Anatomy of a mixed-influence shelf-edge delta, Karoo Basin, South Africa

DOI: 10.1144/SP444.5

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Geological Society, London, Special Publications

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Anatomy of a mixed-influence shelf-edge delta, Karoo Basin, South Africa

LUZ E. GOMIS-CARTESIO, MIQUEL POYATOS-MORÉ, STEPHEN S. FLINT, DAVID M. HODGSON, RUFUS L. BRUNT & AND HENRY DE V. WICKENS

1 Stratigraphy Group, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK.
2 Stratigraphy Group, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.
3 Geo-Routes Petroleum, 37 Zevendal Road, Kuils River 7580, South Africa.

Abstract: The position and process regime of paralic systems relative to the shelf-edge rollover is a major control on sediment transfer into deep water. The depositional strike and dip variability of an exhumed Permian shelf-edge succession has been studied in the Paardeberg Ridge, Karoo Basin. Siltstone-rich slope turbidites are overlain by 25-75 m-thick prodelta parasequences. These are truncated by a 30 m-thick sandstone-prone unit of tabular or convex-topped sandstones, interpreted as wave-modified mouth bars, cut by multiple irregular concave-upward erosive surfaces overlain by sandstones, interpreted as distributary channels. The stratigraphic context, lithofacies, and architecture are consistent with a mixed-influence shelf-edge delta, and the erosional base to the unit marks a basinward shift in facies, consistent with a sequence boundary. Channels become thicker, wider, more erosive, and incise into deeper water facies down dip and correlate to sandstone-rich upper-slope turbidites, all of which support bypass of sand across the rollover. The overall progradational stacking pattern results in a stratigraphic decrease in channel dimensions. Results of this study suggest a predictable relationship between channel geometry, facies and position on the shelf-to-slope profile under a mixed wave and fluvial process regime.

Keywords: shelf edge, rollover, distributary channel, reworked mouth bars, Karoo Basin

Basin margin progradation and the timing of sediment transport to the oceans is strongly influenced by the position and character of paralic systems relative to the physiography of the shelf-edge rollover (e.g. Edwards 1981; Mayall et al. 1992; Sydow & Roberts 1994; Morton & Suter 1996; Steel et al.
The presence of gullies and channels, which incise into shelf-edge deltas and act as conduits for sediment transport, have been widely described and associated with multiple factors, including lowering of relative sea level, headward erosion of submarine canyons, gravitational instabilities and slope failure, gravity flows and/or high fluvial discharge, among others (e.g. Pratson et al. 1994; Fulthorpe et al. 1999, 2000; Muto & Steel 2002; Plink-Björklund & Steel 2002; Donovan 2003; Porębski & Steel 2003; Posamentier & Kolla 2003; Petter & Steel 2005; Plink-Björklund & Steel 2005; Jackson & Johnson 2009; Sanchez et al. 2012b; Sylvester et al. 2012; Prélat et al. 2015).

In contrast to reflection seismic data, exhumed shelf-margins provide the resolution needed to constrain the interplay of sedimentary processes responsible for channel and gulley initiation at the shelf-edge rollover (Hubbard et al. 2010). Typically, however, shelf-edge deltas are interpreted to be dominated by a particular process regime (Dixon et al. 2012b). Mixed-influenced systems are rarely reported (Mellere et al. 2003; Pontén & Plink-Björklund 2009; Bowman & Johnson 2014), and the fine-scale down dip changes in channel geometry and infill architecture across the shelf-edge rollover have not been documented at outcrop. Most published examples of exhumed rollovers are from high-gradient shelf margins with short slope lengths (Pyles & Slatt 2000; Mellere et al. 2002; Plink-Björklund & Steel 2005; Carvajal & Steel 2006; Pyles & Slatt 2007; Pontén & Plink-Björklund 2009; Helland-Hansen 2010). This contrasts with the generally low gradients observed in many seismic datasets (e.g. Pirmez et al. 1998; Cattaneo et al. 2007; Patruno et al. 2015) that are challenging to constrain at outcrop (e.g. Dixon et al. 2012a; 2012b; Jones et al. 2013).

The importance of lateral variability in shelf margin physiography, and distribution of erosional and depositional process regimes, is highlighted in modern (e.g. Olariu & Steel 2009) and three-dimensional reflection seismic datasets (e.g. Suter & Berryhill 1985; Matteucci & Hine 1987; Poag et al. 1990; Tesson et al. 1990; Milton & Dyce 1995; Fulthorpe & Austin 1998; Kolla et al. 2000; Saller et al. 2004; Hadler-Jacobsen et al. 2005; Crumeyrolle et al. 2007; Ryan et al. 2009; Henriksen et al. 2011; Moscardelli et al. 2012; Sanchez et al. 2012a, b; Bourget et al. 2014). Outcrop studies focus on determining clinof orm and rollover geometries down depositional-dip profiles (e.g. Steel et al. 2000; Plink-Björklund & Steel 2002; Mellere et al. 2003; Plink-Björklund & Steel 2005; Pyles & Slatt 2007;
Uroza & Steel 2008; Dixon et al. 2012a). Documented outcrop examples with large-scale along-strike control are rare (e.g. Dixon et al. 2012a; Jones et al. 2015).

In this study, a rare example of an exhumed paralic succession in a shelf-edge rollover position with extensive depositional-strike and dip constraints is presented from the Permian Waterford Formation in the Tanqua depocentre, Karoo Basin, South Africa. The outcrops permit the following objectives to be addressed: i) to describe the vertical transition from slope to shelf deposits and to identify the shelf-edge rollover and ii) to discuss the origin, evolution and infill of channel-form features across the slope to shelf transition.

Geological setting

The Late Carboniferous-Triassic Karoo Basin (Fig. 1) has been interpreted as a retroarc foreland basin with subsidence caused by flexural loading by the Cape Fold Belt (Johnson 1991; Cole 1992; Visser 1993; Veevers et al. 1994; Catuneanu et al. 1998). However, more recent studies have suggested that subsidence was due to long wavelength dynamic topography effects driven by the subducting palaeo-Pacific plate (Tankard et al. 2009). The fill of the Karoo Basin comprises the 5+ km thick Karoo Supergroup (Smith 1990) (Fig. 2a). Glacial deposits of the late Carboniferous Dwyka Group are overlain by Ecca Group post-glacial strata of the Prince Albert, Whitehill, and Collingham formations, which show a deepening trend from shallow water carbonates to basin plain turbidites (De Beer 1992; Turner 1999; Johnson et al. 2006). In the Tanqua Depocentre, the Collingham Formation is overlain by ~800 m of mudstones of the Tierberg Formation (Fig. 2a). Overlying these mudstones, the Skoorsteenberg Formation comprises sandstone-rich basin-floor fans 1-4 (Bouma & Wickens 1991; Wickens 1994; Scott et al. 2000; Johnson et al. 2001; Andersson et al. 2004; Hodgson et al. 2006), overlain by a channelised slope wedge of Unit 5 (Wild et al. 2005). These deposits are topped by slope to shelf sediments of the Kookfontein and Waterford formations (Wickens 1994; Wild et al. 2009; Oliveira et al. 2011; Dixon et al. 2012a; 2012b, here all referred to as the Waterford Fm.), which are the focus of this study (Fig. 2).

