Economic Crises in England, 1270-1520

Citation for published version (APA):

Published in:
Crises in Economic and Social History

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
PEOPLE, MARKETS, GOODS:
ECONOMIES AND SOCIETIES IN HISTORY

ISSN: 2051-7467

Series editors
Barry Doyle – University of Huddersfield
Nigel Goose – University of Hertfordshire
Steve Hindle – The Huntington Library
Jane Humphries – University of Oxford
Kevin O’Rourke – University of Oxford
Willem M. Jongman – University of Groningen

The interactions of economy and society, people and goods, transactions
and actions are at the root of most human behaviours. Economic and social
historians are participants in the same conversation about how markets
have developed historically and how they have been constituted by economic
actors and agencies in various social, institutional and geographical
contexts. New debates now underpin much research in economic and
social, cultural, demographic, urban and political history. Their themes
have enduring resonance – financial stability and instability, the costs of
health and welfare, the implications of poverty and riches, flows of trade
and the centrality of communications. This new paperback series aims to
attract historians interested in economics and economists with an interest
in history by publishing high quality, cutting edge academic research in
the broad field of economic and social history from the late medieval/
early modern period to the present day. It encourages the interaction of
qualitative and quantitative methods through both excellent monographs
and collections offering path-breaking overviews of key research concerns.
Taking as its benchmark international relevance and excellence it is open to
scholars and subjects of any geographical areas from the case study to the
multi-nation comparison.

PREVIOUSLY PUBLISHED TITLES IN THE SERIES ARE
LISTED AT THE END OF THE VOLUME
Contents

List of Figures vii
List of Tables ix
List of Contributors xi
Preface xvi

Introduction: Coping with Crisis – Understanding the Role of Crises in Economic and Social History
A.T. Brown, Andy Burn and Rob Doherty

PART I: CONCEPT AND METHODOLOGY

1. ‘Crisis’ and the Great Depression in Latin America
 Alan Knight 27

2. Using the Disaster Cycle in Economic and Social History
 John Singleton 53

 Mark Casson and Catherine Casson 79

PART II: AGRICULTURE AND ENVIRONMENT

4. Flogging a Dead Cow: Coping with Animal Panzootic on the Eve of the Black Death
 Philip Slavin 111

5. Early Modern ‘Resource Crisis’: The Wood Shortage Debates in Europe
 Paul Warde 137

 John Martin 161
PART III: DEATH AND DISEASE

7. Coping with Epidemic Crises, from Antiquity to the Present
 Samuel K. Cohn, Jr
 189

8. Plague Year 1680 in Central Europe: Using Czech Plague Registers to Monitor Epidemic Progression
 Pavla Jirková
 213

9. ‘Two Words … Good Sanitation’: Colonial Medical Responses to the Cholera Epidemics of 1865 and 1888 in Malta
 Josette Duncan
 235

PART IV: FINANCE AND BANKING

10. The Impact of Crises on Credit in the Late Medieval English Economy
 Pamela Nightingale
 261

 Anne L. Murphy
 283

12. Bursting the Bubble: The 2007 Northern Rock Crisis in Historical Perspective
 Matthew Hollow and Ranald Michie
 303

PART V: TRADE AND INDUSTRY

13. Crises in the Late Medieval English Cloth Trade
 John S. Lee
 325

14. The Roots of Decline: The Tyrolean Silk Industry and the Crises of the Second Half of the Nineteenth Century
 Cinzia Lorandini
 351

15. The Stabilising Effects of the Dingley Tariff and the Recovery from the 1890s Depression in the USA
 Peter H. Bent
 373

Index

391
Figures

2.1 Revised Disaster Management Cycle 58

3.1 Prices (in logarithms), 1264–1520: level and deviations from mean 83

3.2 Silver coin stock (in logarithms), 1264–1520: level and deviation from trend 83

3.3 Gold coin stock (in logarithms), 1344–1520: level and deviation from trend 84

3.4 GDP per head (in logarithms), 1270–1520: level and deviation from trend 85

3.5 Wage (in logarithms), 1264–1520: level and deviation from trend 86

3.6 Crop yields (index for barley, wheat and oats), 1270–1470: level and deviation from deterministic trend line 86

3.7 Prices (in logarithms), 1264–1520: level, fitted regression and deviation based on deterministic and stochastic trends (with one-year lag) 88

4.1 Replenishment rates of sheep (1279–1311) and oxen and cattle (1318–50) on English demesnes 130

6.1 Rainfall in the UK between May 1975 and August 1976 176

8.1 Schematic map of Bohemia in 1680: regions according to approximate plague mortality (%) 220

9.1 Map of Malta showing an arrowed line depicting the 1870s drainage reform in Valletta (centre) and Cottonera (right) 248

10.1 Decadal totals and crises of credit in the statute merchant certificates, 1290–1530 266
Figures

12.1 UK bank population, 1694–2008 312
13.1 English cloth exports, 1350–1544 326
13.2 Church of St Peter and St Paul, Lavenham 342
14.1 Salvadori firm’s shipments of silk (1855–83, kg) 362
14.2 Salvadori firm’s profits and losses (1856–83, gulden) 363
15.1 Real GDP, 1885–1905 (1996 millions of US dollars) 381
15.2 Real GDP per capita, 1885–1905 (1996 millions of US dollars) 381
15.3 Tariff revenue, 1890–1900 (current US dollars) 383
15.4 Estimated revenues from duties on imported items, by schedule (1897 US dollars) 385
15.5 Wool prices (US dollars per pound) in eastern US markets, 1890–1900 385
Tables

3.1 Estimates of the price regression, showing the effects of introducing additional explanatory variables
3.2 Estimation of a simultaneous equation model for price, output and wages, 1264–1520
3.3 Significant residual variation in the annual money price level, analysed according to the number of explanatory variables included in the regression
3.4 Significant residual variation in prices, output and wages in a simultaneous equation model, including a comparison between estimates for 1264–1520 that exclude crop yield variation and for 1270–1470 that include crop yield variation
3.5 Possible crises in the late medieval English economy
4.1 Ovine mortality rates during the 1279–80 scab outbreak in England
4.2 Bovine mortality rates during the 1319–20 rinderpest outbreak in England
4.3 Types and costs of medicaments used against scab on sheep farming demesnes of Winchester Cathedral Priory, 1279–80
6.1 Annual average market price for wheat, barley and oats, 1970/1 to 1976/7 (£ per tonne)
6.2 Agricultural yields, 1970–76 (tonnes per hectare)
6.3 Crop yields, 1970–76 (tonnes per hectare)
8.1 Estimates of plague mortality within the regions of Bohemia in 1679–80
8.2 Number of plague victims within the parishes of the vicarage of Poděbrady in 1680
8.3 Plague victims within the vicarage of Poděbrady in 1680, according to gender and age ratio
9.1 Morbidity and mortality figures for both 1865 and 1887 cholera epidemics in the towns and villages of Malta
12.1 Joint-stock banks: assets and liabilities, 1911–38
14.1 Reeling mills in Trentino (1850–99)
14.2 Silk throwing in Trentino (1870–1900)
Contributors

Peter H. Bent is a Marie Curie Early Stage Research Fellow in the Department of Economics at the University of Oxford. He is also a PhD student in economics at the University of Massachusetts, Amherst. Before beginning his doctoral studies, he received an MSc in Economic History (Research) from the London School of Economics and an MA in Economics from the University of New Hampshire. His current research focuses on the connections between capital flows and financial crises in the global periphery during the ‘first era of globalisation’ from 1880 to 1913.

