Diffusion Monte Carlo Study of Charge Carrier Complexes in Two-Dimensional Semiconductors

Citation for published version (APA):

Published in:
PSI-K CONFERENCE 2015, SAN SEBASTIAN, SPAIN

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Diffusion Monte Carlo Study of Charge Carrier Complexes in Two-Dimensional Semiconductors

BY Marcin Szyniszewski1,2, Elaheh Mostaani1, Neil Drummond1, Vladimir Fal’ko1

1 Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
2 NoWNano DTC, University of Manchester, Manchester, M13 9PL, UK

Psi-K Conference 2015, San Sebastian, Spain (Tuesday, 8 September 2015)
Outline

1. Introduction to charge carrier complexes
2. Effective interaction between charge carriers
3. Units
4. Details of QMC
5. Results: binding energies
6. Comparison with experiments
7. Results: pair densities
8. Summary & outlook
Charge carrier complexes in transition-metal dichalcogenides

- Large exciton binding energies in TMDCs
- Experimentalists observe lines in absorption spectra ascribed to trions and biexcitons\([1]\)
- There are bright and dark complexes, whether recombination is allowed by spin and momentum conservation
- Neglect indistinguishable carriers: they are weakly bound anyway

\[\text{EXCITON} \quad \text{TRION} \quad \text{BIEXCITON}\]

\[\begin{align*}
\text{EXCITON} & : e^+ e^- \\
\text{TRION} & : \text{Positive } X^+ \\
\text{BIEXCITON} & : XX \\
\end{align*}\]

\[\begin{align*}
D^+ e^- & \\
A^- e^+ & \\
D^+ X & \\
D^+ A^- e^+ & \\
D^+ A^- e^- & \\
A^- X & \\
\ldots & \\
\end{align*}\]

\[\Delta_{\text{so}} \quad \Delta \]

\[\Delta \]

\[\Delta_{\text{so}} \]

Effective interaction

• Coulomb interaction between charge carriers is greatly modified[2] by the in-plane susceptibility of the material.

• Consider charge density $\rho(x, y)\delta(z)$ in a 2D semiconductor. By using the Gauss’s law and assuming the polarisation field is only in-plane, the potential becomes:

$$v(r) = \frac{1}{r^*} \frac{\pi}{2} \left(H_0 \left(\frac{r}{r^*} \right) - Y_0 \left(\frac{r}{r^*} \right) \right), \quad r^* = 2\pi \chi_\perp$$

Short range: Logarithmic interaction

$$V(x) = -\log x/2 - \gamma$$

Long range: Coulomb interaction

$$V(x) = 1/x$$

[2] Keldysh, JETP Lett. 29, 658 (1979)
Units

- Parameter r_* related to susceptibility, can range from 0 to ∞ and has units of length. Let us measure it in the units of the excitonic Bohr radius r_*/a_B^* is invariant under charge conjugation.

- Mass ratio m_e/m_h is already dimensionless, but can range from 0 to ∞.
 - Mapping into $[0,1]$ patch:
 \[
 \frac{r_*/a_B^*}{1 + r_*/a_B^*} = \frac{r_*}{r_* + a_B^*}, \quad \frac{m_e/m_h}{1 + m_e/m_h}
 \]
 - **Exciton** binding energy should be measured in units that remove the mass dependence:
 \[
 \frac{e^2}{4\pi\varepsilon_0 a_B^*} = 2Ry^*
 \]
 - **Trion and biexciton** binding energy
 \[
 e^2/(4\pi\varepsilon_0 (r_* + a_B^*))
 \]
 Goes to $e^2/4\pi\varepsilon_0 r_*$ for logarithmic limit and to $2Ry^*$ for Coulomb.
Limits for a negative trion

- Logarithmic limit (large susceptibility)
- Heavy electron limit
 - Born-Oppenheimer approximation for a negative trion: separation of fixed particles must be determined
 - Square root behaviour in m_e/m_h
- Coulomb limit (no susceptibility)

Space of our parameters

- Light electron limit
 - Negative trion resembles an H^- ion
 - Linear in mass ratio
Details of Quantum Monte Carlo

- CASINO[3] used for all our QMC calculations
- We start with a trial wave function of the Jastrow form:
 \[\psi = \exp J(\vec{R}) \]
 where the Jastrow exponent contains pairwise sum of terms \(u_0 \) and two- and three-body polynomial terms[4]
 \[u_0(r) = \frac{c_1 r^2 \log r + c_2 r^2 + c_3 r^3}{1 + c_4 r^2} \]
- Distinguishable particles \(\rightarrow \) ground-state wave function is nodeless
- Use variational MC to optimise the free parameters in the w.f. by unreweighted variance and energy minimisation
- Diffusion MC calculations performed using time steps in the ratio 1:4 with corresponding configuration population 4:1 \(\rightarrow \) extrapolate linearly to zero time step and infinite population