Dataset and methods

The Waterford Formation crops out across the north-eastern part of the Tanqua depocentre, providing a study area of up to ~1600 km². This study is focused on the Paardeberg Ridge locality (Fig. 1b),
which exposes the stratigraphic transition from slope to shelf deposits (Fig. 2b) over an area of up to
10 km². The outcrop (Fig. 1c) is a 150 to 400 m-high, 5 km-long NW-SE trending ridge with a steep
SW face and gullied NE face that provides good three-dimensional control (Fig. 1c). The overall
tabular and laterally continuous succession has been informally divided into lower, middle and upper
units (Fig. 2b and 3). The 30-40 m thick sandstone-rich middle unit displays a complex assemblage of
tabular or convex-topped sandstones cut by irregular concave-upward erosive surfaces overlain by
sandstones, and is the main focus of this study.

Four regional (1:50 scale) sedimentary logs (DRs, DR1, DR6 and OUS) provide the general
stratigraphic context and are combined with 10 detailed logs (1:25 scale), focused on the middle unit,
to characterise the different erosional and depositional features in each locality (1090 m of cumulative
logged thickness). Physical correlation of stratigraphic units was constrained by walking out key
surfaces between logs, on both faces of the ridge and in intervening areas to map and capture
depositional dip and strike changes in facies and geometries. All observations were recorded on high-
resolution photo-panels, satellite imagery and aerial photographs (Fig. 1c and 3). Palaeocurrent
measurements (n=670) were taken from planar and trough cross-beding foresets, ripple-cross
lamination, primary current lineation, basal tool marks and channel-margin orientations (Fig. 4). A
stratigraphic hierarchy based on lithofacies, palaeocurrent measurements and key surfaces was
developed to capture the stacking patterns across multiple scales and to understand the temporal
changes in erosion and deposition.

Facies analysis

Lithofacies have been defined based on lithology, grain size, and sedimentary structures in Table 1
and are interpreted in terms of depositional processes. Facies associations are described using
lateral and vertical relationships, and interpreted in terms of different depositional environments.

Lithofacies

A primary classification is based on three main facies groups, according to the maximum grain size
observed within single beds (Table 1 and Fig. 5): conglomerate (C); sandstone (S) and mudstone
(M); the latter includes the spectrum of grain populations from coarse silt to clay.
Facies associations

FA-1: Diffuse laminated to structureless mudstones. Dark grey to green fissile to blocky mudstone bed sets. Commonly structureless fine-medium siltstone (Md, Mo), interbedded with coarse-siltstone beds (Ms) with occasional parallel lamination, isolated/starved mm-scale ripples or gently undulating lamination. Bioturbation is low to moderate.

These facies are interpreted to represent deposition from suspension fallout, although some of their coarser and laminated components indicate deposition from dilute turbidity currents (Macquaker & Bohacs 2007; Schieber et al. 2007). The depositional environment is interpreted to record offshore deposition below storm wave base on the outer shelf or upper slope (Wild et al. 2009; Jones et al. 2013). This facies association forms the bulk of the strata in the lower part of the regional succession (lower unit).

FA-2i: Heterolithic siltstone-prone thin beds. Thin- to very thin-bedded (cm- to mm-scale) planar and current-ripple cross-laminated siltstone (Ms), interbedded with minor amounts of ripple-laminated (unidirectional or bidirectional) very fine-grained sandstones (Sr, Sw), which commonly show inverse- to normal-graded composite beds (Sg). These deposits can form laterally extensive tabular packages (several hundred metres) or wedges of slightly inclined strata (a few tens of metres) that drape and/or onlap erosion surfaces. Bioturbation is low to moderate, and the presence of organic debris is common.

This facies association is interpreted to record either deposition from low-concentration turbulent suspension flows that developed distally or laterally from denser hyperpycnal flows (Plink-Björklund & Steel 2004; Bhattacharya & MacEachern 2009; Zavala et al. 2011), or deposition from dilute turbidity currents in unconfined settings. This facies association has been interpreted to reflect deposition in a distal prodelta/offshore transition environment relatively far from the sediment feeder system, but still recording the effects of waves.

FA-2ii: Heterolithic sandstone-prone thin beds. Laterally-extensive (up to several hundreds of metres) 1 to 15 m-thick packages of thin-bedded (cm-scale) parallel or ripple-laminated, inverse or normal graded, very-fine grained sandstone (Si, Sr, Sw) alternating with planar- and current ripple-laminated siltstone (Ms). Locally, erosional bed bases and inverse grading are observed in thin sandstone beds,
and ripple-lamination includes asymmetrical, combined or symmetrical forms. In places, this facies association includes medium- to thick-beds (up to 50 cm) of partially amalgamated, fine-grained sandstone (Ss, Sg, Sl) forming lenticular packages. Bioturbation is moderate to high, and the presence of unclassified organic fragments is common.

This facies association is interpreted to record the deposits of moderate- to low-concentration turbidity currents in both confined (within erosive surfaces) and unconfined settings (tabular and laterally extensive packages). Commonly, the association passes laterally into silt-prone heterolithic deposits (FA-2i), and suggests deposition in a proximal prodelta/shoreface-offshore transition setting (Hampson 2000; Hampson & Howell 2005). The local thicker sandstone beds reflect deposition from rapidly expanding, energetic turbulent suspension flows. This facies association can also be found in marginal or upper parts of channelised elements (Fig. 3b and 6).

FA-3i: Thin- to medium-bedded sandstones. Laterally-persistent parallel-sided, fine-grained sandstone bedsets intercalated with thinner very-fine grained sandstone bedsets. Beds are up to 20 cm-thick. Some beds are normally or inversely graded (Sg), without structures, but most of them show a range of sedimentary structures including parallel lamination (Sp, Fig. 5e), trough cross-bedding or low angle or hummocky cross-stratification (Sx, Sl, Fig. 5e-f), and bed tops exhibit both symmetrical and asymmetrical ripple forms (Sr, Sw, Fig. 5g-h). Climbing-ripple cross-lamination is common. Bioturbation is generally from moderate to high, and organic fragments are commonly observed in bedding planes.

Normal and/or inverse graded beds are interpreted to represent deposition from river-derived waning and/or waxing sediment-laden flows, respectively (e.g. Mulder et al. 2003; Plink-Björklund & Steel 2004; Petter & Steel 2006; Olariu et al. 2010). The structured beds indicate tractional reworking by high concentration flows and, in the case of climbing ripples, high sedimentation rates possibly associated with abrupt decrease in flow confinement.

The depositional environment of FA-3i is interpreted depending on the dominance of particular sedimentary structures. The planar, trough and climbing ripple cross-lamination facies association is related to deposition from unidirectional flows in distal mouth bars. Where low-angle, HCS-swaley cross-stratification in cleaner sandstones predominates, deposition is interpreted to be in a distal wave-influenced delta front or lower shoreface setting (e.g. Hampson 2000; Bhattacharya & Giosan...
Thin-bedded sandstones are also observed in marginal or upper parts of channelised bodies (Fig. 3b & 6).

