Biophysics of Curly Hair

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Wortmann, F., & Wortmann, G. (2016). Biophysics of Curly Hair: Why is hair curly, wavy, or straight?.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Biophysics of Curly Hair

Why is hair curly, wavy or straight?

Franz J. Wortmann, Gabriele Wortmann
School of Materials, University of Manchester, UK

Hair formation

Primary morphological components

http://naturalnigerian.com/2012/03/hair-101-the-scalp-get-thvik-and-your-hair-will-grow/
Keratin Material: General Morphology of a Fiber

Basic, ethnic hair types

straight

wavy

curly
Crimp & fibre morphology in fine wool:
Early investigations

Other geometries of cell separation lead to less pronounced or no crimp for other types of wool.
Cell fractions change with fibre diameter:
More ortho-, less clear separation – less crimp (Orwin & Woods, 1980)

Hypothesis: The side-by-side structure leads to the induction of fibre crimp in Merino wool.

o-cortex on the outside
p-cortex on the inside

Horio & Kondo, 1953
Mercer, 1954

Cortical cell distribution in straight & curled Japanese hair

Bryson et al. observed basically four types of cortical cells:
A: ortho-type – convex side
B: ortho/meso-type
C: para-type – concave side
D: minor component

Biomechanically, the side-by-side arrangement of o-type & p-type cells will upon keratinisation induce fibre crimp (Munro & Carnaby, 1999)

Bryson et al., J Struct Biol 166 (2009) 46-58
Swift, 1997
Kajitura et al, 2006
Nagase et al, 2008
Thermal analysis (DSC) shows distinct differences for the thermal stability of helical IF proteins in ortho- and para-type cells, leading to unsymmetrical endotherms.

The differences between denaturation temperatures are distinct for wool and more subtle for human hairs.

Cortical cell fractions are very similar for different hair types and size-wise in line with expectations for coarse wool.

This supports the hypothesis that curl is only related to the lateral segregation of cell types with different types of IF orientation.

Due to the pronounced correlation between straightening effect and helix-content, the mechanism of self-straightening is identified as the alkali-induced denaturation of α-helical segments in the IFs.

This in turn confirms the role of IFs and their orientation for maintaining macroscopic hair shape.

Quadflieg & Wortmann, 2011
The role of fibre ellipticity for curl formation

It is intuitively clear that for equal cross-sectional area an elliptical fibre will be easier to bend (across its short axis, \(b\)) than the equivalent circular fibre.

As a consequence elliptical fibres can form tight curls with only a comparatively low degree of stress-imbalance upon keratinization.

Round fibres for the same pre-condition would just form slight waves.

Role of the follicle form

Hair, emerging from a curved follicle, generally shows retro-curvature.

If this effect is insufficient or absent, dermatological consequences may occur.
Follicle activities

A huge number of processes occurs in the follicle under genetic control.

Those contributing to hair form need to relate to

- IF-aggregation
- lateral cell segregation

Different cortical protein types are formed with lateral segregation.
Langbein, 2003
Other source: Thibaut et al., 2007

Biomechanics of hair forms: Primary cases

- straight
- wavy
- curly

No or Low ellipticity & random distribution of cell types: Straight Hair
Medium ellipticity & biased distribution: Slight/medium curl
High ellipticity & bilateral distribution: Strong curl

http://stylesatlife.com/articles/different-hair-types/
Thank you for your attention!