i-Health Challenge: Science Service Synchrony

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
‘i’-Health Challenge: Science Service Synchrony

Medical Informatics Europe, Oslo, 29th August 2011

Iain Buchan
Professor of Public Health Informatics
University of Manchester: www.nibhi.org.uk
This Talk

• Current position:
 Unrealistic expectation of evidence into practice

• Envisioning ‘i’-Health:
 Understanding and improving healthcare care in sync.

• Next steps:
 Informatics research questions
Mirage: Evidence Cycle

Reality: feedback is too little too late

Algorithms may be out of date by the time they are “validated”

Note EU Directive 2007/47
Traditional Knowledge Management: “Evidence into Practice”: Informing Integrated Care Pathways (Disease-specific)
Challenge: Pathway for Mr Smith is NOT the SUM of Disease Guidelines

Future: Realistically complex and dynamic models of care:
Incorporating interactions of different care pathways and Mr Smith’s previous responses

Nephrology:
- Hypertension → Chronic kidney disease

Diabetology:
- Glucose control → General vascular disease

Self Care
Clinical Care
Primary Care
Secondary Care
BMI
Physical Activity
Specialist A
Specialist B
Large scale inference
Unified Graphical Model

Health Records & Knowledge Silos

Data-intensive Paradigm shift

Open Unifying Modelling:
Across mechanisms and contexts

Health Avatars & Dynamic Models

Multi-scale & Multi-system Health:
• Research
• Policy
• Care

Health e-Records

Expertise

Unified Graphical Model

• Research
• Policy
• Care

Large scale inference

Model refinement

Data-intensive Paradigm shift

Expertise
Experimenting with a unified graphical modelling approach and some high quality longitudinal health(care) data

MACHINE LEARNED EPIDEMIOLOGY
Machine Learned Epidemiology

• Suspected myth: false division of children into allergic tendency (atopy) or not

• Life-course data: birth cohort of 1,000 children from Manchester with careful measurements

• Approach: unsupervised search for patterns of sensitisation → shape hypotheses
Model: Unsupervised Clustering of Allergic Sensitisation Across Ages
From 2 to 5 Useful Classes of Atopy

- Asthma
- Asthma exacerbation after age 1
- Persistent wheeze
- Current wheeze

Five class model: Latent atopic vulnerability
- Non-dust mite
- Dust mite
- Multiple late
- Multiple early

N/A

77
11
24
24
Better Prediction of Real-world Outcomes

Admitted at Any Age

First Admitted > 3 Years Old
(remove early virus wheeze)
Toward Service Science Synchrony

• State-of-art algorithms stratify population

• Clinicians explain strata and generate hypotheses with biologists

• Life science resources are focused on more meaningful endotypes
For “Real World Evidence”: Do we just need lots of eHR data?

Methods/Models/Applications Proliferation

Human Experts Don’t Scale (Crucial Metadata Factory)

Data Deluge
Anaemia at lower levels of kidney impairment than commonly thought

Crucial Metadata = detail of creatinine assay, because records spanned introduction of standard eGFR reporting

Anaemia at lower levels of kidney impairment than commonly thought
Social Scaling of Sense-Making

“Direct Care”

- Local Community Integrated Health Record
- Depersonalised

“Meaningful Reuse”

- Commissioning Clinical Audit
- Local Research
- Public Health

Work Object

- Consistent provenance tracks
- Visibility for contributors
- Reward for participation
- Reusable work
- Sense-making network

“Enhanced Reuse”

Collaborating “e-Lab”/district
Corroborate finding
Enrich interpretation
Share methods & expertise
“Borrowing Strength” along Service Buses

Federation of e-Lab communities shares work or method objects without remote data warehousing

Strength is borrowed and costs reduced by pooling expertise
Exploit Heterogeneity

• Incorporating information about differences between settings improves research accuracy

• Global e-Lab Federation could achieve synchronous meta-analysis → more timely intelligence

Personal Health Record

• EU target: 20% citizens on-line healthcare records access by 2015

• New longitudinal signals → research

• Triangle of care
 – Patient co-producer
 – Clinician guide
 – Algorithm
PHR: ‘Access’ Approach

- Citizen rights & responsibilities
- Primary care example: over 75% of patients keep accessing records
- Place for health information exchange beyond clinical encounter
PHR: ‘Asset’ Approach

- Citizen choice and market development

- Emerging business models:
 - Non-profit to increase healthcare efficiency
 - For-profit to open markets e.g. pharmacy-citizen
‘i’-Health Synchrony

Coherently integrated data

People with relevant expertise and authorisation

State-of-the-art algorithms/models

‘Pre-primary’ Care
Asymptomatic: Health Risks to Manage

Wellbeing

Primary Care

Secondary+ Care

Personal & Community Health Intelligence
Health Records & Knowledge Silos

Data-intensive Paradigm-shift

Open Unifying Modelling: Across mechanisms and contexts

Health Avatars & Dynamic Models

∪ models = Avatar

Multi-scale & Multi-system Health:
• Research
• Policy
• Care

Large scale inference

Model refinement

Unified Graphical Model

Expertise

Health e-Records

Data

e.g. Coronary heart disease

e.g. Chronic obstructive pulmonary disease

e.g. Lung cancer

- Large scale inference
- Model refinement
- Multi-scale & Multi-system Health:
 • Research
 • Policy
 • Care

Unified Graphical Model
i-Health Key Challenges

1. How to **multiply** analytical activity between health **sciences** and **services**?

2. How to **network** experts for timely **insight**?

3. How to create a **virtuous circle** between **citizen**, health **professional** and **algorithm**?