Structural and Optical Changes in Keratoconus

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date: 08. Feb. 2021
Structural & Optical Changes in Keratoconus

Clare O'Donnell

Amit Jinabhai, Hema Radhakrishnan, Luisa Simo-Mannion, Cindy Tromans, Arun Brahma

The University of Manchester, Manchester Royal Eye Hospital
Corneal nerves

- Histological studies of KC corneas revealed abnormalities
 - In nerve architecture, especially at the cone apex
 - e.g. thickening, tortuosity, loss of radial orientation (Al-Aqaba 2011)
 - But tend to report only on advanced KC and subject to artefacts
- *In vivo* CM studies have also shown alterations to NFs in KC
 - Unclear at what stage these changes occur or how they relate to reported changes in corneal sensitivity
Aim

To investigate corneal nerve structure and sensitivity in keratoconus.
Methods

– 44 KC and 44 control subjects recruited
 • 8 mild (k≤45D), 26 moderate (45<k≤52D), 10 severe (k>52D)
 • Mean age 32 ± 9 years (both groups)
 • Also matched for gender, iris colour, mode of correction

– Morphology of stromal and sub-basal nerves
 • ConfoScan 3 confocal microscope, image analysis software
 – Density (length fibres/total area) and thickness (mean of 10)

– Corneal sensitivity assessed using Cochet-Bonnet
 • Centrally and at 4 peripheral locations (1mm from limbus)
Stromal nerves

<table>
<thead>
<tr>
<th></th>
<th>KC</th>
<th>CTRL</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>429.5 ± 108.0</td>
<td>390.4 ± 100.4</td>
<td>0.106</td>
</tr>
<tr>
<td>(µm/mm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>8.62 ± 4.53</td>
<td>5.25 ± 1.92</td>
<td>0.009*</td>
</tr>
<tr>
<td>(µm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Statistically significant difference

Two sample t-test
Sub-basal nerves

Density (µm/mm²)	KC	CTRL	p-value
1094.9 ± 459.6 | 1846.2 ± 527.5 | <0.001*

<table>
<thead>
<tr>
<th>Thickness</th>
<th>KC</th>
<th>CTRL</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.77 ± 0.06</td>
<td>1.82 ± 0.05</td>
<td>0.29</td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant difference

- NF density decreased as cornea steepened (R²=0.2, p=0.006)

Two sample t-test
Corneal sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Central</th>
<th>Superior</th>
<th>Inferior</th>
<th>Nasal</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC</td>
<td>1.11±0.05</td>
<td>1.50±0.16</td>
<td>1.06±0.02</td>
<td>1.02±0.07</td>
<td>1.02±0.11</td>
</tr>
<tr>
<td>CTRL</td>
<td>1.01±0.33</td>
<td>1.31±0.07</td>
<td>1.11±0.05</td>
<td>1.04±0.16</td>
<td>1.04±0.02</td>
</tr>
<tr>
<td>p-value</td>
<td>0.005*</td>
<td>0.976</td>
<td>0.582</td>
<td>0.942</td>
<td>0.652</td>
</tr>
</tbody>
</table>

* Statistically significant difference

- Significant reduction in KC at central location only
- Sensitivity reduced as cornea steepened ($R_s=0.44$, $p=0.003$)
Discussion

• Confirm alterations to architecture and function
 – Thickening of stromal NFs seems to occur early
 – Reduced sub-basal nerve density and reduced sensitivity more apparent as disease progresses

(Bron 1984; Kinoshita et al., 1999)
Discussion

• Possible causes of stromal nerve thickening
 – Over-expression of nerve growth factor/proliferation Schwaan cells
 • Accumulation of secreted substances due to altered metabolism

• Unclear if NF alterations *causative* or secondary
 – Refinement of *in vivo* techniques should improve understanding of nerve morphology
Especially with full-field image capture and analysis

Patel and McGhee (2006)
Corneal thinning

• Aetiology of KC not fully understood, caused by stretching or by loss of tissue?
 – Is protrusion secondary to stromal thinning?
 – Or does reduced strength result in thinning and protrusion

• Loss of tissue might be detected by analysing corneal volume in KC corneas
 – Advances in technology enable assessment of volume in-vivo
Visual performance with aberration controlling soft contact lenses in keratoconus
Introduction

• Irregular corneas in keratoconus lead large magnitudes of irregular astigmatism and ocular aberrations (particularly vertical coma).

• RGP contact lenses mask most of the induced anterior corneal surface aberrations.
Introduction

• Soft contact lenses offer certain advantages over RGPs and can mask irregular corneal astigmatism to a limited extent.

