Integrating outcrop and subsurface data to assess the temporal evolution of a submarine channel-levee system

DOI:
10.1306/04271615056

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
AAPG Bulletin

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6B0] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Integrating outcrop and subsurface data to assess the temporal evolution of a submarine channel-levee system

E.A. Morris¹, D.M. Hodgson², S. Flint³, R.L. Brunt³, S.M. Luthi⁴, and Y. Kolenberg⁴

¹Stratigraphy Group, Geology and Geophysics, School of Environmental Science, University of Liverpool, 4 Brownlow Street, Liverpool, U.K.
²Stratigraphy Group, School of Earth and Environment, University of Leeds, UK
³Stratigraphy Group, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK
⁴Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

*now at: Badley Ashton America Inc., 14701 St Mary’s Lane, Ashford 5 - Suite 375, Houston, TX, 77079, USA

Acknowledgements
The authors gratefully acknowledge the local farmers for fieldwork access and De Ville Wickens for logistical support and management of wellsite geology and drilling operations. Ashley Clarke, Miquel Poyatos-Moré, Giuseppe Malgesini, John Kavanagh and Koen Van Toorenenburg are acknowledged for fieldwork support. Laura Fielding, Amandine Préalat, William Palmer and Andrew Adamson are acknowledged for their support during core logging and we thank the Council for Geosciences, Pretoria for their kind support in core preparation, storage and use of facilities. The SLOPE Phase 3 Project consortia sponsors (Anadarko, BHPBilliton, BP, Chevron, ConocoPhillips, E.ON, ExxonMobil, Gaz de Fr, Maersk, Murphy, nce Suez, Nexen, Petrobras, Schlumberger, Shell, Statoil, Total, Tullow, VNG Norge and Woodside) are acknowledged for financial support and for important technical feedback.
ABSTRACT
The morphological evolution of submarine channel systems can be documented using high-resolution 3D seismic datasets. However, these studies provide limited information on the distribution of sedimentary facies within channel-fills, channel-scale stacking patterns, or the detailed stratigraphic relationship with adjacent levee-overbank deposits. Seismic-scale outcrops of Unit C2 in the Permian Fort Brown Formation, Karoo Basin, South Africa on two subparallel fold limbs comprise thin-bedded successions, interpreted as external levee deposits, which are adjacent to channel complexes, with constituent channels filled with thick-bedded structureless sandstones, thinner-bedded channel margin facies, and internal levee deposits. Research boreholes intersect all these deposits, to link sedimentary facies and channel stacking patterns identified in core and on image logs and detailed outcrop correlation panels. Key characteristics, including depth of erosion, stacking patterns, and cross-cutting relationships, have been constrained, allowing paleogeographic reconstruction of six channel complexes in a 36 km² (14 mi²) area. The system evolved from an early, deeply incised channel complex, through a series of external levee-confined and laterally stepping channel complexes culminating in an aggradational channel complex confined by both internal and external levees. Down-dip divergence of six channel complexes from the same location suggests the presence of a unique exhumed example of an exhumed deep-water avulsion node. Down-dip, external levees are supplied by flows that escaped from channel complexes of different ages and spatial positions, and are partly confined and share affinities with internal levee successions. The absence of frontal lobes suggests that the channels remained in sand bypass mode immediately after avulsion.
INTRODUCTION

Submarine channel-levee systems are a primary conduit for clastic sediment supplied from the continents to the deep ocean (Shepard and Emery, 1941; Shepard, 1948; 1981; Menard, 1955, Normark, 1970; Normark and Carson, 2003; Kolla, 2007; Normark et al., 2009; Peakall and Sumner 2015). The architecture and evolution of deep-water channel systems has been of particular interest in both oil and gas industry and academic study in recent years with detailed investigations using high-resolution reflection seismic datasets (e.g. McHargue and Webb, 1986; Badalini et al., 2000; Babonneau et al., 2002; 2004; Abreu et al., 2003; Deptuck et al., 2003; 2007; Posamentier, 2003; Posamentier and Kolla, 2003; Schwenk et al., 2005; Mayall et al., 2006; Kolla, 2007; Cross et al., 2009; Catterall et al., 2010; Armitage et al., 2012; Ortiz-Karpf et al., 2015; Jobe et al., 2015), and seabed imaging techniques (e.g. Torres et al., 1997; Maier et al., 2011; 2013; Covault et al., 2014), with limited detailed information on sub-seismic scale elements, and the range and distribution of sedimentary facies. This gap has been addressed by the use of analogous systems at outcrop (Badescu et al., 2000; Blikeng and Fugelli, 2000; Clark and Gardiner, 2000; Campion et al., 2000; Pickering and Corregidor, 2000; Gardner et al., 2003; Beaubouef, 2004; Hodgson et al., 2011; Brunt et al., 2013a; Hubbard et al., 2014; Masalimova et al., 2016). Although these studies help to constrain the distribution and lateral variation of sedimentary facies of channel-fills, channel-scale stacking patterns and detailed stratigraphic relationship with adjacent levee-overbank deposits, they have limited 3D control, or calibration with subsurface datasets. Rare examples of outcrop-based studies with subsurface constraint of channelized systems include the Eocene of the Ainsa Basin, NE Spain.
(e.g. Pickering and Corregidor, 2005), the Miocene Mt. Messenger Formation, New Zealand (Browne and Slatt, 2002), and the Permian Brushy Canyon Fm., USA (Beaubouef et al., 1999). Outcrop studies where slope channel systems can be traced in multiple outcrop exposures providing 3D constraint are also rare (Pyles et al., 2010; Hubbard et al., 2008; Macauley and Hubbard, 2013).

Many studies have documented the highly organised nature of deep-water deposits, suggesting a regular, ordered set of controls on the development of stratal architecture (e.g. Beaubouef et al., 1999; Gardner et al., 2003; Hodgson et al., 2006; Pyles, 2008; Flint et al., 2011; Hodgson et al., 2011; Hodgson et al., 2016; Terlaky et al., 2016). This stratigraphic organization has enabled the development of a hierarchical approach to both confined and unconfined parts of deep-water systems. For channelized sections, Sprague et al. (2002) developed a hierarchy of storeys and storey sets that build channels. Channels stack into channel complexes and channel complex sets (McHargue et al., 2011). These hierarchical schemes bridge the scale between well data and the vertical resolution of industry seismic reflection surveys, in which the smallest resolvable element is typically the complex or complex set.

In this paper, we present a combined outcrop and subsurface study of a channel-levee complex set and the sedimentary facies distribution and depositional architecture of six constituent channel complexes. The succession is part of Unit C of the Fort Brown Formation, Laingsburg Karoo Basin, South Africa (Figure 1). Six research boreholes drilled behind the outcrop intersect channel axis, channel margin, internal levee and external levee deposits. These provide detailed information on sedimentary facies and channel-stacking patterns identified in 1-D
core, gamma-ray and borehole image logs that are integrated with two detailed across depositional strike 2-D correlation panels from adjacent outcrop (Hodgson et al., 2011; Kane and Hodgson 2011). These data are integrated to produce highly detailed paleogeographic reconstructions at sub-seismic resolution to argue for the presence a unique examples of an exhumed deep-water avulsion node and confined external levee deposits.

