Uranium-Carbene-Imido Metalla-Allenes: Ancillary-Ligand-Controlled Cis-/Trans-Isomerisation and Assessment of Trans-Influence in the R2C=UIV=NR' Unit (R = Ph2PNSiMe3; R' = CPh3)

DOI:
10.1002/chem.201602690

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Chemistry - A European Journal

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Uranium-Carbene-Imido Metalla-Allenes: Ancillary-Ligand-Controlled Cis-/Trans-Isomerisation and Assessment of Trans-Influence in the $R_2C=U^{IV}=NR'$ Unit ($R = \text{Ph}_2\text{PNSiMe}_3$; $R' = \text{CPh}_3$)

Erli Lu, Oliver J. Cooper, Floriana Tuna, Ashley J. Wooles, Nikolas Kaltsoyannis,* and Stephen T. Liddle*

Abstract: We report uranium(IV)-carbene-imido complexes $[\text{U(BIPM}(\kappa^2\text{-N,N'})\text{BIPY})] (1)$, $[\text{BIPM}^\text{TM5} = \text{C}^{(\text{Ph}^2\text{NSiMe}_3)}_2; \text{BIPY} = \text{2,2-bipyridine})$ and $[\text{U(BIPM}(\kappa^2\text{-N,N'})\text{DMAP})] (3)$, $\text{DMAP} = \text{4-dimethylamino-pyridine}$, that contain unprecedented, discrete $R_2C=U=NR'$ units. These complexes complete the family of $E=U=E$ ($E = \text{CR}_2$, NR, O, α) metalla-allenes with feasible first-row hetero-element combinations. Intriguingly, 2 and 3 contain cis- and trans-$C=U=\text{N}$ units, respectively, representing rare examples of controllable cis-trans-isomerisation in f-block chemistry. This work reveals a clear-cut example of the trans-influence in a mid-valent uranium system, and thus a strong preference for the cis-isomer, which is computed in a co-ligand-free truncated model to isolate the electronic trans-influence from steric contributions - to be more stable than the trans-isomer by ~12 kJ mol$^{-1}$ with an isomerisation barrier of ~14 kJ mol$^{-1}$.

Uranium metalla-allenes are a family of compounds containing the ($E=U=E^{\alpha}$) unit where E or E' is a first-row dianionic group 14-16 element ligand (e.g. O^2-, R_2C^2-, RN^2-; R = generic organo-group). The most well-known member of this family is uranyl(VI), ($O=U=O^{\alpha}$).$^{[1]}$ which is the most prevalent natural occurrence of uranium and is a crucial component of nuclear fuel recycling and waste remediation.$^{[2]}$ Understanding the underlying electronic structure and bonding of this family of uranium metalla-allenes is of great scientific interest in terms of revealing the very essence of uranium-ligand multiple bonding and understanding the interplay of the trans-influence and specific to early actinides the inverse-trans-influence (ITI).$^{[3]}$ However, despite the ubiquitous nature of uranyl$^{[4,5]}$ the paucity of other members of the family reflects their underdeveloped nature and synthetic challenges to prepare them. For example, regarding homoleptic combinations the second largest family member after uranyl (\sim2900 CSD entries$^{[6]}$) is $\text{RN}=U=\text{NR}$ (\sim70 entries)$^{[7]}$ and $\text{RC}=U=\text{CR}_2$ is even more elusive (5 entries).$^{[8]}$ For heteroleptic variants there are eight $\text{R}_2\text{N}=U=\text{O}$ entries$^{[9]}$ and only four $\text{RC}=U=\text{O}$ entries.$^{[8,9]}$ Where $\text{RC}=U=\text{NR}$ is concerned there are no examples of discrete units except for conceivably in $[\text{U(BIPM}^\text{TM5})(\text{NMe}_3\text{O})(\text{DMAP})]$ $[\text{BIPM}^\text{TM5} = \text{C}^{(\text{Ph}^2\text{NSiMe}_3)}_2; \text{Mes} = \text{mesityl}; \text{DMAP} = \text{4-dimethylamino-pyridine}]$. However, this complex cannot be considered to contain a discrete $\text{RC}=U=\text{NR}$ unit due to extensive delocalisation and the clear structure-dictating role of the $\text{RN}=U=\text{O}$ unit.$^{[10]}$ Furthermore, in almost all complexes the uranium is high oxidation state (V, VI)$^{[11]}$ and preparing mid-valent analogues represents a significant synthetic challenge because the combination of Σ^5 uranium(IV) with strongly electron-donating ligands renders the uranium(IV) centre electronically overburdened when compared with uranium(VI) congeners, and thus more liable to decompose.