• Technology available to make customised aberration-controlling soft contact lenses (ACCLs) to reduce ocular aberrations in keratoconic patients.
Aim

- To investigate how toric soft CLs and customised ACCLs alter higher order aberrations and visual performance in keratoconus compared to patient’s habitual correction.

- Customised ACCLs were designed either to fully (100%) or partially (50%) correct the third order coma aberrations.
Methods

• 22 keratoconic participants took part in the study
 – 14 moderate, 7 severe, 1 mild KC
• Data collected from one eye for each patient.
• 16 participants were habitual RGP wearers and 6 were spectacle wearers.
• Mean age 34 years (range 19-55 yrs).
• High contrast (95%) and low contrast (15%) visual acuities were measured with Bailey-Lovie logMAR charts.
• Ocular aberrations were measured with a Shack-Hartmann aberrometer (IRX3, Imagine Eyes, Paris)
Methods

RGP-wearers (n = 16)
- Visual performance assessment with RGP lenses (HCA, LCA & SKILL card score)
- Higher-order aberration measurement with RGP lenses (IRX-3)
- RGP lens fitting assessment and lens removal
- Corneal slit-lamp examination without lenses
- Higher-order aberration measurement without lenses (IRX-3)
- Corneal topography evaluation without lenses (Pentacam)

(RGP lenses left out for 1 week to act as a washout period)

Spectacle-wearers (n = 6)
- Visual performance assessment with spectacles (HCA, LCA & SKILL card score)
- Corneal slit-lamp examination
- Higher-order aberrations measured without spectacles (IRX-3)
- Corneal topography evaluation (Pentacam)

Initial trial lens fitting appointment

Day 7: Initial trial lens fitting appointment
- Corneal slit-lamp examination (without RGP lenses)
- Plano soft trial lens fitting assessment (& OR)
- RGP lens wear resumed as normal

(Sphere-cylindrical soft lenses ordered)

(RGP lens patients: lenses left out overnight before fitting the sphere-cylindrical soft lenses)

Standard soft lens collection appointment
- Corneal slit-lamp examination
- Sphero-cylindrical soft lens fitting assessment (& OR)
- Visual performance assessment (HCA, LCA & SKILL card score)
- Higher-order aberrations measured with the sphero-cylindrical soft lenses (IRX-3)
- Residual aberrations used to order customised Coma correction lenses

(RGP lens patients: lenses left out overnight before fitting the 1st Coma correction lens)

Customised lenses collection appointment
- Corneal slit-lamp examination
- 1st Coma correction lens fitting assessment (& OR)
- Visual performance with 1st Coma correction lens (HCA, LCA & SKILL card score)
- Higher-order aberrations measured with the 1st Coma correction lens (IRX-3)

1st Coma correction lens removed & procedures repeated for the 2nd Coma correction lens

RGP = rigid gas-permeable lens
OR = over-refraction
HCA = high-contrast visual acuity
LCA = low-contrast visual acuity
SKILL = Smith-Kettlewell Institute
Low Luminance card
Results