Catherine Casson is a lecturer at Manchester Business School, University of Manchester. She currently studies the history of entrepreneurship and the relationship between reputation and economic performance in English medieval towns. Her recent publications include a co-authored book with Mark Casson, The Entrepreneur in History: From Medieval Merchant to Modern Business Leader (Palgrave, 2013).

Mark Casson is Professor of Economics and Director of the Centre for institutional Performance at the University of Reading. He researches entrepreneurship, international investment, business history and transport history. Recent books include The Entrepreneur in History, with Catherine Casson (Palgrave, 2013), editor of Markets and Market Institutions (Edward Elgar, 2012), Entrepreneurship: Theory, Networks, History (Edward Elgar, 2010), and The World’s First Railway System (Oxford University Press, 2009).

Samuel K. Cohn, Jr is Professor of Medieval History at the University of Glasgow, Fellow of the Royal Society of Edinburgh and Honorary Fellow at the Institute for Advanced Studies in Humanities, Edinburgh. Over the past fifteen years he has specialised in the history of popular unrest in late medieval and early modern Europe and in the history of disease and medicine. His latest books include Cultures of Plague: Medical Thinking at the End of the Renaissance (Oxford University Press, 2010); and Popular Protest in Late Medieval English Towns (Cambridge University Press, 2012). He is presently funded by a three-year Leverhulme Senior Research Fellowship on the project,
‘Epidemics: Waves of Disease, Waves of Hate from the Plague of Athens to AIDS’.

Josette Duncan currently teaches in the History Department of the University of Warwick. She is a nineteenth-century social historian of medicine. Her research focuses on colonial history of medicine, history of isolation, quarantine as well as regulationism, institutionalisation, colonial public health, medical charities and migration in the British Mediterranean, with a special focus on the history of Cyprus, Malta and the Ionian Islands. She is currently working on the history of health and illness of migrants in British Mediterranean ports.

Matthew Hollow is a Research Assistant and Teaching Fellow at The York Management School. Research-wise, his work principally focuses on various aspects of nineteenth- and twentieth-century British socio-economic history. He holds a BA and an MA from the University of Sheffield and a DPhil from Oxford University, and has previously worked as a Research Associate on the Leverhulme Trust-funded ‘Tipping Points’ project at Durham University.

Pavla Jirková works as a researcher at the Economics Institute of the Czech Academy of Sciences (the joint workplace CERGE-EI) in Prague. She is the principal investigator of the grant project ‘Restrictive plague policies and the prevention of demographic and economic crisis in the Early Modern Czech Lands’ funded by the Czech Science Foundation (Registration No. GAČR 13–35304S; 2013–2017). She obtained her PhD in history at the Charles University in Prague in 2011 with a thesis entitled ‘The Testamentary Practice in Jihlava in the Years 1578–1624 (Wills as Sources for the History of Family Structures, Historical Demography, and Sociotopography)’.

Alan Knight is Emeritus Professor of the history of Latin America, Oxford University, and a fellow of St Antony’s College; previously, he held posts at the University of Essex and the University of Texas at Austin. He has been a Guggenheim Fellow and a Fellow of the British Academy. His publications include: The Mexican Revolution (2 vols, 1986); Mexico, From the Beginning to the Spanish Conquest, and Mexico: The Colonial Era (2002); Revolución, democracia y populismo en América Latina (2005); La revolución cósmica (2013); and Repensar la revolución mexicana (2 vols, 2013). He has also co-edited volumes on the Mexican oil industry, caciquismo (Mexican boss politics) and superstition in history. He is currently working on a history of Mexico in the 1930s.
John S. Lee is a Research Associate at the Centre for Medieval Studies at the University of York. He has published works on various aspects of medieval towns, markets and estates. These include *Cambridge and its Economic Region 1450–1560* (University of Hertfordshire Press, 2005); chapters in S. Rigby and M. Bailey (eds), *Town and Countryside in the Age of the Black Death* (Brepols, 2012) and B. Dodds and C.D. Liddy (eds), *Commercial Activity, Markets and Entrepreneurs in the Middle Ages* (Boydell & Brewer, 2011); and articles in *Business History Review* (2011), *The Local Historian* (2011 and 2015), and *Urban History* (2010 and 2014).

Cinzia Lorandini is Associate Professor of Economic History at the Department of Economics and Management of the University of Trento. She has published on two main strands of her research: the operation of early modern merchants, particularly those engaged in the silk trade, and twentieth-century banking history. More recently, her interests have turned to credit markets before the rise of modern banking. Her latest publications include ‘Looking beyond the Buddenbrooks syndrome: the Salvadori firm of Trento, 1660–1880s’, *Business History* (2015), and ‘Sailing through troubled times: the Salvadori Firm of Trento during the Revolutionary and Napoleonic Wars, 1792–1815’, in *Merchants in Times of Crisis (16th to Mid-19th Century)*, ed. A. Bonoldi, M. Denzel, A. Leonardi and C. Lorandini (Franz Steiner Verlag, 2015).

John Martin is Professor of Agrarian History at De Montfort University, Leicester. His main research interest is the impact of government policies on British agriculture and the countryside since the 1930s. His publications include *The Development of Modern Agriculture: British Farming since 1931* (Palgrave, 2000), co-editor of *The Encyclopaedia of Traditional British Rural Sports* (Routledge, 2005), and co-editor of *The Frontline of Freedom* (Agricultural History Review Supplement, 2007). In 2011 he was appointed Series Consultant for the *Wartime Farm* produced in eight episodes by Lion TV for BBC2 and the Open University. In 2012 he was the agricultural consultant for BBC’s *Tudor Monastery Farm* series. He was the agricultural consultant for ITV’s *Home Fires* series in 2015.

Ranald Michie is Emeritus Professor of History at the University of Durham. He is a recognised expert in the field of financial history, having produced numerous books and articles over a long career. Among the most notable are *The London Stock Exchange: a History* (Oxford University Press, 1999) and *The Global Securities Market: a History* (Oxford University Press, 2006). More recently he has been working on British banking history as part of the Leverhulme Trust-funded ‘Tipping Points’ project.
Anne L. Murphy is Reader in Early Modern History at the University of Hertfordshire. Her research interests derive from her background in finance, and concern the nature of Europe’s financial markets, the behaviour of investors, and the function and relevance of financial information from the early modern period to the present day. Her publications include articles in History, Financial History Review and Economic History Review, and the monograph The Origins of English Financial Markets: Investment and Speculation before the South Sea Bubble (Cambridge University Press, 2009).

Pamela Nightingale read history at Newnham College Cambridge where she did her PhD on the history of British India in the eighteenth and later centuries and on which she published three books, and also taught for the Open University. After an invitation to write the medieval history of the London Grocers Company, she published a book on A Medieval Mercantile Community (Yale University Press, 1995). She has published twenty articles, mainly on medieval economic and political history, held two senior research fellowships at the Ashmolean Museum, Oxford, and was awarded a DLitt by Oxford in 2011. Although having officially long since retired, she continues to work on an extensive study of credit in the medieval English economy between 1285 and 1530.

John Singleton is Professor of Economic and Business History at Sheffield Hallam University. He is the author of Central Banking in the Twentieth Century (Cambridge University Press, 2011) and the principal author of Innovation and Independence: The Reserve Bank of New Zealand, 1973–2002 (Auckland University Press, 2006), and other books and articles on British and New Zealand economic history. He is currently working on a comparative history of disasters since 1900, which will be published by Edward Elgar.