FA-3ii: Medium- to thick-bedded sandstones. Laterally extensive or channelised, very fine- to fine-grained, predominantly structureless or graded sandstone (Ss, Sg, Fig. 5c-d) bedsets, contain amalgamation surfaces, scattered mudstone clasts (Cm, Fig. 5b), and fluid-escape structures. Structureless divisions can pass upward into thick-bedded parallel laminated (Sp, Fig. 5e) or very low angle cross-laminated sandstones (Sl), which in turn pass upward into asymmetrical or symmetrical ripple-laminated thick-bedded sandstones. Laterally, bedsets either onlap directly onto inclined erosional surfaces or pass laterally into thin-bedded sandstones (FA-3i) or interbedded sandstones and siltstones (FA-2). In channelised examples, the lower part of this facies association usually includes intraformational pebble-size mudstone clasts in irregular horizons of clast-supported conglomerate to sandy matrix-supported conglomerate in a sandy matrix (C). Bioturbation is highly variable, from low to high, and organic fragments in bedding planes can be present.

The nature of the structureless or graded sandstone beds suggests rapid deposition and frictional freezing from high-density sediment gravity flows with a high fallout rate that prevents bedload transport and traction in the base of the flow (e.g. Mutti et al. 2003; Tinterri 2007). Basal mudstone clast horizons are residual lag deposits of material eroded and left behind by largely bypassing flows (Stevenson et al. 2015). Parallel laminated beds could be associated with upper-flow-regime plane bedding or downstream migration of very low-amplitude long-wavelength bedforms, as has been described in younger fluvial deposits of the Beaufort Group (Turner 1981; Stear 1983; Stear 1985; Wilson et al. 2014). Cross- and ripple-laminated beds indicate aggradation and traction processes.

This facies association suggests relatively high-energy depositional environments and is found either filling central parts of concave-up erosion surfaces (scour- or channel-fills), or in the upper part of lenticular/tabular elements interpreted as mixed-influenced proximal mouth bars (Fig. 3b and 6).

FA-4: Deformed facies associations. Laterally discontinuous packages of folded and distorted sandy or silty thin- (FA-1, 2) to thick-beds (FA-3) that can extend laterally for several hundred metres. They show a wide spectrum of soft-sediment deformation types, ranging from complete destruction of primary sedimentary structures and contorted sandstone clasts floating in a sandy/silty matrix, to units
with coherent upward directed folds in sandstones. They usually contain large-scale (<5 m-high) fluid-
escape structures and commonly occur associated with erosional and irregular surfaces.

Depending on the original structures and relative stratigraphic position, deformation is interpreted to
record a spectrum of processes, from in-situ foundering to remobilisation (Owen 2003; Wild 2005;
Wild et al. 2009; Oliveira et al. 2011; Jones et al. 2013), related to failure or gravitational collapse in
oversteepened delta front or channel margin settings. These deposits represent approximately 30% of
the middle unit and are also present in the lower part of the upper unit (Fig. 2b, 3b and 6).

Stratigraphic evolution

The lower Waterford Formation in the study area is informally divided into lower, middle, and upper
units (Figs.2 and 3). The lower unit succession starts with a 30-40 m-thick dark grey mudstone (FA-1),
with some isolated sandstone bedsets up to 3 m-thick (FA-3ii). This is overlain by four 20 to 75 m-
 thick heterolithic coarsening- and thickening-upward packages (FA-1 to FA-2ii), each starting with a
regionally extensive mudstone (FA-1). The succession is abruptly overlain by the 30 m thick middle
unit, which comprises tabular or convex-topped deformed sandstones incised by multiple erosive
surfaces overlain by sandstones (FA-2 and FA-3). The middle unit is capped by a 2 m thick regionally
extensive mudstone (Fig. 3b), above which the upper unit comprises thinner (10-50 m) sandier and
deformed coarsening- and thickening-upward packages with progressively lower mudstone content.
These packages are overlain by a mudstone-dominated unit, with relatively isolated sandstone beds
or bedsets that are either tabular or channelised (FA-3i and FA3-ii). A gradual change in colour from
dark grey to green and purple is observed in the uppermost mudstones.

The basal mudstone-prone lower unit with intercalated sandstone beds is interpreted as slope
mudstones and turbidites. The overlying four coarsening- and thickening-upward heterolithic
packages of the lower unit are interpreted as dominated by prodelta and offshore deposits. The
vertical profile and the scale of these stratigraphic packages are consistent with parasequences
bounded by flooding surfaces as described by Van Wagoner et al. (1990), and their stratigraphic
setting is consistent with an upper slope position. This parasequence set is overlain abruptly by
erosional channel-fills and deformed lobate bodies (mixed-influence mouth bars) of the middle unit,
described and interpreted in detail below. The regional capping mudstone is interpreted as containing
a flooding surface. The sandier, thinner and deformed deposits of the upper unit are interpreted as
wave-dominated or mixed-influenced shelf delta/shoreface parasequences (Wf of Ainsworth et al. 2011). These are overlain by isolated fluvial sandstone bodies within grey-green and purple floodplain mudstones of the lower Beaufort Group (Wilson et al. 2014).

Palaeocurrent analysis and palaeoshoreline orientation

Palaeocurrent analysis in this study, combined with previous publications on the Waterford Fm. and underlying submarine fan systems in the Tanqua depocentre, indicate a uniform regional palaeoflow to the NE and N, with a slope and overlying shelf oriented approximately NW-SE (Johnson et al. 2001; van der Werff & Johnson 2003; Wild et al. 2005; Hodgson et al. 2006; Luthi et al. 2006; Wild et al. 2009; Jones et al. 2013). In the mud-prone lower unit (FA-1), there is a general E-to-NE unidirectional palaeoflow, with an E-W trend from symmetrical ripples in sandstone beds (Fig. 4a). The overlying parasequences show a N-to-NE spread in unidirectional current ripples and a NE-SW trend for the bidirectional indicators (Fig. 4a). All this evidence suggests that the NW-SE orientation of the Paardeberg Ridge outcrop is a strike section to the palaeoshoreline and shelf-edge during progradation of the basin margin (Fig. 7).

Depositional elements in the middle unit

Architectural descriptions of the Paardeberg Ridge exposure (Fig. 3) are focused on the sandstone-dominated middle unit, which is characterised by two geometries: channelised and lobate.