GEOLOGIC SETTING AND STRATIGRAPHY

The study area forms part of the Permian-aged deep water Laingsburg depocenter of the south-western Karoo Basin (Figure 1). A longstanding interpretation for the formation of the Karoo Basin is a retroarc foreland basin formed through flexural loading from the adjacent fold-thrust belt (Cape Fold Belt) lying along the southern margin of the basin (Veevers et al., 1994; Visser and Praekelt, 1996; De Wit and Ransome, 1992; Catuneanu et al., 1998). In a more recent synthesis of published data with a recent seismic refraction survey, Tankard et al. (2009) proposed that the Cape Fold Belt is Triassic in age and interpreted Karoo Basin subsidence as due to mantle flow associated with subduction-related by negative dynamic topography, but complicated by variable degrees of foundering of basement blocks.

A 1.4 km (0.9 mi) thick exhumed progradational basin-floor to upper-slope succession (Flint et al., 2011; van der Merwe et al., 2014) crops out along a series of east-west trending, eastward plunging, post depositional anticlines and synclines, near the town of Laingsburg (Figures 1, 2). Deep-water deposition began with distal basin-floor deposits of the Vischkuil Formation (van der Merwe et al., 2009; 2010), which is overlain by basin-floor and base-of-slope fan systems of the Laingsburg
Formation (Units A and B; Grecula et al., 2003; Sixsmith et al., 2004). The muddy slope succession of the 0.5 km (0.3 mi) thick overlying Fort Brown Formation (Figure 2) is punctuated by five sandstone-rich units (Units C-G; Flint et al., 2011) that comprise slope channel-levee systems (Grecula et al., 2003; Figueiredo et al., 2010; Hodgson et al., 2011; Di Celma et al., 2011; Morris et al., 2014a). These mudstone units constrain the stratigraphy and have been mapped for up to 90 km (56 mi) down dip (van der Merwe et al., 2014). In this study, the focus is on Unit C, primarily exposed in the Baviaans syncline (Figure 1). Regional paleoflow is towards the NE (Di Celma et al., 2011).

Unit C overlies the B-C mudstone, a ~50 m (164 ft) thick partly hemipelagic drape separating the Laingsburg and Fort Brown formations (Figure 2). This mudstone contains a <5 m (<16 ft) thick, sharp-topped and sharp-based sandstone dominated unit referred to as the B-C interfan (Figure 2B) (Di Celma et al., 2011), interpreted by Flint et al. (2011) as an intra-slope lobe. It lies ~32 m (108 ft) below the base of Unit C and it is used as a lower datum when measuring and correlating Units C and D.

Unit C has been interpreted as the lowstand sequence set (LSS) to a composite sequence, the combined transgressive and highstand sequence set (TSS-HSS) of which is represented by the ~26 m (85 ft) thick regional C-D mudstone (Flint et al., 2011). The Unit C LSS comprises three sequences; their lowstand systems tracts are sandy Sub-units C1, C2, and C3 (Di Celma et al., 2011; Flint et al., 2011). These are separated by two mudstones; a 2 m (6.5 ft) thick ‘Lower C mudstone’ and a ~8 m (26 ft) thick ‘Upper C mudstone’ (Figure 2). Both have been mapped regionally and have been interpreted as the combined transgressive systems tracts-highstand systems tracts (TST-HST) of the C1 and C2 sequences. The TST-HST of the C3
sequence is the lower part of the C-D mudstone (Flint et al., 2011). In the Baviaans area, Sub-unit C1 is generally 10-15 m (33-49 ft) thick and composed of sandstone-prone thin-beds becoming more siltstone-prone upwards; it has been interpreted as a frontal lobe complex (Di Celma et al., 2011). Sub-unit C2 is 5-80 m (16-260 ft) thick, and largely comprises thin-bedded sandstones and siltstones interpreted as external levee deposits that are adjacent to channels filled with thick-bedded structureless channel axis sandstone (Morris et al., 2014a), thin-bedded channel margin material (Hodgson et al., 2011) and thin-bedded internal levee deposits (Kane and Hodgson 2011) (Figure 3). The thickest accumulations are a result of erosive channelization in proximal areas, where C2 comprises a levee-confined channelized system that incises through C1 and 30 m (98 ft) of the underlying mudstone (Hodgson et al., 2011).

Sub-unit C3 is usually 1-10 m (3-33 ft) thick, and attains a maximum thickness of >50 m (164 ft) in the proximal Baviaans area and is interpreted as a frontal lobe complex (Morris et al., 2014b). Di Celma et al. (2011) described a progradational trend from Sub-unit C1 to C2, with a landward stepping (retrogradational) component during the deposition of C3, suggesting a waxing then waning of overall sediment supply during the Unit C lowstand sequence set. Unit D, interpreted as another lowstand sequence set (Flint et al., 2011), crops out as a 2 km (1.25 mi) wide, >100 m (330 ft) thick, entrenched slope valley fill at the CD Ridge (Figures 2, 3) on the south limb of the Baviaans syncline where it removes part of Unit C (see Hodgson et al., 2011 for further details).
METHODOLOGY AND DATASET

The primary study area covers 36 km² (14 mi²) in which Units C and D crop out on the north and south limbs of the Baviaans syncline (Figure 1). Correlation panels constructed on both limbs of the structure (Figure 3), capture the evolving style of channels and levees in C2. Field-based sedimentological and stratigraphic observations including 247 measured sections (16 km (10 mi) of cumulative thickness) were used to construct the correlation panels; 147 sections for the panel on the north limb of the Baviaans syncline (Pringle et al., 2010; Di Celma et al., 2011) and 100 sections in the western area of the CD Ridge panel on the south limb of the syncline (Di Celma et al., 2011; Hodgson et al., 2011). Channelized deposits within C2 have been described in detail from two of the research boreholes: Bav 1a (Figure 4) and Bav 2 (Figure 5), and external levee deposits in Bav 6 (Morris et al., 2014a). A suite of slim-hole well logs was collected that include borehole electrical images with the Formation Micro-scanner (FMS) tool (Mark of Schlumberger). These images are orientated with respect to geographic north, and therefore the direction of paleocurrent indicators was determined. No logs were run in Bav 2 due to loss of the drill bit in the hole. The combination of well constrained outcrop data on the south and north limbs of the Baviaans syncline (Figure 3) and continuous core in the three boreholes that intersect the C2 system permits a high confidence understanding of what can be recognised from combinations of conventional wireline and borehole image logs. The porosities, permeabilities and fluid saturations of the rocks, however, are not comparable to oil or gas reservoirs because the Karoo Basin deposits have been buried to >6 km (>3.7 mi), highly compacted and cemented by quartz. Detrital clay minerals have been transformed into low grade metamorphic
minerals (Luthi et al., 2006). Therefore, density and neutron porosity logs were not run, with conventional logging being restricted to spectral gamma-ray and sonic logs.

