Flexible Ammonia Sensor Based on Polyaniline/Carbon Black Composites Operating at Elevated Temperatures

Ehsan Danesh and Krishna C. Persaud
The School of Chemical Engineering & Analytical Science, the University of Manchester, Manchester, M13 9PL, UK

Introduction

- Electrically conducting polymers (CPs) are attractive candidates for gas sensors as they offer great design flexibility, ease of fabrication, low-cost, low-power consumption and tunability [1].
- Polyaniline (PANI), a well-known CP, has reversible doping behavior through acid/base interactions, e.g., ammonia (NH₃) reversibly deprotonates emeraldine salt (doped form of PANI), converting it to emeraldine base (undoped form) with a significant decrease in conductivity (~chemiresistive behaviour).
- Problem 1: Enhanced sensitivities are needed in order to meet the requirements of real-time sensing applications!
 - Solution: Employing carbon-based/PANI composite concept [2], solution processable PANI gives us the possibility to incorporate carbon black particles into polymeric complex to realize hybrid chemiresistors.
- Problem 2: The sensor recovery is poor!
 - Solution: Operation at elevated temperatures can improve desorption of NH₃ molecules from the sensor film, hence improving the recovery time [3].
- Problem 3: Lack of solution processability [3,4], has limited implementation of ES in high-throughtput sensor fabrication methods, i.e., printing!
 - Solution: The solution processability of PANI (particularly in its conducting state) may be improved, taking advantage of “counter-ion induced processability” concept through a novel method: using multifunctional dopants [5].

Materials and Methods

- Polymer: polyaniline (emeraldine base, average M₉₀=10000) (Sigma-Aldrich)
- Solvent: 1-methyl-2-pyrrolidone (NMP)
- Multifunctional dopants: Compounds which contain at least one sulfonic group and one carboxylic group in their structures.
- Carbon black: PANI-modified carbon black (Sigma-Aldrich)
 - EBI was first dissolved in NMP (~1 wt%), filtered through a 0.45 µm pore size PTFE membrane (Millipore).
 - Multifunctional dopant was added to the solution (dopant mole to PANI ratio) = 0.5.
 - Modified carbon black was added to the green solution of SSA-doped PANI to make a 20 wt% carbon black/PANI composite.
- Deposition method: Dipp/Spin coating!
 - Optical Microscopy & AFM images of the sensor in non-contact mode: The area scanned in AFM is 100x100 µm. (The inset shows the zoom in area of 20x20 µm)
 - Fairly uniform dispersion without using intensive mixing methods!
 - Substrate: flexible polyimide substrates (Kapton®) with gold interdigitated electrodes (electrode gaps 20 µm)
 - A miniature heater was applied underneath the sensor to maintain a stable 80 °C temperature in a Teflon chamber.
 - Ammonia vapour source: recalibrated permeation tube (permeation rate: ca. 54.8 ng min⁻¹) (Pure permeation tubes).

Results

- UV/Vis Spectroscopy
 - A UV-visible spectrophotometer (PerkinElmer lambda 35) was used to study the doping behaviour of different polyaniline solutions.

- For the EB the absorption band at ca.635 nm is relate to the n*-transition (quinoid form structure) → undoped/ half oxidized PANI structure.
- For ES (either with SSA or SSA) the absorption at ca. 435 nm is due to the presence of localized semiquinone population or the polaron absorption. The long free tail extended to near IR region may be attributed to highly delocalized free electron state of polyaniline doped with these dopants.
- Solutions were stable at least for 1 month, only slight changes in UV/Vis spectra were observed in this period. (practically the solutions can be stored for several months without any visible precipitation)
- These solutions can be used for depositing very low-resistant layers of PANI using solution deposition methods, such as spin coating and spray coating, as well as printing methods, such as inkjet printing.

- Ammonia sensing behaviour of flexible PANI/carbon black composite sensors
 - Sensor response toward an ascending sequence of ammonia concentrations (425, 750, 680, 720, 850, 975, 1150, 1390, 1700, 2250 ppb). (response time=3 min, recovery time=1 min, T_sensor=80 °C)
 - Inset shows reproducibility of response toward 550 ppb ammonia (response time=3 min, recovery time=12 min).
 - Maximum response of the sensor toward a series of concentrations of ammonia. Error bars are representative of the standard deviation of maximum sensor response at each concentration.
 - Inset shows the linearity of response over concentration range studied here (response time=3 min, T_sensor=80 °C).

Conclusions

- Multifunctional dopants promote emeraldine base, make it soluble in the apotic solvents such as NMP, homogenous solutions were stable for several months.
- Solution processibility of PANI through the employment of multifunctional dopants gives us enormous flexibility in order to design novel hybrid sensors.
- Ultra sensitive ammonia sensors were made by depositing SSA-doped PANI/carbon black composite on flexible polyimide substrates with interdigitated gold electrodes; sensor response was fast and reproducible; the sensors showed a linear response behaviour in the range of concentrations tested here.
- Sensing operation at elevated temperatures (here 80 °C) can improve response recovery and stability of CP-based sensors.

References

Acknowledgment

The work was supported by FlexSMELL-PF/PEOPLE-ITN/29051. Further information: www.flexsmell.eu.