Channelised bodies

In cross-section (Fig. 3), these bodies have basal concave-up surfaces (Fig. 6) that truncate underlying deposits with up to 20 m of incision. Individual channel bodies (Table in Fig. 6) range from 5 to 20 m-thick and 50 to 400 m-wide which, given the strike orientation of the outcrop, are close to true widths. They can be followed, in planform view (Fig. 7), for up to 350 m down dip where they increase in width and thickness downdip. Commonly, they are cut by younger erosion surfaces, so that only remnant fills are preserved (Fig. 6). Where fully preserved, cross-sectional geometries range from symmetric (Fig. 6) to asymmetric with one steeper erosive side and the other side showing a low angle contact and a lateral facies change (Fig. 3b and 6). Loaded or slightly deformed bases and abundant mudstone-clast conglomerates close to erosional bases are common (Fig. 3b and 6).
Facies associations within channelised bodies stack to form fining- and thinning-upward packages (Fig. 8), which in most cases also fine and thin laterally (Fig. 6). Packages have basal mudstone-clast conglomerates (Fig. 5a-b) overlain by thick-bedded structureless sandstones (FA-3ii, Fig. 5c) that grade vertically and laterally into parallel-laminated (Fig. 5e) or very low angle laminated thick-bedded sandstones (FA-3ii). These deposits pass gradually upward into thin-bedded sandstones (<30 cm; FA-3i), which in turn may grade vertically and laterally into interbedded sandstones (up to 15 cm-thick) and siltstones (FA-2ii and FA-2i), with a gradual decrease in sandstone content (Fig. 6 and 8). Sandstones in the thin-bedded and interbedded packages are either structureless, parallel-laminated or with symmetrical and asymmetrical ripple cross lamination and commonly show symmetrical rippled tops.

These bodies are interpreted to be channel deposits, showing multiple phases of cut and fill. Their facies associations and position are consistent with subaqueous distributary channels in a deltaic setting but, their scale, localisation and the processes responsible for their origin and fill are discussed below.

Lobate bodies

These bodies are generally lens-shaped in cross-section with irregular bases (deformed or slightly erosive) and flat to convex-up tops, although cross-sectional geometry can be modified by subsequent channel erosion (Fig. 3 and 6). Axes comprise fine-grained sandstone thinning laterally into finer grained facies. Lobate bodies (Table in Fig.6) range from 5 to 10 m-thick and from 75 to 600 m-wide (true width) and have been mapped for up to 300 m down dip (Fig. 7). Typically, they overlie thinner, off-axis parts of older lenticular bodies (Fig. 6) or previously deposited channelised elements (Fig. 6), indicating a compensational stacking pattern (Fig. 3b).

Facies associations in lobate bodies stack in coarsening- and thickening-up packages (approx. 15m-thick) (Fig. 6 and 8). Commonly, a lower section of sand-prone interbedded siltstones and sandstones (FA-2ii) coarsens upwards into thin-bedded sandstone (FA-3i). Sandstone beds are normally graded with parallel lamination and both asymmetrical and symmetrical ripple lamination. Most bed tops show symmetrical ripples. Towards the upper part of the bodies soft-sediment deformed packages (FA-4; Fig. 8) show slightly erosive, heavily distorted or loaded bases (Fig. 6). Where primary fabric is preserved, in most cases it is thick-bedded sandstone (FA-3ii) and/or interbedded sandstone and
siltstone (FA-2i and FA-2ii). Flames and other fluid escape structures at loaded bed bases can reach up to 4 m-high. Thin to thick-bedded sandstones with abundant climbing ripple lamination (FA-3, Fig. 5f) are commonly found above, below or between deformed deposits, sometimes eroding the underlying deformed deposits, or in blocks within the deformed packages. The mixed process origin with indicators of both river- and wave-regime, and widespread soft-sediment deformation in these lenticular sandstone bodies makes them challenging to assign a simple interpretation. However, the modified coarsening-upward trends with unidirectional currents, with reworked bed tops, and the close association with subaqueous distributary channels, leads us to interpret and refer to them as mixed-influence (wave and river) and remobilised mouth bars that were reworked into more strike elongate lobate geometries.

Architecture and stratigraphic evolution of the middle unit

Cross-cutting relationships between sedimentary bodies allow reconstruction of the relative ages of the channelised and lobate deposits (txC or txL respectively in Fig. 3) and therefore the stratigraphic evolution of the middle unit to be interpreted. The architecture suggests a spatial relationship between the underlying deposits and the positioning of younger elements. Superposition of channels and mixed-influence mouth bars follows a complex temporal distribution (Fig. 3), consistent with lateral compensation processes. Combined with the facies associations, the architecture could also indicate the proximity to an input point at this locality (Olariu & Bhattacharya 2006; Olariu & Steel 2009).

In general, the older channelised elements are sandier, with more structureless sandstone, and wider (Fig. 3b and 6) than the younger channels. Commonly, they cut into deeper water offshore facies and also locally into prodelta and/or deformed mixed-influence mouth bars (Fig. 3b). Most of these older channels show multiple scours with abundant mudstone clast lags (Fig. 3b and 6), which may suggest recurrent erosion processes and sediment bypass at the same location over time. Younger channels display a wider spectrum of facies associations, and are generally narrower with simpler cuts (Fig. 6). Cleaner basal surfaces, less amalgamation, and considerably less mudstone clast lags at their bases are consistent with less erosive and shorter-lived channels. Typically, these younger channels cut shallower water facies associations (deformed mixed-influence mouth bars) and their fills show a
greater degree of wave reworking towards their tops, suggesting deposition in a shallower water
setting.

Lateral and vertical relationships between depositional elements

Typically, a lobate element (or mixed-influence mouth bar) is cut or partially eroded by a channelised
element (Fig. 6 and 8). The basal incision surfaces of channelised bodies usually cut from the top of
the underlying lobate element. The presence of collapsed mixed-influence mouth bar facies in
channel-fills has been locally observed (Fig. 8 and 9) indicating that channels were open conduits and
suggesting a close relationship between mouth bar deposition and channel forming processes (Olariu
& Bhattacharya 2006). Channelised bodies are in turn overlain by younger lobate elements, and this
pattern is repeated vertically and laterally along the outcrop.

Palaeocurrents in the middle unit

In channelised bodies, unidirectional measurements from current and climbing ripples, low angle
cross bedding, and basal groove marks show a dominant NE and N trend, with a dispersion of up to
90° (Fig. 4a & b). Orientation of channel margins support the general SW to NE trend (Fig. 7). Current
ripple lamination from channel margin thin beds show a NE trend, and symmetrical ripples are
oriented NE-SW (Fig. 4b), consistent with the regional wave reworking measurements (Fig. 4a).
Palaeocurrents in the mixed-influence mouth bars or lobate elements show a similar bidirectionality
(NE-N to SW-S) but the unidirectional measurements show a dominant northward trend with a spread
of 90° (Fig. 4c). Orientations from the upper parts of mixed-influence mouth bars or lobate elements
show a wider spread than the lower parts (Fig. 4c). The consistent unidirectional NE trends, and the
dominant, consistent NE-SW (040°-220° to 080°-260°) trend of bidirectional measurements from
symmetrical ripple crest lines (Fig. 4d) supports the overall NW-SE shoreline orientation.