FACIES ASSOCIATIONS

In the channelized C2 succession, six facies associations have been identified and are shown in Table 1: **CLf1** – Thick-bedded, structureless fine-grained sandstone; **CLf2** – Structureless fine-grained sandstone with mudstone and siltstone clasts; **CLf3** – Structured fine- and very fine-grained sandstone; **CLf4** – Sand-prone thin-beds **CLf5** – Silt-prone thin-beds; and **CLf6** – Deformed heterolithic sediments. C2 has been well documented in outcrop (Di Celma et al., 2011; Hodgson et al., 2011) and in core from adjacent boreholes in this study. Six main environments of deposition have been interpreted: 1) Channel axis (CLf1 and CLf2); 2) Channel margin (CLf3, CLf4, CLf5 and CLf6); 3) Proximal internal levee (CLf3 and CLf4); 4) Distal internal levee (CLf4); 5) Proximal external levee (CLf3, CLf4 and CLf5) and 6) Distal external levee (CLf4 and CLf6). Table 2 shows key facies examples from the combined outcrop, core and borehole image datasets for each of the environments of deposition.

1-D DATASET – BEHIND OUTCROP CORES AND WIRELINE LOGS

Of the six research boreholes drilled behind the CD Ridge, three (Bav 1a, 2, and 6) intersected C2. Bav 1a and Bav 2 are ~0.7 km (0.44 mi) apart (Figure 3), whilst Bav 6 is situated ~1.8 km (1.12 mi) east of Bav 2. Bav 1a captures the C2 axis where it has locally removed the B-C interfan, Bav 2 captures a more eastward component of
the channel complex set and part of the Unit D slope valley, and Bav 6 intersects the external levee of C2 (Kane and Hodgson, 2011; Morris et al., 2014a) (Table 2).

Bav 1a

In Bav 1a, six channel complexes (CC1-CC6) have been interpreted (Figure 4). Fine-grained sandstone with multiple erosion surfaces lined by mudstone and siltstone clasts (Figure 4C) (CLf2), typical of channel axis and channel off-axis environments, produce a spikey gamma-ray log trace. Packages of structureless fine-grained sandstone between the erosion surfaces show dewatering features (CLf1) (Figure 4). The composition of the clasts changes upward through the succession, from mudstone- to siltstone- and sandstone-dominant. Many of the clast-lined erosion surfaces are spaced at 1-2 m (3.3-6.6 ft) vertically. Without the control from the nearby outcrop it would be easy to consider these units as too thin for channels and to therefore interpret them as storey boundaries. However, the detailed logs, spaced every 20 m (66 ft) along the C-D Ridge, with every bed traced between adjacent logs (Hodgson et al., 2011) shows that the lower part of C2 is composed of stacked erosional remnants of channel-fills. Distinction of a channel base from a channel complex base is informed by outcrop observations, and the bases of channel complexes are marked by thicker concentrations of mudstone and siltstone rip up clasts, which are interpreted as lag deposits that mark periods dominated by sediment-bypass (Stevenson et al., 2015). There is an upward increase in thickness between erosion surfaces both in core and outcrop, with the uppermost (16 m (53 ft) thick) channel complex. This reflects stratigraphic increase in element preservation. The thin-bedded facies (CLf4 and CLf5) in this core have abundant soft-sediment
deformation are typical of channel margin deposits (Figure 4) (CLf6). The thin-bedded nature of the siltstone-prone deposit (CLf5) combined with the abundance of mudstone drapes and the increased intensity of bioturbation suggests that the system was waning and that only dilute turbidity currents were entering the basin. Figures 4 and 5 show that the uppermost 8 m (26 ft) of C2 in this well has been interpreted to be part of an abandonment unit deposited as the C2 system began to backstep and before the shutdown associated with the upper C mudstone, as described by Di Celma et al. (2011) and Flint et al. (2011).

Bav 2

In Bav 2, three C2 channel complexes have been interpreted (Figure 5) based on erosion surfaces and channel lag deposits (CLf2). The C2 channel complex set does not have the same depth of erosion as recorded in Bav 1a as the B-C interfan and 30 m (98 ft) of the overlying B-C mudstone are present (Figure 5). This core contains similar facies to Bav 1a, characteristic of channel axis and channel off-axis environments of deposition (Campion et al., 2000, McHargue et al., 2011) but thick channel lag deposits are absent and there is no variation in the composition of the mudstone clasts throughout the channelized succession. Overlying the three subunit C2 channel complexes, the Bav 2 core records 27 m (90 ft) of both proximal and distal internal levee deposits (CLf3, CLf4 and CLf5) that is capped by an 8 m (26 ft) thick abandonment unit (CLf4 and CLf5).

Figure 6 is a correlation of C2 between Bav 1a and Bav 2. The correlation datum is the upper C mudstone. This panel highlights the channel elements, channel complexes and channel complex set interpreted in each of the wells and shows that
there is no clear correlation at channel element or channel complex scale over the 0.7 km (0.44 mi) inter-well spacing. However, it is likely that the heterogeneous thin-bedded deposits recorded in Bav 2 acted to confine the late stage vertically stacked channel complex in Bav 1a (CC6) within the late stage erosion surface, suggesting these deposits were constructed by this channel complex as internal levees (Kane and Hodgson, 2011).

While it is not possible to correlate channel elements between the two wells (Figure 6), the erosion surface separating CC3 and the overlying internal levee in Bav 2 is correlated to the erosion surface at the base of CC6 in Bav 1a. Also, although CC3 is intersected in both wells, the channel remnants preserved in Bav 1a are older than those captured in Bav 2 based on stacking pattern.

Contribution of borehole images and wireline logs

The generally high gamma-ray readings in the Fort Brown Formation are due to a high percentage of potassium feldspar in the rocks. Cross-plotting gamma-ray and sonic log values shows that among the types of thin beds, it may be possible to distinguish external levees from internal levees (Figure 7), as the external levees are a little sandier and cleaner. This plot shows that it is not possible to distinguish channel margin thin beds from either external or internal levees on conventional logs, which becomes a problem when making interpretations of architectural elements in uncored wells. The gamma-ray log for the lower half of the C2 interval in Bav 1a (Figure 4) has a spiky character with no clear internal trends. We know from outcrop control that this section of the borehole passes through CC1 and CC3 (Figure 8). CC1 comprises stacked erosional remnants of channels, the bases of
each one being mantled by mudstone rip up clasts. There are also 3 intervals of channel margin thin beds but these are only imaged clearly for one interval at 120 m (Figure 4). The high gamma-ray expression of this channel margin facies could easily be interpreted as a laterally extensive abandonment drape. The upper section of the borehole passes through the almost completely preserved CC6 channel complex, which shows an upwards cleaning trend.

