Investigations into the frequency of ‘no-go’ cues in a simple go/no-go paradigm

Lythe KE, Anderson IM, McKie S, Richardson P, Deakin JFW and Elliott R
Neuroscience and Psychiatry Unit karen.lythe@student.manchester.ac.uk

Introduction
• Response inhibition is the ability to suppress pre-potent responses which has been associated with impulsivity
• Prefrontal cortex (PFC) regions are activated in response inhibition tasks
• Questions remain as to whether using a high percentage of no-go cues taps into response inhibition or response selection (i.e. examines responding between two equally frequent cues, rather than examines inhibiting pre-potent responses)

Aims and Hypotheses
• Using fMRI we investigated the effects of frequency of the no-go cues
• We hypothesised there would be no difference in PFC activation

Method
• 18 participants (8 female, 10 male) completed a go/no-go paradigm in a 1.5T scanner
• 108 volumes were acquired with T2*-weighted, gradient echo, EPI
• Each volume was 40 slices with a slice thickness of 3.5mm

Task
• Participants were presented with a series of letters to which they were instructed to respond (‘go’) or not respond (‘no-go’)
• All letters were ‘go’ cues apart from the letter V
• Stimuli appeared every 1.7 seconds in 45 second blocks

Analysis
• Data were analysed using SPM2 with a random effects model

Results
• Significant BOLD responses during both ng50-g and ng30-g conditions were observed in predominantly right prefrontal cortex regions, confirming previous findings
• No additional BOLD responses were observed in prefrontal cortex regions in either the ng50-ng30 or ng30-ng50 contrasts, suggesting that paradigms with 50% no-go cues are response inhibition tasks rather than response selection
• Significant BOLD responses in the ng30 contrast compared to the ng50 condition (ng30-ng50) were observed in motor regions, presumably related to increased motor demands of responding 70% (ng30) rather than 50% (ng50) of the time

Conclusions

Acknowledgements
• Many thanks to the staff at the Translational Imaging Unit and to the participants in the study
• This research is supported by the Medical Research Council and contributes to the NEWMOOD EU Integrated Programme LSHM-CT-2004-503474.