Discussion

A mixed-influence shelf-edge delta

The Paardeberg Ridge locality lies 15 km down dip of, and approximately 200 m stratigraphically
above the well documented Tanqua deepwater succession, which comprises basin floor fans 1-4
(Wickens 1994; Hodgson et al. 2006) and the Unit 5 lower slope turbidite succession (Wild et al.
This regional framework provides an upper slope stratigraphic context for the lower unit of the Paardeberg Ridge (mudstones and 20-75 m thick parasequences dominated by thin bedded heterolithics). The thinner (10-25 m), sandier parasequences of the upper unit, with common occurrence of HCS and symmetrical ripples, are interpreted as wave dominated and mixed-influenced shelf parasequences and share many characteristics with the Waterford Formation in other parts of the basin-fill (Wild et al. 2009; Jones et al. 2013, 2015). The sandstone-rich middle unit, which separates the underlying upper slope from overlying shelf deposits, marks an abrupt increase in the amount of erosion and soft-sediment deformation, with proximal facies associations of sandstone-rich mixed-influence mouth bars (FA-3) cut by sandstone-rich distributary channel-fills (FA-2 and FA-3). The stratigraphic context, combined with facies analysis and palaeocurrent data, supports the interpretation of the middle unit as a shelf-edge deltaic package that formed during progradation towards the NE. The Karoo palaeo-shelf margin is generally considered as a low gradient (Wild et al. 2009), stable slope type (sensu Ross et al. 1994), with limited syn-sedimentary growth faulting (Jones et al. 2013), and widespread amount of soft-sediment deformation and localised slumps (Wild et al. 2009; Oliveira et al. 2011; Jones et al. 2013).

The fill of channelised elements in the middle unit commonly comprises thick-bedded structureless axial sandstones that pass laterally through thin-bedded sandstones to interbedded channel margin sandstones and siltstones (Fig. 6 and 8). Bed tops with symmetrical ripples following the regional NE-SW palaeocurrent trend are found in the thin-bedded channel margin and uppermost parts of the channel fills. While large storm waves can rework the sea floor at water depths greater than 100 m the ubiquity of symmetrical ripples and consistency of palaeocurrents indicate deposition above fair weather wave base during channel filling. The thickness and generally structureless character in axial to marginal thick-bedded deposits suggest high-energy conditions, but dune-scale bedforms in channelised elements are rare. This paucity of cross-bedding can be attributed either to unusually high discharges during short, temporary flash-flood events (Stear 1983) or to the inhibition of bedform formation due to the narrow grain size range (clay to fine sand) in the whole Karoo Basin (Southard 1971; Turner 1981; Van den Berg & Van Gelder 1993), which constrains the spectrum of possible sedimentary structures to lower and upper phase plane bedding, and ripples (Rubin & McCulloch 1980; Southard & Boguchwal 1990). Low-angle cross-stratification is locally observed, and has been associated with very low-amplitude unidirectional bed forms (e.g. Turner 1981; Stear 1983; 1985;
Wilson et al. (2014), but also to combined-flow structures such as hummocky cross-stratification (Nøttvedt & Kreisa 1987; Southard et al. 1990). However, its expression is difficult to recognize and interpret in the absence of a wider grain size range. The facies and architectural elements of the studied succession suggests that different process regimes coexisted at the same location during clinothem progradation, and as such is a rare example of an exhumed mixed-influence shelf-edge system. Mixed-influence shelf-edges have been observed in modern systems (e.g. Ainsworth et al. 2011; Olariu 2014), and in a few studies of ancient shelf margins (e.g. Olariu et al. 2012; Sanchez et al. 2012b; Jones et al. 2015).

Relative sea level at the shelf edge

Parasequences of the lower unit show an overall progradational trend (DRs in Fig. 1b and DR1, DR6 and OUS in Fig. 10). The highly tabular character (Fig. 3a) and absence of lateral compensational stacking are interpreted to record relatively high accommodation conditions on the upper slope-lower unit (Wild et al. 2009). The sharp and erosional basal contact of the sand-rich middle unit, with its mixed-influence mouth bar and distributary channels directly truncating upper slope thin beds (Fig. 1b, 3b and 10), indicates a basinward shift of the facies belt. Highly erosive elements and evidence of sediment instability, the multi-storey stacking and limited thickness (approx. 30 m; Fig. 3b) of the middle unit are consistent with an abrupt change into a more proximal facies succession in a lower accommodation setting.

The abrupt change in depositional environments and stacking patterns in the middle unit does not support a simple progradational trend, which would display a gradual upward increase in sandstone content of parasequences as the delta approached the shelf edge. The basal erosion surface (t1c; Fig. 3b) of the middle unit is therefore interpreted as a sequence boundary (sensu Posamentier et al. 1988), juxtaposing a paralic succession onto the shelf edge rollover as a response to a relative fall in sea level. No palaeosol deposits, roots or desiccation cracks have been found to indicate subaerial exposure of the shelf edge, which suggests that shelf edge accommodation was reduced but remained subaqueous. A similar situation has been documented in the Laingsburg depocentre by Jones et al. (2013), who interpreted this absence of subaerial exposure as consistent with a Type 2 sequence boundary (sensu Posamentier et al. 1988). Correlation of the middle unit 1-3 km down dip to the Ouberg Pass area (Fig. 10) has revealed a succession of sandstone-dominated turbidites,
which are interpreted to represent significant sediment bypass through the shelf edge rollover channels. The flooding surface overlying the middle unit (Fig. 3b) marks a relative rise in sea level. Sufficient new accommodation was subsequently generated on the shelf to allow deposition of shelf parasequences of the upper unit, which are thinner, sandier and display shallower facies associations than those of the lower unit (Fig. 1b and 3a).

Shelf-edge channel geometry and initiation mechanisms

Additional evidence of a shelf-edge rollover setting is derived from mapping (Fig. 7) and correlation between the two sides of the Paardeberg Ridge, which provides a planform control (100 to 350 m dip section) for the channelised elements of the middle unit (Figs. 7 and 9). Channels are thicker, more incised, with a greater amount of mudstone clast lags and soft sediment deformation on the down dip north-eastern side of the ridge than on the up dip south-western side (Fig. 9). On the up dip side of the ridge, channels cut deformed mixed-influence mouth bar deposits (Figs. 3b and 9) or older channel fills while on the down dip side they also cut down into prodelta and offshore deposits. This basinward increase in channel dimensions and depth of erosion is interpreted to reflect the increased gradient and accommodation across the shelf-edge. The steeper gradient enhances the depth of erosion of distributary channels (Olariu & Bhattacharya 2006; Jackson & Johnson 2009), and the onset of gravity driven density flows and gravitational collapse of channel margins across the rollover (e.g. Bowman & Johnson 2014) (Figs. 10 and 11). Residual deposits, amalgamation surfaces and multi-storey stacking in the channels of the middle unit suggest relatively long-lived sediment bypass. This is consistent with the existence of a gullied/scoured slope. Two kilometres farther down dip (NE of the Paardeberg ridge; Figs. 1c and 10) the prodelta-offshore succession is abruptly overlain by thick-bedded (0.5-1m thick) normally graded sandstones that pass from structureless to climbing ripple cross laminated. The beds are lens shaped with erosional bases and sole marks oriented NE-SW (parallel to the main palaeocurrent direction). These deposits are interpreted as turbidites, and the basinward upper slope expression of the middle unit (Figs. 10 and 11).