Philip Slavin is Lecturer in Medieval History at the University of Kent. He has published widely on the late-medieval environmental, economic and social history of the British Isles, including articles in Past and Present and the Economic History Review. He is the author of Bread and Ale for the Brethren: The Provisioning of Norwich Cathedral Priory, 1260–1536 (University of Hertfordshire Press, 2012). He is currently working on his second monograph dealing with the Great European Famine of the early fourteenth century, as experienced in the British Isles.

Paul Warde is Lecturer in Environmental History at the University of Cambridge, having previously been Professor of Environmental History at the University of East Anglia. He is Research Director at the Centre for History and Economics, Magdalene College, Cambridge, and a senior editor.
Economic Crises in England, 1270–1520:
A Statistical Approach

MARK CASSON AND CATHERINE CASSON

Introduction

This chapter examines crises in the late medieval English economy from 1263 to 1520 using a statistical approach. Historians have identified crises in different ways. Some have suggested that a crisis is best defined as an event that contemporaries themselves thought of as a crisis. The subjectivity of this approach means, however, that different generations may use different criteria, so that crises at different times are not strictly comparable. An alternative is to assess crises in terms of their impacts, but the measurement of impact can also be problematic; for example, a crisis may have a substantial local impact but be insignificant nationally. Furthermore, crises may impact differently on different groups of people, for example, the rich and poor, landowners and labourers.

Statistical data can generate a more comprehensive chronology of crises.

than a collection of contemporary accounts. For England there are particularly extensive data-sets, derived from government administrative records, which historians have examined for fluctuations in previous literature.\(^3\) Annual statistical data are available on a range of economic variables, including prices, wages, output and money supply, as explained below. Time series for some variables go back as far as 1250.

One way of identifying crises from statistical data is to search for peaks and troughs. Identifying peaks and troughs is not so simple as it may appear, however. Peaks and troughs in time series data are defined with reference to the years before and the years after. A peak value over a decade is not necessarily a peak value over a century. One way of addressing this problem is to fit an equation to the data and assess peaks and troughs with reference to the fitted values.\(^4\) Crises are then assessed in terms of annual deviations from the fitted values. The ‘best fit’ line can be estimated by the method of least squares. This is the essence of the approach presented in this chapter: crises are identified by the deviations of economic variables from their fitted values.

When potential crises have been identified from statistical data, the crisis years concerned can be compared with crisis years identified in the secondary literature. The two lists can be matched up and discrepancies noted. The literature on the medieval English economy has identified a good number of crisis years, because different authors have used different criteria for identification purposes. An advantage of the statistical approach is that it provides a consistent analysis of crises based on explicit criteria applied to publicly available information. The judgements arrived at by statistical methods can therefore be independently verified. Furthermore, the criteria can be adjusted to ensure that only a limited number of crisis years are identified over any given period, allowing the researcher to focus their attention on the most critical situations.

Existing historiography on crises in medieval England has tended to be fragmented, with crises often examined largely in isolation from each other and sometimes examined using separate sources of evidence.\(^5\) This chapter

\(^4\) A simple example of fitting an equation to data is to draw a straight line through a scatter diagram in such a way that the sum of the squares of the distances of the points from the line is as low as possible. The methods described below generalise this simple principle to more complex situations.

examines the presence of crises in a set of annual observations on prices, wages, output, money supply, population and crop yields. These time series were selected because there is already an established tradition of using some of them in order to identify crises, and because they cover different aspects of economic activity. For statistical reasons all the variables except crop yields are measured in logarithms.

It would be possible to analyse these variables separately, looking first at prices, say, and then at wages, and so on. Many of these variables are closely related, however, for example, prices are correlated with wages and money supply. This chapter analyses all the variables together. It uses a simultaneous equation model of the medieval economy, which comprises three separate equations: a price equation, an output equation and a wage equation. According to this model, prices depend on wages, output and money supply, wages depend on prices, and output depends on prices and wages. There is two-way causation: for example, prices depend on wages while wages depend on prices. Where there is two-way causation, lags are used to identify the separate effects. For example, the model postulates that prices depend on the previous year’s wages and wages depend on the previous year’s prices. This means that the impact of wages on prices can be inferred from the correlation between current prices and past wages, while the impact of prices on wages can be inferred from the correlation between current wages and past prices.

The methods used to fit the model from the data have been published elsewhere. Because of the lags, the model has a recursive structure, and this allows each of the three equations (for prices, output and wages) to be estimated independently of each other without any bias. The price equation is adapted from the price equation used by Mayhew. Simultaneous equation models have been widely used for forecasting modern economies, but this model is the first of its kind to be applied to the medieval economy, so far as the authors are aware. Similarly, this is the first attempt to use the residuals from a simultaneous equation model to identify historical crises in either the medieval or modern periods.

Sources of data

Before considering the methods used to analyse the data in detail, it is useful to consider the background to the data being used. The start date of 1263 was chosen because it is the earliest period when continuous runs of annual data are available, while the finishing date of 1520 immediately precedes the take-off of Tudor price inflation.8

Price and wage data for the study came from Allen’s price and wage indices, which are nominal sterling values expressed in logarithms.9 The process of auditing steward’s accounts on the great ecclesiastical and monastic estates generated a large amount of regionally representative information on prices and crop yields. Wage information for skilled workers is recorded in the financial accounts of cathedral building and castle building. In the case of the wage data, missing observations were interpolated by Allen.

Price evidence suggests that a long period of stability from the time of the Norman Conquest (and possibly earlier) was succeeded by a rise in prices in the period 1170–1300.10 There were several spikes in prices between 1300 and 1348, although from 1320 the underlying trend was downward. Prices are graphed against time in Figure 3.1. The top dashed line shows the actual level of prices, while the bottom solid line shows their deviation from a linear trend, which was fitted by the method of least squares. The scale of prices is shown on the right-hand axis, and the scale of the deviations on the left-hand axis. Prices can be negative as well as positive because they are measured in logarithms. Deviations are negative when the actual value is below trend. Prices rose in 1348–69, and then began a further decline between 1370 and 1500, after which an upward trend resumed, which continued well into the sixteenth century. Prices spiked in 1438 and slumped 1439–72, which is generally regarded as a period of trade depression.11

The money-supply data is measured by the stock of coin, estimated from the accounts of mints, supplemented by information from recoinages and hoards. Mint accounts provide information on issues of new coin, while recoinages provide direct information on stocks, and hoards provide estimates of the physical depreciation of the stock. This chapter uses Mayhew’s recent

Figure 3.1. Prices (in logarithms), 1264–1520: level and deviations from mean

Figure 3.2. Silver coin stock (in logarithms), 1264–1520: level and deviation from trend
annual stock series for silver and gold coin, for 1220–1750. The silver stock is graphed in Figure 3.2 and the gold stock in Figure 3.3. As before, the actual levels are shown by the top dashed line, and the annual deviations from trend shown by the lower solid line.

Sterling coinage was exclusively silver until 1344. Thereafter the stock of gold coinage grew rapidly until 1370, and then declined, 1370–1411. In the meantime the stock of silver coinage increased between 1250 and 1310, when it began a rapid decline, 1310–1412, punctuated only by a brief recovery, 1350–56. By 1412 silver was less than 20 per cent of the gold stock (in nominal sterling value). The gold stock peaked in 1424, declined to 1463, and then slowly increased between 1463 and 1520. The silver stock also recovered, quickly at first, and then more slowly, 1412–1520.