Borehole electrical images from the FMS tool were analysed for paleocurrent information such as climbing ripples and cross-beds, but also on secondary structures such as erosion surfaces and sedimentary faults (see supplementary tables A-F). The scatter of these data within the C2 channel complexes is quite large, most probably caused by channel sinuosity, channel margin collapse and lateral stepping. In the absence of core, the borehole images are crucial in the correct identification of channel and channel complex boundaries, which can be recognised by concentrations of mudstone up clasts, subtle erosion surfaces onlapped by channel margin thin beds with shallowing upwards of bed dips. These features are not resolvable reliably on conventional wireline logs. Paleocurrent indicators from the unconfined deposits, particularly in the external levees, show a more coherent paleoflow pattern with a much smaller scatter in directions that are consistent with the outcrop-derived paleoflow directions (Kane and Hodgson, 2011). This paleocurrent information, together with the basal surfaces that can be identified on borehole images, are valuable contributors to constraining reservoir models in channel-levee systems.
2-D OUTCROP CORRELATIONS

On the CD Ridge outcrop, six C2 channel complexes (CC1-CC6) comprising structureless channel axis sandstone (CLf1 and CLf2) and thin-bedded channel margin facies (CLf4, CLf5 and CLf6) have been identified by mapping erosion surfaces where they cut into older deposits (Figure 8). The surfaces are mantled by mudstone and siltstone clasts and are onlapped by channel margin thin beds. The relative ages of the channel complexes is constrained by cross-cutting relationships, (Figure 8). On the north limb of the Baviaans syncline, six corresponding channel complexes have been correlated using geometry, stacking patterns of component channels, paleocurrent data, and depths of erosion surfaces. Figure 9 shows where the numbered channel complexes crop out, their geometries and their interpreted stratigraphic relationship.

PALEOGEOGRAPHIC RECONSTRUCTIONS

Using the combined outcrop and core observations from both limbs of the syncline, a series of paleogeographic maps (Figure 10) and cross-sections (Figures 11, 12) have been constructed, detailing the evolution of the C2 channel complex set through time. Regional depositional dip for C2 is to the north east but individual channel complexes vary in orientation, from north to east.

Time slice One – CC1

Time slice One (Figure 10A) correlates the oldest and deepest preserved remnant channel complex of C2 age recorded on the CD Ridge (CC1, Figure 8) to the deepest and oldest channel complex 2 km down dip on the north limb of the
Baviaans syncline (CC1 in Figure 9). The low degree of asymmetry of the remnant complex preserved on both limbs of the syncline suggests that this channel complex had a low degree of sinuosity. The 30+ m (98+ ft) of incision on this channel complex suggests that it was mostly erosionally confined.

The cross-sections for Time slice One (Figures 11A, 12A) show the CC1 erosion surface down-cutting into the B-C interfan on the south limb with inferred small, symmetrical external levees adjacent to it (Figure 11A). The complex shows similar features on the north limb but with basal erosion down to just above the B-C interfan (Figure 12A).

Time slice Two – CC2

CC2 (Figure 10B) is preserved as two remnant channel complexes on the CD Ridge, directly overlying the CC1 complex (Figure 8). These remnants are correlated to the symmetrical channel complex that incises below the base of Unit C mapped out 8.5 km (5.3 mi) to the ENE near the West Dump on the north limb of the syncline (CC2, Figure 9). The asymmetry of the channel complex, with its eastward stepping constituent channel elements on the CD Ridge and the preservation of several channel margins preferentially on the western side of the complex further down dip implies moderate sinuosity.

The cross-section for Time slice Two (Figure 11B) on the south limb shows two remnant channel complexes, both of which incise to the base of Unit C, and the western complex is the youngest. We interpret asymmetric levees adjacent to these channel complexes, with the larger external levee to the west. The two channel complexes identified on the south limb are undifferentiated on the north limb, where
thick external levees are inferred to have confined the CC2 complex, possibly aggrading with it. A crevasse splay deposit is present in the western external levee, captured on the outcrop correlation panel (Figure 9); its stratigraphic position in the middle of the external levee succession suggests that the channel complex and the external levees aggraded quasi-synchronously.

Time slice Three – CC3

Time slice 3 (Figure 10C) shows a C2-aged channel complex adjacent to the Unit D slope valley on the CD Ridge (CC3, Figures 4, 5, 8). Constituent remnant channel element show an eastward stepping stacking pattern, with channel margin material preferentially preserved to the west. This channel complex has been correlated to a channel complex at the Old Rubbish Dump (Pringle et al., 2010) exposed 10 km (6.2 mi) down dip (CC3, Figure 9), where channel elements record a similar eastward stepping with extensive channel margin material also preserved towards the west. Both channel complexes cut down to the stratigraphic level of base Sub-unit C1. The asymmetry and internal eastward stepping of channel elements within the CC3 channel complexes suggests that external levee deposits associated with these channel complexes were asymmetric, with a thicker levee to the east.

The cross-section reconstruction for Time slice Three on the CD ridge shows how a channel complex partly truncates the older, eastern CC2 channel complex, incising to the base of Unit C. Individual channel elements in the CC3 channel complex are eastward stepping. On the north limb (down dip), this same deeply incised and eastward stepping channel element trend is present. We interpret that asymmetric external levees bounded the channel complex, with the higher levee on the eastern
margin with preferential flow stripping and overspilling to the east as a consequence of the eastward stepping of the individual channel elements.

Time slice Four – CC4

Time slice Four (Figure 10D) comprises the large, western CC4 channel complex on the CD Ridge (Figure 8). This complex incises into the westernmost exposed deposits of the CC3 channel complex, removing the stratigraphic relationship with external levee deposits. The lack of exposed channel margin deposits and channel element scale surfaces means that the geometry of this channel complex is poorly constrained. It has been correlated to the youngest, asymmetric channel complex cropping out at the Old Rubbish Dump (Pringle et al., 2010) (CC4, Figure 9) on the north limb. The asymmetry of constituent channel elements here suggests that the channel complex was weakly sinuous in planform.

Topography on the CC3 eastern external levee on the south limb of the syncline is likely to have acted to partially confine the eastern external levee of the CC4 channel complex, forming a ‘confined external levee’. The western external levee of CC4 was not confined. This pattern is extended down dip, with the eastern CC4 external levee inferred to have been confined by topography created by the eastern external levee of CC3, whilst the CC4 western external levee is largely unconfined. In both correlation panels, CC4 incised through part of CC3, cutting down to the base of Unit C, removing older external levee deposits genetically related to older channel complexes.