Although erosional features and sediment conduits (channels and gullies) are commonly observed at the shelf edge rollover (e.g. Porębski & Steel 2003; Sylvester et al. 2012; Bowman & Johnson 2014; Prélat et al. 2015), the processes involved in their origin require a wide range of possibilities to be considered. Several mechanisms of subaqueous scouring on the outer shelf region are rejected due
to the scale and orientation of the incisions or the latitude of the basin at that time (between 40-60°
degrees south, Faure & Cole 1999). These include glacial scouring or bottom currents from melting
(e.g. Ridente et al. 2007), longshore currents (e.g. Lewis 1982; Galloway 1998; Mazières et al. 2013),
shallow-water bottom currents (e.g. Viana et al. 2002), and density cascades (e.g. Wilson & Roberts
1995; Shapiro & Hill 1997; Ivanov et al. 2004). Erosion from tide- or storm-generated rip currents or
surges has been also invoked as a cause for the inception and maintenance of shelf-edge conduits
(Lewis 1982; Huthnance 1995; Clifton 2006; Normandeau et al. 2014), and hyperpycnal flows, wave-
supported gravity flows or inertial currents can keep conduits open (Huthnance 1995). These
mechanisms cannot be discarded as they can develop local defects that potentially evolve into larger
channels as the delta progrades and increases sediment supply, leading to loading and
destabilisation of the area (Lewis 1982).

Steeper slopes at the shelf-edge rollover, combined with relatively high sediment loads associated
with mouth bar progradation, create conditions for soft-sediment deformation to occur (Owen 2003;
Oliveira et al. 2011). The amount of soft-sediment deformation (30%), combined with the observed
interaction between channels and mixed-influence mouth bar deposits in the middle unit (Fig. 3b)
suggest a close association between channel formation and delta-related instabilities (Oliveira et al.
2011). Channel incisions are apparently randomly located, but sometimes overlie the axial location of
the underlying mixed-influence mouth bar. The local gradient change around the shelf-edge rollover,
combined with localised high sediment influx and loading (Wild et al. 2009) could have created
unstable points around axial positions of mixed-influence mouth bars. Liquefaction and deformation,
particularly in their central and thicker parts, were highly susceptible to local remobilisation and
gravitational collapse (e.g. Jackson & Johnson 2009), creating discrete bathymetric lows that may
have evolved into long-lived conduits through the bypass of gravity flows, generating a highly erosive
and channelised shelf-edge rollover.

Accretion and progradation of a shelf-edge rollover

The deformed and sandier parts of lobate elements are generally 5 to 10 m-thick and 80 to 600 m-
wide, whereas channels are 5 to 20 m-thick and 50 to 300 m-wide (Fig. 3b and 6). These geometrical
proportions are not typical of terminal distributary systems (e.g. Olariu & Bhattacharya 2006; Olariu et
al. 2010) since delta-related deposits would be expected to be significantly thicker compared to the
documented channel dimensions. In the Cretaceous Blackhawk Formation of the Book Cliffs (Utah),
prodeltaic channels formed by river-derived hyperpycnal flows are just a few metres thick and
encased within mudstone (Pattison 2005; Pattison et al. 2007).

In shelf-confined mixed fluvial- and wave-influenced delta systems, feeder channels decrease in size
as they reach the lower delta plain, where distributaries split, avulse and decrease in dimensions as
they become terminal (Bhattacharya & Giosan 2003; Bhattacharya 2006). Observations made in dip
and strike sections at both sides of the Paardeberg Ridge outcrop suggest that when distributary
channels reached the shelf-edge rollover, enhanced erosive and bypass processes created larger
incisions, and channels became larger and deeper moving downslope across the shelf edge rollover
(Figs. 9 and 10). The significant gradient change across the shelf edge rollover may also explain the
abrupt facies changes seen in the dip direction. This process might be particularly enhanced when
associated with relative sea level fall (Talling 1998; Muto & Steel 2002; Porębski & Steel 2006) and
with the proximity of a feeder system (e.g. Mellere et al. 2003; Olariu & Bhattacharya 2006). The
cross-cutting relationships between channel elements and lobate bodies suggest that the sudden loss
of confinement led to deposition of mixed-influence mouth bars that forced distributary channels to
step laterally. The smaller channel size up section could reflect the start of backstepping as gradient
decreased when approaching the flooding surface above. However, considering that channels are
larger and erode more deeply basinward (NE; Fig. 10), the up-section reduction in size within the
middle unit is proposed to characterise progradation across the shelf edge rollover (Fig. 11).

Conclusions
The Paardeberg Ridge locality allows the spatial and temporal evolution of a NE prograding shelf
margin to be constrained in depositional dip and strike sections. Palaeocurrent data indicate a NW-SE
oriented shoreline with dominant NE-SW wave reworking. Truncation of a shallowing upward
succession from upper slope turbidites to shelf edge deposits by a 30 m-thick sandstone-rich unit of
deformed and mixed-influence mouth bars and subaqueous distributary channels represents an
abrupt juxtaposition of paralic deposits on to the shelf edge rollover. The basal erosion surface of the
unit is correlated down dip to slope turbidite sandstones, interpreted as deposits of flows that
bypassed through the channelised shelf edge rollover. This surface is interpreted as a sequence
boundary without subaerial shelf exposure.
In strike section, the older channelised elements are wider, more deeply incised with composite erosion surfaces filled by amalgamated structureless sandstones, and cut into deeper water facies, suggesting recurrent erosion and sediment bypass. Younger channel-fills are narrower with cleaner cuts that incise into shallower water facies, and their fills are better organised with fewer amalgamation surfaces and basal mudstone clast conglomerates, and more beds with symmetrical rippled tops. This is consistent with a vertical change to less erosive and shorter lived channels.

A gradient increase at the shelf-edge, combined with a high rate of sediment supply associated with deltaic progradation promoted soft-sediment deformation. Liquefied mixed-influence mouth bars were susceptible to local remobilisation, and the resulting irregular surfaces likely evolved into subaqueous sediment conduits. When distributaries reached an unstable and relatively steep region, enhanced erosion led to larger and deeper incisions across the shelf edge. The interpreted stratigraphic context and the fact that channels incise into the proximal part of deformed mixed-influence mouth bars suggest that these subaqueous bodies are the shelf-edge expression of distributary channels, associated with an abrupt basinward shift of a mixed-influence deltaic system. This study therefore documents a rare example of the architecture of a progradational mixed-influence paralic succession superimposed on a shelf edge rollover, in response to a lowering of relative sea level.

Acknowledgements
The work presented here is part of the SLOPE Project, Phase 4. We thank the consortium of sponsors (Anadarko, BHPBilliton, BP, CNOOC-Nexen, ConocoPhillips, E.ON, Engie, Maersk, Murphy, Petrobras, Shell, Statoil, Total, VNG Norge and Woodside) for financial support and strong scientific engagement. The manuscript benefited from insightful reviews by Gary Hampson, Corneliu Olariu and an anonymous reviewer. Sarah Cobain, Rhodri Jerrett, Eoin Dunlevy and Sascha Eichenauer are thanked for their collaboration and assistance in the field. Finally, we thank the Karoo farmers for access to their land.