In this study the output variable is GDP (gross domestic product) per head. This is derived from estimates of GDP compiled by Broadberry, Campbell, Klein, Overton and van Leeuwen from a variety of sources, including crop yields from manorial accounts and trade flows from customs accounts. GDP

13 Stephen Broadberry, Bruce Campbell, Alexander Klein, Mark Overton, Bas van Leeuwen, British Economic Growth, 1270–1870: An Output Based Approach, London School of
is calculated at constant prices using modern procedures for national income accounting, and this allows the series to be linked to existing post-1750 series. The output series is graphed in Figure 3.4. It shows a strongly rising trend. The most significant period of growth is after the Black Death, 1350–1420. The volatility of output tends to fall over the period, the most volatile period being before the Black Death.

Population data is a difficult data-set to establish for the medieval period, as there was no equivalent to a census, and the alternative potential sources of taxation lists and muster rolls are available only for selected years. It is also difficult to establish mortality rates from epidemics of disease from the available sources. As a result, there is a wide margin between ‘high’ and ‘low’ estimates of medieval population, even though there is often broad agreement over whether population was rising or falling at any given time. The population series comes from the same source as the output series, and represents just one possible interpretation of the available evidence. Its most striking feature is the
Figure 3.5. Wage (in logarithms), 1264–1520: level and deviation from trend

Figure 3.6. Crop yields (index for barley, wheat and oats), 1270–1470: level and deviation from deterministic trend line
sudden fall in population at the time of the Black Death. This was followed by continued decline in the century 1350–1450, when slow growth resumed.

Wages are graphed in Figure 3.5. This gives an impression of wage rigidity which may be false. Interpolation means that if the wage level is similar at the beginning and end of a period then, in the absence of intervening observations, it is assumed to be constant throughout. Other wage series suggest greater volatility, but these rely on very small numbers of observations in intervening years, and so may reflect, not underlying variation, but random error. Periods of rigidity are interspersed with occasional periods of dramatic change. This is consistent with inertia due to custom or regulation, which occasionally breaks down under the pressure of long-run market forces. The evidence suggests that there were two main wage regimes: a low-wage regime at the beginning and end of the period, 1264–1300 and 1465–1520 respectively, and a high-wage regime, 1310–35 and 1364–1463; the main exception is a temporary but substantial drop in wages, 1336–60.

Crop yields are derived from a database compiled by Campbell, which draws upon various regional studies of manorial accounts. The data comprise an index of yields for three key crops, barley, wheat and oats, 1270–1470, supplied by the author. They are graphed in Figure 3.6. Crop yields are the most volatile of the time series (high variance and low autocorrelation) and exhibit a downward trend. They are relatively high in 1264–1315, but then erratic 1315–48, with bad years in 1315–17 and 1321 and very good years in 1333 and 1338. Crop yields fall after the Black Death, but recover between 1376 and 1395, before declining, 1396–1438. There are further good years in 1458 and 1463.

Statistical methodology: identifying a crisis

In the simultaneous equation model the three variables explained by the three regressions – namely price, output and wages – are used as crisis indicators. A large deviation from the fitted value of any one of these variables is a potential indicator of crisis. Positive and negative deviations may signify different types of crisis, however. Consider inflation and deflation, for example. Inflation may signify a shortage of consumer goods, perhaps as a consequence of failed harvests. On the other hand, it could also signify a boom caused by an increase in credit and consequent shortage of building materials. Similarly, deflation could signify a depression in which labour is laid off and unemployment results. On the other hand, deflation could arise from a good harvest and an abundant supply of consumer goods.

When interpreting price deviations, historical context matters. In a modern industrial economy, deflation is often regarded as a symptom of depression, caused by falling demand for consumer goods, rather than as the beneficial effect of a good harvest. Similarly, inflation is associated with boom and prosperity, rather than with famine due to a bad harvest. It is essential to bear in mind that the dynamics of an agricultural economy dependent mainly on short-term credit are different from an industrial economy dependent on long-term finance. Where output is concerned there is less ambiguity, however. Crisis is likely to be associated with low output rather than high output. In an agricultural economy low output is likely to be associated with low crop yields, but in an industrial economy it is more likely to be associated with low consumer confidence. In an agricultural economy, a combination of deflation and high output may be regarded as a symptom of a good harvest, whereas a combination of deflation and low output could be a symptom of genuine economic crisis due, for example, to the export of coinage in a foreign war. On balance, in a medieval context it is appropriate to consider inflation as the more likely indicator of a crisis, but crises involving deflation certainly cannot be ruled out.

The wage data used in this study relate mainly to regulated wages set by administrators or by guilds, and therefore do not directly reflect the short-run state of the labour market. Wage changes may reflect several years
of cumulative change that have finally attracted administrative intervention. In this context the most plausible symptom of crisis is a reduction in wages, for example, to reduce unemployment and make goods cheaper, although it is possible, at least in theory, that an increase in wages might be administered in an attempt to quell social unrest.

To identify potential crises in any year it is necessary to compare the deviations of each of the three variables with some critical value. The critical value needs to be small enough that significant deviations can be found, but large enough that not every deviation suggests a crisis. An appropriate criterion is that the deviation should exceed two standard deviations, as calculated from an appropriate estimate of variance. The relevant variance can be estimated from the variance of the actual data around the fitted values. When the distribution of deviations is approximately normal, on average the deviations in about 2.5 per cent of years will appear as significantly positive, and in another 2.5 per cent of years as significantly negative. Thus potential crises will appear in either 2.5 or 5 per cent of years, depending on whether significant deviations must be either positive or negative, or can be both.

Statistical methodology: stochastic trends

There are two main kinds of trends: deterministic and stochastic. A deterministic trend is exemplified by the linear trend shown in Figure 3.1. To estimate a linear trend a variable is regressed against time and the deviations calculated from the residuals. A stochastic trend emerges when a variable depends on its own history, that is, on its own previous values. In the simplest case, the value of the variable depends just on its value in the previous year (one-year autoregression). In more complicated cases it may depend on values in much earlier years as well; in practice, however, it is not usually helpful to go back further than three years, because it becomes difficult to disentangle the effects from different years.

Where stochastic trends are present there will be autocorrelation in the residuals from a fitted linear trend. Careful examination of Figure 3.1 shows that when the deviation from trend is negative in one year it is likely to be negative in the next, and similarly for positive values. Over the period 1264–92, for example, all the residuals are negative, while over the later period 1312–25 they are all positive. Figure 3.7 introduces a stochastic trend as well. It shows the results of regressing price against time and against its own previous value. Regressing against time eliminates the deterministic trend (as in Figure 3.1), while regressing against previous price eliminates the stochastic trend.