The asymmetry of the channel complex on the north limb suggests that the external levees adjacent to that channel complex are likely to have been asymmetric, with a
thicker western levee at an interpreted outer bend position. The reconstructed cross-section for the north limb suggests that the eastern external levee of CC3 was high enough to act as a confining surface.

Time slice Five – CC5

CC5 shows the paleogeographic interpretation of the westernmost C2-aged channel complexes recorded on the CD Ridge and on the north limb of the syncline opposite Baviaans Farm (Figure 10E). In both areas, the constituent channel elements show a west-stepping stacking pattern, with extensive preserved channel margin deposits (CC5, Figures 8, 9). The map shows this channel complex as sinuous with an outer bend to the west.

It is suggested that the thick eastern external levee constructed during Time slice Three on the south limb of the syncline, confined the eastern external levee associated with CC5. On the north limb, the deposits of the western external levee were unconfined and the eastern levee onlapped the western external levee of CC4, forming a composite levee succession.

Time slice Six – CC6

CC6 is the youngest channel complex recorded in C2 on the CD Ridge (CC6, Figures 4, 5, 8) and in Bav 1a (Figure 10F) and the most completely preserved. At outcrop, this complex is characterized by vertically stacked aggradational channel elements confined by internal levee deposits. CC6 is correlated to the complex exposed at the Whaleback, 5 km (3 mi) down dip on the north limb of the syncline
(CC6, Figure 9). The channel complex at the Whaleback is asymmetric, indicating sinuosity. Internal levees overlying a CC6 erosion surface confine the late stage aggradational channel complex on both limbs of the syncline.

The northern correlation panel shows CC6 to be a highly erosive channel complex that incised through external levee deposits, constructed during Time slices Two to Five. It is interpreted to have been confined by external levees to the east that onlap onto older external levees constructed during Time slice Four, and by an internal levee to the west.

DISCUSSION

Subsurface implications of the 1D and 2D data

The integration of core and well log data to adjacent outcrops provides a link between 1-D and 2-D data, and scales the well data up to field mapping scale. The correlation across the Bavinaans syncline provides between 2 km (1.2 mi) and 10 km (6.2 mi) of down dip control. Figure 13 highlights five of the key learnings from this high-resolution integrated study of submarine channel complex evolution:

1. There is a stratigraphic trend of channel complexes and channel elements being thicker through the channel complex set (Figure 4A) such that the youngest, vertically aggradational channel complex (CC6) is the best preserved in both up dip and down dip datasets. On average, channel remnants are 3.2 m (10.5 ft) thick, channel complex remnants are 11 m (36 ft) thick, and the C2 channel complex set is 40 m (131 ft) thick. This is interpreted to reflect the increased preservation potential of younger components of a channel complex set as the
deepwater system evolved from bypass-dominated to aggradational within the lowstand systems tract (Hodgson et al., 2011).

2. Although the basal surface of the C2 channel system is the most correlative it can be difficult to pick out using well logs alone because mudstone clast conglomerate produces high gamma-ray readings. The same issue holds when trying to identify correlative channel surfaces (channel element and channel complex boundaries) in well logs. However, borehole images can be more helpful as they show basal mudstone clasts as dark (conductive) features and basal surfaces as abrupt changes in conductivity (Table 2).

3. Preservation of thin-bedded turbidites within the main composite bounding surfaces are either channel margin (Bav 1a) or internal levee deposits (Bav 2; Figure 8, 13). Therefore, it is important to consider the environment of deposition of thin beds and their connectivity to sand-rich deposits. Channel margin thin beds show similar electrofacies to external or internal levee thin beds in conventional wireline logs (Figure 7) but image logs help to distinguish between these thin bed types.

4. A single vertical well will not intersect all channel complexes. This is a combined function of lateral channel switching, stacking pattern, and sinuosity. Furthermore, a bypass surface in up-dip locations can be represented by multiple channel complexes down-dip (Stevenson et al., 2015).

5. Bav 1a (Figure 4) and Bav 2 (Figure 5) are 0.7 km (0.44 mi) apart and, although several channel element-scale surfaces and channel complex-scale surfaces were identified in each of the cores, none of these surfaces could be correlated with confidence between the wells (Figure 6). Typically, the correlation lengths of
channel elements are less than the well spacing. However, using additional information provided in the outcrop correlation panel from the CD Ridge (Figure 8), the CC3 and CC6 erosion surfaces were correlated. Combining observations from both wells, only CC1, CC3 and CC6 were intersected in both Bav 1a and Bav 2. The hierarchy and scale of channel erosion surfaces, combined with stratigraphic position, is key when correlating and interpolating in 3-D. Dip measurements from electrical borehole image logs can be employed to calculate the angle and direction of erosion surfaces to help with correlating these surfaces between wells.

Controls on location and stacking patterns of channels

A long-term entry point in the southwestern corner of the Baviaans syncline is interpreted due to the presence of channelized axes of Units B, C, and D (Brunt et al., 2013a; Di Celma et al., 2011; Hodgson et al., 2011; van der Merwe et al., 2014). The coeval shelf edge has been removed due to later uplift of the Cape Fold Belt so the mechanism for this long term focus of supply is unknown. The paleogeographic reconstructions for C2 indicate a levee-confined channel system that bifurcates down-slope into a series of isolated channel complexes. This pattern means that more of the stratigraphic history of the system is preserved as deposits on the north limb of the Baviaans syncline, with more time locked up on erosion surfaces farther up dip on the CD Ridge.

The paleogeographic maps (Figure 10) show two main clusters of channel complexes on the north limb of the syncline that are separated by ~6 km (3.7 mi) of overlapping siltstone-rich external levee deposits (Figure 9). This composite external
levee succession was built by overspilling and flow stripping from different channel complexes (Figure 12), although there is no evidence that more than one channel complex was active at a time. At any one time, the topography of the composite levee would influence the behaviour of sediment gravity flows that escaped the active conduit. The constructional topography likely hindered the potential for an avulsion into this area.

An internal levee is defined as a constructional feature deposited lateral to a channel, but within a larger confining surface (Kane and Hodgson, 2011; Hansen et al., 2015). The situation described here between the western and eastern channel axes is different because the external levees were partially confined by constructional topography of older external levees. The term ‘confined external levee’ is introduced here for levees that are deposited outside the channel-belt confining surface, but subject to the influence of underlying constructional topography. External levees are commonly seen to onlap each other in seismic section (e.g. McHargue and Webb 1986; Bastia et al., 2010; Catterall et al., 2010), and the area between the western and eastern channel complexes is interpreted as an outcrop example of this situation. The sedimentary processes within a confined external levee deposit and an internal levee may be similar; therefore the sedimentary facies may share affinities, such as deflection of flows by the confining surface, recorded by multi-directional current and climbing ripple cross-lamination (Kane and Hodgson, 2011). Also, flows within a confined external levee cannot travel as far from the parent conduit as those within an unconfined external levee, which will influence bed thickness patterns and bed geometries. In the hierarchy used here, these composite external levees would represent an external levee complex set,
however, it has not yet been possible to distinguish constituent external levee complexes and external levee elements.

