Diffusion Monte Carlo Study of Charge Carrier Complexes in Two-Dimensional Semiconductors

BY Marcin Szyniszewski1,2, Elaheh Mostaani1, Neil Drummond1, Vladimir Fal’ko1

1 Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
2 NoWNano DTC, University of Manchester, Manchester, M13 9PL, UK

Psi-K Conference 2015, San Sebastian, Spain (Tuesday, 8 September 2015)
Outline

1. Introduction to charge carrier complexes
2. Effective interaction between charge carriers
3. Units
4. Details of QMC
5. Results: binding energies
6. Comparison with experiments
7. Results: pair densities
8. Summary & outlook
Charge carrier complexes in transition-metal dichalcogenides

- Large exciton binding energies in TMDCs
- Experimentalists observe lines in absorption spectra ascribed to trions and biexcitons\(^1\)
- There are bright and dark complexes, whether recombination is allowed by spin and momentum conservation
- Neglect indistinguishable carriers: they are weakly bound anyway

![Diagram of exciton, trion, and biexciton complexes](image)

\(\Delta_{so}\) Difference in spin polarisation

Effective interaction

- Coulomb interaction between charge carriers is greatly modified\(^{[2]}\) by the in-plane susceptibility of the material.
- Consider charge density \(\rho(x, y)\delta(z)\) in a 2D semiconductor. By using the Gauss’s law and assuming the polarisation field is only in-plane, the potential becomes:

\[
v(r) = \frac{1}{r} \frac{\pi}{2r_*} \left(H_0 \left(\frac{r}{r_*}\right) - Y_0 \left(\frac{r}{r_*}\right) \right), \quad r_* = 2\pi \chi_\perp
\]

Short range: Logarithmic interaction

\[
V(x) = -\log x/2 - \gamma
\]

Long range: Coulomb interaction

\[
V(x) = \frac{1}{x}
\]

Units

- Parameter r_* related to susceptibility, can range from 0 to ∞ and has units of length. Let us measure it in the units of the excitonic Bohr radius r_*/a_B^* is invariant under charge conjugation.
- Mass ratio m_e/m_h is already dimensionless, but can range from 0 to ∞.
- Mapping into $[0,1]$ patch:

 $$\frac{r_*/a_B^*}{1 + r_*/a_B^*} = \frac{r_*}{r_* + a_B^*}, \quad \frac{m_e/m_h}{1 + m_e/m_h}$$

- **Exciton** binding energy should be measured in units that remove the mass dependence:

 $$\frac{e^2}{4\pi \varepsilon_0 a_B^*} = 2Ry^*$$

- **Trion and biexciton** binding energy

 $$\frac{e^2}{(4\pi \varepsilon_0 (r_* + a_B^*))}$$

 Goes to $e^2/4\pi \varepsilon_0 r_*$ for logarithmic limit and to $2Ry^*$ for Coulomb.
Limits for a negative trion

- **Logarithmic limit (large susceptibility)**
- **Coulomb limit (no susceptibility)**
- **Heavy electron limit**
 - Born-Oppenheimer approximation for a negative trion: separation of fixed particles must be determined
 - Square root behaviour in \(\frac{m_e}{m_h} \)

Light electron limit
- Negative trion resembles an \(H^- \) ion
- Linear in mass ratio

Space of our parameters

\[
\frac{m_e}{m_h} = 1 + \frac{m_e}{m_h} \left(r_*/(r_* + a_B) \right)
\]

Square root behaviour in mass ratio.
Details of Quantum Monte Carlo

- **CASINO**\(^3\) used for all our QMC calculations
- We start with a **trial wave function** of the Jastrow form:
 \[
 \psi = \exp J(\vec{R})
 \]
 where the Jastrow exponent contains pairwise sum of terms \(u_0\) and two- and three-body polynomial terms\(^4\)
 \[
 u_0(r) = \frac{c_1r^2 \log r + c_2r^2 + c_3r^3}{1 + c_4r^2}
 \]
- **Distinguishable** particles \(\to\) ground-state wave function is **nodeless**
- Use **variational MC** to optimise the free parameters in the w.f. by unreweighted variance and energy minimisation
- **Diffusion MC** calculations performed using time steps in the ratio 1:4 with corresponding configuration population 4:1 \(\to\) extrapolate linearly to zero time step and infinite population

\[4\] Drummond et al., PRB 70, 235119 (2004); López Rios et al., PRE 86, 036703 (2012)
Exciton binding energy

\[E_X = \frac{e^2}{4\pi\varepsilon_0 a_B^*} \left(\frac{r_*/a_B^*}{1 + r_*/a_B^*} \right) \]