References

FLINT, S. S., HODGSON, D. M., SPRAGUE, A. R., BRUNT, R. L., VAN DER MERWE, W. C., FIGUEIREDO, J.,
PRELAT, A., BOX, D., DI CELMA, C & KAVANAGH, J. P. 2011. Depositional architecture and sequence
stratigraphy of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South

sea-level lowstands expose the entire shelf during the Miocene? Geology, 27, 203-206, doi:

incisions off New Jersey: Are they diagnostic of sequence boundaries? Geological Society of

GALLOWAY, W.E. 1998. Siliciclastic slope and base-of-slope depositional systems; component facies,

HADLER-JACOBSEN, F., JOHANNESSEN, E.P., ASHTON, N., HENRIKSEN, S., JOHNSON, S.D. & KRISTENSEN,
J.B. 2005. Submarine fan morphology and lithology distribution: a predictable function of sediment
delivery, gross shelf-to-basin relief, slope gradient and basin relief/topography. In: DORÉ, A.G. &
VINING, B.A. (eds.) Petroleum Geology: North West Europe and Global Perspectives, Proceedings

HAMPSON, G.J. 2000. Discontinuity Surfaces, Clinoforms, and Facies Architecture in a Wave-
Dominated, Shoreface-Shelf Parasequence. Journal of Sedimentary Research, 70, 325-340, doi:
10.1306/2dc40914-0e47-11d7-8643000102c1865d.

wave-dominated deltaic shorelines; Upper Cretaceous Blackhawk Formation, Book Cliffs, Utah,
U.S.A. In: GIOSAN, L. & BHATTACHARYYA, J.P. (eds.) River Deltas – Concepts, Models, and
Examples. SEPM Special Publication 83, 133-154.

HELLAND-HANSEN, W. 2010. Facies and stacking patterns of shelf-deltas within the Palaeogene
Battfjellet Formation, Nordenskiöld Land, Svalbard: implications for subsurface reservoir

regime, and sediment dispersal patterns beyond the shelf-edge rollover in exhumed basin margin-

KOLLA, V., BIONDI, P., LONG, B. & FILLON, R. 2000. Sequence stratigraphy and architecture of the Late
Pleistocene Lagniappe delta complex, northeast Gulf of Mexico. Geological Society, London,

LEWIS, D.W. 1982. Channels across continental shelves: Corequisites of canyon-fan systems and
potential petroleum conduits. New Zealand Journal of Geology and Geophysics, 25, 209-225, doi:
10.1080/00288306.1982.10421410.

JOHANESSEN, E.P. 2006. Contribution of research borehole data to modelling fine-grained turbidite
reservoir analogues, Permian Tanqua-Karoo basin floor fans (South Africa). Petroleum Geology,
12, 175-190.

doi: 10.1126/science.1151980.

between the Gulf Stream and a paleo-shelf edge delta. Marine Geology, 77, 185-205, doi:
http://dx.doi.org/10.1016/0025-3227(87)90111-3.

delta; an example from the subsurface of the Gulf of Mexico, middle Pliocene, Mississippi Canyon,

between longshore drift and the head of the canyon of Capbreton (SW France): descriptive and
numerical approaches. Proceedings of the 7th International Conference on Coastal Dynamics, 24-
28 June, Arcachon, France, 1159-1172.

MELLERE, D., BREDA, A. & STEEL, R.J. 2003. Fluvial-incised shelf-edge deltas and linkage to upper-
slope channels (Central Tertiary Basin, Spitsbergen). Shelf-Margin Deltas and Linked Downslope
Petroleum Systems: Global Significance and Future Exploration Potential, Gulf Coast Section.
23rd Annual Research Conference Houston, Texas, 231-266.

downslope-eroding sediment flows: Evidence in late Cenozoic strata on the New Jersey
7606(1994)106<0395:scibde>2.3.co;2.

lithology as controls on the initiation of submarine slope gullies; insights from the North Carnarvon

PYLES, D.R. & SLATT, R.M. 2000. A high-frequency sequence stratigraphic framework for the shallow
through deep-water deposits of the Lewis Shale and Fox Hills Sandstone, Great Divide and
Gulf Coast Section, 20th Annual Research Conference, Houston, Texas*, 836-861.

PYLES, D.R. & SLATT, R.M. 2007. Applications to understanding shelf edge to base-of-slope changes

RIDENTE, D., FOGLINI, F., MINISINI, D., TRINCARDI, F. & VERDICCHIO, G. 2007. Shelf-edge erosion,
sediment failure and inception of Bari Canyon on the Southwestern Adriatic Margin (Central

RYAN, M.C., HELLAND-HANSEN, W., JOHANNESSSEN, E.P. & STEEL, R.J. 2009. Erosional vs. accretionary
shelf margins: the influence of margin type on deepwater sedimentation: an example from the
2117.2009.00424.x.

SUTER, J.R. & BERRYHILL, H.L. 1985. Late Quaternary shelf-margin deltas, Northwest Gulf of Mexico.

SUTER, J.R. & BERRYHILL, H.L. 1985. Late Quaternary shelf-margin deltas, Northwest Gulf of Mexico.

Figure captions

Fig. 1: (a) The southwestern Karoo Basin with Tanqua and Laingsburg depocentres outlined. (b) The Tanqua depocentre study area. (c) Detailed map of the Paardeberg Ridge locality. Log positions are shown in white, and black lines indicate mapped erosion surfaces. Images from Google Earth.

Fig. 2: (a) Summary stratigraphy of the Tanqua Depocentre adapted from Wickens (1994), Wild et al. (2009) and Flint et al. (2011). The Waterford Formation here includes the Kookfontein Formation. (b) Summary log (DRs in Fig.1c) of the Paardeberg Ridge succession. The middle unit is the focus of this work.

Fig. 3: (a) Vertically exaggerated photo-panorama of the SW face of the Paardeberg Ridge. Log positions are shown in white. (b) Architectural detail of the middle unit. Black lines mark the contacts between different elements and red dotted lines show the positions of mudstone clast lags. All depositional elements have been coded, for example t1C or t4L, where “t1” or “t4” is related to the relative time of deposition, inferred from the lateral and vertical relationships between the elements. “C” or “L” refers to channelised or lobate body. The oldest erosion surface (t1C) that truncates distal prodelta facies of the uppermost slope parasequences is interpreted as the basal sequence boundary of the middle unit.

Fig. 4: Rose diagrams showing palaeocurrent distribution for the (a) lower, middle and upper units; and comparing (b) channelised vs. (c) lobate bodies, showing measurements within the different parts of the elements; (d) types of measurements. Dark colour represents bidirectional measurements while light colour represents unidirectional measurements. Def = deformation.

Fig. 5: Representative photographs of lithofacies from the middle unit. Table 1 outlines the lithofacies codes and interpretation of depositional processes (Ci: Matrix- to clast-supported intraformational
conglomerate; Cm: Mudstone clast horizon; Ss: Structureless sandstone; Sr: Ripple or climbing ripple-lamination; Sg: Inverse to normal graded sandstone; Sp: Parallel bedded sandstone; Sx: High angle planar or trough-cross bedded sandstone Sw: wavy lamination and symmetrical ripple-lamination).