Table 3.1. Estimates of the price regression, showing the effects of introducing additional explanatory variables

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td>–0.225*** (0.000)</td>
<td>–0.050*** (0.006)</td>
<td>–0.049*** (0.002)</td>
<td>–0.404* (0.076)</td>
<td>0.586* (0.086)</td>
<td>–0.563* (0.179)</td>
<td>–1.486*** (0.001)</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td>–0.217*** (0.000)</td>
<td>–0.052*** (0.000)</td>
<td>–0.053*** (0.000)</td>
<td>–0.070*** (0.000)</td>
<td>–0.011* (0.089)</td>
<td>–0.040* (0.089)</td>
<td>–0.150*** (0.000)</td>
</tr>
<tr>
<td>Price lagged 1 year</td>
<td></td>
<td>0.767*** (0.000)</td>
<td>0.933*** (0.000)</td>
<td>0.924*** (0.000)</td>
<td>0.916*** (0.000)</td>
<td>0.782*** (0.000)</td>
<td>0.601*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>Price lagged 2 years</td>
<td></td>
<td>–0.335*** (0.000)</td>
<td>–0.341*** (0.000)</td>
<td>–0.294*** (0.000)</td>
<td>–0.290*** (0.000)</td>
<td></td>
<td>–0.199*** (0.008)</td>
<td></td>
</tr>
<tr>
<td>Price lagged 3 years</td>
<td></td>
<td>0.168*** (0.003)</td>
<td>0.166*** (0.004)</td>
<td>0.166*** (0.001)</td>
<td>0.065* (0.273)</td>
<td>0.012* (0.389)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy 1344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–0.236* (0.259)</td>
</tr>
<tr>
<td>GDP per head</td>
<td>-0.928***</td>
<td>-1.006***</td>
<td>-0.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.719)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>-0.184</td>
<td>0.071</td>
<td>0.292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.158)</td>
<td>(0.634)</td>
<td>(0.125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage lagged 1 year</td>
<td>0.071</td>
<td>0.292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.634)</td>
<td>(0.125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop yield</td>
<td>0.292</td>
<td>0.125</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.125)</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R^2</th>
<th>0.598</th>
<th>0.842</th>
<th>0.852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted R^2</td>
<td>0.597</td>
<td>0.841</td>
<td>0.850</td>
</tr>
<tr>
<td>F</td>
<td>379.6***</td>
<td>676.7***</td>
<td>359.3***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Normality</td>
<td>87.6***</td>
<td>75.7***</td>
<td>68.0***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Serial correlation</td>
<td>186.4***</td>
<td>8.1***</td>
<td>4.9***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.008)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Heteroscedasticity</td>
<td>11.5***</td>
<td>9.9***</td>
<td>4.4***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>No. observations</td>
<td>257</td>
<td>256</td>
<td>254</td>
</tr>
</tbody>
</table>

Note: * indicates 10 per cent significance, ** 5 per cent significance and *** 1 per cent significance. Prices, GDP, money stock, wage and population are all measured in logarithms. White robust standard errors. Normality of the residuals is tested using a Jarque–Bera test. Serial correlation is tested using a Breusch–Godfrey LM test based on an F-statistic with two lags. Heteroscedasticity is tested using a Breusch–Pagan–Godfrey test based on an F-statistic. These estimates are based on data as collected by the authors from the originators on or shortly before 1 October 2013. Some of the data series may have been revised since then. For further details, see Casson and Casson, ‘Modelling the Medieval Economy’.
Comparing Figure 3.7 with Figure 3.1 shows that including a stochastic trend produces a much better fit; the variance of the residuals is much reduced, and their pattern is very different, because they change sign with greater frequency.

The relevant price regressions are shown in Table 3.1. The first column illustrates the estimation of a deterministic linear trend. The second column includes a stochastic trend based on a one-year lag. The third column includes a stochastic trend based on lags of up to three years. The inclusion of a one-year price lag raises R^2 (the proportion of the variance that is explained by the regression) from 0.598 to 0.842, but the inclusion of two additional lags increases it by only a small amount, to 0.852.

The importance of stochastic trends may be explained by the persistence of shocks. Suppose that there is a good harvest, for example. With a relatively stable population, demand remains unchanged but supply increases, and so prices will fall. Faced with lower prices, farmers may withhold some grain as seed, while speculators may buy up grain, to store for human or animal consumption in the following year. As a result, supply will be high in the following year as well, so that, other things being equal, low prices will persist. Prices may therefore exhibit inertia; according to the model, however, this inertia is due, not to institutional rigidity in the market, but rather to price adjustments that encourage speculative storage.

Statistical methodology: causation

Once the effects of persistence have been eliminated, further analysis can be carried out to ascertain the causes of shocks and so, by implication, the causes of crises. Inflation was identified above as an important symptom of crisis. According to the Quantity Theory of Money, inflation can be caused by an increase in the money supply. In this case deviations in price will be correlated with changes in money supply. If price deviations are regressed on money supply, the influence of money supply in generating crises can be determined. The residuals from this regression can then be used, in turn, to assess whether additional factors affect crises.

A simple test of the Quantity Theory is reported in column 4 of Table 3.1, where money supply is introduced into the regressions. Results for silver coinage and gold coinage are reported separately, since the two metals may have different roles. For example, when silver is the main circulating medium, and gold acts mainly as a store of value, silver will tend to have a greater impact on prices than gold. A dummy variable is also introduced to allow for unobserved foreign gold in circulation prior to the introduction of sterling gold coin in 1344. The results reported in this column suggest that neither silver nor gold has a major influence on price.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>1264–1520</td>
<td>1264–1520</td>
<td>1264–1520</td>
<td>1270–1470</td>
<td>1270–1470</td>
<td>1270–1470</td>
</tr>
<tr>
<td>Constant</td>
<td>–1.036***</td>
<td>0.439***</td>
<td>0.129***</td>
<td>–2.092***</td>
<td>0.304***</td>
<td>0.148***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.000)</td>
<td>(0.027)</td>
<td>(0.002)</td>
<td>(0.000)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Time</td>
<td>–0.072***</td>
<td>0.029***</td>
<td>–0.003</td>
<td>–0.215***</td>
<td>0.020***</td>
<td>–0.008</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.000)</td>
<td>(0.353)</td>
<td>(0.000)</td>
<td>(0.002)</td>
<td>(0.213)</td>
</tr>
<tr>
<td>Price lag 1</td>
<td>0.564***</td>
<td>0.068***</td>
<td>0.029**</td>
<td>0.286***</td>
<td>0.034***</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.034)</td>
<td>(0.005)</td>
<td>(0.028)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>Price change lag 1</td>
<td>0.293***</td>
<td>–0.047**</td>
<td>–0.002</td>
<td>0.298***</td>
<td>–0.012</td>
<td>–0.006</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.019)</td>
<td>(0.817)</td>
<td>(0.004)</td>
<td>(0.466)</td>
<td>(0.648)</td>
</tr>
<tr>
<td>Price change lag 2</td>
<td>0.007</td>
<td>–0.008</td>
<td>0.002</td>
<td>0.117</td>
<td>–0.016</td>
<td>–0.000</td>
</tr>
<tr>
<td></td>
<td>(0.929)</td>
<td>(0.631)</td>
<td>(0.885)</td>
<td>(0.116)</td>
<td>(0.278)</td>
<td>(0.980)</td>
</tr>
<tr>
<td>Silver stock lag 1</td>
<td>0.037***</td>
<td></td>
<td></td>
<td></td>
<td>0.071***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td></td>
<td></td>
<td></td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td>Silver stock change</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td>–0.025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.925)</td>
<td></td>
<td></td>
<td></td>
<td>(0.911)</td>
<td></td>
</tr>
<tr>
<td>Silver stock change lag 1</td>
<td>–0.104</td>
<td></td>
<td></td>
<td></td>
<td>–0.047</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.734)</td>
<td></td>
<td></td>
<td></td>
<td>(0.838)</td>
<td></td>
</tr>
<tr>
<td>Silver stock change lag 2</td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.948)</td>
<td></td>
<td></td>
<td></td>
<td>(0.866)</td>
<td></td>
</tr>
<tr>
<td>Gold stock lag 1</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td>–0.025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.715)</td>
<td></td>
<td></td>
<td></td>
<td>(0.239)</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold stock change</td>
<td>−0.008</td>
<td>−0.033</td>
<td></td>
<td>−0.009</td>
<td>−0.099</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.700)</td>
<td>(0.199)</td>
<td></td>
<td>(0.278)</td>
<td>(0.060)</td>
<td></td>
</tr>
<tr>
<td>Gold stock change lag 1</td>
<td>−0.009</td>
<td></td>
<td>−0.009*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.593)</td>
<td></td>
<td>(0.060)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold stock change lag 2</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td>0.004</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.843)</td>
<td>(0.318)</td>
<td></td>
<td>(0.843)</td>
<td>(0.318)</td>
<td></td>
</tr>
<tr>
<td>Dummy 1344</td>
<td>−0.042</td>
<td></td>
<td></td>
<td>−0.439</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.843)</td>
<td></td>
<td></td>
<td>(0.115)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP per head lag 1</td>
<td>−0.400</td>
<td>0.615***</td>
<td>−0.006</td>
<td>0.318</td>
<td>0.723</td>
<td>−0.026</td>
</tr>
<tr>
<td></td>
<td>(0.170)</td>
<td>(0.000)</td>
<td>(0.878)</td>
<td>(0.445)</td>
<td>(0.000)</td>
<td>(0.636)</td>
</tr>
<tr>
<td>GDP per head change</td>
<td>−1.492***</td>
<td></td>
<td></td>
<td>0.287</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td></td>
<td></td>
<td>(0.578)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP per head change lag 1</td>
<td>−0.054</td>
<td>−0.107</td>
<td>−0.014</td>
<td>−0.101</td>
<td>−0.012</td>
<td>−0.002</td>
</tr>
<tr>
<td></td>
<td>(0.849)</td>
<td>(0.127)</td>
<td>(0.763)</td>
<td>(0.763)</td>
<td>(0.865)</td>
<td>(0.976)</td>
</tr>
<tr>
<td>GDP per head change lag 2</td>
<td>−0.043</td>
<td>−0.121*</td>
<td>−0.003</td>
<td>−0.101</td>
<td>−0.125</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>(0.866)</td>
<td>(0.070)</td>
<td>(0.950)</td>
<td>(0.535)</td>
<td>(0.084)</td>
<td>(0.592)</td>
</tr>
<tr>
<td>Population lag 1</td>
<td>0.233</td>
<td>−0.150***</td>
<td>−0.052**</td>
<td>0.405*</td>
<td>−0.109</td>
<td>−0.074**</td>
</tr>
<tr>
<td></td>
<td>(0.155)</td>
<td>(0.000)</td>
<td>(0.027)</td>
<td>(0.078)</td>
<td>(0.001)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Wage lag 1</td>
<td>0.800***</td>
<td>−0.043</td>
<td>0.896***</td>
<td>1.578***</td>
<td>−0.037</td>
<td>0.915***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.365)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Wage change lag 1</td>
<td>−0.482</td>
<td>−0.002</td>
<td>−0.076</td>
<td>−0.892***</td>
<td>−0.010</td>
<td>−0.107</td>
</tr>
<tr>
<td></td>
<td>(0.196)</td>
<td>(0.988)</td>
<td>(0.242)</td>
<td>(0.007)</td>
<td>(0.908)</td>
<td>(0.136)</td>
</tr>
<tr>
<td>Economic crises in England, 1270–1520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wage change lag 2	0.237	-0.014	0.005	-0.681***	-0.018	-0.021
	(0.506)	(0.853)	(0.910)	(0.045)	(0.772)	(0.681)
Crop yield	-0.237***	0.074	-0.001			
	(0.000)	(0.000)	(0.788)			
Crop yield lag 1	-0.018	-0.055	-0.003			
	(0.635)	(0.000)	(0.699)			
Crop yield lag 2	-0.006	-0.000	-0.004			
	(0.868)	(0.986)	(0.475)			
Crop yield lag 3	-0.033	-0.007	0.007			
	(0.147)	(0.425)	(0.162)			

