Public Health e-Labs for a Global Digital Economy

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date: 22. Nov. 2019
Public Health ‘e-Labs’
for a Global Digital Economy

WHO-PHI 2008 (Asia-Pacific), Delhi, 3-4 Nov 2008

Prof. Iain Buchan
University of Manchester
PHI Targets

• Digital Deserts
 Building *e-readiness* for the public’s health

• Digital Dust
 Turning digital commodities into actions
 for the public’s health
Situational Awareness of Rising Child-BMI: Example Wirral 3-yr-olds from 1988 to 2004

Three-monthly rolling average BMI SDS

SDS = standard deviation score from 1990 British Growth Reference charts – adjusts for age and sex of the child
Secular trend to increasing BMI is much greater in taller children

Source: Buchan et al. 2006
Health data-silo anthropology

‘data-tombs’...
Digital Dust (data deposit > use)

- Finance
- Clinical
- Public Health
- Research

Health District Data Tomb
Public Health Info-economics

Problems with Public Health Information

– Too little
– Too late
– Can’t find it
– Can’t reproduce it
– Consumes more resource than it needs to
– Benefits invisible to healthcare providers
– Cost savings not measured
Cloud of millions of messages in the local health economy

Organise

Structured Data

Transform & Examine

Structured Data & Metadata
Unclear Public Good

Health Records

Audit; Research; Intelligence

Depersonalise

Local Ownership

Asset Enrichment

Clear Public Good

Research & Decision Objects

e-Lab for a defined community

Health Records
What is an e-Lab?

...an information system bringing together data, analytical methods and people for timely, high-quality decision-making
Clinical audit question: “is diabetes care picking up enough treatable anaemia in patients with mild kidney impairment?”

→ Answer: No
→ Care pathway improvements
→ Next similar e-Lab query made easier
→ Deeper research...
Anaemia at lower levels of kidney impairment than commonly thought

Clinical (audit) questions leading to scientific findings: supporting sustainable healthcare-academic partnership

Anaemia at lower levels of kidney impairment than commonly thought
Serving health communities with high-quality health intelligence requires **metadata** from **local uses**...
Excellent research by-products of excellent service development

Federation of e-Labs → scalable & sustainable
Summarising care quality

Care improvement or case-mix change?
Outputs: Population-based incidence, prevalence; Deaths prevented; Life-Years; Life expectancy; Costs; Cost-effectiveness ratios

Developing models and software to make complex scenarios easy to explore in real time → democratise commissioning?
Increasing Expectation of Models

• Research
 – Multi-level stochastic
 – Machine-learning
 • Omics
 • Image analysis

• Service-development
 – Graphical models & discrete event simulations

• Clinical & self-care decision support?
Crude Pan-Genome Scans

for(i = 1 to #random permutations)
{
 for(j = 1 to #SNPs)
 {
 for(k = 1 to #patients)
 {
 disease status vs. locus status χ^2
 }
 }
}

Given a typical 5k patients, 0.5m SNPs and 10k permutations:

20k χ^2 calcs per sec on modern single core \Rightarrow 70 hrs single SNPs;
\Rightarrow \approx1,980 years for $[n*(n-1)]/2$ SNP pairs
Computational free-thinking, for insights from richly-observed health & environments
...the e-Research Digital Economy
Obesity Attributable Cancers

• What is & will be the obesity-attributable cancer burden?

• Setting: 30 countries

• Inputs needed:
 – site- and sex-specific cancer risk data
 – standardised risk estimation by site
 – sex- and age-specific risk exposure data (present & past)
 – up-to-date cancer incidence
 – trends in cancer numbers & population demographics