Fig. 6: Dimensions, geometries and facies associations observed by depositional element, for channelised bodies (symmetric, asymmetric or amalgamated fills) and lobate bodies. Sd: Sandstone; St: Siltstone. Below: Summary table of width, thickness and length (“>” maximum measured due to outcrop constrains) values for the channelised and lobate elements measured in the Paardeberg ridge.

Fig. 7: Map of the channelised elements from SW to NE of the Paardeberg Ridge. Black lines represent mapped erosion surfaces. Dotted lines represent correlative surfaces between the two sides of the Paardeberg Ridge. Arrows represent main palaeocurrents. Right hand side table summarise the differences observed comparing the elements in up dip and down dip positions.

Fig. 8: Idealised geometrical relationships observed between channelised and lobate elements in strike section. Colour code is the same as in Figures 3 and 6. Left log shows a lobe element cut by a channelised element and overlain by the off-axis part of another lobate element (triangles in the middle of the figure represent the position of the log). Right log shows two lobe elements (triangles on the right show position of the log).

Fig. 9: (a) Photograph and correlation between DR6, 7 & 8 between the SW and NE faces of the ridge, showing down dip deepening and thickening of the channel. Palaeocurrents are parallel with the exposure. *1,2,3,4 mark key surfaces. (b) Geometrical relationships between channelised and lobate bodies from up-dip (SW) to down-dip (NE). Colour code as for Figure 3 and 6. Blue colour represents bidirectional measurements while green colour represents unidirectional measurements.

Fig. 10: Walked out correlation between DR1, DR6 and the OUS section, 2 km down dip. The top of the OUS section is interpreted as turbidites deposited from flows that bypassed the channelised shelf-
edge rollover. Outcrop photographs (a) and (b) show details of the erosion down dip. Blue lines represent regional flooding surfaces and the red line is the correlation of the basal sequence boundary of the middle unit.

Fig. 11: a) Synthesis of observations and interpretations, showing generalised vertical and lateral stacking of depositional elements for a prograding mixed-influence shelf edge rollover. Note the stratigraphic decrease in channel size. b) Detail of a channel morphology in this setting.

Table 1: Facies classification, description and process interpretations of the middle unit.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Dimensions - Channelised Elements

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>WIDTH</th>
<th>THICKNESS</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>>450</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>>350</td>
<td>>10</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>308</td>
<td>>10</td>
<td>>362</td>
</tr>
<tr>
<td>5</td>
<td>>158</td>
<td>>6</td>
<td>>340</td>
</tr>
<tr>
<td>2</td>
<td>>208</td>
<td>>7</td>
<td>>304</td>
</tr>
<tr>
<td>8</td>
<td>133</td>
<td>>8</td>
<td>>288</td>
</tr>
<tr>
<td>2</td>
<td>133</td>
<td>>5</td>
<td>>357</td>
</tr>
<tr>
<td>11</td>
<td>128</td>
<td>5</td>
<td>>288</td>
</tr>
<tr>
<td>9</td>
<td>>116</td>
<td>10</td>
<td>>304</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>>10</td>
<td>>304</td>
</tr>
<tr>
<td>1</td>
<td>75</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>12.58</td>
<td>201.5</td>
</tr>
</tbody>
</table>

Mean: 187.5

Dimensions - Lobate Elements

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>WIDTH</th>
<th>THICKNESS</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>>667</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>>625</td>
<td>>10</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>>408</td>
<td>>10</td>
<td>>317</td>
</tr>
<tr>
<td>5</td>
<td>>325</td>
<td>>10</td>
<td>>362</td>
</tr>
<tr>
<td>7</td>
<td>168</td>
<td>>10</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>400.2</td>
<td>8.2</td>
<td>187.5</td>
</tr>
</tbody>
</table>

Mean: 400.2
Fig. 7
Fig. 8
Fig. 10
Fig. 10
Fig. 11
<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Sedimentary structures</th>
<th>Thickness, lithology and textural properties</th>
<th>Process Interpretation</th>
<th>Other characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ci</td>
<td>Matrix- to clast-supported intraformational conglomerate, crudely cross-stratified</td>
<td>cm- to dm- scale, poorly-sorted and matrix- to clast-supported intraformational conglomerate. Siltstone to sandstone matrix, with mudstone, siltstone or sandstone clasts, 0.5-20 cm in diameter. Irregular contacts, commonly erosive bases, poorly formed cross-bedding and gradational tops (Fig.5a).</td>
<td>Locally sourced lithic clasts transported as bedload and deposited as basal lag when flow loses energy. Cross-bedding indicates migration of dunes and bars. Outsize clast content suggests bank collapse and erosion during high energy flows, or channel lateral migration.</td>
<td>Reddening of lags may represent oxidation of iron-rich minerals.</td>
</tr>
<tr>
<td>Cm</td>
<td>Mudstone clast horizon</td>
<td>Horizons of claystone and siltstone rip-up clasts within fine- or medium-grained sandstone beds. Clasts are up to 20 cm in size, rounded to angular and typically poorly-sorted. Beds are irregular in thickness and often erosional (Fig.5b).</td>
<td>Mudstone clasts entrained from erosion of underlying claystone and siltstone material during scour. Where mudstone clast horizons occur amongst sandstones, this is interpreted as high magnitude, low frequency flows, mobilising the mudstone clasts.</td>
<td>Mud clasts are commonly aligned or imbricated.</td>
</tr>
<tr>
<td>Ms</td>
<td>Parallel to ripple-laminated, normally and inversely-graded fissile siltstones and mudstones</td>
<td>mm- to dm-scale poorly to moderately-sorted coarse siltstone beds. Contacts are generally gradational. Locally sharp based.</td>
<td>Deposition from very low-density turbidity/hyperpycnal currents, sometimes associated to erosive bases and common superimposition of interference ripples.</td>
<td>Common appearance of starved and lenticular unidirectional ripples.</td>
</tr>
<tr>
<td>Md</td>
<td>Dark grey to black structureless siltstones and mudstones</td>
<td>mm- to m-scale moderately to well-sorted medium to fine siltstone beds. Generally gradational contacts, locally sharp.</td>
<td>Deposition by direct fallout from suspension, or debris-flows leading to a structureless appearance. Green colouration indicates waterlogged environment.</td>
<td>Often associated with sildictonal cretationary horizons.</td>
</tr>
<tr>
<td>Mo</td>
<td>Light grey to olive green, structureless to well laminated siltstones and mudstone</td>
<td>cm- to m-scale poorly to moderately-sorted coarse to fine siltstone beds. Generally gradational contacts, locally sharp.</td>
<td>Deposition by direct fallout from suspension, or debris-flows leading to a structureless appearance. Green colouration indicates waterlogged environment.</td>
<td>Local development of carbonate-rich nodular levels.</td>
</tr>
</tbody>
</table>