R²	0.895	0.943	0.949	0.870	0.973	0.940
Adjusted R²	0.884	0.941	0.947	0.849	0.971	0.935
F	87.0***	359.5***	402.4***	42.0***	424.6***	186.0***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Normality	28.2***	17.2***	6,063.0***	28.7***	27.7***	2,453.4***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Serial correlation	0.198	0.581	3.466**	0.9	5.0***	5.0***
	(0.821)	(0.560)	(0.033)	(0.409)	(0.008)	(0.008)
Heteroscedasticity	1.584	1.997**	0.804	0.9	1.0	0.7
	(0.055)	(0.030)	(0.636)	(0.192)	(0.428)	(0.816)
No. observations	237	249	194	183	194	194

Note: For notes on estimation methods and diagnostic tests, see Table 3.1. The correlations between the residuals 1264–1520 are as follows (probability values in brackets): price–income: 0.000 (1.000); price–wage: 0.265 (0.000); wage–income: 0.014 (0.834). For 1270–1470 the correlations are: price–income: 0.000 (1.000); price–wage: 0.329 (0.000); wage–income: 0.010 (0.891).
The Quantity Theory has other implications. With a constant velocity of circulation and a given money stock, the total value of annual transactions will be constant too, and this implies that high levels of GDP are associated with low prices, and vice versa. In the short run, high GDP could result from high output (high GDP per head) and in the long run from high population. Output and population can be included in the regression analysis; the theory predicts that high output and high population will both reduce prices. The results are shown in column 5 of Table 3.1. The negative impact of output is strongly supported, but the influence of population is weak, though of the expected sign. Note that the gold stock (but not the silver stock) now becomes significant once income is included in the regression.

One of the key assumptions of the Quantity Theory is that wages are flexible, so that the labour market can adjust to maintain full employment. But, as shown above, there is some evidence of rigidity in money wages. In this case the level of wages could influence the level of prices. Column 6 shows the effect of including wages in the regression. Wages are highly significant and have the expected effect: higher wages lead to higher prices in the following year. When wages are included, however, it appears that silver rather than gold influences prices.

Bad harvests are another explanation of inflation. Bad harvests may be the result of low crop yields. The effects of low crop yields may already be reflected in estimates of GDP; it is possible, however, that they have an independent effect as well. This is corroborated by the results in column 7, which show that low crop yields significantly increase prices. The inclusion of crop yields makes output insignificant, suggesting that agricultural output may be a more important determinant of prices than other forms of output.

Results from the simultaneous equation model

The simultaneous equation model is estimated both with and without crop yield data. Without crop yield data the period covered is 1264–1520, and with crop yield data it is 1270–1470. Both sets of results are reported in Table 3.2. The system generates three sets of residuals that are used in combination to analyse crises.

Potential crises are identified by one or more of the following symptoms occurring in any given year:

- Inflation or deflation: large positive or negative price residuals.
- Low output: large negative output residuals.
- Very high or very low wage: large wage residuals.

The results are analysed in three parts. The first part concerns just the price regressions, and is based on Table 3.3. This table is derived from Tables
3.1 and 3.2. It indicates, for each regression, the years in which inflation or deflation was more than two standard deviations from its predicted value. It shows how the years of significant deviations change as more explanatory variables are entered into the regression. Significant deviations from the mean are identified in column 1. The information in columns 2–8 is derived from Table 3.1 and the remaining information in columns 9 and 10 is derived from Table 3.2. The final column (column 10) contains all the explanatory variables used in this study.

The results may be summarised as follows:

- In 1309 unexplained inflation is identified once output and population effects are controlled for. It disappears again, however, when wages effects are introduced, and reappears after crop yields are introduced. Inflation is also identified in the final regression where crop yields are included. It was a year of good harvests but, even so, prices were well above their predicted level.

- The Great Famine is also a period of unexplained inflation. Although bad harvests lead to inflation, inflation in these years was even higher than expected. Crop failure began in 1315, became worse in 1316, but diminished somewhat in 1317. Unexplained inflation is higher in 1315 than 1316. There are signs of inflation in 1314, the year before the famine, suggesting that other forces besides famine may have been at work. Although inflation continued until 1317, this appears to have been due to persistence rather than to any new inflationary shock.