Thanks to: Andrew Renehan
Localising Evidence Needs PHI

Future Population Impact Numbers

Current Population Impact Numbers

WHO Infobase GloboCan

Risk exposure trends

Tumour registries

Interpretation & Report

Meta-analysis

Systematic review

Protocol

Rising complexity & computational cost

Table: Summary of risk estimates by cancer sites in men

<table>
<thead>
<tr>
<th>Cancer site and type</th>
<th>Number of studies</th>
<th>RR (95% CI)</th>
<th>p</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oesophagus adenocarcinoma</td>
<td>5</td>
<td>1.57 (1.2-1.9)</td>
<td><0.0001</td>
<td>21%</td>
</tr>
<tr>
<td>Thyroid</td>
<td>1</td>
<td>1.32 (0.06-3.7)</td>
<td>0.62</td>
<td>77%</td>
</tr>
<tr>
<td>Colon</td>
<td>22</td>
<td>1.24 (1.0-1.28)</td>
<td><0.0001</td>
<td>22%</td>
</tr>
<tr>
<td>Rectal</td>
<td>11</td>
<td>1.24 (0.95-1.61)</td>
<td><0.0001</td>
<td>22%</td>
</tr>
<tr>
<td>Liver</td>
<td>4</td>
<td>1.32 (0.96-1.8)</td>
<td>0.82</td>
<td>82%</td>
</tr>
<tr>
<td>Multigland adenocarcinoma</td>
<td>6</td>
<td>1.37 (0.15-1.3)</td>
<td>0.904</td>
<td>44%</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>7</td>
<td>1.21 (1.0-1.21)</td>
<td><0.0001</td>
<td>7%</td>
</tr>
<tr>
<td>Rectum</td>
<td>18</td>
<td>1.09 (1.06-1.12)</td>
<td><0.0001</td>
<td>3%</td>
</tr>
<tr>
<td>Gall bladder</td>
<td>4</td>
<td>1.09 (0.81-1.31)</td>
<td>0.32</td>
<td>9%</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>7</td>
<td>1.08 (0.92-1.14)</td>
<td>0.009</td>
<td>9%</td>
</tr>
<tr>
<td>Prostate</td>
<td>12</td>
<td>1.09 (1.05-1.22)</td>
<td>0.023</td>
<td>7%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>6</td>
<td>1.66 (1.0-2.0)</td>
<td>0.0002</td>
<td>9%</td>
</tr>
<tr>
<td>Breast</td>
<td>27</td>
<td>1.09 (1.00-1.00)</td>
<td>0.11</td>
<td>7%</td>
</tr>
<tr>
<td>Gastrointestinal cancer</td>
<td>8</td>
<td>0.79 (0.68-1.0)</td>
<td>0.49</td>
<td>10%</td>
</tr>
<tr>
<td>Lung</td>
<td>11</td>
<td>0.79 (0.76-1.1)</td>
<td><0.0001</td>
<td>62%</td>
</tr>
<tr>
<td>Oesophagus squamous</td>
<td>3</td>
<td>0.71 (0.56-0.85)</td>
<td><0.0001</td>
<td>42%</td>
</tr>
</tbody>
</table>

Figure 3: Summary risk estimates by cancer sites in men.
Safety Blind-spot: Tamoxifen

• Question: Is there a substantial burden of recurrent breast cancer due to interaction of tamoxifen with anti-depressants?
 – Plausible CyP450-2D6 competition (tam → end-oxifen)

• Blind-spots (missing from registers)
 – Recurrent cancers
 – Adjuvant therapies
 – Concurrent therapies
1. User logs on and submits query
2. Access control module authorizes request
3. Broker performs distributed query; 4. generate pseudonym keys
5. Per request keyed pseudonymisation
6. Data integration
7. Anonymisation and inference control
8. Storage
9. Data analysis and visualization
e-Lab Anatomy is Simple

\[
e-Lab = \text{community} + \text{work objects} + \text{methods} \text{ for building work objects}
\]

A research object is a story about an investigation.

A decision object is a critical mass of evidence to support a decision.
e-Lab Activity at Manchester

• >100 person years of activity planned for next 3-5 years
 – Healthcare and Public Health
 • North West e-Health: 19 fte to 2012
 • Care Pathway Simulators: 6 fte to 2013
 • Obesity e-Lab: 3 fte to 2011
 – Biology, Chemistry, Social Science, other...
 • Taverna, myGrid & myExperiment: 16 fte 2012

• Ethos
 – Use open-standards, service oriented arch., simple APIs
 – All software freely available in open source
 – Contribute to & learn from global family of innovation
Open Source Projects
Sustained by the Value they Add
through Crowd-Wisdom
+ Cloud Resources Shared

Care Service Development Research

e-Lab: Sense-Making Layer

Standards-based Health Information Systems

Powerful Models
Agile Communities
Conclusion

Vision: Global Network of e-Health e-Labs

- Sharing data, expertise & computational resources
- Free, open-source sense-making layer built on top of standards-based healthcare IT

- Innovation is local
- Inspiration is global
- Let’s keep talking