Fit behaviour using results of [5]

Trion binding energy

Previous results:
- Logarithmic limit [5]
- Coulomb limit [6]
- $m_e = m_h$ [7]

\[
E_X = \frac{e^2}{4\pi\varepsilon_0} \left(r_\ast^2 + a_B^\ast \right)
\]

\[
\frac{m_e}{m_h} \quad 0.0
0.2
0.4
0.6
0.8
1.0
\]

\[
\frac{r_\ast/a_B^\ast}{1 + r_\ast/a_B^\ast}
\]

Steep decrease

Comparison with experiments

<table>
<thead>
<tr>
<th>Material</th>
<th>$\frac{m_e}{m_h}$</th>
<th>r_* [Å]</th>
<th>Trion binding energy [meV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^-</td>
<td></td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>MoS2</td>
<td>0.7</td>
<td>41.5</td>
<td>35</td>
</tr>
<tr>
<td>MoSe2</td>
<td>0.7</td>
<td>51.7</td>
<td>30</td>
</tr>
<tr>
<td>MoTe2</td>
<td>0.8</td>
<td>60.0</td>
<td>26</td>
</tr>
<tr>
<td>WS2</td>
<td>0.6</td>
<td>37.9</td>
<td>36</td>
</tr>
<tr>
<td>WSe2</td>
<td>0.6</td>
<td>45.1</td>
<td>31</td>
</tr>
<tr>
<td>WTe2</td>
<td>0.4</td>
<td>53.9</td>
<td>27</td>
</tr>
<tr>
<td>Phosphorene</td>
<td>1.1</td>
<td>3.66</td>
<td>133</td>
</tr>
<tr>
<td>X^+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoS2</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>MoSe2</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>MoTe2</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>WS2</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>WSe2</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>WTe2</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Phosphorene</td>
<td></td>
<td></td>
<td>131</td>
</tr>
</tbody>
</table>

Donor+exciton binding energy

\[E_{D+x} [e^2 / 4\pi\varepsilon_0 (r^* + a_B^*)] \]

\[\frac{r^*/a_B^*}{1 + r^*/a_B^*} \]

\[\frac{m_e/m_h}{1 + m_e/m_h} \]

Biexciton

\[E_{XX} \left[\frac{e^2}{4\pi\varepsilon_0} \left(\frac{r_*}{a_B^*} \right) \right] \]

\[
\frac{m_e/m_h}{1 + m_e/m_h}
\]

\[
\frac{r_*/a_B^*}{1 + r_*/a_B^*}
\]
Contact interaction

- Energy penalty when charge carriers overlap
- First-order perturbation theory: correction to the energy is
 \[A_{eh}\rho_{eh}(0) + A_{ee}\rho_{ee}(0) \]
- In our calculations we collected results for pair densities

- Determining \(A_{ij} \) by \textit{ab initio} calculations would be challenging, so we’ll leave that to experimentalists.
Contact pair density

\[\rho_{eh} \left[\frac{1}{a_B^2} \right] = \rho_X \left[\frac{1}{a_B^2} \right] + \frac{\rho_X}{2} \left[\frac{1}{a_B^2} \right] \]

\[\frac{r_*/a_B^*}{1 + r_*/a_B^*} \]

\(m_e/m_h \)
- 0.5
- 1.0
- 2.0
- 5.0
Summary & Outlook

• Excitons, trions and biexcitons are crucial in optoelectronics of 2D semiconductors
 • Nonlocal screening effects modify the Coulomb interaction
• Using the Diffusion Monte Carlo approach we have calculated the binding energies of charge carrier complexes
• Contact pair densities extracted, to enable the analysis of the contact interactions in these systems

Future work:
• For biexcitons there’s only one type of the complex with distinguishable particles
• Modifying the trial wave function:
 • Slater determinant
 • W.f. is no longer nodeless
Thanks for listening!

Acknowledgements:

and

for the funding!