- The year 1321 also witnessed poor harvests, and once again there is unexplained inflation. The experiences of 1315–16 and 1321 suggest that prices may respond non-linearly to crop failure. This is consistent with the view that stock-piling and panic buying may have exacerbated problems. On the other hand, it could be simply that starving people became desperate for food.

- Prices fell in 1322, when harvests returned to normal, but not so quickly as might be expected. This could be because precautionary stocks of foodstuffs had been run down the previous year and needed to be replenished.

- The year 1330 shows some symptoms of high inflation, but the regression results do not suggest any obvious explanation.

- According to the full regression, prices in 1333 did not fall by as much as might be expected, given the very good harvest that year.

- In 1339, a year of bad harvests, there is some unexplained inflation, but this disappears once exceptionally low output is allowed for.

- The years 1350–51, in the aftermath of the Black Death, also witness unexplained inflation. The effect disappears in 1350 once low crop yields are controlled for, but not in 1351. In 1351 wage increases contribute to inflation.
Table 3.3. Significant residual variation in the annual money price level, analysed according to the number of explanatory variables included in the regression.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>257</td>
<td>257</td>
<td>256</td>
<td>254</td>
<td>249</td>
<td>246</td>
<td>246</td>
<td>195</td>
<td>237</td>
<td>183</td>
</tr>
<tr>
<td>1264</td>
<td>–</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1287</td>
<td>–</td>
</tr>
<tr>
<td>1288</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1309</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1314</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1315</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1316</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1317</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1321</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Note</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1333</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1338</td>
<td></td>
</tr>
<tr>
<td>1339</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1340</td>
<td></td>
</tr>
<tr>
<td>1350</td>
<td></td>
</tr>
<tr>
<td>1351</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1353</td>
<td></td>
</tr>
<tr>
<td>1365</td>
<td></td>
</tr>
<tr>
<td>1369</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1408</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1428</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1437</td>
<td></td>
</tr>
<tr>
<td>1438</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1464</td>
<td></td>
</tr>
<tr>
<td>1509</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A significant variation is more than double the standard deviation of the residuals from the conditional mean (predicted value) of the relevant estimated regression. X indicates that estimated residuals are not available for the year in question.
There is a run of bad harvests in the period 1367–69, and this culminates in unexplained inflation in 1369. It is possible that destocking occurred in 1367–68, which helped to maintain price, and that there was a sharp jump in 1369 when reserves finally ran out. This is consistent with the view that each year people were expecting a better harvest, but that this did not materialise until 1370, which was too late.

There is evidence of inflation in 1400 once wage impacts are allowed for. This may have been linked to political uncertainty surrounding the deposition of Richard II.

The year 1408 marks the start of a run of poor harvests. Unexplained inflation appears when controlling for three-year price persistence, continues when monetary factors are introduced, but disappears when income is introduced.

There is unexplained inflation in 1428, although it is weaker when wage impacts are allowed for.

In 1437 there is unexplained inflation when controlling for three-year price persistence, but this disappears once monetary factors are introduced. There is much stronger evidence for inflation in the following year, however. These are two consecutive years of bad harvests.

The second part of the analysis concerns the results of the three-equation system, which are presented in Table 3.4. The focus is now on low output and on any significant change in wages. Since the aim is to identify additional years of potential crisis, years already discussed are not mentioned again. There are three years with significantly low output but no significant price effects, 1283, 1374 and 1432, and no fewer than nine years with significant changes in wages and no significant price effects: there are wage increases in 1301, 1305 and 1312, reductions in 1338 and 1341, increases in 1351, 1361 and 1403, a reduction in 1412, an increase in 1413 and a reduction in 1464.

There were poor crop yields in both 1283 and 1374, but output was still low in 1283 even when controlling for crop yields. In 1374, however, low output seems to be explained by low crop yields. In 1432 output was low even though crop yields were normal. Thus 1283 and 1432 appear to be the main years of potential crisis.

Because of the fragmentary nature of wage evidence, it may be misleading to treat each year of significant wage change as if it represented a separate crisis. There is a clear pattern of increases over the period 1301–12, decreases 1338–41, increases in 1361, and volatility 1403–13. All of the wage changes are significant before crop yields are controlled for, but when controlling for crop yields only four are significant: in 1338, 1361, 1403 and 1412. Since none of these wage changes are associated with unexpected price changes, they may be due, at least in part, to administrative action rather than to economic adjustment.
The final stage is to identify a short list of potential crisis years, and examine the events that occurred in these years. Table 3.5 lists the years selected for special study, and some of the most prominent events associated with them.

Internal disputes between the crown and the nobility provide the context to the possible crises in 1309 and 1321. The reign of Edward II is especially identified by historians of fourteenth-century England as one of crisis, and these results therefore correspond with that historiography. The key issue for Edward II’s contemporaries was the favouritism that he displayed towards certain individuals, notably Piers Gaveston and the Despencers.17 This was eventually to contribute to his deposition by Queen Isabella and Roger Mortimer.

Domestic wars have been identified as another potential source of crises by political historians. Table 3.5 shows that domestic wars have a relatively modest impact. The Welsh wars of Edward I, the Scottish wars of Edward III, and the Wars of the Roses do not seem to have precipitated any economic crises. The main exception is relatively tenuous; the defeat of Hotspur in the Welsh wars occurred in the crisis year of 1403. In addition, significant inflation occurred in 1438, the year of an Anglo–Scottish truce, but the impact is the opposite of what would be expected from cessation of war. The lack of significant impacts of the Wars of the Roses in particular supports recent historiography in the field. While earlier analysis of the Wars tended to see them as protracted and bloody, more recent assessments have emphasised the gaps in the fighting and seen the battles as interspersing peace, rather than peace being only occasional.18

Foreign wars appear to be more significant than domestic wars. The crises in 1338–39 follow the start of the Hundred Years’ War with France in 1337 while the crisis of 1369 occurs when Edward III resumed the title of King of France.19 A sharp reduction in wages in 1412 coincides with Henry IV abandoning Burgundy while inflation in 1428 coincides with the assault on Orleans.

Moving on to consider economic factors, the Great Famine and the Black Death both feature, but it is interesting to note the specific years that appear. For the Great Famine the major years of crop failure are included, but years when diseases of sheep and cattle were rife do not.20 For the Black Death,

Table 3.4. Significant residual variation in prices, output and wages in a simultaneous equation model, including a comparison between estimates for 1264–1520 that exclude crop yield variation and for 1270–1470 that include crop yield variation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>237</td>
<td>249</td>
<td>249</td>
<td>183</td>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>1275</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1287</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1309</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1315</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1316</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Income</td>
<td>Wages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1338</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1339</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1340</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1341</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1350</td>
<td>+</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1351</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1353</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1361</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1365</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1369</td>
<td>+</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1374</td>
<td>–</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1388</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1403</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1408</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1412</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1413</td>
<td>+</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1428</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1432</td>
<td>+</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1437</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1438</td>
<td>+</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1446</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1454</td>
<td>–</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1464</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1509</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: See notes to previous table. ‘Income’ signifies GDP per head, and ‘wages’ signify the money wage rate. Output deviations in 1406 and 1407 have been removed from the table because it is possible that they result from errors in the data.
Table 3.5. Possible crises in the late medieval English economy

