicit comparisons. **NB** The fact the intervention takes place in a group setting, or have been placed in groups on the basis of shared characteristics, does not necessarily mean social comparison is actually taking place.

29. **Plan social support/ social change**
Involves prompting the person to plan how to elicit social support from other people to help him/her achieve their target behaviour/ outcome.

30. **Prompt identification as role model/ position advocate**
Involves focusing on how the person may be an example to others and affect their behaviour e.g., being a good example to children.

31. **Prompt anticipated regret**
Involves inducing expectations of future regret about the performance or non-performance of a behaviour. This includes focusing on how the person will *feel* in the future and specifically whether they will feel regret or feel sorry that they did or did not take a different course of action.

32. **Fear Arousal**
Involves presentation of risk and/or mortality information relevant to the behaviour as emotive images designed to evoke a fearful response (e.g., “smoking kills!” or images of the grim reaper).
33. **Prompt Self talk**
Encourage the person to use talk to themselves (aloud or silently) before and during planned behaviours to encourage, support and maintain action.

34. **Prompt use of imagery**
Teach the person to imagine successfully performing the behaviour or to imagine finding it easy to perform the behaviour, including component or easy versions of the behaviour.

35. **Relapse prevention/Coping planning**
This relates to planning how to maintain behaviour that has been changed. The person is prompted to identify in advance situations in which the changed behaviour may not be maintained and develop strategies to avoid or manage those situations.

36. **Stress management/Emotional control training**
This is a set of specific techniques (e.g., progressive relaxation) which do not target the behaviour directly but seek to reduce anxiety and stress to facilitate the performance of the behaviour.

37. **Motivational interviewing**
This is a clinical method including a specific set of techniques involving prompting the person to engage in change talk in order to minimize resistance and resolve ambivalence to change (includes motivational counselling).

38. **Time management**
This includes any technique designed to teach a person how to manage their time in order to make time for the behaviour. These techniques are not directed towards performance of target behaviour but rather seek to facilitate it by freeing up times when it could be performed.

39. **General communication skills training**
This includes any technique directed at general communication skills but not directed towards a particular behaviour change.

40. **Stimulate anticipation of future rewards**
Create anticipation of future rewards without necessarily reinforcing behaviour throughout the active period of the intervention.
Appendix four – Summary of included studies, calculated effect sizes and study characteristics