[4] Drummond et al., PRB 70, 235119 (2004); López Rios et al., PRE 86, 036703 (2012)
Exciton binding energy

\[E_X = \frac{e^2}{4\pi\varepsilon_0 a_B^*} \left(\frac{r_*/a_B^*}{1 + r_*/a_B^*} \right) \]

Fit behaviour using results of [5]

Trion binding energy

Trion binding energy $E_X = \frac{e^2}{4\pi\epsilon_0} \left(\frac{r^*_e}{a_B^*} + \frac{1}{1 + r^*_e/a_B^*} \right)$

Previous results:
- Logarithmic limit [5]
- Coulomb limit [6]
- $m_e = m_h$ [7]

Steep decrease

Comparison with experiments

<table>
<thead>
<tr>
<th>Material</th>
<th>$\frac{m_e}{m_h}$</th>
<th>r_* [Å]</th>
<th>Trion binding energy [meV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>This work</td>
<td>Log</td>
</tr>
<tr>
<td>X^-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoS2</td>
<td>0.7</td>
<td>41.5</td>
<td>35</td>
</tr>
<tr>
<td>MoSe2</td>
<td>0.7</td>
<td>51.7</td>
<td>30</td>
</tr>
<tr>
<td>MoTe2</td>
<td>0.8</td>
<td>60.0</td>
<td>26</td>
</tr>
<tr>
<td>WS2</td>
<td>0.6</td>
<td>37.9</td>
<td>36</td>
</tr>
<tr>
<td>WSe2</td>
<td>0.6</td>
<td>45.1</td>
<td>31</td>
</tr>
<tr>
<td>WTe2</td>
<td>0.4</td>
<td>53.9</td>
<td>27</td>
</tr>
<tr>
<td>Phosphorene</td>
<td>1.1</td>
<td>3.66</td>
<td>133</td>
</tr>
<tr>
<td>X^+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoS2</td>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>MoSe2</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>MoTe2</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>WS2</td>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>WSe2</td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>WTe2</td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Phosphorene</td>
<td></td>
<td>131</td>
<td></td>
</tr>
</tbody>
</table>

$^\text{[8]}$ Berkelbach et al., PRB 88, 045318 (2013).
Donor+exciton binding energy

\[E_{D+x} = \frac{e^2}{4\pi\varepsilon_0} \left(\frac{r_*/a_B^*}{1 + r_*/a_B^*} \right) \]

Biexciton

\[E_{XX} \equiv \frac{e^2}{4\pi \varepsilon_0} \left(r_0 + a_B^* \right) \]

\[= \frac{m_e}{m_h} \frac{1}{1 + \frac{m_e}{m_h}} \]

\[\frac{r_*/a_B^*}{1 + r_*/a_B^*} \]
Contact interaction

- Energy penalty when charge carriers overlap
- First-order perturbation theory: correction to the energy is
 \[A_{eh}\rho_{eh}(0) + A_{ee}\rho_{ee}(0) \]
- In our calculations we collected results for pair densities

\[\rho_{eh}[1/a_B^2] \]

- Determining \(A_{ij} \) by \textit{ab initio} calculations would be challenging, so we’ll leave that to experimentalists.
Contact pair density

\[\rho_{eh} \left[\frac{1}{a_B^*} \right] = \frac{\rho_X \left[\frac{1}{a_B^*} \right]}{1 + \frac{r_*/a_B^*}{1 + \frac{r_*/a_B^*}{m_e/m_h}}} \]

Graph showing the relationship between contact pair density and \(\frac{r_*/a_B^*}{1 + \frac{r_*/a_B^*}{m_e/m_h}} \) for different values of \(m_e/m_h \): 0.5, 1.0, 2.0, and 5.0.
Summary & Outlook

• Excitons, trions and biexcitons are crucial in optoelectronics of 2D semiconductors
 • Nonlocal screening effects modify the Coulomb interaction
• Using the Diffusion Monte Carlo approach we have calculated the binding energies of charge carrier complexes
• Contact pair densities extracted, to enable the analysis of the contact interactions in these systems

Future work:
• For biexcitons there’s only one type of the complex with distinguishable particles
• Modifying the trial wave function:
 • Slater determinant
 • W.f. is no longer nodeless
Thanks for listening!

Acknowledgements:

and for the funding!