<table>
<thead>
<tr>
<th>Date</th>
<th>Symptoms</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>1283</td>
<td>Reduction in output (not only due to poor crop yields)</td>
<td>Edward I calls two provincial councils, at York and Canterbury</td>
</tr>
<tr>
<td>1309</td>
<td>Selective evidence of inflation</td>
<td>Edward I dies in 1307. Piers Gaveston, favourite of Edward II, returns to England from exile</td>
</tr>
<tr>
<td>1315</td>
<td>Significant inflation (even allowing for variation in crop yields). Reduction in output due to low crop yields</td>
<td>Start of the Great Famine. Major rainfall and flooding. Ordinances make the barons the administrators of the royal revenues</td>
</tr>
<tr>
<td>1316</td>
<td>Inflation (before adjusting for persistence). Reduction in output due to low crop yields</td>
<td>Continuation of the Great Famine</td>
</tr>
<tr>
<td>1321</td>
<td>Selective evidence for inflation. Reduction in output due to poor crop yields</td>
<td>The final year of the Great Famine. Political unrest between Edward II and the nobility as the king’s favourites, the Despencers, are banished, but only to be recalled in 1322</td>
</tr>
<tr>
<td>1338</td>
<td>Some evidence of price deflation. Reduction in wages</td>
<td>The Hundred Years’ War with France begins in 1337</td>
</tr>
<tr>
<td>1339</td>
<td>Selective evidence of price inflation. Reduction in output (not due only to poor crop yields)</td>
<td>Edward III invades France, defeats the French at Sluys, and makes a treaty with Philip VI of France. Instability in the wool export trade</td>
</tr>
<tr>
<td>1350</td>
<td>Inflation (after allowing for persistence) and increase in income (after allowing for crop yield variation)</td>
<td>Black Death (1348–49)</td>
</tr>
<tr>
<td>1351</td>
<td>Inflation and wage increases</td>
<td>Statute of Labourers</td>
</tr>
<tr>
<td>1361</td>
<td>Significant wage increase</td>
<td>Plague reappears. Justices of the Peace Act</td>
</tr>
<tr>
<td>1369</td>
<td>Significant inflation</td>
<td>Edward III resumes the title King of France. Charles V declares war on England. Anglo–Scottish truce</td>
</tr>
<tr>
<td>1374</td>
<td>Low output</td>
<td>Dancing mania in Europe. Edward III dies in 1377</td>
</tr>
<tr>
<td>Year</td>
<td>Event Description</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>1400</td>
<td>Inflation after adjusting for wage impacts</td>
<td>Richard II is murdered, after being deposed the previous year by Henry IV. Welsh Rebellion, led by Owain Glyndŵr, begins, lasting until 1415. Henry IV suppresses a rebellion of the barons. Prosperity in the cloth export trade.</td>
</tr>
<tr>
<td>1403</td>
<td>Wage increase</td>
<td>King Henry IV defeats ‘Harry Hotspur’ (Henry Percy) at Shrewsbury.</td>
</tr>
<tr>
<td>1412</td>
<td>Sharp reduction in wages</td>
<td>Henry IV abandons Burgundy and allies with Orleans in the Hundred Years’ War. Arundel is appointed Chancellor and the Prince of Wales removed from the Council. Henry IV dies the following year.</td>
</tr>
<tr>
<td>1428</td>
<td>Inflation, and reduction in output after allowing for crop yield variation</td>
<td>Assault on Orleans in the Hundred Years’ War with France.</td>
</tr>
<tr>
<td>1432</td>
<td>Low output</td>
<td>An uneventful year.</td>
</tr>
<tr>
<td>1438</td>
<td>Significant inflation</td>
<td>Anglo–Scottish truce for 14 years.</td>
</tr>
<tr>
<td>1446</td>
<td>Low output</td>
<td>An uneventful year.</td>
</tr>
</tbody>
</table>

Note: The terms ‘increase’ and ‘reduction’ must be interpreted in the context of the residuals analysis. ‘Increase (decrease)’ signifies a positive (negative) residual exceeding two standard deviations from the predicted value.
inflation appears in the years after the Black Death, rather than the years of
the plague itself.

The connection between the Black Death and inflation is not so straight-
forward as may appear. Although the Black Death diminished the supply of
agricultural products, it diminished the demand as well; the fall in population
that reduced the labour supply also reduced the number of mouths to be fed.
If the balance between demand and supply remained unchanged then there
is, in principle, no reason for prices to change as well. If the money supply
remained roughly constant, however, while output fell, then the Quantity
Theory of Money would predict an increase in price. If monetary factors
impacted with a lag, then this would explain the lag in inflation. Another
reason for the lagged response could be long-term disruption to the market
system, caused by the death of so many merchants and the disorganisation of
civic and manorial life.

Apart from the Black Death, monetary factors seem to have had little effect.
The stocks of silver and gold are of limited significance in the regression
equations, and the dummy variable for the introduction of gold coinage in
1344 is mostly insignificant too. There is an unexplained increase in the wage
in 1301, following the partial recoinage of 1299–1301, but this disappears
once crop yields are allowed for; the direction of change is unusual too, as
improvement in the quality of the currency would be expected to reduce the
wage. Trade policy too appears to have little effect. There is no discernible
crisis in either 1275, when Edward I introduced the ‘Ancient custom’ on wool
(a tax on wool exports), nor in 1347 when the ‘cloth custom’ was introduced
(although the effects of the latter may be masked by the Black Death).

Other events are also notable for their absence. The Good Parliament of
1376, which saw parliament refuse Edward III’s requests for direct taxation
and a lay subsidy, does not appear as a crisis. This is perhaps because its
decision, while a serious attack on Edward III’s authority at the time, was
reversed the following year.21 The Peasants’ Revolt of 1381 does not appear
to have caused a crisis. While earlier historiography on the Revolt considered
it to be widespread across England and perceived it to have long-term conse-
quences, there has been a move towards down-playing the scale of the Revolt
and its long-term significance.22 The results of this chapter tie in with the
view that the Revolt was not a major crisis.

22 Hilton, ‘Introduction’, p. 3; Hilton, Bond Men; M. McKisack, The Fourteenth Century
Conclusions

This chapter has shown that crises identified directly from statistical data correspond with some, but not all, of the events identified as crises in the established historiography. Both economic and political events feature in the results.

In terms of economic events, the timing of the impacts of the Great Famine and the Black Death is somewhat different from what might have been expected. Certain years of the Great Famine appear in the results, but not all. Meanwhile the immediate aftermath of the Black Death appears more prominently in the results than the high point of the disease itself. For political events, meanwhile, it can be seen that internal disputes between the crown and the nobility correspond with a number of the crises identified in the statistical analysis. In particular the results lend support to the concept of crises in the reign of Edward II. The Hundred Years’ War corresponds with four of the years of crisis identified in the statistical analysis. This may be because, while the fighting took place in France, the financial element of the war had a strong impact on English citizens, as much of the literature has suggested.

While the conclusions so far have discussed crises that may derive from a single dominant cause, the results also show that crises can occur from a combination of events that collectively overwhelm the capacity of institutions. This can be seen in particular with regards to the Great Famine, where the years 1315 and 1321 – identified as crisis years in the statistical analysis – both witnessed a combination of environmental and political disruption. This relationship was identified by Jordan and has been supported by recent research.

From the evidence in this chapter it appears that a problem becomes a crisis when markets are not sufficiently flexible to adjust, or when political authorities are not sufficiently vigilant or decisive. It can also be noted that events whose impact is often considered by historians to have been relatively short-term, such as the Good Parliament and the Peasants’ Revolt, do not appear as crises in the statistical analysis.