Clearly, there remain significant knowledge gaps to be addressed: i) a discrete $\text{RC}=U=\text{NR}$ unit remains a ‘missing piece’; ii) very few heteroleptic combinations have been reported; iii) because in almost all cases uranium is in a high oxidation state (V, VI), mid-valent ($E=U^{\alpha}=E'$) complexes are exceedingly rare, despite their obvious importance as potential models for 2-electron reduced uranyl ($O=U^{\alpha}=O^{\alpha}$) which plays a key role in reductive uranyl functionalisation and environmental mobility.$^{[10]}$

Here, we report unprecedented heteroleptic mid-valent uranium(IV) cis- and trans-carbene-imido complexes, completing the uranium metalla-allene family. Both the molecular structures and theoretical calculations show an electronic preference for the cis-geometry, which is attributed to a trans-influence in mid-valent uranium systems, rather than the ITI found in high-valent uranium analogues where the ($E=U=\text{E}^{\alpha}$) units are overwhelmingly trans.

This work provides unambiguous experimental and theoretical support to the occurrence of the trans-influence in actinide chemistry.$^{[11]}$ Lastly, we demonstrate that cis- and trans-isomers can be deliberately accessed, representing exceedingly rare examples of controllable cis-trans-isomerisation in f-block chemistry.

Encouraged by prior work$^{[6a,7a,8a,12]}$ the uranium(IV)-carbene-bis-alkyl [$\text{U(BIPM}^\text{TM5})(\text{CH}_2\text{SiMe}_3)_2]$ (1)$^{[13]}$ was used as a starting material. Seeking to effect α-abstraction of an intermediate metal-alkyl-amide, treatment of 1 with 0.8 equivalents of Ph_2CNH_2 and 0.8 equivalents of 2,2-bipyridine (BIPY) as an ‘external’ Lewis base produced the desired uranium(IV)-carbene-imide complex $[\text{U(BIPM}^\text{TM5})(\text{NCPH}_3)(\kappa^2\text{-N,N'})\text{BIPY})] (2)$ with elimination of SiMe_3 (Scheme 1). Complex 2 was obtained as a brown crystalline solid in 92% yield based on Ph_2CNH_2 and BIPY.$^{[13]}$ The reaction must be carried out under highly-dilute conditions at low temperature with the optimised 0.8 sub-stoichiometric quantities of substrates or only the corresponding BIPM^TM5-uranium(IV)-bis-amide is formed,$^{[14]}$ and BIPY must be used to effect α-abstraction.

The 1H NMR spectrum of 2 spans \sim35 to \sim45 ppm and the 13C NMR spectrum exhibits a broad resonance at \sim905 ppm. Weak f \rightarrow
The equilibrium means that an analytically pure sample can be obtained (see SI), but the structure of 3 confirms its formulation and it can be identified by difference in 1H NMR spectra.

The molecular structure of 3 is shown in Figure 2. The trans-conformation of the N=U=C unit is confirmed by the essentially linear C$_{\text{carbene}}$=U=N$_{\text{imido}}$ unit [175.9(18)$^\circ$], some 64$^\circ$ more obtuse than the corresponding angle in 2. The elongation of U=N$_{\text{imido}}$ bond from 2.03(2) Å to 2.13(2) Å is significant, although the apparent elongation of U=C$_{\text{carbene}}$ bond is not statistically meaningful [2.590(6) Å vs 2.491(6) Å (2)]. These data suggest the validity of the trans-effect in mid-valent uranium system, and in the continued absence of a discrete cis-(U=O)=O$^\text{2-}$ provides a unique opportunity to investigate the electronic structure and bonding of the C=U=N$^\text{2-}$ unit, which can be regarded as a 2-electron reduced heteroatomic cis-analogue of uranyl.