<table>
<thead>
<tr>
<th>Patient ref.</th>
<th>Flat K (D)</th>
<th>Steep K (D)</th>
<th>Central corneal thickness (microns)</th>
<th>CLEK severity grade</th>
<th>Vogt's striae</th>
<th>Apical scarring</th>
<th>RGP lens fitting grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.8</td>
<td>56.0</td>
<td>455</td>
<td>Severe</td>
<td>Present</td>
<td>Absent</td>
<td>DAT</td>
</tr>
<tr>
<td>2</td>
<td>45.6</td>
<td>50.0</td>
<td>451</td>
<td>Moderate</td>
<td>Absent</td>
<td>Absent</td>
<td>AT</td>
</tr>
<tr>
<td>3</td>
<td>42.8</td>
<td>45.1</td>
<td>440</td>
<td>Moderate</td>
<td>Absent</td>
<td>Absent</td>
<td>AT</td>
</tr>
<tr>
<td>4</td>
<td>45.6</td>
<td>48.4</td>
<td>434</td>
<td>Moderate</td>
<td>Absent</td>
<td>Absent</td>
<td>AT</td>
</tr>
<tr>
<td>5</td>
<td>58.2</td>
<td>61.8</td>
<td>324</td>
<td>Severe</td>
<td>Present</td>
<td>Present</td>
<td>AT</td>
</tr>
<tr>
<td>6</td>
<td>45.6</td>
<td>47.3</td>
<td>505</td>
<td>Moderate</td>
<td>Absent</td>
<td>Absent</td>
<td>AT</td>
</tr>
<tr>
<td>7</td>
<td>47.8</td>
<td>52.0</td>
<td>419</td>
<td>Moderate</td>
<td>Present</td>
<td>Present</td>
<td>DAT</td>
</tr>
<tr>
<td>8</td>
<td>52.2</td>
<td>55.9</td>
<td>503</td>
<td>Severe</td>
<td>Present</td>
<td>Present</td>
<td>DAT</td>
</tr>
<tr>
<td>9</td>
<td>44.2</td>
<td>48.0</td>
<td>453</td>
<td>Moderate</td>
<td>Present</td>
<td>Absent</td>
<td>DAT</td>
</tr>
<tr>
<td>10</td>
<td>44.1</td>
<td>49.2</td>
<td>461</td>
<td>Moderate</td>
<td>Absent</td>
<td>Absent</td>
<td>DAT</td>
</tr>
<tr>
<td>11</td>
<td>43.9</td>
<td>49.4</td>
<td>386</td>
<td>Moderate</td>
<td>Present</td>
<td>Present</td>
<td>DAT</td>
</tr>
<tr>
<td>12</td>
<td>48.6</td>
<td>51.9</td>
<td>415</td>
<td>Moderate</td>
<td>Present</td>
<td>Present</td>
<td>DAT</td>
</tr>
<tr>
<td>13</td>
<td>43.4</td>
<td>47.3</td>
<td>484</td>
<td>Moderate</td>
<td>Present</td>
<td>Absent</td>
<td>AT</td>
</tr>
<tr>
<td>14</td>
<td>51.4</td>
<td>56.4</td>
<td>416</td>
<td>Severe</td>
<td>Present</td>
<td>Present</td>
<td>DAT</td>
</tr>
<tr>
<td>15</td>
<td>49.1</td>
<td>52.9</td>
<td>435</td>
<td>Severe</td>
<td>Present</td>
<td>Present</td>
<td>DAT</td>
</tr>
<tr>
<td>16</td>
<td>47.7</td>
<td>53.2</td>
<td>420</td>
<td>Severe</td>
<td>Present</td>
<td>Absent</td>
<td>DAT</td>
</tr>
<tr>
<td>17</td>
<td>43.9</td>
<td>46.9</td>
<td>422</td>
<td>Moderate</td>
<td>Present</td>
<td>Absent</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>50.7</td>
<td>53.0</td>
<td>494</td>
<td>Severe</td>
<td>Present</td>
<td>Present</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>44.9</td>
<td>48.0</td>
<td>477</td>
<td>Moderate</td>
<td>Absent</td>
<td>Absent</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>43.2</td>
<td>46.7</td>
<td>462</td>
<td>Moderate</td>
<td>Present</td>
<td>Absent</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>45.7</td>
<td>49.3</td>
<td>432</td>
<td>Moderate</td>
<td>Absent</td>
<td>Absent</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>42.7</td>
<td>43.4</td>
<td>514</td>
<td>Mild</td>
<td>Absent</td>
<td>Absent</td>
<td>-</td>
</tr>
</tbody>
</table>
Results

• Compared to when uncorrected and compared to all three soft study lenses, RGP lenses significantly reduced 2nd-order cylinder RMS.

• Compared to when uncorrected, there was significantly lower coma RMS with RGP lenses (p=0.001), 100% lenses (p=0.001) and 50% lenses (p=0.0002).
Results
Results

Spectacle-wearers

* indicates a significant difference (RM ANOVA, p < 0.0013)
Results

Changes in aberration with accommodation

RGP lens-wearers

High-contrast acuity (log units)

![Graph showing high-contrast acuity for RGP lens-wearers.](image)

Spectacle-wearers

High-contrast acuity (log units)

![Graph showing high-contrast acuity for spectacle-wearers.](image)

Low-contrast acuity (log units)

![Graph showing low-contrast acuity for RGP lens-wearers.](image)

Low-contrast acuity (log units)

![Graph showing low-contrast acuity for spectacle-wearers.](image)

SKILL score (letters)

![Graph showing SKILL scores for RGP lens-wearers.](image)

SKILL score (letters)

![Graph showing SKILL scores for spectacle-wearers.](image)

* Indicates a significant difference (RM ANOVA, p < 0.0013)
Summary and discussion

- As expected, RGP lenses provided better visual performances than conventional toric SCLs for keratoconic patients.

- RGP lenses on eye also showed some residual aberrations, which are likely to be due to topographical alterations at the posterior corneal surface.
Summary and discussion

• The 100% lenses, on average, overcorrected vertical coma, resulting in positive residual aberration.