<table>
<thead>
<tr>
<th>Authors</th>
<th>Effect size (SE)</th>
<th>Effect size (PA)</th>
<th>Theoretical basis</th>
<th>Main theory used</th>
<th>Type of self-efficacy measured</th>
<th>Intervention type</th>
<th>Intervention focus</th>
<th>Intervention primarily delivered by</th>
<th>Setting</th>
<th>Delivery mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al, 2013</td>
<td>-.42</td>
<td>.29</td>
<td>Explicitly mentioned</td>
<td>Other</td>
<td>Barrier</td>
<td>Group</td>
<td>Exercise</td>
<td>Researcher</td>
<td>Community Center</td>
<td>Discussion group</td>
</tr>
<tr>
<td>Aree-Ue et al, 2006</td>
<td>.51</td>
<td>.63</td>
<td>Explicitly mentioned</td>
<td>SCT</td>
<td>Task</td>
<td>Group</td>
<td>Lifestyle</td>
<td>Not stated</td>
<td>Unclear</td>
<td>Training session</td>
</tr>
<tr>
<td>Buman et al, 2011</td>
<td>-.07</td>
<td>.17</td>
<td>Explicitly mentioned</td>
<td>SCT</td>
<td>Combined</td>
<td>Group</td>
<td>Lifestyle</td>
<td>Peers</td>
<td>Fitness Center</td>
<td>Discussion group</td>
</tr>
<tr>
<td>Clark et al, 2003</td>
<td>.72</td>
<td>.35</td>
<td>Some theory cited</td>
<td>SCT</td>
<td>Barrier</td>
<td>Group</td>
<td>Lifestyle</td>
<td>Researcher</td>
<td>Community Center</td>
<td>Training session</td>
</tr>
<tr>
<td>Connell et al, 2009</td>
<td>.47</td>
<td>.52</td>
<td>Explicitly mentioned</td>
<td>SCT</td>
<td>Barrier</td>
<td>Individual</td>
<td>Exercise</td>
<td>Other</td>
<td>Participants home</td>
<td>Telephone</td>
</tr>
<tr>
<td>Dattilo et al, 2013</td>
<td>1.78</td>
<td>.55</td>
<td>No theory cited</td>
<td>Not stated</td>
<td>Barrier</td>
<td>Group</td>
<td>Lifestyle</td>
<td>Researcher</td>
<td>Community Center</td>
<td>Discussion group</td>
</tr>
<tr>
<td>Dye et al,</td>
<td>.28</td>
<td>N/A</td>
<td>No theory</td>
<td>Not</td>
<td>Task</td>
<td>Group</td>
<td>Exercise</td>
<td>Other</td>
<td>Community</td>
<td>Discussion group</td>
</tr>
<tr>
<td>2012</td>
<td>cited</td>
<td>stated</td>
<td>Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greaney et al, 2008</td>
<td>.83</td>
<td>-.02</td>
<td>TTM Barrier Individual Exercise Other Participants home Telephone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irvine et al, 2013</td>
<td>.23</td>
<td>.35</td>
<td>Other Task Individual Exercise Not applicable Participants home Web-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>King et al, 2000</td>
<td>.38</td>
<td>N/A</td>
<td>SCT Task Group Exercise Health and fitness professional Community center Training session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al, 2001</td>
<td>1.02</td>
<td>N/A</td>
<td>SCT Barrier Group Exercise Health and fitness professional Unclear Training session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McAuley et al, 1999</td>
<td>.71</td>
<td>N/A</td>
<td>SCT Task Group Lifestyle Health and fitness professional University Training session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McAuley et al, 2011</td>
<td>.26</td>
<td>N/A</td>
<td>SCT Task Group Lifestyle Health and fitness professional Unclear Training session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael & Carlson, 2009</td>
<td>.15</td>
<td>.42</td>
<td>Other Barrier Group Lifestyle Health and fitness professional Unclear Training session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nahm et al, 2011</td>
<td>.19</td>
<td>.16</td>
<td>SCT Unclear Individual Unclear Nurse Unclear Web-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Effect Size</td>
<td>Theory Cited</td>
<td>Theory Mentioned</td>
<td>Stage</td>
<td>Group(s)</td>
<td>Setting</td>
<td>Intervention Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>al, 2010</td>
<td></td>
</tr>
<tr>
<td>Petrella et al, 2003</td>
<td>.78</td>
<td>N/A</td>
<td>No theory cited</td>
<td>Not stated</td>
<td>Individual</td>
<td>Lifestyle</td>
<td>GP</td>
<td>GP/hospital</td>
<td>Training session</td>
<td></td>
</tr>
<tr>
<td>Pinto et al, 2001</td>
<td>.14</td>
<td>.03</td>
<td>Explicitly mentioned</td>
<td>TTM Barrier</td>
<td>Individual</td>
<td>Lifestyle</td>
<td>GP</td>
<td>GP/hospital</td>
<td>Discussion group</td>
<td></td>
</tr>
<tr>
<td>Purath et al., 2013</td>
<td>.04</td>
<td>.03</td>
<td>Explicitly mentioned</td>
<td>Other Barrier</td>
<td>Individual</td>
<td>Exercise</td>
<td>Researcher</td>
<td>GP/hospital</td>
<td>Discussion group</td>
<td></td>
</tr>
<tr>
<td>Qi et al, 2011</td>
<td>.67</td>
<td>.44</td>
<td>Explicitly mentioned</td>
<td>SCT Barrier</td>
<td>Group</td>
<td>Lifestyle</td>
<td>Nurse</td>
<td>Community center</td>
<td>Discussion group</td>
<td></td>
</tr>
<tr>
<td>Resnick et al, 2008</td>
<td>.07</td>
<td>.25</td>
<td>Explicitly mentioned</td>
<td>SCT Barrier</td>
<td>Group</td>
<td>Lifestyle</td>
<td>Not stated</td>
<td>Community center</td>
<td>Training session</td>
<td></td>
</tr>
<tr>
<td>Rose et al, 1992</td>
<td>.24</td>
<td>N/A</td>
<td>Some theory cited</td>
<td>SCT Unclear</td>
<td>Unclear</td>
<td>Lifestyle</td>
<td>Peers</td>
<td>Unclear</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>Shin et al, 2009</td>
<td>.96</td>
<td>N/A</td>
<td>Some theory cited</td>
<td>SCT Task</td>
<td>Group</td>
<td>Exercise</td>
<td>Nurse</td>
<td>Community center</td>
<td>Training session</td>
<td></td>
</tr>
<tr>
<td>Temple et al, 2008</td>
<td>.30</td>
<td>N/A</td>
<td>Explicitly mentioned</td>
<td>SCT Barrier</td>
<td>Group</td>
<td>Exercise</td>
<td>Not stated</td>
<td>Community center</td>
<td>Discussion group</td>
<td></td>
</tr>
<tr>
<td>Van Stralen et</td>
<td>.04</td>
<td>.09</td>
<td>Explicitly mentioned</td>
<td>TTM Barrier</td>
<td>Individual</td>
<td>Lifestyle</td>
<td>Not</td>
<td>Participants home</td>
<td>Web-based</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Size</td>
<td>Mentioned</td>
<td>Theory</td>
<td>Domain</td>
<td>Barrier</td>
<td>Intervention</td>
<td>Setting</td>
<td>Delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>al. 2011 (Basic intervention)</td>
<td></td>
<td>mentioned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Stralen et al. 2011 (Environmental intervention)</td>
<td>.03</td>
<td>.09</td>
<td>Explicitly mentioned</td>
<td>TTM</td>
<td>Barrier</td>
<td>Individual</td>
<td>Lifestyle</td>
<td>Not applicable</td>
<td>Participants home</td>
<td>Web-based</td>
</tr>
</tbody>
</table>