We computed the full structures of 2 and 3 using DFT at the GGA (BP86) level, and the bond lengths and angles are reproduced within 0.08 Å and 3$^\circ$ of the experimental values. The multiple bond character of U=O=U and U=N$_{\text{imido}}$ bonds are verified by the Kohn Sham, and Natural Bond Orbital (Figure 3) representations, which show two- and three-bond bonding interactions, respectively. Also, topological Quantum Theory of Atoms-in-Molecules (QTAIM) analysis returns average values of 0.21 and 0.04 for the corresponding bond ellipticities that are characteristic of double and triple bond interactions, respectively.[20] Significant differences in the bonding within the C=U=N unit are observed on moving from cis 2 to trans 3. Specifically, NBO analysis shows the uranium contributions to the σ- and π-components of the U=C bond fall from 16 to 14 and 15 to 10%, respectively; the σ-component of the U=N bond is returned as ionic so the uranium contribution is below the 5% NBO threshold, but for the two quasi-equivalent π-bonds the uranium contributions fall from 23 to 19%, respectively. In all uranium components of the U=C and U=N bonds 5f contributions dominate (~80%) with the remainder being 6d character. The reductions in uranium contributions to the U=C and U=N bonds from cis 2 to trans 3 are also reflected in the computed U=C and U=N bond lengths [and orders, respectively] for 2 (2.412, 1.994 Å [1.20, 2.59]$^\circ$ and 3 (2.437, 2.017 Å [1.17, 2.55]$^\circ$) that are closely larger [lower] in trans 3 compared to cis 2. These trends are also observed in the QTAIM analysis of these linkages; the bond critical point (BCP) ρ, V^2ρ and energy density [H(r)] terms vary from 0.085/0.130/0.026 for 2 to 0.081/0.100/0.024 for 3 (U=C), and 0.163/0.562/0.085 for 2 to 0.155/0.481/0.077 for 3 (U=N), respectively. Taken together, the computational data unequivocally produce the consistent picture.
To evaluate whether the cis-C=U=N arrangement is thermodynamically preferable over trans-C=U=N, or is a kinetic result stemming from the presence of the bidentate BIPY ligand inducing a cleft, we also computed the hypothetical model species 2-BIPY, [U(C(PH2NSiH3))2(NCH3)], in which the BIPY ligand was removed and the peripheral substituents were truncated to remove steric factors. These calculations were performed at the hybrid DFT (PBE0) level, as such an approach is known to give more reliable energetics than pure GGA functionals. It is significant that the geometry optimised 2-BIPY retains the cis-C=U=N arrangement (C=U=N = 108.18°), and when the trans-C=U=N arrangement was used as a starting point the structure converged to the cis form when there is no obvious steric reason to do so. In order to probe further the cis/trans energetics we performed a constrained SCF energy surface scan of the C=U=N angle, incrementing from its optimised value in 5° steps to 178.18° whilst allowing all other geometric variables to relax at each point. The result is shown in Figure 4, which plots the SCF energy of 2-BIPY relative to its fully optimised geometry as a function of the C=U=N angle. The optimised cis form is 12.3 kJ mol⁻¹ more stable than at C=U=N = 178.18°, and the maximum of the energy profile (at 163.18°) is 14.2 kJ mol⁻¹ above the global minimum.

To probe the origin of the energetic preference for the cis geometry, we have calculated the electrostatic potential (ESP) of the [U(C(PH2NSiH3))2]³⁻ unit in 2-BIPY. This is shown in the bottom image of Fig. S8, and clearly displays an asymmetry in the positive ESP directed towards the cis position. This is the point of highest positive (repulsive) energy for an incoming positive charge, i.e. where a negatively charged ligand would most prefer to bind. Fig. S8 also shows how the ESP varies as a function of C–U distance; as this shortens from 6.429 Å to its value in 2-BIPY the essentially spherical ESP around the U distorts to direct the imido ligand to the cis position.