• The 50% lenses, on average, provided either negative residual vertical coma aberration (contact lens group) or values close to zero (spectacle group).

• Wavefront sensor errors occur through overlapping spot images, spot image crossover or missing spots and scatter.

• With customised ACCLs, superfluous wavefront aberrations can become induced through small lens translations and rotations upon blinking.
Discussion

• LCVA scores measured with toric SCLs or the 50% AC lenses were best for low levels of spherical aberration (of around zero).

• Visual neural system may compensate for long-term exposure to an asymmetrically blurred retinal image in keratoconic patients.

• Customised lenses should be made with bespoke optic zone diameters to match with the pupil size of the patient.
Conclusions

- The two customised ACCLs reduced uncorrected coma RMS and HORMS error in both groups.

- The patient’s habitual RGP lenses gave better visual performances than with either ACCL in the contact lens group.
 - Limiting factors
 - Repeatability and accuracy of aberration measurements
 - Lens stability
Recent collaborations

• Corneal collagen cross-linking
 – *In-vivo* and *in-vitro*
Dr Ithar Beshtawi: Today 16.00 Cornea II Session
Acknowledgements

Collaborators
- Dr Hema Radhakrishnan, Dr Luisa Simo-Mannion
- Dr Amit Jinabhai, Dr Cindy Tromans,
- Mr Arun Brahma, Prof WN Charman

Funding
- Vision Centre
- College of Optometrists
- Central Manchester Hospitals Foundation Trust
- UMIP
Aim

To investigate the effect of RGP CL lens fit on ocular HOA and VA in keratoconus

CASE REPORT

Visual Acuity and Ocular Aberrations With Different Rigid Gas Permeable Lens Fittings in Keratoconus

Amit Jinabhai, B.Sc. (Hon), Hema Radhakrishnan, Ph.D., and Clare O’Donnell, Ph.D.
Method

• 25 year old KC patient
 – Bilateral, moderate
• RE systematically fitted with RGP CLs
 – BOZR of 7.40 mm to 8.10 mm, in 0.10 mm steps
 – Menicon-EX, same diameter
• VA with over refraction recorded
 – LogMAR
• IRX-3 HOA
 – 5mm pupil, up to 6th Zernike order
<table>
<thead>
<tr>
<th>Wavefront aberration map</th>
<th>Slit-lamp appearance</th>
<th>RGP lens specification (in mm)</th>
<th>Wavefront aberrations (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No contact lens in place</td>
<td>HORMS = +1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VA 0.04</td>
<td>3rd-order RMS = +1.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertical coma = -1.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOZ = 7.40</td>
<td>HORMS = +0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VA 0.58</td>
<td>3rd-order RMS = +0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEEP</td>
<td>Vertical coma = +0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOZ = 8.10</td>
<td>HORMS = +0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VA -0.30</td>
<td>3rd-order RMS = +0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLAT</td>
<td>Vertical coma = +0.21</td>
</tr>
</tbody>
</table>
HORMS vs. BOZR

\(R^2 = 0.86, \ p = 0.005 \)
Discussion

• As BOZR flattened from 7.4 to 8.1mm
 – HORMS reduced +0.34 µm to +0.23 µm
 – and VA improved +0.58 to -0.30 log units

• Flatter fits improved visual performance
 – Explain why patients may prefer older lenses

• Flattening and moulding effect improving profile
 – Disadvantages physiologically of this approach
 • Staining and scarring
SCL in KC

• If RGP lens intolerant may refit to SCL
 – Expect compromise in VA

• But if we could correct HOA
 – Visual performance may improve with SCL

• Technology to manufacture lenses exists
 – Customised A-C soft lenses are available

• What happens when KC refitted from RGPs?
 – Is wash-out period necessary?
Aim

To assess the changes in VA, HOA and refraction after suspending RGP CLW for one week in KC patients
Methods

• 16 subjects moderate/severe KC
 – Suspended RGP CLW
• Pentacam
 – Ks and CCT
• IRX-3
• Subjective refraction
• LogMAR VA
• Performed at two visits, 7 days apart after RGP lens removal
Results

• Reductions in VA
 – High (p=0.001) and low contrast (p=0.005)

• Increase in ocular aberrations
 – HORMS (p=0.003)

• Corneal steepening (p=0.02)

• Reduction in CCT (p=0.01)
Conclusion

• Changes in the optical and structure
 – After suspend RGP lens wear

• Stabilisation time will depend on factors
 – Lens fit, duration of wear, topography

• Important to consider
 – When prescribing AC-SCL