Scale and architectural comparison to other systems

The Unit C lowstand sequence set is up to 80 m (262.5 ft) thick in the study area, overlies the 50 m (164 ft) thick B-C mudstone and is overlain by the 26 m (85 ft) thick C-D mudstone. These thicknesses and likely strong acoustic impedance contrasts at base and top of Unit C suggest the succession would be mappable in many deep-water seismic reflection datasets. Although the two outcrop panels provide a wealth of architectural data in 2D, augmented by the boreholes, the map view geometries are interpreted rather than directly imaged. In recent years there have been many publications showing map view geometries derived from seismic amplitude horizon slices through slope channel-levee complexes and slope valleys. In most cases, the systems imaged are at the whole Unit C scale. Notwithstanding this resolution difference, and mindful of the well-developed hierarchy in deep-water systems, such map view images provide a useful constraint on the geometries interpreted within C2. Figure 14 shows a horizon slice and cross section through Cenozoic slope deposits, offshore West Africa (Abreu et al., 2003; Armitage et al., 2012; Janocko et al., 2013; Jobe et al., 2015). The horizontal distance scales well with the distance across the Bavias syncline and the 25 ms (~25 m; 82 ft) vertical scale suggest that the channel features are only a little larger than the C2 channel complexes. What is mappable as a channel element is likely a channel complex in outcrop and well data (Figure 13 and 14).
To obtain map view images of features that scale with outcrop scale vertical resolution requires either extremely high resolution shallow seismic data or studies of the modern seabed. A comprehensively studied Pleistocene slope channel example is the Lucia Chica system, offshore central California. High resolution data collected by autonomous underwater vehicle (AUV) radar surveys provide information at similar resolution to the C2 channel complexes (Maier et al., 2011; 2012; 2013). The system was active during the last glacio-eustatic lowstand and was abandoned at 11,000 years BP during the post-glacial sea level rise. Maier et al. (2013) documented the evolution of 4 channels, which initiated as erosional features and subsequently developed levees, in a similar mechanism envisioned herein. Janocko et al. (2013) described ‘hybrid channels’ that show characteristics of both erosional and levee-confined types, which we interpret to be the dominant style in C2. The high-resolution data from Lucia Chica led Maier et al. (2013) to argue that the channels in that system evolved from erosional to levee confined, before avulsion occurred. Older channels have thicker levees, higher sinuosity and evidence of lateral stepping. A similarity between the Lucia Chica system (Maier et al., 2012), the Y channel (Jobe et al. 2015), and C2 is that lateral movement of channels was achieved through lateral stepping rather than lateral migration.

An exhumed example of an avulsion node

The CD ridge area marks a site that was prone to multiple abrupt changes in the pathways of channel complexes, and is interpreted as a unique example of an exhumed deep-water avulsion node. Three types of avulsion pattern have been noted in deepwater channel systems. These include forward-stepping, back-
stepping, radial and single node (Kolla, 2007; Armitage et al., 2012; Pyles et al., 2014). Triggers for avulsion events include allocyclic controls such as changes in climate, sea-level or tectonics (Kolla, 2007, Maier et al., 2012). Autocyclic controls may include increasing channel sinuosity (Kolla, 2007), limited downstream accommodation and backfilling of individual channel thalwegs due to lobe deposition (Prélat et al., 2010) or breaching of a levee and response to a changed base-level (Fildani et al., 2006; Brunt et al., 2013b; Covault et al., 2014; Ortiz-Karpf et al., 2015). However, the lack of longitudinal migration of the C2 avulsion node points to an underlying control, such as a break-in-slope, although this is too subtle to resolve at outcrop. The channel complexes were not active at the same time, so the pattern is not bifurcation, however, the map view pattern and scale of channel complex divergence is remarkably similar to that identified by Armitage et al. (2012) (Figure 14). In the Lucia Chica system, Maier et al. (2013) suggested overall low channel relief and highly asymmetrical channel-levees influenced the position of an avulsion node, which is a situation common in the C2 succession.

The area downdip of the avulsion node (the north limb) in C2 is notable for the lack of sand-rich frontal lobe deposits, although they are interpreted at the base of the underlying Sub-unit C1 (Di Celma et al., 2011) and overlying Sub-unit C3 (Morris et al., 2014b). The wide belt of channel complexes and composite external levees on the north side of the Baviaans syncline suggests that the absence of frontal lobes at the base of C2 external levees cannot be ascribed to low preservation potential and indicates persistent sediment bypass of high-energy flows (Stevenson et al., 2015). Sand-rich C2 lobe deposits are found ~25 km (15.5 mi) down dip of the study area (Di Celma et al., 2011; Brunt et al., 2013b), which is consistent with an
accommodation-limited slope in the study area, such that flows remained in sand bypass mode. Deposition of a crevasse or frontal lobe (or splay) is common where there is available accommodation following an initial breach of an external levee (Fildani et al., 2006). Depending on usable accommodation, flows will deposit rapidly (e.g. Parsons et al., 2002; Hall and Ewing 2007; Morris et al., 2014b). As the system stabilises, a channel and levee may develop over the lobe (Lopez, 2001; Maier et al., 2012). High amplitude continuous-to-discontinuous reflection packages (HARPs; Posamentier and Kolla, 2003) are preserved between or underlying channel and levee deposits, as identified in the Amazon, Indus, Zaire and Bengal fan systems (Damuth et al., 1988; Flood et al., 1991; Normark et al., 1997; Pirmez et al., 1997; 2000; Droz et al., 2003; Lopez, 2001; Kolla, 2007). However, Ortiz-Karpf et al. (2015) provide a subsurface example of a deep-water avulsion cycle where there is a zone between the point of avulsion and the updip pinchout of the avulsion lobe. The implication is that not all avulsion nodes will be associated spatially with sand-rich frontal lobe deposits, which is an important consideration in subsurface reservoir prediction.

CONCLUSIONS

The C2 deep-water slope system shows a temporal evolutionary trend in the style of constituent channel complexes and in the nature of external levees. The oldest and most deeply incised channel complex is overlain by a series of external levee-confined, laterally stepping asymmetric channel complexes succeeded by an aggradational channel complex confined by internal and external levees. The older complexes are only partly preserved due to deep erosion on complex boundaries.
Constituent channels are similarly preserved remnants, with no consistent aspect ratios. Channel and channel complex boundaries are marked by combinations of mudstone clast accumulations and channel margin or internal levee thin beds that onlap erosion surfaces. Neither of these expressions can be reliably picked on conventional wireline logs and, in the absence of core, image logs are vital for accurate interpretations.