By contrast to the calculations on the full systems 2 and 3, there is a much more significant lengthening (~0.11 Å) of the U–C carbene bond in 2-BIPY from the cis to the trans forms (i.e. the structure at C=U=N = 178.18° in the SCF energy surface scan), while the elongation of the U=Nimido distance is much more modest (Table S1). These changes are reflected in the QTAIM BCP metrics, and the QTAIM delocalisation index and Wiberg and bond order parameters, which are significantly reduced for the U–C interaction, but less so for the U–N (Table S1). NBO analyses of the cis and trans forms reveals that the only significant change is a reduction in the uranium contribution to the σ component of the U=C carbene interaction, from 17 to 12 %. It would therefore appear that, in the absence of neutral N-donor ancillary ligands, the trans influence manifests itself more as a weakening of the U=C carbene bond than the U=Nimido. This seems reasonable given that the imido group would be expected to be the strongest donor, although we note that there is likely more flexibility in the simplified BIPM framework compared with the real version with sterically more demanding substituents, which permits greater changes in n(U=C carbene).

The preference for cis- over trans-isomers in the present mid-valent uranium(IV) complexes contrasts with the prevalence of the ITI in high oxidation uranium(V/VI) systems.\cite{5,21} The ITI was first introduced by Denning et al.,\cite{3} who attributed the effect to hybridisation between the semi-core 6p orbitals and the valence 5f, an explanation largely supported by our later work.\cite{22} That the present lower oxidation state systems show behaviour typical of the regular trans-influence in d-block transition metal chemistry suggests that 6p/5f hybridisation is less likely in uranium(IV) than (VI). PBE0 calculations on U⁶⁺ and U⁴⁺ ions reveal a 6p/5f energy gap of 19.0 eV in the former and 22.9 eV in the latter (taken as ∆E of fully occupied β-spin 6p levels and the fully unoccupied 5f orbitals); an almost 4 eV increase in the 6p/5f energy gap should indeed lead to less 6p/5f hybridisation. That said, the nature, i.e. the polarising power, and combination, i.e. the relative polarising power of any strongly-donating trans-oriented ligands, coupled
to the oxidation state of the metal most likely combine in a complex interplay to determine whether the regular trans-influence or ITI operates.

In conclusion, we have reported two uranium(IV)-carbene-imido complexes that contain unprecedented, discrete R₂C=U=NR' units and these complexes complete the currently feasible family of E=U=E (E = CR₂, NR, O) metallo-alleines. Intriguingly, 2 and 3 contain cis- and trans-C=U=NR' units, respectively, thus representing rare examples in F-block chemistry of targetable cis-trans-isomerisation with the same core R₂C=U=NR' unit. This work reveals a clear-cut example of the trans-influence in a mid-valent uranium system where the preference for the cis-isomer can be clearly visualised in calculated electrostatic potentials. Thus, a strong preference for the cis-isomer emerges, which is computed in a co-ligand-free model - to isolate the electronic trans-influence from steric contributions - to be more stable than the trans-isomer by ~12 kJ mol⁻¹, with an isomerisation barrier of ~14 kJ mol⁻¹.

The only exceptions to high valent species are the C=U²⁺-metalla-alleines in reference [6].

[4] A search in the Cambridge Structure Database (CSD) (Ver. 5.37, Update 2, Feb. 2016) with O=U=O leading to 2901 structures, which takes >50% portion among all uranium-containing structures (5303) in the database.

Cis- and trans-isomers of the same $R_2C=U=NR'$ ($R = \text{Ph}_2\text{PNSiMe}_3$, $R' = \text{CPh}_3$) metalla-allene unit are presented, together with an assessment of the trans-influence, which brackets this effect at ≈ 12 kJ mol$^{-1}$ with an isomerisation barrier of ≈ 14 kJ mol$^{-1}$. Erli Lu, Floriana Tuna, Ashley J. Woolès, Nikolas Kaltsoyannis,* and Stephen T. Liddle*

Uranium-Carbene-Imido Metalla-Allene Mid-Valent Uranyl Analogues: Ancillary-Ligand-Controlled Cis-Trans-Isomerisation and Assessment of Trans-Influence in the $R_2C=U'=NR'$ Unit ($R = \text{Ph}_3\text{PNSiMe}_3$; $R' = \text{CPh}_3$)