Public Health ‘e-Labs’
for a Global Digital Economy

WHO-PHI 2008 (Asia-Pacific), Delhi, 3-4 Nov 2008

Prof. Iain Buchan
University of Manchester
Phi Targets

- Digital **Deserts**

 Building e-readiness for the public’s health

- Digital **Dust**

 Turning digital commodities into actions for the public’s health
Situational Awareness of Rising Child-BMI: Example Wirral 3-yr-olds from 1988 to 2004

Month of measurement by Health Visitor

SDS = standard deviation score from 1990 British Growth Reference charts – adjusts for age and sex of the child
Secular trend to increasing BMI is much greater in taller children

Source: Buchan et al. 2006
Health data-silo anthropology

‘data-tombs’...
Digital Dust (data deposit > use)

- Finance
- Clinical
- Public Health
- Research

Health District Data Tomb

Deposits and uses connect among these categories.
Problems with Public Health Information

- Too little
- Too late
- Can’t find it
- Can’t reproduce it
- Consumes more resource than it needs to
- Benefits invisible to healthcare providers
- Cost savings not measured
Cloud of millions of messages in the local health economy

Organise

Structured Data

Transform & Examine

Structured Data & Metadata
Unclear Public Good

Audit; Research; Intelligence

Clear Public Good

Research & Decision Objects

e-Lab for a defined community

Health Records

Depersonalise

Local Ownership

Asset Enrichment
Real-time Data Repository in PCT

Anonymised Data Repository in PCT

24-hourly updates

Data

Biometrics Data

Outputs

FIREWALL

Trusted person poses question(s)

Patient-driven information into records

Person-identifiable and sensitive information removed

Link on NHS number

Optometrist
Eye screening
Community nurses
Podiatry

Deaths, Demographics etc.

GP

Hosp.

GP

GP
What is an e-Lab?

...an information system bringing together data, analytical methods and people for timely, high-quality decision-making
Clinical audit question: “is diabetes care picking up enough treatable anaemia in patients with mild kidney impairment?”

→ Answer: No
→ Care pathway improvements
→ Next similar e-Lab query made easier
→ Deeper research...
Anaemia at lower levels of kidney impairment than commonly thought

Clinical (audit) questions leading to scientific findings: supporting sustainable healthcare-academic partnership
Dataset → Digital Commodity

Serving health communities with high-quality health intelligence requires metadata from local uses...
Excellent research by-products of excellent service development

Federation of e-Labs ➔ scalable & sustainable
Summarising care quality

Care improvement or case-mix change?
Developing models and software to make complex scenarios easy to explore in real time → democratise commissioning?

Outputs: Population-based incidence, prevalence; Deaths prevented; Life-Years; Life expectancy; Costs; Cost-effectiveness ratios
Increasing Expectation of Models

• Research
 – Multi-level stochastic
 – Machine-learning
 • Omics
 • Image analysis

• Service-development
 – Graphical models & discrete event simulations

• Clinical & self-care decision support?
Crude Pan-Genome Scans

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
</table>

⇒ Patients ⇒

for(i = 1 to #random permutations)
{
 for(j = 1 to #SNPs)
 {
 for(k = 1 to #patients)
 {
 disease status vs. locus status χ^2
 }
 }
}

Given a typical 5k patients, 0.5m SNPs and 10k permutations:

20k χ^2 calcs per sec on modern single core ⇒ 70 hrs single SNPs;
⇒ ≈1,980 years for $[n*(n-1)]/2$ SNP pairs
Computational free-thinking, for insights from richly-observed health & environments.

Simple Algorithms

\[C = \sigma^2 (I + ABB^T) \]
...the e-Research Digital Economy
Obesity Attributable Cancers

• What is & will be the obesity-attributable cancer burden?

• Setting: 30 countries

• Inputs needed:
 – site- and sex-specific cancer risk data
 – standardised risk estimation by site
 – sex- and age-specific risk exposure data (present & past)
 – up-to-date cancer incidence
 – trends in cancer numbers & population demographics

Thanks to: Andrew Renehan
Localising Evidence Needs PHI

WHO Infobase
GloboCan

Future Population Impact Numbers

Current Population Impact Numbers

Risk exposure trends
Tumour registries

Interpretation & Report

Meta-analysis

Systematic review

Protocol

Rising complexity & computational cost

Figure 3: Summary risk estimates by cancer sites in men
Safety Blind-spot: Tamoxifen

• Question: Is there a substantial burden of recurrent breast cancer due to interaction of tamoxifen with anti-depressants?
 – Plausible CyP450-2D6 competition (tam → end-oxifen)

• Blind-spots (missing from registers)
 – Recurrent cancers
 – Adjuvant therapies
 – Concurrent therapies
1. User logs on and submits query

2. Access control module authorizes request

3. Broker performs distributed query; 4. generate pseudonym keys

5. Per request keyed pseudonymisation

6. Data integration

7. Anonymisation and inference control

8. Storage

9. Data analysis and visualization

Salford PCT e-Lab

NWeH e-Lab Federation

NWCIS e-Lab
e-Lab Anatomy is Simple

e-Lab = community + work objects + methods
for building work objects

A research object is a story about an investigation.

A decision object is a critical mass of evidence to support a decision.
e-Lab Activity at Manchester

• >100 person years of activity planned for next 3-5 years
 – Healthcare and Public Health
 • North West e-Health: 19 fte to 2012
 • Care Pathway Simulators: 6 fte to 2013
 • Obesity e-Lab: 3 fte to 2011
 – Biology, Chemistry, Social Science, other...
 • Taverna, myGrid & myExperiment: 16 fte 2012

• Ethos
 – Use open-standards, service oriented arch., simple APIs
 – All software freely available in open source
 – Contribute to & learn from global family of innovation
Standards-based Health Information Systems

e-Lab: Sense-Making Layer

Care

Service Development

Research

Open Source Projects Sustained by the Value they Add through Crowd-Wisdom + Cloud Resources Shared

Powerful Models

Agile Communities
Conclusion

Vision: Global Network of e-Health e-Labs

– Sharing data, expertise & computational resources
– Free, open-source sense-making layer built on top of standards-based healthcare IT

– Innovation is local
– Inspiration is global
– Let’s keep talking