Moving 2-5 km (1.2-3.1 mi) down dip, the external levees overlap to form a thick composite external levee succession that was supplied by flows escaping from channel complexes of different ages and spatial positions. The external levees genetically related to the younger channel complexes were partially confined due to topography created through deposition of unconfined external levees associated with the older channel complexes 1-3. The facies in these confined external levees are similar to those of internal levees. The growth of this confined external levee complex inhibited channel avulsion, resulting in two preferential pathways being used by channel complexes.

The down dip change over 2-5 km from a narrow, focussed system to a more dispersed system is interpreted to record an exhumed deep water avulsion node. The position of the node may reflect a structural control such as a break in slope. Frontal lobes, crevasse lobes or splays are commonly associated with avulsion nodes, however, these features are not present in the Baviaans study area, instead they have been observed ~25 km (15.5 mi) down dip, this suggests that the channels remained in sand bypass mode.
REFERENCES CITED

Fildani, A., W.R. Normark, S. Kostic, and G. Parker, 2006, Channel formation by

Grecula, M., S.S. Flint, H.D. Wickens, and S.D. Johnson, 2003, Upward-thickening patterns and lateral continuity of Permian sand-rich turbidite channel fills,

Kane, I.A. and D.M. Hodgson, 2011, Sedimentological criteria to differentiate submarine channel levee subenvironments: exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja California, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin, S. Africa: Marine and Petroleum Geology, v. 28, p. 807–823, doi: 10.1016/j.marpetgeo.2010.05.009

modelling fine-grained turbidite reservoir analogues, Permian Tanqua-Karoo basin floor fans (South Africa): Petroleum Geoscience, v. 12, p. 175-190.

Normark, W.R., J.E. Damuth, and the Leg 155 Sedimentology Group, 1997, Sedimentary facies and associated depositional elements of the Amazon Fan,

Pringle, J.K., R.L. Brunt, D.M. Hodgson, and S.S. Flint, 2010, Capturing stratigraphic and sedimentological complexity from submarine channel complex outcrops to

FIGURE CAPTIONS

Figure 1: Location map highlighting the study area near the town of Laingsburg, Western Cape, South Africa. The pale gray area marks the outcrops of the Laingsburg Formation and dark gray shows the outcrop pattern of the Fort Brown Formation.

Figure 2: A) Stratigraphic column showing the lithostratigraphy of the study area (Col. and Wh. refer to the Collingham and Whitehill formations); B) Expanded stratigraphic column highlighting Unit C, the focus of this study.

Figure 3: A) Correlation panel for Units C and D on the north limb of the Baviaans syncline (Baviaans Farm North panel) showing the main channel complexes at Baviaans Farm, the Whaleback, the West Rubbish Dump and the Old Rubbish Dump. B) Correlation panel for Units C and D on the south limb of the Baviaans syncline at the CD Ridge. The Unit D slope valley that incises through the entire Unit C stratigraphy has been blanked out. The locations of all six behind-outcrop boreholes are represented by vertical lines. Bav 1a (Figure 4) and Bav 2 (Figure 5) are incorporated in this study.

Figure 4: A) Gamma ray log through Sub-unit C2 in Bav 1a. B) Core log through C2 in borehole Bav 1a. Boxed areas C-F give positions of core photographs C-F; C) core photo showing different clast compositions at the base of a channel complex; Cii) soft sediment deformation; Di) structureless fine-grained sandstone; Dii) soft
sediment deformation within siltstone and sandstone clasts; Ei) fine-grained sandstone with a well-developed loaded basal surface with mudstone clasts; Eii) planar laminated sandstone with normal grading; F) Structureless fine-grained sandstone with a well-developed flame structure.

Figure 5: A) Core log through Sub-unit C2 in Bav 2; B) fine-grained sandstone with mudstone clasts dispersed throughout the entire 1 m (3 ft) section (location of core photograph shown on core log A). C) Core photograph and interpretation showing an upward progression from structureless fine-grained sandstone to planar lamination followed by climbing ripple lamination. D) Structureless fine sandstone with a mudclast mantled channel base at the top of the core interval. E) Deformed and dewatered fine-grained sandstone showing a well-developed loaded basal contact and an upper deformed sandstone and siltstone zone.

Figure 6: Correlation panel between boreholes Bav 1a and Bav 2 using the Upper C mudstone as a datum: A) Gamma ray log through Bav 1A; B) Bav 1A sedimentary log (no well logs were run in this borehole); C) Dipmeter measurements of erosion surfaces in Sub-unit C2; D) Bav 2 sedimentary log.

Figure 7: Cross-plot of gamma-ray and sonic log values, exhibiting typical ranges for the main architectural elements of the Unit C depositional system. CA: channel axis, EL: external levee, CM: channel margin, IL: internal levee, M: mudrocks.

Figure 8: A) Entire CD Ridge panel; B) Enlarged crop of the western CD Ridge panel showing the C2 channel complex set; C) Correlation panel showing the same
enlarged crop of the CD Ridge panel showing the six main channel complexes that are observed and correlated across the syncline (CC1-CC6).

Figure 9: Correlation panels from the north limb of the Baviaans syncline: A) Correlation panel showing Units C and D, with boxes that correspond to the four enlarged panel crops (C-F); B) Units C and D with the six C2 channel complexes that correlate to the corresponding numbered channel complexes identified on the CD Ridge panel (Figure 8); C) Enlarged panel showing CC1 and CC5 identified at Baviaans Farm; D) Panel crop for CC2 at the West Rubbish Dump; E) Detail panel showing CC6 at the Whaleback; F) Enlarged panel showing CC3 and CC4 at the Old Rubbish Dump.

Figure 10: Paleogeographic maps, reconstructed using correlations between channel complexes identified on the north and south limbs of the Baviaans syncline. A) The oldest channel complex (CC1) observed in the study area; B) CC2; C) CC3; D) CC4; E) CC5; F) The youngest channel complex (CC6).

Figure 11: Cross-sections combining outcrop observations from the CD Ridge panel (Figure 8) and the paleogeography maps of Figure 10, using the B-C Interfan as a datum: A) Time slice one; B) Time slice two; C) Time slice three; D) Time slice four; E) Time slice five; F) Time slice six.

Figure 12: Cross-sections combining outcrop observations from the north limb of the Baviaans syncline (Figure 9) and the paleogeography maps of Figure 10A-F, using the B-C Interfan as a datum: A) Reconstructed cross-section for Time slice one; B)
Time slice two; C) Time slice three; D) Time slice four; E) Time slice five; F) Time slice six.

Figure 13: Key learnings from this integrated study that can be applied to exhumed and subsurface submarine channel-levee systems.

