Review of myopia control options to reduce myopia progression in children

Document Version
Other version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Myopia-Controlling Methods to Reduce Myopic Progression Rates in Young Children: A Review

Andreas Hartwig (Hartwig Research Center)
and
Amit N. Jinabhai (The University of Manchester)
Overview

The role of:
1. Light
2. Optical interventions
3. Pharmaceutical agents
Background

- Myopia can be corrected by spectacles, contact lenses or refractive surgery.
- Highly myopic eyes have an increased risk of developing eye diseases, such as glaucoma, retinal detachment and myopic maculopathy.
- Myopia has a genetic component and is also influenced by environmental factors.
Overview

The role of:
1. Light
2. Optical interventions
3. Pharmaceutical agents
Light: Protective effect of playing outdoors

Rose et al., 2008.

Odds ratio

High Moderate Near-work Low

Low Moderate High

[Diagram showing odds ratios for different levels of light exposure and near-work.]
Light: Axial growth in the winter months

Light: Protective effect of high ambient lighting

- In infant rhesus monkeys, high ambient lighting levels retard the development of form-deprivation myopia.
- Higher ambient lighting levels (in classrooms) reduce myopia onset in Chinese school children.

Light: Vitamin D

• Vitamin D levels were not different in a cohort of 22 subjects (14 myopes).
• In a large population (n=2038) of Korean teenagers, high myopia was associated with low levels of vitamin D … indicating the possible involvement of sunlight?

Overview

The role of:

1. Light
2. Optical interventions
3. Pharmaceutical agents
Optical interventions: Spectacles

- Under correction
- Progressive addition lenses (PALs)
- Executive bifocals
Optical intervention: Under correction

• Hypothesis: myopic defocus reduces accommodative effort

• Studies showed that under correction worsens myopia

• Children who are under-corrected might spend the majority of their time with near work.

Chung et al. (2002) Vis Res. 42(22): 2555-9
Vasudevan et al. (2014) J Optom 7(3): 147-52
Optical intervention: PALs

• Hypothesis: reduced accommodative demand at near
• Low efficacy: statistically significant, but with no clinical relevance
• However, PALs cause a myopic shift in peripheral defocus. Superior myopic defocus was associated with less central myopia progression.

Bernsten et al. (2013) Invest Ophthalmol Vis Sci. 54(8): 5761-70
Optical intervention: Executive bifocals with and without prism

- Hypothesis: Reduces accommodative demand at near and leads to myopic defocus at superior retina
- Good efficacy: currently best spectacle option available
- Example: Essilor Myopilux Max

Chang et al. (2014) JAMA Ophthalmol 132(3): 258-64
Optical intervention: Peripheral defocus correction

- Hypothesis: Reduce peripheral hyperopic defocus
- Small effects and in subgroups only
- Examples
 - Essilor: Myopilux Plus
 - Zeiss: Myovision
- Major limiting factor: eye movements behind lens does not provide a ‘consistent’ stimulus

Sankaridurg et al. (2010) Optom Vis Sci. 87(9): 631-41
Optical intervention: Contact lenses

• Options
 – Multifocal contact lenses
 – Orthokeratology (Ortho-K)
Optical intervention: Multifocal contact lenses

Optical intervention: Ortho-K

• Hypothesis: Control myopia by flattening the corneal profile to result in peripheral defocus control
• Significant effects in refractive error and axial length growth

Overview

The role of:
1. Light
2. Optical interventions
3. Pharmaceutical agents
Pharmaceutical intervention

- Atropine
- Cocoa beans
Pharmaceutical intervention: Atropine

Pharmaceutical intervention: Cacao

- 7-methylxanthine (7-MX)
- Occurs naturally in the cacao fruit (cocoa beans)
- 7-MX increases the content of collagen in the sclera
- Therefore hypothesised to act against the progression of myopia
- Metabolite of caffeine and theobromine
- Does not cross the blood brain barrier (unlike coffee) – no stimulatory effect
- Very low toxicity
- A drug has been approved on a limited basis in Denmark

Summary

• Under correction is not advocated.
• Spectacles: Limited myopia control except for executive bifocals.
• Orthokeratology is a good choice.
• The intake of Cacao seems promising.