Figure 14: Planform and cross-section examples of subsurface submarine channel-levee systems scaled to the Unit C system to illustrate comparable scale and architecture. The grey shape is the Fort Brown Formation in map, and the yellow stars refer to key localities: CDR = CD ridge, BF = Baviaans Farm, WB = Whaleback, ORD = Old Rubbish Dump. A) Channel patterns from an avulsion node mapped offshore Niger delta (Armitage et al. 2012), that shares a similar rate of divergence. B) Map of a Miocene ‘hybrid channel’ from offshore West Africa with a combination of early incision and later construction of external levees, as interpreted from the Laingsburg C2 succession. Adapted from Janocko et al. (2013). C) Map view of a seabed submarine channel system, the Y channel, from offshore Nigeria. Adapted from Jobe et al. (2015). D) Unit C in the CD Ridge, adapted from Figure 3b. E) Seismic cross section through the Y channel, from offshore Nigeria. Note the lateral to aggradational stacking pattern at a similar scale to the complexes in Unit C2. Adapted from Jobe et al. (2015). F) Seismic profile from the Dalia M9 Upper Channel System, adapted from Abreu et al. (2003). Note the similar architecture. Red line is the base of the system, and the youngest Channel Complex is highlighted by green lines. G) Seismic section through two ‘hybrid channel’ with erosional and levee confinement, from offshore West Africa, adapted from Janocko et al. (2013).
apparent simplicity of the channelized portion in contrast to the C2 stratigraphy in (D).

Table 1: Characteristics of the six facies associations of Sub-unit C2.

Table 2: The six main environments of deposition interpreted within C2 (channel axis, channel margin, proximal internal levee, distal internal levee, proximal external levee and distal external levee). See supplementary tables A-F for more details.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
<table>
<thead>
<tr>
<th>Lithofacies code</th>
<th>Facies</th>
<th>Facies description</th>
<th>Depositional processes and depositional environments</th>
</tr>
</thead>
</table>
Table 1

<table>
<thead>
<tr>
<th>CLf1</th>
<th>Thick-bedded, structureless fine-grained sandstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Thick-bedded fine-grained sandstone bedsets 0.1-2 m (0.33-6.56 ft), commonly thicker than 0.3 m (0.98 ft). Amalgamated bed contacts are most prevalent; however, erosive and load bed bases are recorded. Sandstone beds are generally structureless, however, rare occurrences of planar and current ripple lamination are observed and thicker beds frequently contain abundant water escape structures; commonly flame and dish structures. There is a general trend of individual beds grading normally upwards.</td>
</tr>
<tr>
<td>Environment of deposition</td>
<td>Medium-to-high density flows depositing rapidly. Aggradational facies, amalgamated sandstone deposits with some erosion surfaces. Structureless sandstone bedsets suggest Bouma Tc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLf2</th>
<th>Structureless fine-grained sandstone with mudstone and siltstone clasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Structureless fine-grained sandstone beds, ~0.25-0.7 m (0.82-2.3 ft) thick, reaching up to 1.2 m (3.94 ft). Mudstone clasts are abundant, averaging between <0.01-0.04 m (0.03-0.13 ft) in diameter, although, some are ~0.2 m (0.66 ft) in diameter. Rare examples of thin horizons (0.01-0.05 m; 0.03-0.16 ft) where a “slurry” of sandstone with abundant mm-sized mudstone clasts are present. The mudclast-rich zone is generally preserved at/near the base of sand units, and the clasts themselves become sander in composition up through the succession of Sub-unit C2 (this is best observed in core Bav 1a).</td>
</tr>
<tr>
<td>Environment of deposition</td>
<td>Mudstone clast mantled surfaces (MCMS) and mudclast conglomerate deposited and moved in traction beneath confined flows. They are both commonly associated with flows confined within channels. Locally, clasts show secondary injection features.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLf3</th>
<th>Structured sandstones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Very fine-grained sandstone beds (VFS) 0.05-0.4 m (0.16-1.3 ft) thick. Well-developed current ripple cross-lamination, climbing ripple (10-15˚) cross-lamination, stoss-side preserved ripple cross-lamination and sinusoidal laminae are common. Small (cm-dm) scale erosion surfaces, some soft-sedimentary deformation, but little bioturbation and few mudstone drapes present. Overall, there is little silt or clay grade material present. Individual beds continuous for >100 m (328 ft).</td>
</tr>
<tr>
<td>Environment of deposition</td>
<td>Rapidly deposited medium-to-low density turbidity currents. Aggradational facies, with some erosion surfaces. Sustained bedload traction, particularly within or close to channels.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLf4</th>
<th>Sand-prone thin-bedded heterolithics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sandstone dominated interbedded sandstone and siltstone packages 0.05-0.4 m (0.16-1.3 ft) thick. The sandstone beds are generally normally graded from VFS to coarse siltstone (CSI). Sedimentary structures within the VFS beds include: sinusoidal laminae, current ripple cross-lamination, climbing ripple cross-lamination, stoss side preserved ripple cross-lamination and planar laminae. The CSI beds are generally planar laminated. Loaded bed contacts are common although erosive and amalgamated basal contacts are observed.</td>
</tr>
<tr>
<td>Environment of deposition</td>
<td>Deposition by low-to-medium density turbidity currents that deposited rapidly (climbing ripple cross-lamination and sinusoidal lamination).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLf5</th>
<th>Silt-prone thin-bedded heterolithics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Interbedded CSI and VFS, beds are 0.01-0.3 m (0.03-0.98 ft) thick. VFS beds are usually normally graded. Sedimentary structures present in the VFS include; current ripple lamination, stoss side preserved ripple lamination, wavy lamination and planar lamination. The CSI beds are commonly planar laminated and are generally interbedded with mudstone drapes associated with bioturbation (1/2*).</td>
</tr>
<tr>
<td>Environment of deposition</td>
<td>The bed thicknesses and the low sand volume suggest that deposition was by dilute turbidity currents. The bioturbated interval suggests either there was a longer time period between events or a change in oxygen and nutrient delivery.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLf6</th>
<th>Deformed heterolithics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Highly deformed bedded lobe to channel sandstone deposits. All pre-deformed textures and structures are still recognised and deformed material can be traced back into pre-deformed deposits. Where present, gentle folding of grain laminations or bed surfaces suggests small transport distances. Internal characteristics not easily identified in structureless sandstones. Packages are generally less than 2 m (6.6 ft) thick, however, the deposit may extend for up to 100 m (328 ft) across outcrop.</td>
</tr>
<tr>
<td>Environment of deposition</td>
<td>A loss of internal shear strength in all or part of a sediment mass resulting in a failure where the deposit can no longer able to resist downslope gravitational shear, occurs on a large scale with slope margin collapse and on a small scale as slumping and sliding at the steepened margins of channels.</td>
</tr>
</tbody>
</table>

Environment of deposition: Fill within erosional channels (channel wall collapse). Normally associated with the collapse of deeply erosional and over-steepened incisional margins.
<table>
<thead>
<tr>
<th>Depositional environment</th>
<th>Outcrop photographs Facies associations</th>
<th>Core photographs Facies associations</th>
<th>FMS image log Facies associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Axis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel Margin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal Internal Levee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal Internal Levee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal External Levee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal External Levee</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2